Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
Terascale direct numerical simulations of turbulent combustion using S3D.
Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer
2008-08-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2016-08-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Malapaka, Shiva Kumar; Mueller, Wolf-Christian
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
NASA Astrophysics Data System (ADS)
Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.
2015-12-01
Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.
3D Numerical simulations of oblique subduction
NASA Astrophysics Data System (ADS)
Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.
2012-04-01
In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins
Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
3D numerical model for NGC 6888 Nebula
NASA Astrophysics Data System (ADS)
Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.
We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.
A 3D numerical model for Kepler's supernova remnant
NASA Astrophysics Data System (ADS)
Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.
2014-07-01
We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.
3-D Numerical Modeling of a Complex Salt Structure
House, L.; Larsen, S.; Bednar, J.B.
2000-02-17
Reliably processing, imaging, and interpreting seismic data from areas with complicated structures, such as sub-salt, requires a thorough understanding of elastic as well as acoustic wave propagation. Elastic numerical modeling is an essential tool to develop that understanding. While 2-D elastic modeling is in common use, 3-D elastic modeling has been too computationally intensive to be used routinely. Recent advances in computing hardware, including commodity-based hardware, have substantially reduced computing costs. These advances are making 3-D elastic numerical modeling more feasible. A series of example 3-D elastic calculations were performed using a complicated structure, the SEG/EAGE salt structure. The synthetic traces show that the effects of shear wave propagation can be important for imaging and interpretation of images, and also for AVO and other applications that rely on trace amplitudes. Additional calculations are needed to better identify and understand the complex wave propagation effects produced in complicated structures, such as the SEG/EAGE salt structure.
Using 3-D Numerical Weather Data in Piloted Simulations
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.
2016-01-01
This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.
Numerical simulation of vortex breakdown via 3-D Euler equations
NASA Astrophysics Data System (ADS)
Le, T. H.; Mege, P.; Morchoisne, Y.
1990-06-01
The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension
NASA Astrophysics Data System (ADS)
Wang, S. Y.; Sloan, S. W.; Sheng, D. C.; Tang, C. A.
2016-05-01
Macroscopic notches play an important role in evaluating the fracture process zone (FPZ) and the strengths of a heterogeneous rock mass. Crack initiation, propagation and coalescence for unnotched, single-notched and double-notched rock specimens are numerically simulated in a 3-D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. For the unnotched case, special attention is given to the complete stress-strain curve and the corresponding AE events for the failure process of rock specimen. By comparing with published experimental results, the simulation results from RFPA3D are found to be satisfactory. For the single-notched case, the effect of the length and the depth of the single notch and the thickness of the specimen on the failure mode and peak stress are evaluated. The 3D FPZ is very different from that in two dimensions. For the double-notched case, the effects of the separation distance and overlap distance of the double notches, as well as influence of the homogeneity index (m) are also investigated. As the overlap distance increases, the direction of the principal tensile stress at each notch-end changes from a perpendicular direction (tensile stress field) to a nearly parallel direction (compressive stress field), which affects the evolution of the cracks from the two notches.
Cylindrical 3D video display observable from all directions
NASA Astrophysics Data System (ADS)
Endo, Tomohiro; Kajiki, Yoshihiro; Honda, Toshio; Sato, Makoto
2000-05-01
We propose a 3D video displaying technique that multiple viewers can observe 3D images from 360 degrees of arc horizontally without 3D glasses. This technique uses a cylindrical parallax barrier and 1D light source array. We have developed an experimental display using this technique and have demonstrated 3D images observable form 360 degrees of arc horizontally without 3D glasses. Since this technique is based on the parallax panoramagram, the parallax number and resolution are limited by the diffraction at the parallax barrier. To avoid these limits, we improved the technique by revolving the parallax barrier. We have been developing a new experimental display using this improved technique. The display is capable of displaying cylindrical 3D video images within the diameter of 100 mm and the height of 128 mm. Images are described with the resolution of 1254 pixels circularly and 128 pixels vertically, and refreshed at 30Hz. Each pixel has the viewing angle of 60 degrees and that is divided into 70 views, therefore the angular parallax interval of each pixel is less than 1 degree. In such a case, observers may barely perceive parallax discretely. The pixels are arranged on a cylinder surface, therefore produced 3D images can be observed from all directions.
High Resolution 3d Numerical Modelling of Rockfalls
NASA Astrophysics Data System (ADS)
Agliardi, F.; Crosta, G. B.
Accurate modelling of rockfall dynamics is a major issue for engineering geologists and land planners in rockfall prone areas, both for hazard assessment and the design of countermeasures. Numerical modelling of rockfalls has been generally performed in two dimensions. Thus, this is subjected to the crucial "a priori" choice of the rock- fall path and affected by a significant error due to the lateral dispersion of rockfall trajectories. In this study, an original 3D rockfall simulation program, first developed for regional scale distributed analysis, has been tested at a local scale with a very high spatial resolution, in order to show its performance in modelling site-specific prob- lems (runout definition, hazard assessment, design and verification of barriers). The code is based on a "lumped mass" kinematic algorithm allowing to simulate the free fall, impact-rebound and rolling motion of boulders on a three-dimensional topogra- phy described by a DTM. The code allows to run very detailed 3D simulations with almost no limitations in the number of modeled rockfall sources, slope elements and topographic points, using spatially distributed input data. Two case studies from the Mt. S.Martino area (Lecco, Larian Prealps) and the Gembrasca area (Valfurva, Central Alps), both from the mountainous area of the Lombardia Region (Northern Italy) are presented. Both the two examples are particularly intriguing because of the occurrence of well-known historical events (one of which causing fatalities) and the presence of valuable elements at risk (urban areas, transportation corridors) and defensive mea- sures (elasto-plastic barriers and catch walls). The Mt. S.Martino model is based on a DTM with cell size of 5 m, obtained from a 1:5.000 scale contour map, while the Gembrasca one uses an extremely detailed LIDAR-ALTM laser topography with a cell size of 1 m. The location of rockfall sources and the data used to develop and calibrate the two models have been collected
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B
Directed 3D cell alignment and elongation in microengineered hydrogels.
Aubin, Hug; Nichol, Jason W; Hutson, Ché B; Bae, Hojae; Sieminski, Alisha L; Cropek, Donald M; Akhyari, Payam; Khademhosseini, Ali
2010-09-01
Organized cellular alignment is critical to controlling tissue microarchitecture and biological function. Although a multitude of techniques have been described to control cellular alignment in 2D, recapitulating the cellular alignment of highly organized native tissues in 3D engineered tissues remains a challenge. While cellular alignment in engineered tissues can be induced through the use of external physical stimuli, there are few simple techniques for microscale control of cell behavior that are largely cell-driven. In this study we present a simple and direct method to control the alignment and elongation of fibroblasts, myoblasts, endothelial cells and cardiac stem cells encapsulated in microengineered 3D gelatin methacrylate (GelMA) hydrogels, demonstrating that cells with the intrinsic potential to form aligned tissues in vivo will self-organize into functional tissues in vitro if confined in the appropriate 3D microarchitecture. The presented system may be used as an in vitro model for investigating cell and tissue morphogenesis in 3D, as well as for creating tissue constructs with microscale control of 3D cellular alignment and elongation, that could have great potential for the engineering of functional tissues with aligned cells and anisotropic function.
Peptide Directed 3D Assembly of Nanoparticles through Biomolecular Interaction
NASA Astrophysics Data System (ADS)
Kaur, Prerna
The current challenge of the 'bottom up' process is the programmed self-assembly of nanoscale building blocks into complex and larger-scale superstructures with unique properties that can be integrated as components in solar cells, microelectronics, meta materials, catalysis, and sensors. Recent trends in the complexity of device design demand the fabrication of three-dimensional (3D) superstructures from multi-nanomaterial components in precise configurations. Bio mimetic assembly is an emerging technique for building hybrid materials because living organisms are efficient, inexpensive, and environmentally benign material generators, allowing low temperature fabrication. Using this approach, a novel peptide-directed nanomaterial assembly technology based on bio molecular interaction of streptavidin and biotin is presented for assembling nanomaterials with peptides for the construction of 3D peptide-inorganic superlattices with defined 3D shape. We took advantage of robust natural collagen triple-helix peptides and used them as nanowire building blocks for 3D peptide-gold nanoparticles superlattice generation. The type of 3D peptide superlattice assembly with hybrid NP building blocks described herein shows potential for the fabrication of complex functional device which demands precise long-range arrangement and periodicity of NPs.
Convective instability in sedimentation: 3-D numerical study
NASA Astrophysics Data System (ADS)
Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.
2014-11-01
To provide a probable explanation on the field observed rapid sedimentation process near river mouths, we investigate the convective sedimentation in stably stratified saltwater using 3-D numerical simulations. Guided by the linear stability analysis, this study focuses on the nonlinear interactions of several mechanisms, which lead to various sediment finger patterns, and the effective settling velocity for sediment ranging from clay (single-particle settling velocity V0 = 0.0036 and 0.0144 mm/s, or particle diameter d = 2 and 4 μm) to silt (V0 = 0.36 mm/s, or d = 20 μm). For very fine sediment with V0 = 0.0036 mm/s, the convective instability is dominated by double diffusion, characterized by millimeter-scale fingers. Gravitational settling slightly increases the growth rate; however, it has notable effect on the downward development of vertical mixing shortly after the sediment interface migrates below the salt interface. For sediment with V0 = 0.0144 mm/s, Rayleigh-Taylor instabilities become dominant before double-diffusive modes grow sufficiently large. Centimeter-scale and highly asymmetric sediment fingers are obtained due to nonlinear interactions between different modes. For sediment with V0 = 0.36 mm/s, Rayleigh-Taylor mechanism dominates and the resulting centimeter-scale sediment fingers show a plume-like structure. The flow pattern is similar to that without ambient salt stratification. Rapid sedimentation with effective settling velocity on the order of 1 cm/s is likely driven by convective sedimentation for sediment with V0 greater than 0.1 mm/s at concentration greater than 10-20 g/L.
2D and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
20 and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Directing Matter: Toward Atomic-Scale 3D Nanofabrication.
Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S
2016-06-28
Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication.
Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S
2016-06-28
Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies. PMID:27183171
Direct inversion of digital 3D Fraunhofer holography maps
NASA Astrophysics Data System (ADS)
Podorov, Sergei G.; Förster, Eckhart
2016-01-01
The Differential Fourier Holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [1] the Differential Fourier Holography was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional (2D) images. In this article we demonstrate numerically the possibility to apply the DFH also for investigation of unknown 3D Objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Directing Matter: Toward Atomic-Scale 3D Nanofabrication
Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; Lupini, Andrew R.; Rack, Philip D.; Unocic, Raymond R.; Sumpter, Bobby G.; Kalinin, Sergei V.; Belianinov, Alex; Ovchinnikova, Olga S.
2016-05-16
Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less
Numerical simulation of 3-D Benard convection with gravitational modulation
NASA Technical Reports Server (NTRS)
Biringen, S.; Peltier, L. J.
1990-01-01
In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.
3-D numerical evaluation of density effects on tracer tests.
Beinhorn, M; Dietrich, P; Kolditz, O
2005-12-01
In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow. PMID:16183165
Numerical and measured data from the 3D salt canopy physical modeling project
Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.
1997-11-01
The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.
Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis
NASA Astrophysics Data System (ADS)
Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif
2012-06-01
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.
Rayleigh Wave Numerical Dispersion in a 3D Finite-Difference Algorithm
NASA Astrophysics Data System (ADS)
Preston, L. A.; Aldridge, D. F.
2010-12-01
A Rayleigh wave propagates laterally without dispersion in the vicinity of the plane stress-free surface of a homogeneous and isotropic elastic halfspace. The phase speed is independent of frequency and depends only on the Poisson ratio of the medium. However, after temporal and spatial discretization, a Rayleigh wave simulated by a 3D staggered-grid finite-difference (FD) seismic wave propagation algorithm suffers from frequency- and direction-dependent numerical dispersion. The magnitude of this dispersion depends critically on FD algorithm implementation details. Nevertheless, proper gridding can control numerical dispersion to within an acceptable level, leading to accurate Rayleigh wave simulations. Many investigators have derived dispersion relations appropriate for body wave propagation by various FD algorithms. However, the situation for surface waves is less well-studied. We have devised a numerical search procedure to estimate Rayleigh phase speed and group speed curves for 3D O(2,2) and O(2,4) staggered-grid FD algorithms. In contrast with the continuous time-space situation (where phase speed is obtained by extracting the appropriate root of the Rayleigh cubic), we cannot develop a closed-form mathematical formula governing the phase speed. Rather, we numerically seek the particular phase speed that leads to a solution of the discrete wave propagation equations, while holding medium properties, frequency, horizontal propagation direction, and gridding intervals fixed. Group speed is then obtained by numerically differentiating the phase speed with respect to frequency. The problem is formulated for an explicit stress-free surface positioned at two different levels within the staggered spatial grid. Additionally, an interesting variant involving zero-valued medium properties above the surface is addressed. We refer to the latter as an implicit free surface. Our preliminary conclusion is that an explicit free surface, implemented with O(4) spatial FD
NASA Astrophysics Data System (ADS)
Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas
2014-05-01
A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.
Directionality in laser fabrication of 3D graphitic microwires in diamond
NASA Astrophysics Data System (ADS)
Sun, B.; Salter, P. S.; Booth, M. J.
2016-03-01
Graphitic wires embedded beneath the surface of single crystal diamond are promising for a variety of applications. Through a combination of ultra short (femtosecond) pulsed fabrication, high numerical aperture focusing and adaptive optics, graphitic wires can be written along any 3D path. Here, we demonstrate a non-reciprocal directional dependence to the graphitization process: the features are distinct when the fabrication direction is reversed. The non-reciprocal effects are significantly determined by the laser power, the fabrication speed, the light polarization and pulse front tilt. The influences of these factors are studied.
Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling
Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.
2013-11-28
We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.
TE/TM alternating direction scheme for wake field calculation in 3D
NASA Astrophysics Data System (ADS)
Zagorodnov, Igor; Weiland, Thomas
2006-03-01
In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.
Nature of stress accommodation in sheared granular material: Insights from 3D numerical modeling
NASA Astrophysics Data System (ADS)
Mair, Karen; Hazzard, James F.
2007-07-01
Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in a heterogeneous manner that may influence fault stability. We present new work to visualize the nature of contact force distributions during 3D granular shear. Our 3D discrete numerical models consist of granular layers subjected to normal loading and direct shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear, we observe the transient microscopic processes and resulting macroscopic mechanical behavior that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualization techniques. Our results highlight the prevalence of transient directed contact force networks that preferentially transmit enhanced stresses across our granular layers. We demonstrate that particle size distribution (psd) controls the nature of the force networks. Models having a narrow (i.e. relatively uniform) psd exhibit discrete pipe-like force clusters with a dominant and focussed orientation oblique to but in the plane of shear. Wider psd models (e.g. power law size distributions D = 2.6) also show a directed contact force network oblique to shear but enjoy a wider range of orientations and show more out-of-plane linkages perpendicular to shear. Macroscopic friction level, is insensitive to these distinct force network morphologies, however, force network evolution appears to be linked to fluctuations in macroscopic friction. Our results are consistent with predictions, based on recent laboratory observations, that force network morphologies are sensitive to grain characteristics such as particle size distribution of a sheared granular layer. Our numerical
NASA Astrophysics Data System (ADS)
Prihantoro, Rudy; Sutarno, Doddy; Nurhasan
2016-08-01
In this work, we seek numerical solution of 3-D Magnetotelluric (MT) using edge- based finite element method. This approach is a variant of standard finite element method and commonly referred as vector finite-element (VFE) method. Nonphysical solutions usually occurred when the solution is sought using standard finite element which is a node based element. Vector finite element attempt to overcome those nonphysical solutions by using the edges of the element as vector basis. The proposed approach on solving second order Maxwell differential equation of 3-D MT is using direct solver rather than iterative method. Therefore, divergence correction to accelerate the rate of convergence for its iterative solution is no longer needed. The utilization of direct solver has been verified previously for correctness by comparing the resulting solution to those given by analytical solution, as well as the solution come from the other numerical methods, for earth layered model, 2-D models and COMMEMI 3D-2 model. In this work, further verification resulted from recent comparison model of Dublin Test Model 1 (DTM1) is presented.
2-D and 3-D numerical simulation of a supersonic inlet flowfield
NASA Astrophysics Data System (ADS)
Enomoto, Shunji; Arakawa, Chuichi
The 2-D and 3-D steady, Reynolds-averaged Navier-Stokes equations were numerically solved for the flowfields in an experimentally tested inlet model with bleed through a cavity. In the 2-D analysis, a normal shock was located at diffuser inlet instead of the position below the cavity. The normal shock in the middle of the diffuser caused a massive separation of the boundary layer and a large total pressure loss. In the 3-D analysis, the shock wave was distorted by the side wall boundary layer separation, and the complex flow structure was established. The result of the 3-D analysis agreed well with the experiment.
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure
NASA Astrophysics Data System (ADS)
Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.
2003-04-01
Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev
The 3D Elevation Program: summary of program direction
Snyder, Gregory I.
2012-01-01
The 3D Elevation Program (3DEP) initiative responds to a growing need for high-quality topographic data and a wide range of other three-dimensional representations of the Nation's natural and constructed features. The National Enhanced Elevation Assessment (NEEA), which was completed in 2011, clearly documented this need within government and industry sectors. The results of the NEEA indicated that enhanced elevation data have the potential to generate $13 billion in new benefits annually. The benefits apply to food risk management, agriculture, water supply, homeland security, renewable energy, aviation safety, and other areas. The 3DEP initiative was recommended by the National Digital Elevation Program and its 12 Federal member agencies and was endorsed by the National States Geographic Information Council (NSGIC) and the National Geospatial Advisory Committee (NGAC).
NASA Astrophysics Data System (ADS)
Reiter, Karsten; Heidbach, Oliver; Moeck, Inga
2013-04-01
For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a
Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish
NASA Astrophysics Data System (ADS)
Xin, ZhiQiang; Wu, ChuiJie
2012-02-01
Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.
Direct inversion of digital 3D Fraunhofer holography maps.
Podorov, Sergei G; Förster, Eckhart
2016-01-20
Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
3-d numerical modeling for the interaction of mantle plumes with cratonic keel
NASA Astrophysics Data System (ADS)
Lin, S.; Kuo, B.
2003-04-01
The magmatism of the Ethiopian and east African plateaus is one of the largest active continental igneous provinces on Earth. Great volumes of volcanic deposits have been thought to be originated from the upwelling mantle or plumes under the African continent [e.g., Ebinger et al., 1989]. Major, trace element and radiogenic isotope ratios (Sr, Nd and Pb) and the dating data [George et al., 1998] suggest that there are at least two mantle plumes, i.e., the latter Afar plume and earlier Kenya plume, beneath the East African rift system. It was proposed [e.g., Rogers et al., 2000] that the northeastward plate motion over the Kenya plume produced the magmatism from southern Ethiopia to northern Tanzania since about 45 Ma, and that the Afar plume later generated the magma in the Ethiopia Plateau. Meanwhile, it has been found that the Tanzania Craton in central Africa has survived the thermal erosion of the mantle plumes and the extensional tectonics in this region [e.g., Ritsema and van Heijst, 2000]. Here we investigate how the plume material changes its directions when it meets the tectonically stable cratonic keel using 3-D numerical experiments. The stronger temperature dependence of viscosity as well as the hotter plumes can at times provide higher buoyancy flux and determine how far the plume material can reach. In the meantime, the cratonic keel can divert the plume material and induce the edge-driven convection. Numerical models have been designed to address the double-plume hypothesis, in which the plumes were initiated at different periods of time and interacted with the cratonic keel on a moving plate. The numerical models and a comparison between the models and geological constraints will be presented.
3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic
NASA Astrophysics Data System (ADS)
Dennstedt, Anne; Helfen, Lukas; Steinmetz, Philipp; Nestler, Britta; Ratke, Lorenz
2016-03-01
For the first time, the microstructure of directionally solidified ternary eutectics is visualized in three dimensions, using a high-resolution technique of X-ray tomography at the ESRF. The microstructure characterization is conducted with a photon energy, allowing to clearly discriminate the three phases Ag2Al, Al2Cu, and α-Aluminum solid solution. The reconstructed images illustrate the three-dimensional arrangement of the phases. The Ag2Al lamellae perform splitting and merging as well as nucleation and disappearing events during directional solidification.
PET-directed, 3D Ultrasound-guided prostate biopsy
Fei, Baowei; Nieh, Peter T; Schuster, David M; Master, Viraj A
2013-01-01
Multimodatity imaging is a promising approach for improving prostate cancer detection and diagnosis. This article describes various concepts in PET-directed, ultrasound-guided biopsies and highlights a new PET/ultrasound fusion targeted biopsy system for prostate cancer detection. PMID:25392702
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
3D numerical simulation analysis of passive drag near free surface in swimming
NASA Astrophysics Data System (ADS)
Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx
2015-04-01
The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.
Impact of 3D root uptake on solute transport: a numerical study
NASA Astrophysics Data System (ADS)
Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.
2011-12-01
Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett
Numerical study of elastic turbulence in a 3D curvilinear micro-channel
NASA Astrophysics Data System (ADS)
Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen
2012-11-01
Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).
NASA Astrophysics Data System (ADS)
Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.
2015-12-01
Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
3D SPH numerical simulation of the wave generated by the Vajont rockslide
NASA Astrophysics Data System (ADS)
Vacondio, R.; Mignosa, P.; Pagani, S.
2013-09-01
A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.
A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations
NASA Astrophysics Data System (ADS)
Moghadam, Mahdi Esmaily; Vignon-Clementel, Irene E.; Figliola, Richard; Marsden, Alison L.; Modeling Of Congenital Hearts Alliance (Mocha) Investigators
2013-07-01
Implementation of boundary conditions in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. The use of elaborate closed-loop lumped parameter network (LPN) models of the heart and the circulatory system as boundary conditions for computational fluid dynamics (CFD) simulations can provide valuable global dynamic information, particularly for patient specific simulations. In this paper, the necessary formulation for coupling an arbitrary LPN to a finite element Navier-Stokes solver is presented. A circuit analogy closed-loop LPN is solved numerically, and pressure and flow information is iteratively passed between the 0D and 3D domains at interface boundaries, resulting in a time-implicit scheme. For Neumann boundaries, an implicit method, regardless of the LPN, is presented to achieve the desired stability and convergence properties. Numerical procedures for passing flow and pressure information between the 0D and 3D domains are described, and implicit, semi-implicit, and explicit quasi-Newton formulations are compared. The issue of divergence in the presence of backflow is addressed via a stabilized boundary formulation. The requirements for coupling Dirichlet boundary conditions are also discussed and this approach is compared in detail to that of the Neumann coupled boundaries. Having the option to select between Dirichlet and Neumann coupled boundary conditions increases the flexibility of current framework by allowing a wide range of components to be used at the 3D-0D interface.
Laser direct writing 3D structures for microfluidic channels: flow meter and mixer
NASA Astrophysics Data System (ADS)
Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.
2015-03-01
The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.
Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.
Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin
2016-05-01
3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads. PMID:26953811
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Iguchi, M.; Maeno, F.; Nakada, S.; Hashimoto, A.; Shimbori, T.; Ishii, K.
2014-12-01
The heights and expansion rate of eruption cloud and the dispersal pattern of tephra particles are key observable data for understanding the dynamics of volcanic plume. In general, when the volcanic plume rises in a stationary environment, the plume height and expansion rate of the umbrella cloud increases as the eruption intensity (i.e., the magma discharge rate) increases. On the other hand, when the plume is distorted by the atmospheric wind, it is difficult to quantify the relationship between the eruption conditions and the observable data. Therefore, we aim to develop a three-dimensional numerical model of volcanic plume and directly reproduce the plume dynamics and the tephra dispersal. We performed a numerical simulation of the 2014 eruption at Mount Kelud, Java, Indonesia, which formed a large volcanic plume and umbrella cloud in the wind field. We employ a 3D numerical model which is designed to simulate the injection of tephra particles and volcanic gas from a circular vent into the stratified atmosphere, using a combination of a pseudo-gas model for fluid motion and a Lagrangian model for particle motion (Suzuki and Koyaguchi, 2013 EPS). Using the estimated total mass (3.9—6.4×1011 kg) and the eruption duration (2.5 - 3 hours), the average mass discharge rate is estimated to be 3.6—7.1×107 kg/s. In this study, the magma discharge rate is set to be 5×107 kg/s. The weather data based on the radiosonde observation in Surabaya is applied to the atmospheric condition. The simulation results indicate that the top of plume reaches to nearly 30 km and the umbrella cloud radially spreads at the height of 17—20 km high. These simulated heights are consistent with the observations (e.g., NASA Earth Observatory). The particles are transported by the gravity current of the umbrella cloud. Between the umbrella cloud and the ground, the particles separated from the cloud are drifted by the easterly wind. Therefore, the dispersal axis of the main fall deposits
Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup
NASA Astrophysics Data System (ADS)
Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.
2014-11-01
We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.
A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.
Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi
2016-03-01
We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment.
The 3D modeling of high numerical aperture imaging in thin films
NASA Technical Reports Server (NTRS)
Flagello, D. G.; Milster, Tom
1992-01-01
A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.
The Vajont disaster: a 3D numerical simulation for the slide and the waves
NASA Astrophysics Data System (ADS)
Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum
2016-04-01
A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.
Yamahashi, Yukie; Cavnar, Peter J.; Hind, Laurel E.; Berthier, Erwin; Bennin, David A.; Beebe, David
2015-01-01
Directed neutrophil migration in blood vessels and tissues is critical for proper immune function; however, the mechanisms that regulate three-dimensional neutrophil chemotaxis remain unclear. It has been shown that integrins are dispensable for interstitial three-dimensional (3D) leukocyte migration; however, the role of integrin regulatory proteins during directed neutrophil migration is not known. Using a novel microfluidic gradient generator amenable to 2D and 3D analysis, we found that the integrin regulatory proteins Kindlin-3, RIAM, and talin-1 differentially regulate neutrophil polarization and directed migration to gradients of chemoattractant in 2D versus 3D. Both talin-1-deficient and RIAM-deficient neutrophil-like cells had impaired adhesion, polarization, and migration on 2D surfaces whereas in 3D the cells polarized but had impaired 3D chemotactic velocity. Kindlin-3 deficient cells were able to polarize and migrate on 2D surfaces but had impaired directionality. In a 3D environment, Kindlin-3 deficient cells displayed efficient chemotaxis. These findings demonstrate that the role of integrin regulatory proteins in cell polarity and directed migration can be different in 2D and 3D. PMID:26354879
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation
Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin
2014-01-01
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400
Understanding heavy mineral enrichment – Using a 3D numerical model
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Schmeeckle, Mark; Huhn, Katrin
2015-04-01
Layered deposits of light and heavy minerals can be found in many aquatic environments. Various researchers attempted to understand the role of the enrichment process of heavy minerals in placers using flume or in situ field experiments, because of their high economic value. However, a precise quantification of the physical processes occurring at the direct vicinity and in the interior of layered deposits is often limited with such techniques. To investigate the physical processes causing heavy particle enrichment in layers at the direct vicinity and in the interior of sediment beds, a 3D numerical model as an alternative to in situ measurement was used. The 3D model simulates particle transport in water by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains. The dimensions of model domain where X = 0.12 [m], Y = 0.06 [m], and Z = 0.04 [m]. A pressure gradient and cyclic boundaries at the side walls allowed the simulation of a recycling flow. For the generation of a granular bed 0.004 [m] in height 200,000 spherical particles (D50 = 500 µm) were generated randomly and deposited under gravity at the bottom of the domain. Seven suites of experiments were designed in which the concentration of heavy i.e. 5000 [kg/m³] over light particles i.e. 2560 [kg/m³] was increased ranging from 0%, 10%, 25%, 50%, 75%, 90%, to 100% heavy particle content. All beds where tested for five seconds at a predefined flow speed of 0.35 [m/s]. The model results showed that at the direct vicinity of the bed the presence of high-vorticity turbulence structures embedded within broader high speed fluid regions caused the formation of particle sweeps or high-speed wedges. The vertical extension of the sweeps decreased when a higher amount of heavy particles was mixed to the beds, which ultimately resulted in a decrease of the bed roughness. Further, the particle flux decreased when higher quantities of
Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv
2007-05-17
Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-01-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
NASA Astrophysics Data System (ADS)
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-06-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.
Qureshi, Awais; Li, Bing; Tan, K T
2016-01-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828
Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling
NASA Astrophysics Data System (ADS)
Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.
2012-12-01
Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in
3-D-geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin
NASA Astrophysics Data System (ADS)
Reiter, K.; Heidbach, O.
2014-08-01
In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin whether in deep sediments or crystalline rock, the understanding of the in-situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrary chosen point in the crust, based on sparsely distributed in-situ stress data. To address this challenge, we present a large-scale 3-D geomechanical-numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in-situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 SHmin and 2 (+1) SHmax) from the Alberta Basin. To find the best-fit model we vary the material properties and primarily the kinematic boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin and allows estimation of stress orientation and stress magnitudes in advance of any well. First order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from in-situ data are found for stress orientations in the Peace River- and the Bow Island Arch as well as for leak-off-test magnitudes.
3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wu, Tso-Ren
2016-04-01
In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most
Numerical estimation of transport properties of cementitious materials using 3D digital images
NASA Astrophysics Data System (ADS)
Ukrainczyk, N.; Koenders, E. A. B.; van Breugel, K.
2013-07-01
A multi-scale characterisation of the transport process within cementitious microstructure possesses a great challenge in terms of modelling and schematization. In this paper a numerical method is proposed to mitigate the resolution problems in numerical methods for calculating effective transport properties of porous materials using 3D digital images. The method up-scales sub-voxel information from the fractional occupancy level of the interface voxels, i.e. voxels containing phaseboundary, to increase the accuracy of the pore schematization and hence the accuracy of the numerical transport calculation as well. The numerical identification of the subvoxels that is associated with their level of occupancy by each phase is obtained by increasing the pre-processing resolution. The proposed method is presented and employed for hydrated cement paste microstructures obtained from Hymostruc, a numerical model for cement hydration and microstructure simulation. The new method significantly reduces computational efforts, is relatively easy to implement, and improves the accuracy of the estimation of the effective transport property.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
ProteinVista: a fast molecular visualization system using Microsoft Direct3D.
Park, Chan-Yong; Park, Sung-Hee; Park, Soo-Jun; Park, Sun-Hee; Hwang, Chi-Jung
2008-09-01
Many tools have been developed to visualize protein and molecular structures. Most high quality protein visualization tools use the OpenGL graphics library as a 3D graphics system. Currently, the performance of recent 3D graphics hardware has rapidly improved. Recent high-performance 3D graphics hardware support Microsoft Direct3D graphics library more than OpenGL and have become very popular in personal computers (PCs). In this paper, a molecular visualization system termed ProteinVista is proposed. ProteinVista is well-designed visualization system using the Microsoft Direct3D graphics library. It provides various visualization styles such as the wireframe, stick, ball and stick, space fill, ribbon, and surface model styles, in addition to display options for 3D visualization. As ProteinVista is optimized for recent 3D graphics hardware platforms and because it uses a geometry instancing technique, its rendering speed is 2.7 times faster compared to other visualization tools.
Implementation of a 3d numerical model of a folded multilayer carbonate aquifer
NASA Astrophysics Data System (ADS)
Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta
2016-04-01
The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and
Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.
Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V
2015-08-19
3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing.
NASA Astrophysics Data System (ADS)
Chinta, Prashanth K.; Mayer, K.; Langenberg, K. J.
2012-05-01
Nondestructive Evaluation (NDE) of elastic anisotropic media is very complex because of directional dependency of elastic stiffness tensor. Modeling of elastic waves in such materials gives us intuitive knowledge about the propagation and scattering phenomena. The wave propagation in three dimensional space in anisotropic media gives us the deep insight of the transition of the different elastic wave modes i.e. mode conversion, and scattering of these waves because of inhomogeneities present in the material. The numerical tool Three Dimensional-Elastodynamic Finite Integration Technique (3D-EFIT) has been proved to be a very efficient tool for the modeling of elastic waves in very complex geometries. The 3D-EFIT is validated using the analytical approach based on the Radon transform. The simulation results of 3D-EFIT applied to inhomogeneous austenitic steel welds and wood structures are presented. In the first application the geometry consists of an austenitic steel weld that joins two isotropic steel blocks. The vertical transversal isotropic (VTI) austenitic steel is used. The convolutional perfectly matched layers are applied at the boundaries that are supported by isotropic steel. In the second application the wave propagation in the orthotropic wooden structure with an air cavity inside is investigated. The wave propagation results are illustrated using time domain elastic wave snapshots.
A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature
NASA Astrophysics Data System (ADS)
Shigang, Ai; Rujie, He; Yongmao, Pei
2015-12-01
Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.
Continental rifting to seafloor spreading: 2D and 3D numerical modeling
NASA Astrophysics Data System (ADS)
Liao, Jie; Gerya, Taras
2014-05-01
Two topics related with continental extension is studied by using numerical modeling methods: (1) Lithospheric mantle stratification changes dynamics of craton extension (2D modeling) and (2) Initial lithospheric rheological structure influences the incipient geometry of the seafloor spreading (3D modeling). (Topic 1) Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. We use a 2D thermo-mechanical coupled numerical model to study the influence of stratified lithospheric mantle on craton extension. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. (Topic 2) The process from continental rifting to seafloor spreading is an important step in the Wilson Cycle. Since the rifting to spreading is a continuous process, understanding the inheritance of continental rifting in seafloor spreading is crucial to study the incipient geometry (on a map view) of the oceanic ridge and remains a big challenge. Large extension strain is required to simulate the rifting and spreading processes. Oceanic ridge has a 3D geometry on a map view in nature, which requires 3D studies. Therefore, we employ the three-dimensional numerical modeling method to study this problem. The initial lithospheric rheological structure and the perturbation geometry are two
Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander
2011-10-24
Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes
NASA Astrophysics Data System (ADS)
Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min
2016-06-01
A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.
3D numerical investigation on landslide generated tsunamis around a conical island
NASA Astrophysics Data System (ADS)
Montagna, Francesca; Bellotti, Giorgio
2010-05-01
This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we
NASA Astrophysics Data System (ADS)
Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico
2007-05-01
Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and
NASA Astrophysics Data System (ADS)
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto
Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling
NASA Astrophysics Data System (ADS)
Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge
2014-09-01
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.
Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study
NASA Astrophysics Data System (ADS)
Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.
2008-12-01
To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in
Laser-assisted direct ink writing of planar and 3D metal architectures.
Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A
2016-05-31
The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932
Laser-assisted direct ink writing of planar and 3D metal architectures.
Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A
2016-05-31
The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.
Laser-assisted direct ink writing of planar and 3D metal architectures
NASA Astrophysics Data System (ADS)
Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.
2016-05-01
The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.
Laser-assisted direct ink writing of planar and 3D metal architectures
Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.
2016-01-01
The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932
NASA Technical Reports Server (NTRS)
Harris, Julius E.; Iyer, Venkit; Radwan, Samir
1987-01-01
The application of stability theory in Laminar Flow Control (LFC) research requires that density and velocity profiles be specified throughout the viscous flow field of interest. These profile values must be as numerically accurate as possible and free of any numerically induced oscillations. Guidelines for the present research project are presented: develop an efficient and accurate procedure for solving the 3-D boundary layer equation for aerospace configurations; develop an interface program to couple selected 3-D inviscid programs that span the subsonic to hypersonic Mach number range; and document and release software to the LFC community. The interface program was found to be a dependable approach for developing a user friendly procedure for generating the boundary-layer grid and transforming an inviscid solution from a relatively coarse grid to a sufficiently fine boundary-layer grid. The boundary-layer program was shown to be fourth-order accurate in the direction normal to the wall boundary and second-order accurate in planes parallel to the boundary. The fourth-order accuracy allows accurate calculations with as few as one-fifth the number of grid points required for conventional second-order schemes.
Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.
Pan, Alice Ian; Lin, Min-Hsuan; Chung, Hui-Wen; Chen, Hsin; Yeh, Shih-Rung; Chuang, Yung-Jen; Chang, Yen-Chung; Yew, Tri-Rung
2016-01-01
A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor deposition (CVD). According to the analyses by electrochemical impedance spectroscopy, the impedance of 3D microelectrodes after CNT growth and UV/O3 treatment decreased from 9.3 Ω mm(-2) to 1.2 Ω mm(-2) and the capacitance increased largely from 2.2 mF cm(-2) to 73.3 mF cm(-2). The existence of UVO3-treated CNT led to a large improvement of interfacial capacitance, contributing to the decrease of impedance. The electrophysiological detection capability of this 3D CNT microelectrode was demonstrated by the distinguished P waves, QRS complex and T waves in the electrocardiogram of the zebrafish heart and the action potential recorded from individual rat hippocampal neurons. The compatibility of integration with ICs, high resolution in space, electrophysiological signals, and non-invasive long-term recording suggest that the 3D CNT microelectrode exhibits promising potential for applications in electrophysiological research and clinical trials.
Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.
Pan, Alice Ian; Lin, Min-Hsuan; Chung, Hui-Wen; Chen, Hsin; Yeh, Shih-Rung; Chuang, Yung-Jen; Chang, Yen-Chung; Yew, Tri-Rung
2016-01-01
A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor deposition (CVD). According to the analyses by electrochemical impedance spectroscopy, the impedance of 3D microelectrodes after CNT growth and UV/O3 treatment decreased from 9.3 Ω mm(-2) to 1.2 Ω mm(-2) and the capacitance increased largely from 2.2 mF cm(-2) to 73.3 mF cm(-2). The existence of UVO3-treated CNT led to a large improvement of interfacial capacitance, contributing to the decrease of impedance. The electrophysiological detection capability of this 3D CNT microelectrode was demonstrated by the distinguished P waves, QRS complex and T waves in the electrocardiogram of the zebrafish heart and the action potential recorded from individual rat hippocampal neurons. The compatibility of integration with ICs, high resolution in space, electrophysiological signals, and non-invasive long-term recording suggest that the 3D CNT microelectrode exhibits promising potential for applications in electrophysiological research and clinical trials. PMID:26588673
A Hybrid Antenna Array Design for 3-D Direction of Arrival Estimation
Saqib, Najam-Us; Khan, Imdad
2015-01-01
A 3-D beam scanning antenna array design is proposed that gives a whole 3-D spherical coverage and also suitable for various radar and body-worn devices in the Body Area Networks applications. The Array Factor (AF) of the proposed antenna is derived and its various parameters like directivity, Half Power Beam Width (HPBW) and Side Lobe Level (SLL) are calculated by varying the size of the proposed antenna array. Simulations were carried out in MATLAB 2012b. The radiators are considered isotropic and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing cylindrical and coaxial cylindrical arrays in terms of 3-D scanning, size, directivity, HPBW and SLL. PMID:25790103
A hybrid antenna array design for 3-d direction of arrival estimation.
Saqib, Najam-Us; Khan, Imdad
2015-01-01
A 3-D beam scanning antenna array design is proposed that gives a whole 3-D spherical coverage and also suitable for various radar and body-worn devices in the Body Area Networks applications. The Array Factor (AF) of the proposed antenna is derived and its various parameters like directivity, Half Power Beam Width (HPBW) and Side Lobe Level (SLL) are calculated by varying the size of the proposed antenna array. Simulations were carried out in MATLAB 2012b. The radiators are considered isotropic and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing cylindrical and coaxial cylindrical arrays in terms of 3-D scanning, size, directivity, HPBW and SLL.
A 3-D industrial CT reconstruction algorithm to directly reconstruct the characteristics
NASA Astrophysics Data System (ADS)
Zhao, Ying-Liang; Wang, Li-Ming; Han, Yan
2011-01-01
In traditional 3-D CT reconstruction methods, for the projection procedure is low-pass smoothing, the high-frequency characters are difficult to obtain after the projection data are reconstructed. In addition the design and implementation of three-dimensional filter are relatively harder. A new 3D industrial CT reconstruction algorithm to directly reconstruct the characteristics is put forth. Based on the FDK method and the trait of RADON transform, the feasibility of the novel algorithm is theoretically deduced. Combined with the wavelet, it is deduced to extract the characteristics using the 2-D wavelet transform and to directly reconstruct the characteristics in 3-D CT. The experiments show that the algorithm can preferably stand out the useful information, is of engineering practicability and the design of the filter is relatively simpler.
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil
NASA Astrophysics Data System (ADS)
Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.
2015-01-01
At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.
3D Numerical Simulation of a New Model for Coronal Jets
NASA Astrophysics Data System (ADS)
Pariat, E.; Antiochos, S.; DeVore, C. R.; Patsourakos, S.
2008-09-01
Recent solar observations with STEREO and HINODE have revealed evidence of twisting motions during the evolution of coronal jets. Furthermore, the observations indicate that some jets achieve near-Alfvenic velocities. Most models of jet are not capable of explaining these new observational features. In addition, the impulsiveness of jets, manifested as a brief, violent energy release phase in contrast to a slow, quasi-static energy storage phase storage, is an issue not easily addressed. We will present the results of 3D numerical simulations of our model for coronal jets. The simulations were performed with our state-of-art adaptive mesh MHD solver ARMS. The basic idea of the model is that a jet is due to the release of magnetic twist when a closed field region undergoes interchange reconnection with surrounding open field. The fast reconnection between open and closed field results in the generation of nonlinear Alfven waves that propagate along the open field, accelerating plasma upward. We will show how the new stereoscopically-observed features of jets can be explained by the results of our numerical simulations
A Molecular Image-directed, 3D Ultrasound-guided Biopsy System for the Prostate
Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter
2012-01-01
Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% ± 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients. PMID:22708023
Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin
2015-03-20
This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics.
NASA Astrophysics Data System (ADS)
Pagano, P.; Bemporad, A.; Mackay, D. H.
2015-10-01
Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of
Continental collision and slab break-off: A comparison of 3-D numerical models with observations
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; Allen, Mark B.
2011-02-01
Conditions and dynamics of subduction-collision and subsequent 3-D slab break-off and slab tear propagation are quantified, for the first time, using fully dynamic numerical models. Model results indicate that collision after the subduction of old, strong subducting oceanic slab leads to slab break-off at 20-25 Myr after the onset of continental collision, and subsequently a slab tear migrates more or less horizontally through the slab with a propagation speed of 100-150 mm/yr. In contrast, young, weak oceanic slabs show the first break-off already 10 Myr after continental collision, and can experience tear migration rates up to 800 mm/yr. Slab strength plays a more important role in the timing of slab break-off and the speed of a propagating slab tear than (negative) slab buoyancy does. Slab break-off is viable even for slabs that are supported by the viscosity jump and phase change between the upper and lower mantle. The density of the oceanic slab and the subducting continental block is important for the amount of continental subduction and the depth of slab break-off. A 40-km thick continental crust can be buried to depths greater than 200 km, although this maximum depth is significantly less for younger or very weak slabs, or thicker continental crust. Slab break-off typically starts at a depth of 300 km, mostly independent of mantle rheology, but, like continental crustal burial, can be shallower for young or buoyant plates. Our 3-D models illustrate how, due to the difference in necking in 2-D and 3-D, break-off has an intrinsic small preference to start as a slab window within the slab's interior, rather than as a slab tear at the slab edge. However, any significant asymmetry in the collision setting, e.g. earlier collision at one end of the subduction zone, would override this, and leads to slab tearing starting near one edge of the slab. These results put important new constraints on the dynamics of the collision and subsequent slab break-off for modern
3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
1998-01-13
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
3-D seakeeping analysis with water on deck and slamming. Part 1: Numerical solver
NASA Astrophysics Data System (ADS)
Greco, M.; Lugni, C.
2012-08-01
A three-dimensional seakeeping numerical solver is developed to handle occurrence and effects of water-on-deck and bottom slamming. It couples (A) the rigid-ship motions with (B) the water flowing along the deck and (C) bottom slamming events. Problem A is studied with a 3-D weakly nonlinear potential flow solver based on the weak-scatterer hypothesis. Problem B, and so local and global induced green-water loads, are investigated by assuming shallow-water conditions onto the deck. Problem C is examined through a Wagner-type wedge-impact analysis. Within the coupling between A and B: the external seakeeping problem furnishes the initial and boundary conditions to the in-deck solver in terms of water level and velocity along the deck profile; in return the shallow-water problem makes available to the seakeeping solver the green-water loads to be introduced as additional loads into the rigid-motion equations. Within the coupling between A and C: the instantaneous ship configuration and its kinematic and dynamic conditions with respect to the incident waves will fix the parameters for the local impact problem; in return the slamming and water-entry pressures are integrated in the vessel region of interest and introduced as additional loads into the rigid-motion equations. The resulting numerical solver can study efficiently the ship interaction with regular and irregular sea states and the forward motion with limited speed of the vessel. This is crucial to perform reliable and feasible statistical investigations of vessel behavior. Main elements of the solver are described and validated against reference numerical solutions and model tests.
Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.
NASA Astrophysics Data System (ADS)
Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.
2006-12-01
Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of
3D image copyright protection based on cellular automata transform and direct smart pixel mapping
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Kim, Seok-Tae; Lee, In-Kwon
2014-10-01
We propose a three-dimensional (3D) watermarking system with the direct smart pixel mapping algorithm to improve the resolution of the reconstructed 3D watermark plane images. The depth-converted elemental image array (EIA) is obtained through the computational pixel mapping method. In the watermark embedding process, the depth-converted EIA is first scrambled by using the Arnold transform, which is then embedded in the middle frequency of the cellular automata (CA) transform. Compared with conventional computational integral imaging reconstruction (CIIR) methods, this proposed scheme gives us a higher resolution of the reconstructed 3D plane images by using the quality-enhanced depth-converted EIA. The proposed method, which can obtain many transform planes for embedding watermark data, uses CA transforms with various gateway values. To prove the effectiveness of the proposed method, we present the results of our preliminary experiments.
Aref's chaotic orbits tracked by a general ellipsoid using 3D numerical simulations
NASA Astrophysics Data System (ADS)
Shui, Pei; Popinet, Stéphane; Govindarajan, Rama; Valluri, Prashant
2015-11-01
The motion of an ellipsoidal solid in an ideal fluid has been shown to be chaotic (Aref, 1993) under the limit of non-integrability of Kirchhoff's equations (Kozlov & Oniscenko, 1982). On the other hand, the particle could stop moving when the damping viscous force is strong enough. We present numerical evidence using our in-house immersed solid solver for 3D chaotic motion of a general ellipsoidal solid and suggest criteria for triggering such motion. Our immersed solid solver functions under the framework of the Gerris flow package of Popinet et al. (2003). This solver, the Gerris Immersed Solid Solver (GISS), resolves 6 degree-of-freedom motion of immersed solids with arbitrary geometry and number. We validate our results against the solution of Kirchhoff's equations. The study also shows that the translational/ rotational energy ratio plays the key role on the motion pattern, while the particle geometry and density ratio between the solid and fluid also have some influence on the chaotic behaviour. Along with several other benchmark cases for viscous flows, we propose prediction of chaotic Aref's orbits as a key benchmark test case for immersed boundary/solid solvers.
Coronary 3D reconstruction using IVUS images only: a numeric phantom investigation
NASA Astrophysics Data System (ADS)
Matsumoto, Monica Mitiko Soares; Cardoso, Fernando Mitsuyama; Lemos, Pedro Alves; Furuie, Sergio Shiguemi
2010-03-01
Intravascular ultrasound (IVUS) examination offers a tomographic view of the vessel, having the catheter tip as reference. During examination, the catheter is pulled back with a constant speed (0.5 or 1.0 mm/s) and the ultrasound transducer captures cross-sectional slices of the coronary. Currently, 3D IVUS reconstruction is based on single-plane or biplane angiography together with IVUS images. In this work, we present a preliminary approach to reconstruct tridimensionally the catheter path and coronary, based only on IVUS sequence. We have proposed a numeric phantom framework: coronary simulation, catheter dynamic path simulation, IVUS acquisition, reconstruction and validation. Our method infers the catheter path inside the coronary, based on shortest path graph algorithm. To reconstruct morphology, we have associated the catheter path and the position of the frame with smoothness costs, and solved it as a minimization problem. In this experiment we have used three different morphologies (straight, one curve and two curves) and 60 random initializations each for the initial point and angle of catheter insertion. The results for the plane containing the centerline of the catheter were 95.8% true positive and 8.5% false positive rates.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
Development of a 3D numerical methodology for fast prediction of gun blast induced loading
NASA Astrophysics Data System (ADS)
Costa, E.; Lagasco, F.
2014-05-01
In this paper, the development of a methodology based on semi-empirical models from the literature to carry out 3D prediction of pressure loading on surfaces adjacent to a weapon system during firing is presented. This loading is consequent to the impact of the blast wave generated by the projectile exiting the muzzle bore. When exceeding a pressure threshold level, loading is potentially capable to induce unwanted damage to nearby hard structures as well as frangible panels or electronic equipment. The implemented model shows the ability to quickly predict the distribution of the blast wave parameters over three-dimensional complex geometry surfaces when the weapon design and emplacement data as well as propellant and projectile characteristics are available. Considering these capabilities, the use of the proposed methodology is envisaged as desirable in the preliminary design phase of the combat system to predict adverse effects and then enable to identify the most appropriate countermeasures. By providing a preliminary but sensitive estimate of the operative environmental loading, this numerical means represents a good alternative to more powerful, but time consuming advanced computational fluid dynamics tools, which use can, thus, be limited to the final phase of the design.
3-D Numerical Modeling Perspectives on Lightning Generation in Volcanic Eruption Clouds
NASA Astrophysics Data System (ADS)
Van Eaton, A. R.; Behnke, S. A.; Herzog, M.
2014-12-01
Although numerous charging mechanisms have been implicated in the formation of volcanic lightning, recent insights from lightning mapping arrays indicate that vent charging (produced at or near the volcanic source) creates electrical discharges that are distinct from lightning initiated in the airborne plume during transport away from the vent. Previous work has suggested that turbulent structure and formation of hydrometeors, including rain, graupel and ash aggregates, are likely to play important roles in the plume charging process. We examine these phenomena with 3D large-eddy simulations of volcanic plume development that include cloud microphysics, using the Active Tracer High-resolution Atmospheric Model (ATHAM). Three relatively recent eruptions are targeted, each with different plume heights, degrees of wind interaction, and amounts of surface water interaction. We have compared the simulated evolution of turbulence and precipitation formation with data from lightning mapping arrays to address the following question - what can lightning tell us about the initiation and development of a volcanic plume in near-real time?
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
NASA Astrophysics Data System (ADS)
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
The numerical integration and 3-D finite element formulation of a viscoelastic model of glass
Chambers, R.S.
1994-08-01
The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.
Numerical simulations of Rock Avalanches with DAN-3D: from real case to analogue models
NASA Astrophysics Data System (ADS)
Longchamp, Céline; Penna, Ivanna; Sauthier, Claire; Jaboyedoff, Michel
2013-04-01
Rock avalanches are rapid events with capacity to develop long and unexpected runouts, which can evolve into catastrophic events difficult to predict. In order to better understand unusual travel distances, analogue and numerical modeling are often used. The comparison between real case, and analogue and dynamics models is key to constrain and understand parameters governing rock avalanches run outs. In the Pampeanas range (Argentina), the Potrero de Leyes rock avalanche involved 0.23 km3 of highly fractured metamorphic rocks that spread in the piedmont area without any topographical constrain, resulting in a runout of 4.8 km. In this study we first attempt to apply analogue models to replicate the rock avalanche deposit. The analogue modeling consists into the release of a granular material (calibrated and angular carborundum sand) along a slope, creating similar landscape conditions that the real case. The material is not constrained laterally and spread freely on a flat deposition surface. For a volume of 50 cm3, the runout is 50 cm, the deposit has as length of 10 cm and a width of 19 cm. For a volume of 100 cm3, the runout is 65 cm, the deposit has as length of 25 cm and a width of 30 cm. In a further step we model both the real case and the result of the analogue models. Dynamics models are carried out with DAN-3D, a dynamic model for the prediction of the run out of rapid landslide (O. Hungr, 1995; O. Hugr & S.G. Evans, 1996). The result of the simulations for both volumes tested with the analogue model give satisfactory results. In fact, for the volume of 50 cm3, the deposit has as length of 10 cm and a width of 20 cm and for the volume of 100 cm3, the deposit has as length of 25 cm and a width of 50 cm. The shape and the thickness of the deposit obtained with DAN-3D are also similar with those got with the analogue models.
Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)
NASA Astrophysics Data System (ADS)
Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.
2013-12-01
. Slab fluids that do flux the mantle wedge are commonly believed to trigger arc melting. Finally, the fate of these fluids and the likely mantle flow field within the mantle wedge are resolved in 3D. We find that the classical 2D corner-flow solution is only a small subset of all possible mantle wedge flow fields. In fact, a more 'natural' flow field involves 3D diapirs fuelled by low-density slab fluids rising from the slab surface. These diapirs provide a potential mechanism for decompression melting in the mantle wedge, break the classic corner flow solution, and illustrate the need for high-resolution three-dimensional subduction zones models. In summary we find that numerical models are capable to resolve the key geological processes that control the subduction zone water cycle and help us to better relate subduction input to arc output.
Numerical study on the 3-D complex characteristics of flow around the hull structure of TLP
NASA Astrophysics Data System (ADS)
Gu, Jia-yang; Zhu, Xin-yao; Yang, Jian-min; Lu, Yan-xiang; Xiao, Long-fei
2015-06-01
Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier-Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a "beating" behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Direct Numerical Simulation of Cell Printing
NASA Astrophysics Data System (ADS)
Qiao, Rui; He, Ping
2010-11-01
Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2016-04-01
Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2016-04-01
Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 - 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2014-12-01
Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton
A direct multi-volume rendering method aiming at comparisons of 3-D images and models.
Jacq, J J; Roux, C J
1997-03-01
We present a new method for direct volume rendering of multiple three-dimensional (3-D) functions using a density emitter model. This work aims at obtaining visual assessment of the results of a 3-D image registration algorithm which operates on anisotropic and non segmented medical data. We first discuss the fundamentals associated with direct, simultaneous rendering of such datasets. Then, we recall the fuzzy classification and fuzzy surface rendering theory within the density emitter model terminology, and propose an extension of standard direct volume rendering that can handle the rendering of two or more 3-D functions; this consists of the definition of merging rules that are applied on emitter clouds. The included rendering applications are related on one hand, to volume-to-volume registration, and on the other hand, to surface-to-volume registration: the first case is concerned with global elastic registration of CT data, and the second one presents fitting of an implicit surface over a CT data subset. In these two medical imaging application cases, our rendering scheme offers a comprehensive appreciation of the relative position of structural information.
Feature, design intention and constraint preservation for direct modeling of 3D freeform surfaces
NASA Astrophysics Data System (ADS)
Fu, Luoting; Kara, Levent Burak; Shimada, Kenji
2012-06-01
Direct modeling has recently emerged as a suitable approach for 3D free-form shape modeling in industrial design. It has several advantages over the conventional, parametric modeling techniques, including natural user interactions, as well as the underlying, automatic feature-preserving shape deformation algorithms. However, current direct modeling packages still lack several capabilities critical for product design, such as managing aesthetic design intentions, and enforcing dimensional, geometric constraints. In this paper, we describe a novel 3D surface editing system capable of jointly accommodating aesthetic design intentions expressed in the form of surface painting and color-coded annotations, as well as engineering constraints expressed as dimensions. The proposed system is built upon differential coordinates and constrained least squares, and is intended for conceptual design that involves frequent shape tuning and explorations. We also provide an extensive review of the state-of-the-art direct modeling approaches for 3D mesh-based, freeform surfaces, with an emphasis on the two broad categories of shape deformation algorithms developed in the relevant field of geometric modeling. [Figure not available: see fulltext.
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali
2016-11-01
Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali
2016-11-01
Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also
3-D Direct Simulation Monte Carlo modeling of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Liao, Y.; Su, C.; Finklenburg, S.; Rubin, M.; Ip, W.; Keller, H.; Knollenberg, J.; Kührt, E.; Lai, I.; Skorov, Y.; Thomas, N.; Wu, J.; Chen, Y.
2014-07-01
After deep-space hibernation, ESA's Rosetta spacecraft has been successfully woken up and obtained the first images of comet 67P /Churyumov-Gerasimenko (C-G) in March 2014. It is expected that Rosetta will rendezvous with comet 67P and start to observe the nucleus and coma of the comet in the middle of 2014. As the comet approaches the Sun, a significant increase in activity is expected. Our aim is to understand the physical processes in the coma with the help of modeling in order to interpret the resulting measurements and establish observational and data analysis strategies. DSMC (Direct Simulation Monte Carlo) [1] is a very powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow [2,3]. Comparisons between DSMC and fluid techniques have also been performed to establish the limits of these techniques [2,4]. The drawback with 3D DSMC is that it is computationally highly intensive and thus time consuming. However, the performance can be dramatically increased with parallel computing on Graphic Processor Units (GPUs) [5]. We have already studied a case with comet 9P/Tempel 1 where the Deep Impact observations were used to define the shape of the nucleus and the outflow was simulated with the DSMC approach [6,7]. For comet 67P, we intend to determine the gas flow field in the innermost coma and the surface outgassing properties from analyses of the flow field, to investigate dust acceleration by gas drag, and to compare with observations (including time variability). The boundary conditions are implemented with a nucleus shape model [8] and thermal models which are based on the surface heat-balance equation. Several different parameter sets have been investigated. The calculations have been performed using the PDSC^{++} (Parallel Direct Simulation Monte Carlo) code [9] developed by Wu and his coworkers [10-12]. Simulation tasks can be accomplished within 24
Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing.
Thiele, Simon; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M
2016-07-01
By using two-photon lithographic 3D printing, we demonstrate additive manufacturing of a dielectric concentrator directly on a LED chip. With a size of below 200 μm in diameter and length, light output is increased by a factor of 6.2 in collimation direction, while the emission half-angle is reduced by 50%. We measure excellent form fidelity and irradiance patterns close to simulation. Additionally, a more complex shape design is presented, which exhibits a nonconventional triangular illumination pattern. The introduced method features exceptional design freedoms which can be used to tailor high-quality miniature illumination optics for specific lighting tasks, for example, endoscopy. PMID:27367093
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
NASA Astrophysics Data System (ADS)
Jalali, A.; Hulsen, M. A.; Norouzi, M.; Kayhani, M. H.
2013-05-01
This paper presents a numerical simulation of the developing flow and heat transfer of a viscoelastic fluid in a rectangular duct. In fully developed flow of a viscoelastic fluid in a non-circular duct, secondary flows normal to the flow direction are expected to enhance the rate of heat and mass transfer. On the other hand, properties such as viscosity, thermal conductivity, specific heat and relaxation time of the fluid are a function of temperature. Therefore, we developed a numerical model which solves the flow and energy equation simultaneously in three dimensional form. We included several equations of state to model the temperature dependency of the fluid parameters. The current paper is one of the first studies which present a 3D numerical simulation for developing viscoelastic duct flow that takes the dependency of flow parameters to the temperature into account. The rheological constitutive equation of the fluid is a common form of the Phan-Thien Tanner (PTT) model, which embodies both influences of elasticity and shear thinning in viscosity. The governing equations are discretized using the FTCS finite difference method on a staggered mesh. The marker-and-cell method is also employed to allocate the parameters on the staggered mesh, and static pressure is calculated using the artificial compressibility approach during the numerical simulation. In addition to report the results of flow and heat transfer in the developing region, the effect of some dimensionless parameters on the flow and heat transfer has also been investigated. The results are in a good agreement with the results reported by others in this field.
Development and New Directions for the RELAP5-3D Graphical Users Interface
Mesina, George Lee
2001-09-01
The direction of development for the RELAP5 Graphical User Interfaces (RGUI) has been extended. In addition to existing plans for displaying all aspects of RELAP5 calculations, the plan now includes plans to display the calculations of a variety of codes including SCDAP, RETRAN and FLUENT. Recent work has included such extensions along with the previously planned and user-requested improvements and extensions. Visualization of heat-structures has been added. Adaptations were made for another computer program, SCDAP-3D, including plant core views. An input model builder for generating RELAP5-3D input files was partially implemented. All these are reported. Plans for future work are also summarized. These include an input processor that transfers steady-state conditions into an input file.
NASA Astrophysics Data System (ADS)
Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.
2016-01-01
We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.
3D frequency airborne electromagnetic modeling including topography with direct solution
NASA Astrophysics Data System (ADS)
Li, W.; Zeng, Z.
2015-12-01
Three-dimensional modeling of frequency airborne electromagnetic data is vital to improve the understanding of electromagnetic (EM) responses collected in increasingly complex geologic settings. We developed a modeling scheme for 3D airborne electromagnetic modeling in frequency domain with topography using edge finite element. The rectangular mesh can be transformed to hexahedral in order to simulate the topography effect. The finite element algorithm uses a single edge shape function at each edge of hexahedral elements, guaranteeing the continuity of the tangential electric field while conserving the continuity of magnetic flux at boundaries. Sources singularities are eliminated through a secondary-field approach, in which the primary fields are computed analytically for a homogeneous or a 1D layered background; the secondary fields are computed using edge finite element. The solution of the linear system of equations was obtained using a massive parallel multifrontal solver, because such solver are robust for indefinite and ill-conditioned linear systems. Parallel computing were investigated for their use in mitigating the computational overburden associated with the use of a direct solver, and of its feasibility for 3D frequency airborne electromagnetic forward modeling with the edge finite element. For the multisource problem, when using a direct solver, only competitive if the same factors are used to achieve a solution for multi right-hand sides. We tested our proposed approach using 1D and 3D synthetic models, and they demonstrated it is robust and suitable for 3D frequency airborne electromagnetic modeling. The codes could thus be used to help design new survey, as well to estimate subsurface conductivities through the implementation of an appropriate inversion scheme.
3D Numerical Study of Typical CME Event: The 2010-04-03 Event
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.; Zhao, X.
2014-12-01
The coronal mass ejection (CME) event on April 3, 2010 is the first fast CME observed by STEREO SECCHI/HI for the full Sun-Earth line. Such an event provides us a good opportunity to study the propagation and evolution of CME from the Sun up to 1 AU. In this paper, we study the time-dependent evolution and propagation of this event from the Sun to Earth using the 3D SIP-CESE MHD model. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We find that the results can successfully reproduce the observations in the STEREO A/B COR1 and COR2 field of view and generate many basic structures of the in situ measurement: such as the similar curves of the plasma density and velocity, an increase in the magnetic field magnitude, the large-scale smooth magnetic field rotation and prolonged southward IMF (a well known source of magnetic storms). The MHD model gives the shock arrival time at Earth with an error of ˜ 1.5 hours. Finally, we analyze in detail the propagation velocity, the spread angle, the trajectory of CME. The speed of the CME rapidly increases from near the Sun, then decreases due to interaction with the solar wind ambient. The spread angle of the CME quickly increases due to lateral material expansion by the pressure gradients within the realistic solar wind background, then the expansion decreases with distance and ends until a pressure equilibrium is established. We also study the CME deflection and find that the CME almost does not deflects in the latitudinal and longitudinal direction during its propagation from the Sun to 1 AU.
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.
1994-09-01
This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.
NASA Technical Reports Server (NTRS)
Interrante, Victoria
1997-01-01
The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.
Numerical Investigation of 3D multichannel analysis of surface wave method
NASA Astrophysics Data System (ADS)
Wang, Limin; Xu, Yixian; Luo, Yinhe
2015-08-01
Multichannel analysis of surface wave (MASW) method is an efficient tool to obtain near-surface S-wave velocity, and it has gained popularity in engineering practice. Up to now, most examples of using the MASW technique are focused on 2D models or data from a 1D linear receiver spread. We propose a 3D MASW scheme. A finite-difference (FD) method is used to investigate the method using linear and fan-shaped receiver spreads. Results show that the 3D topography strongly affects propagation of Rayleigh waves. The energy concentration of dispersion image is distorted and bifurcated because of the influence of free-surface topography. These effects are reduced with the 3D MASW method. Lastly we investigate the relation between the array size and the resolution of dispersion measurement.
Estimation of line dimensions in 3D direct laser writing lithography
NASA Astrophysics Data System (ADS)
Guney, M. G.; Fedder, G. K.
2016-10-01
Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.
Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing
NASA Astrophysics Data System (ADS)
Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara
2015-02-01
This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.
Direct 3D-printing of cell-laden constructs in microfluidic architectures.
Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen
2016-04-21
Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.
Direct 3D-printing of cell-laden constructs in microfluidic architectures.
Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen
2016-04-21
Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling. PMID:26980159
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin
2016-04-01
The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously
Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL
Chae, Y.C.
1998-09-01
A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.
NASA Astrophysics Data System (ADS)
Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.
2016-03-01
This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.
Femtosecond pulsed light polarization induced effects in direct laser writing 3D nanolithography
NASA Astrophysics Data System (ADS)
Malinauskas, Mangirdas; RekštytÄ--, Sima; Jonavičius, Tomas; Gailevičius, Darius; Mizeikis, Vygantas; Gamaly, Eugene; Juodkazis, Saulius
2016-03-01
We demonstrate how the coupling between (i) polarization of the writing laser beam, (ii) tight focusing and (iii) heat conduction affects the size, shape and absorption in the laser-affected area and therefore the polymerization process. It is possible to control the sizes of 3D laser-produced structure at the scale of several nanometers. Specifically we were able to tune the aspect ratio of 3D suspended line up to 20% in hybrid SZ2080 resist. The focal spot of tightly focused linearly polarized beam has an elliptical form with the long axis in the field direction. It is shown here that this effect is enhanced by increase in the electronic heat conduction when polarization coincide with temperature gradient along with the absorption. Overlapping of three effects (i- iii) results in the difference of several tens of nanometers between two axes of the focal ellipse. Narrow line appears when polarization and scan direction coincide, while the wide line is produced when these directions are perpendicular to each other. The effect scales with the laser intensity giving a possibility to control the width of the structure on nanometer scale as demonstrated experimentally in this work. These effects are of general nature and can be observed in any laser-matter interaction experiments where plasma produced by using tight focusing of linear-polarized light.
Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software
NASA Astrophysics Data System (ADS)
Roşu, Şerban; Ianeş, Emilia; Roşu, Doina
2010-09-01
This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.
Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.
Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter
2014-02-01
This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Du, Yanan; Lo, Edward; Ali, Shamsher; Khademhosseini, Ali
2008-07-15
We present a bottom-up approach to direct the assembly of cell-laden microgels to generate tissue constructs with tunable microarchitecture and complexity. This assembly process is driven by the tendency of multiphase liquid-liquid systems to minimize the surface area and the resulting surface free energy between the phases. We demonstrate that shape-controlled microgels spontaneously assemble within multiphase reactor systems into predetermined geometric configurations. Furthermore, we characterize the parameters that influence the assembly process, such as external energy input, surface tension, and microgel dimensions. Finally, we show that multicomponent cell-laden constructs could be generated by assembling microgel building blocks and performing a secondary cross-linking reaction. This bottom-up approach for the directed assembly of cell-laden microgels provides a powerful and highly scalable approach to form biomimetic 3D tissue constructs and opens a paradigm for directing the assembly of mesoscale materials.
Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test
Croin, M.; Ghiotti, A.; Bruschi, S.
2007-04-07
The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.
The 3D numerical simulation of waste heat inside the end-pumped DPAL
NASA Astrophysics Data System (ADS)
Hua, Weihong; Yang, Zining; Wang, Hongyan
2012-01-01
The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.
NASA Astrophysics Data System (ADS)
Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong
2015-06-01
Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
NASA Astrophysics Data System (ADS)
Li, Gen; Liang, Zheng-Zhao; Tang, Chun-An
2015-11-01
Multiscale continuous lab oratory observation of the progressive failure process has become a powerful means to reveal the complex failure mechanism of rock. Correspondingly, the representative volume element (RVE)-based models, which are capable of micro/meso- to macro-scale simulations, have been proposed, for instance, the rock failure process analysis (RFPA) program. Limited by the computational bottleneck due to the RVE size, multiscale high-resolution modeling of rock failure process can hardly be implemented, especially for three-dimensional (3D) problems. In this paper, the self-developed parallel RFPA3D code is employed to investigate the failure mechanisms and various fracture morphology of laboratory-scale rectangular prism rock specimens under unconfined uniaxial compression. The specimens consist of either heterogeneous rock with low strength or relatively homogeneous rock with high strength. The numerical simulations, such as the macroscopic fracture pattern and stress-strain responses, can reproduce the well-known phenomena of physical experiments. In particular, the 3D multiscale continuum modeling is carried out to gain new insight into the morphologic interpretation of brittle failure mechanisms, which is calibrated and validated by comparing the actual laboratory experiments and field evidence. The advantages of 3D multiscale high-resolution modeling are demonstrated by comparing the failure modes against 2D numerical predictions by other models. The parallel RVE-based modeling tool in this paper can provide an alternative way to investigate the complicated failure mechanisms of rock.
McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G
2016-05-01
3D hydrogel scaffolds are widely used in cellular microcultures and tissue engineering. Using direct ink writing, microperiodic poly(2-hydroxyethyl-methacrylate) (pHEMA) scaffolds are created that are then printed, cured, and modified by absorbing 30 kDa protein poly-l-lysine (PLL) to render them biocompliant in model NIH/3T3 fibroblast and MC3T3-E1 preosteoblast cell cultures. Spatial light interference microscopy (SLIM) live cell imaging studies are carried out to quantify cellular motilities for each cell type, substrate, and surface treatment of interest. 3D scaffold mechanics is investigated using atomic force microscopy (AFM), while their absorption kinetics are determined by confocal fluorescence microscopy (CFM) for a series of hydrated hydrogel films prepared from prepolymers with different homopolymer-to-monomer (Mr ) ratios. The observations reveal that the inks with higher Mr values yield relatively more open-mesh gels due to a lower degree of entanglement. The biocompatibility of printed hydrogel scaffolds can be controlled by both PLL content and hydrogel mesh properties.
A PET/CT Directed, 3D Ultrasound-Guided Biopsy System for Prostate Cancer
Master, Viraj; Nieh, Peter; Akbari, Hamed; Yang, Xiaofeng; Fenster, Aaron; Schuster, David
2015-01-01
Prostate cancer affects 1 in 6 men in the USA. Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this “blind” biopsy approach can miss at least 20% of prostate cancers. In this study, we are developing a PET/CT directed, 3D ultrasound image-guided biopsy system for improved detection of prostate cancer. In order to plan biopsy in three dimensions, we developed an automatic segmentation method based wavelet transform for 3D TRUS images of the prostate. The segmentation was tested in five patients with a DICE overlap ratio of more than 91%. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed a nonrigid registration algorithm for TRUS and PET/CT images. The registration method has been tested in a prostate phantom with a target registration error (TRE) of less than 0.4 mm. The segmentation and registration methods are two key components of the multimodality molecular image-guided biopsy system. PMID:26866061
Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures
NASA Astrophysics Data System (ADS)
Holness, F. Benjamin; Price, Aaron D.
2016-04-01
The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
3D numerical thermal stress analysis of the high power target for the SLC Positron Source
Reuter, E.M.; Hodgson, J.A.
1991-05-01
The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Koba, Koichi; Ikuno, Hiroyoshi; Kawano, Mitsunori
In order to calculate 3-D electromagnetic scattering problems by dielectric objects which we need to solve a big size simultaneous linear equation, we present a rapid algorithm on the Yasuura method where we accelerate the convergence rate of solution by using an array of multipoles as well as a conventional multipole. As a result, we can obtain the radar cross sections of dielectric objects in the optical wave region over a relative wide frequency range and a TDG pulse response. Furthermore, we analyze the scattering data about dielectric objects by using the pulse responses cut by an appropriate window function in the time domain and clarify the scattering processes on dielectric objects.
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
NASA Astrophysics Data System (ADS)
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2016-03-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
ERIC Educational Resources Information Center
Sack, Jacqueline J.
2013-01-01
This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…
In-chip fabrication of free-form 3D constructs for directed cell migration analysis.
Olsen, Mark Holm; Hjortø, Gertrud Malene; Hansen, Morten; Met, Özcan; Svane, Inge Marie; Larsen, Niels B
2013-12-21
Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection-molded, commercially available polymer chip for analysis of directed cell migration. Acrylate constructs were produced as woodpile topologies with a range of pore sizes from 5 × 5 μm to 15 × 15 μm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8 × 8 μm or larger. The cells migrating through smaller pore sizes made significantly more turns than those through larger pores. The introduction of additional defined barriers in the microporous structure resulted in dendritic cells making more turns while still being able to follow the chemoattractant concentration gradient.
Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments
NASA Astrophysics Data System (ADS)
Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras
2016-04-01
Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the
Novel Methods for 3D Numerical Simulation of Meteor Radar Reflections
NASA Astrophysics Data System (ADS)
Räbinä, J.; Mönkölä, S.; Rossi, T.; Markkanen, J.; Gritsevich, M.; Muinonen, K.
2016-08-01
We model the radar reflections in a three-dimensional space as time-harmonic electromagnetic scattering from plasmatic obstacles. We introduce two novel methods for numerical simulation of meteor radar reflections.
The numerical study of the cavitation-structure interaction around 3D flexible hydrofoil
NASA Astrophysics Data System (ADS)
Shi-liang, Hu; Ying, Chen; Chuan-jing, Lu
2015-12-01
The closely coupled approach combined the Finite Volume Method (FVM) solver and the Finite Element Method (FEM) solver is applied to simulation the cavitation-structure interaction of a 3D cantilevered flexible hydrofoil in water tunnel. In the cavitating flow, the elastic hydrofoil would deform or vibrate in bending and twisting mode. And the motion of the foil would affect the characteristics of the cavity and the hydrodynamic load on the foil in turn. With smaller cavitation numbers (σv=2.15), the frequency spectrum of the lift on the foil would contain two frequencies which are associated to the cavity shedding and the first bend frequency of the hydrofoil. With larger cavitation number (σv=2.55), the frequency of the lift is completely dominated by the natural frequency of the foil.
Numerical simulation in 3D of atomizing coaxial gas-liquid jets
NASA Astrophysics Data System (ADS)
Agbaglah, Gilou; Fuster, Daniel; McBain, Geordie; Popinet, Stephane; Zaleski, Stephane
2012-11-01
We investigate three-dimensional multiphase flows using the Volume of Fluid method. We are in particular focusing on the problem of jet atomizaton. We use a Volume of Fluid method with oct-tree adaptive finite volume discretization, mostly using the Gerris free code. Surface tension is computed by a balanced-force method. Coaxial, 3D, round and planar air-water jets similar to those investigated experimentally are studied and compared to the equivalent jets in 2D axisymetric and 2D planar setups. A mechanism for large-scale jet disruption is observed. The distribution of droplet sizes is compared to experimental measurements. The effect of grid resolution and of the presence of an explicitly modelled solid separator plate is discussed.
Parallel 3D Finite Element Numerical Modelling of DC Electron Guns
Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC
2008-02-04
In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.
Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P
2010-12-10
The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is
Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P
2010-12-10
The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is
The Rossby wave instability and planet formation: 3D numerical simulations
NASA Astrophysics Data System (ADS)
Méheut, H.; Casse, F.; Varnière, P.; Tagger, M.
2008-11-01
Models of planet formation do not explain yet the growth of planetesimals as in certain ranges of grain size collisions are too slow compared to estimated planet formation time. The Rossby wave instability (RWI) may solve this problem by the formation of Rossby vortices in the accretion disc, speeding up the accumulation of grains in their centre ( te{Peggy} ). Up to now, only two dimensions numerical studies of the RWI have been done. In this proceeding we present the results of three dimensions numerical simulations of the non-linear evolution of the RWI in a non magnetized disc and its vertical structure.
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus
2012-12-01
In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.
PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain
NASA Astrophysics Data System (ADS)
Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.
2009-12-01
A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007
A numerical study of the 3D random interchange and random loop models
NASA Astrophysics Data System (ADS)
Barp, Alessandro; Barp, Edoardo Gabriele; Briol, François-Xavier; Ueltschi, Daniel
2015-08-01
We have studied numerically the random interchange model and related loop models on the three-dimensional cubic lattice. We have determined the transition time for the occurrence of long loops. The joint distribution of the lengths of long loops is Poisson-Dirichlet with parameter 1 or \\frac{1}{2}.
Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications.
Walser, Jochen; Stok, Kathryn S; Caversaccio, Marco D; Ferguson, Stephen J
2016-05-12
Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.
Magnetic fields near spacecraft-explored comets: 3D MHD numerical simulation
NASA Astrophysics Data System (ADS)
Baranov, V. B.; Alexashov, D. B.; Lebedev, M. G.
2015-05-01
The magnetohydrodynamic (MHD) model of the interaction between the solar wind and a cometary ionosphere is presented. The model accounts for photoionization of the neutral component of the cometary outflow and the resonance charge exchange between charged and neutral particles, together with the interplanetary magnetic field. The numerical implementation of the model is performed on the basis of the second-order shock-fitting Godunov method generalized to cover MHD flows. The results of the calculations are analysed with emphasis on the behaviour of the interplanetary magnetic field disturbed by the cometary outflow. The comparison of the numerical results with the spaceboard measured data obtained during the spacecraft flybys near comets Halley and Grigg-Skjellerup shows their good agreement, thus giving promise that the model will be capable to adequately describe the plasma and magnetic surrounding of comet Churyumov-Gerasimenko during the Rosetta spacecraft encounter.
A real-time emergency response workstation using a 3-D numerical model initialized with sodar
Lawver, B.S.; Sullivan, T.J.; Baskett, R.L.
1993-01-28
Many emergency response dispersion modeling systems provide simple Gaussian models driven by single meteorological tower inputs to estimate the downwind consequences from accidental spills or stack releases. Complex meteorological or terrain settings demand more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion. Mountain valleys and sea breeze flows are two common examples of such settings. To address these complexities, the authors have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on a workstation for use in real-time emergency response modeling. MATHEW/ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy`s Atmospheric Release Advisory Capability (ARAC) project. The models are initialized using an array of surface wind measurements from meteorological towers coupled with vertical profiles from an acoustic sounder (sodar). The workstation automatically acquires the meteorological data every 15 minutes. A source term is generated using either defaults or a real-time stack monitor. Model outputs include contoured isopleths displayed on site geography or plume densities shown over 3-D color shaded terrain. The models are automatically updated every 15 minutes to provide the emergency response manager with a continuous display of potentially hazardous ground-level conditions if an actual release were to occur. Model run time is typically less than 2 minutes on 6 megaflop ({approximately}30 MIPS) workstations. Data acquisition, limited by dial-up modem communications, requires 3 to 5 minutes.
Numerical Analysis of Thermal Remediation in 3D Field-Scale Fractured Geologic Media.
Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C
2015-01-01
Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field-scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture-matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10(-17) m(2)). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation. PMID:25040727
Numerical Analysis of Thermal Remediation in 3D Field-Scale Fractured Geologic Media.
Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C
2015-01-01
Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field-scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture-matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10(-17) m(2)). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation.
NASA Astrophysics Data System (ADS)
Yoshida, M.; Tajima, F.
2012-04-01
Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference
NASA Astrophysics Data System (ADS)
Zanini, A.; Tanda, M.
2007-12-01
The groundwater in Italy plays an important role as drinking water; in fact it covers about the 30% of the national demand (70% in Northern Italy). The mineral water distribution in Italy is an important business with an increasing demand from abroad countries. The mineral water Companies have a great interest in order to increase the water extraction, but for the delicate and complex geology of the subsoil, where such very high quality waters are contained, a particular attention must be paid in order to avoid an excessive lowering of the groundwater reservoirs or great changes in the groundwater flow directions. A big water Company asked our University to set up a numerical model of the groundwater basin, in order to obtain a useful tool which allows to evaluate the strength of the aquifer and to design new extraction wells. The study area is located along Appennini Mountains and it covers a surface of about 18 km2; the topography ranges from 200 to 600 m a.s.l.. In ancient times only a spring with naturally sparkling water was known in the area, but at present the mineral water is extracted from deep pumping wells. The area is characterized by a very complex geology: the subsoil structure is described by a sequence of layers of silt-clay, marl-clay, travertine and alluvial deposit. Different groundwater layers are present and the one with best quality flows in the travertine layer; the natural flow rate seems to be not subjected to seasonal variations. The water age analysis revealed a very old water which means that the mineral aquifers are not directly connected with the meteoric recharge. The Geologists of the Company suggest that the water supply of the mineral aquifers comes from a carbonated unit located in the deep layers of the mountains bordering the spring area. The valley is crossed by a river that does not present connections to the mineral aquifers. Inside the area there are about 30 pumping wells that extract water at different depths. We built a 3
NASA Astrophysics Data System (ADS)
Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin
2016-03-01
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
Numerical solution of 2D and 3D turbulent internal flow problems
NASA Astrophysics Data System (ADS)
Chen, Naixing; Xu, Yanji
1991-08-01
The paper describes a method for solving numerically two-dimensional or axisymmetric, and three-dimensional turbulent internal flow problems. The method is based on an implicit upwinding relaxation scheme with an arbitrarily shaped conservative control volume. The compressible Reynolds-averaged Navier-Stokes equations are solved with a two-equation turbulence model. All these equations are expressed by using a nonorthogonal curvilinear coordinate system. The method is applied to study the compressible internal flow in modern power installations. It has been observed that predictions for two-dimensional and three-dimensional channels show very good agreement with experimental results.
Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber
NASA Astrophysics Data System (ADS)
Yuen, A.; Bombardelli, F. A.
2014-12-01
Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on
3D numerical modeling of a new thermo-inductive NDT using pulse mode and pulsed phase methods
NASA Astrophysics Data System (ADS)
Ramdane, B.; Trichet, D.; Belkadi, M.; Saidi, T.; Fouladgar, J.
2010-11-01
Thermo-inductive testing is a new technique used for health inspection on different components of automotive and aeronautic industries. Defect detection is based on the modification of induced eddy current and temperatures due to the presence of defects. The temperature change propagated at the surface of the specimen can then be detected by an infrared camera. In this work, a 3D numerical model of this technique is developed and applied to aeronautic materials. Results obtained are compared with the infrared thermography method to demonstrate the relevance of the new technique.
Calculation of grain boundary normals directly from 3D microstructure images
Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.
2015-03-11
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less
Calculation of grain boundary normals directly from 3D microstructure images
Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.
2015-03-11
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.
Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk
2015-01-01
The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949
NASA Astrophysics Data System (ADS)
Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk
2015-12-01
The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.
Direct laser writing of 3D scaffolds for neural tissue engineering applications.
Melissinaki, V; Gill, A A; Ortega, I; Vamvakaki, M; Ranella, A; Haycock, J W; Fotakis, C; Farsari, M; Claeyssens, F
2011-12-01
This study reports on the production of high-resolution 3D structures of polylactide-based materials via multi-photon polymerization and explores their use as neural tissue engineering scaffolds. To achieve this, a liquid polylactide resin was synthesized in house and rendered photocurable via attaching methacrylate groups to the hydroxyl end groups of the small molecular weight prepolymer. This resin cures easily under UV irradiation, using a mercury lamp, and under femtosecond IR irradiation. The results showed that the photocurable polylactide (PLA) resin can be readily structured via direct laser write (DLW) with a femtosecond Ti:sapphire laser and submicrometer structures can be produced. The maximum resolution achieved is 800 nm. Neuroblastoma cells were grown on thin films of the cured PLA material, and cell viability and proliferation assays revealed good biocompatibility of the material. Additionally, PC12 and NG108-15 neuroblastoma growth on bespoke scaffolds was studied in more detail to assess potential applications for neuronal implants of this material.
3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate
NASA Astrophysics Data System (ADS)
Mason, W. G.; Moresi, L.; Betts, P. G.
2008-12-01
We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
Baumgardner, J.R.
1992-01-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.
3-D numerical investigation of the mantle dynamics associated with the breakup of Pangea
Baumgardner, J.R.
1992-10-01
Three-dimensional finite element calculations in spherical geometry are performed to study the response of the mantle with platelike blocks at its surface to an initial condition corresponding to subduction along the margins of Pangea. The mantle is treated as an infinite Prandtl number Boussinesq fluid inside a spherical shell with isothermal, undeformable, free-slip boundaries. Nonsubducting rigid blocks to model continental lithosphere are included in the topmost layer of the computational mesh. At the beginning of the numerical experiments these blocks represent the present continents mapped to their approximate Pangean positions. Asymmetrical downwelling at the margins of these nonsubducting blocks results in a pattern of stresses that acts to pull the supercontinent apart. The calculations suggest that the breakup of Pangea and the subsequent global pattern of seafloor spreading was driven largely by the subduction at the Pangean margins.
3-D numerical simulations of a growing planet with the core formation by the impact
NASA Astrophysics Data System (ADS)
Furuichi, M.; Nakagawa, T.
2011-12-01
The formation of a metallic core is widely accepted as the biggest differentiation event during the final stage of the planetary formation [e.g. Stevenson, 1990]. The early Earth hypothesis also suggested that the core formation process would be an important for understanding the initial condition (both thermal and chemical) of mantle convection [Labrosse et al., 2007]. Although the formation process of metallic core is still not clear, it is clear that the different time-scale of dynamics in solid and liquid contribute to that. Here, we assume the scenario that the planetesimal impact induces a significant volume of melt which laterally spreads over the global (magma ocean) or regional area (magma pond) in the short crystallization time scale (~300yr) [Reese and Solomatov, 2006]. After the solidification of magma ocean/pond, hot metallic and silicate rich layers are created [e.g. Senshu et al., 2002]. Since the heavy metal rich material causes the gravitational instability in the viscous planet's interior, the planetary core would form with sinking the metallic material into the center. The silicate layer which floods from the magma pond, deforms as a viscous flow on the planetary surface due to the isostatic adjustment. A series of event on the core formation would have the time-scale of ~100 Mys at the maximum. In order to investigate the scenario described above, we developed the simulation code to solve the Stokes flow with the free surface under the self-gravitating field in 3-D, designed for the massively parallel/vector supercomputer system Earth Simulator 2(ES2) [Furuichi, 2011]. Expressing the free surface motion, a stick air layer, which is the low viscosity layer surrounding the planetary surface, is assumed [e.g. Furuichi et al, 2009]. An ill conditioned Stokes problem of the finite difference discretization on a staggered grid, is solved by iterative Stokes flow solver, robust to large viscosity jumps, using a strong Schur complement preconditioner
NASA Astrophysics Data System (ADS)
Reiter, K.; Heidbach, O.
2014-11-01
In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical-numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 SHmax) as well as stress magnitude data (981 SV, 1720 Shmin and 2 (+11) SHmax) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.
A numerical investigation of the 3-D flow in shell and tube heat exchangers
Prithiviraj, M.; Andrews, M.J.
1996-12-31
A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.
3D-2D registration of cerebral angiograms based on vessel directions and intensity gradients
NASA Astrophysics Data System (ADS)
Mitrovic, Uroš; Špiclin, Žiga; Štern, Darko; Markelj, Primož; Likar, Boštjan; Miloševic, Zoran; Pernuš, Franjo
2012-02-01
Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system to the site of pathology. Intra-interventional navigation is done under the guidance of one or at most two two-dimensional (2D) X-ray fluoroscopic images or 2D digital subtracted angiograms (DSA). Due to the projective nature of 2D images, the interventionist needs to mentally reconstruct the position of the catheter in respect to the three-dimensional (3D) patient vasculature, which is not a trivial task. By 3D-2D registration of pre-interventional 3D images like CTA, MRA or 3D-DSA and intra-interventional 2D images, intra-interventional tools such as catheters can be visualized on the 3D model of patient vasculature, allowing easier and faster navigation. Such a navigation may consequently lead to the reduction of total ionizing dose and delivered contrast medium. In the past, development and evaluation of 3D-2D registration methods for endovascular treatments received considerable attention. The main drawback of these methods is that they have to be initialized rather close to the correct position as they mostly have a rather small capture range. In this paper, a novel registration method that has a higher capture range and success rate is proposed. The proposed method and a state-of-the-art method were tested and evaluated on synthetic and clinical 3D-2D image-pairs. The results on both databases indicate that although the proposed method was slightly less accurate, it significantly outperformed the state-of-the-art 3D-2D registration method in terms of robustness measured by capture range and success rate.
Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias
2016-04-20
Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr_{3}) salt dissolved in liquid diiodomethane (CH_{2}I_{2}) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12 mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. PMID:27140083
Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias
2016-04-20
Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr_{3}) salt dissolved in liquid diiodomethane (CH_{2}I_{2}) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12 mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.
Tavčar, Gregor; Katrašnik, Tomaž
2014-01-01
The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.
Tavčar, Gregor; Katrašnik, Tomaž
2014-01-01
The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport. PMID:25125112
Numerical simulation of acoustic holography with propagator adaptation. Application to a 3D disc
NASA Astrophysics Data System (ADS)
Martin, Vincent; Le Bourdon, Thibault; Pasqual, Alexander Mattioli
2011-08-01
Acoustical holography can be used to identify the vibration velocity of an extended vibrating body. Such an inverse problem relies on the radiated acoustic pressure measured by a microphone array and on an a priori knowledge of the way the body radiates sound. Any perturbation on the radiation model leads to a perturbation on the velocity identified by the inversion process. Thus, to obtain the source vibration velocity with a good precision, it is useful to identify also an appropriate propagation model. Here, this identification, or adaptation, procedure rests on a geometrical interpretation of the acoustic holography in the objective space (here the radiated pressure space equipped with the L2-norm) and on a genetic algorithm. The propagator adaptation adds information to the holographic process, so it is not a regularisation method, which approximates the inverse of the model but does not affect the model. Moreover regularisations act in the variables space, here the velocities space. It is shown that an adapted model significantly decreases the quantity of regularisation needed to obtain a good reconstructed velocity, and that model adaptation improves significantly the acoustical holography results. In the presence of perturbations on the radiated pressure, some indications will be given on the interest or not to adapt the model, again thanks to the geometrical interpretation of holography in the objective space. As a numerical example, a disc whose vibration velocity on one of its sides is identified by acoustic holography is presented. On an industrial scale, this problem occurs due to the noise radiated by car wheels. The assessment of the holographic results has not yet been rigorously performed in such situations due to the complexity of the wheel environment made up of the car body, road and rolling conditions.
The shape of the Aegean MCC's, Insights from 3D numerical modelling
NASA Astrophysics Data System (ADS)
Le Pourhiet, L.; Denèle, Y.; Huet, B.; Jolivet, L.
2010-12-01
The Aegean sea is a back arc basin in which the continental lithosphere has been stretched through the tertiary leaving several diachronous belts of Metamorphic Core Complexes (MCCs). The Aegean MCCs present two classes of shapes. Some are elongated in the direction of the lineation (A-type e.g. Naxos, Paros..) while the others are elongated in a direction normal to the lineation (B-type e.g. Tinos, Evvia ...). While it is well established from 1 and 2D modeling that MCC's forms when the lower crust is weak, the reason for the diversity of shape remains an open question. The A-type domes are not only elongated in shape; their P-T-t paths indicate a clear phase of warming during the exhumation and they also present migmatites (which are not observed in the other islands). Several hypothesis may be drawn. The elongated domes could result from 1) the competition of boudinage versus normal constriction folding, 2) lateral variation of the thickness or the temperature of the crust resulting in local buoyant instability (R-T instability) or 3) lateral gradient of deformation. This contribution presents the preliminary results obtained with thermo-mechanical models in which we test the influence of a local plutonic intrusions, along strike variation of extensional rate, and lateral boundary condition (normal shortening or extension) on the shape of the domes. As this problem is inherently three dimensional, the models were computed on our computer cluster using Gale/Underworld an ALE method with visco-plastic temperature dependent rheologies.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions
NASA Astrophysics Data System (ADS)
Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.
2016-11-01
As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.
Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model
Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed
2015-01-01
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis. PMID:25933372
3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank
NASA Astrophysics Data System (ADS)
Xue, R.; Tian, R.; Yan, S. Y.; Li, S.
In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.
3D nanometer images of biological fibers by directed motion of gold nanoparticles.
Estrada, Laura C; Gratton, Enrico
2011-11-01
Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.
NASA Astrophysics Data System (ADS)
Samson, C.; Butler, S.; Fry, C.; McCausland, P. J. A.; Herd, R. K.; Sharomi, O.; Spiteri, R. J.; Ralchenko, M.
2014-05-01
Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (≈30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s-1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.
NASA Astrophysics Data System (ADS)
Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Chen, X.; Zhang, Z.
2012-04-01
Numerical modeling of earthquake ground motion in sedimentary basins and valleys often has to account for the P-wave to S-wave speed ratios (VP/VS) as large as five and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 - the unconsolidated lake sediments in Ciudad de México are a good example. At the same time, accuracy of the numerical schemes with respect to VP/VS has not been sufficiently analyzed. The numerical schemes are often applied without adequate check of the accuracy. We present theoretical analysis and numerical comparison of 18 3D numerical time-domain explicit schemes for modeling seismic motion for their accuracy with the varying VP/VS. The schemes are based on the finite-difference, spectral-element, finite-element and discontinuous-Galerkin methods. All schemes are presented in a unified form. Theoretical analysis compares accuracy of the schemes in terms of local errors in amplitude and vector difference. In addition to the analysis we compare numerically simulated seismograms with exact solutions for canonical configurations. We compare accuracy of the schemes in terms of the local errors, grid dispersion and full wavefield simulations with respect to the structure of the numerical schemes.
Thermal Performance Mapping of Direct Liquid Cooled 3d Chip Stacks
NASA Astrophysics Data System (ADS)
Geisler, Karl J. L.; Bar-Cohen, Avram
Chip stacks are a crucial building block in advanced 3D microsystem architectures and can accommodate shorter interconnect distances between devices, leading to reduced power dissipation and improved electrical performance. Although enhanced conduction can serve to transfer the dissipated heat to the top and sides of the package and/or down to the underlying PCB, effective thermal management of stacked chips remains a most difficult challenge. Immersion cooling techniques, which provide convective and/or ebullient heat transfer, along with buoyant fluid flow, in the narrow gaps separating adjacent chips, are a most promising alternative to conduction cooling of threedimensional chip stacks. Application of the available theories, correlations, and experimental data are shown to reveal that passive immersion cooling--relying on natural convection and/or pool boiling--could provide the requisite thermal management capability for 3D chip stacks anticipated for use in much of the portable equipment category. Alternatively, pumped flow of dielectric liquids through the microgaps in 3D stacks, providing single phase and/or flow boiling heat absorption, could meet many of the most extreme thermal management requirements for high-performance 3D microsystems.
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
NASA Astrophysics Data System (ADS)
Stamps, S.; Bangerth, W.; Hager, B. H.
2014-12-01
The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.
Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method
NASA Astrophysics Data System (ADS)
Qin, Yujie; Lu, Yiyun
2015-09-01
In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.
Zhong, Kuo; Li, Jiaqi; Van Cleuvenbergen, Stijn; Clays, Koen
2016-09-21
Direct reactive ion etching (RIE) of hollow SiO2 sphere colloidal crystals (HSCCs) is employed as a facile, low-cost method to fabricate complex three-dimensional (3D) hierarchical nanostructures. These multilayered structures are gradually transformed into nanostructures of increasing complexity by controlling the etching time, without complicated procedures (no mask needed). The resulting 3D topologies are unique, and cannot be obtained through traditional approaches. The formation mechanism of these structures is explained in detail by geometrical modeling during the different etching stages, through shadow effects of the higher layers. SEM images confirm the modeled morphological changes. The nanostructures obtained by our approach show very fine features as small as ∼30 nm. Our approach opens new avenues to directly obtain complex 3D nanostructures from colloidal crystals and can find applications in sensing, templating, and catalysis where fine tuning the specific surface might be critical. PMID:27545098
Le Thiez, P.A.; Pottecher, G.; Recherche, A.
1996-11-01
This paper presents a general numerical model able to simulate both organic pollutants migration (3-phase compositional flows, mass transfer, transport) in soils and aquifers and decontamination techniques such as pumping, skimming, venting, hot venting, steam injection, surfactant injection and biodegradation. To validate the simulator, a 3-D experiment in a large pilot (25 m x 12 m x 4 m) was carried out. A total of 0.475 M{sup 3} of diesel oil was injected into the pilot, and numerous in- situ measurements were performed to determine pollutants location and concentrations within the vadose and saturated zones. Prior to the pilot test, a predictive simulation computed the extent of the contaminated zone and the oil saturations. Numerical results showed good agreement between experiment and simulation. To demonstrate the simulator abilities to improve remediation operations, a soil vapor extraction (venting) of weathered gasoline in the vadose zone under a service station was simulated. Fourteen wells were drilled on the site and extraction took nine months. The simulation closely matches the field data. Further simulations show the possibility of venting optimization for this site.
NASA Astrophysics Data System (ADS)
Li, Dian-Sen; Fang, Dai-Ning; Lu, Zi-Xing; Yang, Zhen-Yu; Jiang, Nan
2010-08-01
In the first part of the work, we have established a new parameterized three-dimensional (3D) finite element model (FEM) which precisely simulated the spatial configuration of the braiding yarns and considered the cross-section deformation as well as the surface contact relationship between the yarns. This paper presents a prediction of the effective elastic properties and the meso-scale mechanical response of 3D braided composites to verify the validation of the FEM. The effects of the braiding parameters on the mechanical properties are investigated in detail. By analyzing the deformation and stress nephogram of the model, a reasonable overall stress field is provided and the results well support the strength prediction. The results indicate it is convenient to predict all the elastic constants of 3D braided composites with different parameters simultaneously using the FEM. Moreover, the FEM can successfully predict the meso-scale mechanical response of 3D braided composites containing periodical structures.
NASA Astrophysics Data System (ADS)
Montiel, F.; Squire, V. A.
2013-12-01
A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive
Direct observation in 3d of structural crossover in binary hard sphere mixtures
NASA Astrophysics Data System (ADS)
Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick
2016-04-01
For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.
3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.
Tricinci, Omar; Terencio, Tercio; Mazzolai, Barbara; Pugno, Nicola M; Greco, Francesco; Mattoli, Virgilio
2015-11-25
Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410
3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography
2015-01-01
Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410
3D monolithically stacked CMOS Active Pixel Sensors for particle position and direction measurements
NASA Astrophysics Data System (ADS)
Servoli, L.; Passeri, D.; Morozzi, A.; Magalotti, D.; Piperku, L.
2015-01-01
In this work we propose a 3D monolithically stacked, multi-layer detectors based on CMOS Active Pixel Sensors (APS) layers which allows at the same time accurate estimation of the impact point and of the incidence angle an ionizing particle. The whole system features two fully-functional CMOS APS matrix detectors, including both sensing area and control/signal elaboration circuitry, stacked in a monolithic device by means of Through Silicon Via (TSV) connections thanks to the capabilities of the CMOS vertical scale integration (3D-IC) 130 nm Chartered/Tezzaron technology. In order to evaluate the suitability of the two layer monolithic active pixel sensor system to reconstruct particle tracks, tests with proton beams have been carried out at the INFN LABEC laboratories in Florence (Italy) with 3 MeV proton beam.
NASA Astrophysics Data System (ADS)
Brune, Sascha; Autin, Julia
2013-11-01
The Gulf of Aden provides an ideal setting to study oblique rifting since numerous structural data are available onshore and offshore. Recent surveys showed that the spatio-temporal evolution of the Gulf of Aden rift system is dominated by three fault orientations: displacement-orthogonal (WSW), rift-parallel (WNW) and an intermediate E-W trend. The oldest parts of the rift that are exposed onshore feature displacement-orthogonal and intermediate directions, whereas the subsequently active necking zone involves mainly rift-parallel faults. The final rift phase recorded at the distal margin is characterised by displacement-orthogonal and intermediate fault orientations. We investigate the evolution of the Gulf of Aden from rift initiation to break-up by means of 3D numerical experiments on lithospheric scale. We apply the finite element model SLIM3D which includes realistic, elasto-visco-plastic rheology and a free surface. Despite recent advances, 3D numerical experiments still require relatively coarse resolution so that individual faults are poorly resolved. We address this issue by proposing a simple post-processing method that uses the surface stress-tensor to evaluate stress regime (extensional, strike-slip, compressional) and preferred fault azimuth. The described method is applicable to any geodynamic model and easy to introduce. Our model reproduces the observed fault pattern of the Gulf of Aden and illustrates how multiple fault directions arise from the interaction of local and far-field tectonic stresses in an evolving rift system. The numerical simulations robustly feature intermediate faults during the initial rift phase, followed by rift-parallel normal faulting at the rift flanks and strike-slip faults in the central part of the rift system. Upon break-up, displacement-orthogonal as well as intermediate faults occur. This study corroborates and extends findings from previous analogue experiments of oblique rifting on lithospheric scale and allows new
Zarzo, Manuel
2015-06-01
Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
Development of a numerical procedure to map a general 3-d body onto a near-circle
NASA Technical Reports Server (NTRS)
Hommel, M. J.
1986-01-01
Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.
2D and 3D Numerical Experiments Assessing the Necessary Conditions for a Plume-fed Asthenosphere
NASA Astrophysics Data System (ADS)
Shi, C.; Phipps Morgan, J.; Hasenclever, J.
2008-12-01
In past years we have presented observation evidence which suggests to us that in Earth's mantle there exists a buoyant asthenosphere layer fed by upwelling in mantle plumes, and consumed by accretion and transformation into overlying lithosphere by ridge upwelling and melt-extraction (which creates a ~60km-thick layer of compositional lithosphere at mid-ocean ridges), by plate cooling (which accretes a further ~40km of asthenosphere after 100 Ma of near-surface cooling), and by dragdown by subducting slabs (which drags a further ~20km sheet of buoyant asthenosphere on either side of the subducting slab). This scenario has been recently reviewed in Yamamoto et al (GSA Vol. 431). We believe that the reason this mode of mantle convection has not yet been seen in numerical models of mantle convection is due to the inability of current models to model the correct upwelling rates in focused lower-viscosity plumes (i.e. that, due to numerical resolution problems they currently underpredict plume upwelling) and to correctly model the magnitude of downdragging of a more buoyant but lower viscosity asthenosphere layer by subducting slabs (which they currently overpredict, cf. Phipps Morgan et al., Terra Nova, 2007). Here we present results from a suite of 2D and 3D calculations that include the effects of ridge accretion, plate cooling and well-resolved asthenosphere dragdown by subducting slabs. In the 2D experiments we do not let mantle plumes spontaneously form at the hot base of the mantle. Instead we extract mantle at a prescribed rate from a single region near the bottom of the mantle (the base of the 'plume stem') and inject this hot material into the uppermost mantle using a local dilation element 'source'. The point is to bypass an incorrect 2D treatment of plume upwelling (plumes should be pipes that only slightly disrupt surrounding flow instead of sheets that break 2D mantle flow), in order to explore what upwelling flux is needed to form a persistent plume
NASA Astrophysics Data System (ADS)
Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.
2014-12-01
Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
NASA Astrophysics Data System (ADS)
Liao, Y.; Su, C. C.; Marschall, R.; Wu, J. S.; Rubin, M.; Lai, I. L.; Ip, W. H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Skorov, Y. V.; Thomas, N.
2016-03-01
Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.
DeSantis, Larisa R. G.; Scott, Jessica R.; Schubert, Blaine W.; Donohue, Shelly L.; McCray, Brian M.; Van Stolk, Courtney A.; Winburn, Amanda A.; Greshko, Michael A.; O’Hara, Mackie C.
2013-01-01
The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately. PMID:23936506
Richter, Lars; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim
2010-01-01
Direct tracking is more robust than tracking that is based on additional markers. 3D laser scans can be used for direct tracking because they result in a 3D data set of surface points of the scanned object. For head-navigated robotized systems, it is crucial to know where the patient's head is positioned relatively to the robot. We present a novel method to use a 3D laserscanner for direct head navigation in the robotized TMS system that places a coil on the patient's head using an industrial robot. First experimental results showed a translational error < 2mm in the robot hand-eye-calibration with the laserscanner. The rotational error was 0.75° and the scaling error < 0.001. Furthermore, we found that the error of a scanned head to a reference head image was < 0.2mm using ICP. These results have shown that a direct head navigation is feasible for the robotized TMS system. Additional effort has to be made in future systems to speed up the compution time for real time capability.
Castilho, Miguel; Moseke, Claus; Ewald, Andrea; Gbureck, Uwe; Groll, Jürgen; Pires, Inês; Teßmar, Jörg; Vorndran, Elke
2014-03-01
The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials.
NASA Astrophysics Data System (ADS)
Li, L. C.; Tang, C. A.; Li, G.; Wang, S. Y.; Liang, Z. Z.; Zhang, Y. B.
2012-09-01
The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress-axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock
NASA Astrophysics Data System (ADS)
Ren, Z.; Huang, X. Y.; Liu, H. S.
2016-07-01
In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.
Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Lettry, J.; Minea, T.; Lifschitz, A. F.; Schmitzer, C.; Midttun, O.; Steyaert, D.
2013-02-01
At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons' temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contribution focuses on the modeling of two different extractors (IS01, IS02) of the Linac4 ion sources. The most efficient extraction system is analyzed via numerical parametric studies. The influence of aperture's geometry and the strength of the magnetic filter field on the extracted electron and NI current will be discussed. The NI production of sources based on volume extraction and cesiated surface are also compared.
NASA Astrophysics Data System (ADS)
Pathak, Himanshu; Singh, Akhilendra; Singh, Indra Vir
2016-06-01
In this work, finite element method (FEM) and element free Galerkin method (EFGM) are coupled for solving 3D crack domains subjected to cyclic thermal load of constant amplitude. Crack growth contours and fatigue life have been obtained for each of the considered numerical examples. Thermo-elastic problems are decoupled into thermal and elastic problems . Firstly, the unknown temperature field is obtained by solving heat conduction equation, then, it is used as the input load in the elastic problem to calculate the displacement and stress fields. The geometrical discontinuity across crack surface is modelled by extrinsically enriched EFGM and the remaining part of the domain is approximated by standard finite element method. At the crack interface, a ramp function based interpolation scheme has been implemented. This coupled approach combines the advantages of both EFGM and FEM. A linear successive crack increment approach is used to model crack growth. The growing crack surface is traced by level set function. Standard Paris law is used for life estimation of the three-dimensional crack models. Different cases of planar and non-planar crack problems have been solved and their results are compared with the results obtained using extended finite element method to check accuracy, efficiency and robustness of the coupled FE-EFG approach implemented in this study.
NASA Astrophysics Data System (ADS)
Guo, Liancheng; Morita, Koji; Tagami, Hirotaka; Tobita, Yoshiharu
2014-06-01
The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In CDAs, the motions and interactions of solid particles, such as refrozen fuels, disrupted pellets, etc., not only dominate fundamental behaviors of multiphase flows, but also drastically influence the process of CDAs. The fast reactor safety analysis code, SIMMER-IV, which is a 3D, multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model, was successfully applied to a series of CDA assessments. However, strong interactions among solid particles as well as particle characteristics in multiphase flows with rich solid particles were not taken into consideration for fluid-dynamics models of SIMMER-IV. In this article, a hybrid method for multiphase flow analysis is developed by coupling the discrete element method (DEM) with the multi-fluid model of SIMMER-IV. In the coupling algorithm, motions of liquid and gas phases are solved by a time-factorization (time-splitting) method. For the solid phases, contacts among particles and interactions with fluid phases are considered through DEM. Numerical simulations of dam-break behavior with rich solid particles show reasonable agreements with corresponding experimental results. It is expected that SIMMER-IV coupled with DEM could provide a promising and useful computational tool for complicated multiphase-flow phenomena with high concentration of solid particles.
NASA Astrophysics Data System (ADS)
Lu, Wei; Yang, Qingchun; Martín, Jordi D.; Juncosa, Ricardo
2013-04-01
During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Xiwu; Chen, Kang
2013-10-01
As new lightweight textile material, 3D five directional and full five directional braided composites (5DBC and F5DBC) have tremendous potential applications in the aerospace industry. Before they are used in primary loading-bearing structures, a rational characterization of their mechanical properties is essential. In this paper, three types of unit-cell models corresponding to the interior, surface and corner regions of 5DBC and F5DBC are proposed. By introducing the reasonable boundary conditions, the effective stiffness properties of these two materials are predicted and compared by the three unit-cells models. The detailed mechanical response characteristic of the three unit-cell models is presented and analyzed in various loading cases. Numerical results show good agreement with experiment data, thus validates the proposed simulation method. Moreover, a parametric study is carried out for analyzing the effects of braiding angle and fiber volume fraction on the elastic properties of 5DBC and F5DBC. The obtained results can help designers to optimize the braided composite structures.
Sun, Shuhui; Zhang, Gaixia; Geng, Dongsheng; Chen, Yougui; Banis, Mohammad Norouzi; Li, Ruying; Cai, Mei; Sun, Xueliang
2010-01-18
A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single-crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW--Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles. PMID:20024993
NASA Astrophysics Data System (ADS)
Li, Ji-Jiao; Li, Bo; Peng, Qin-Mei; Zhou, Ji; Li, Long-Tu
2014-09-01
Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).
3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo
2014-05-01
We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.
NASA Astrophysics Data System (ADS)
Haney, M. M.; Aldridge, D. F.; Symons, N. P.
2005-12-01
Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed
Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials
NASA Astrophysics Data System (ADS)
Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.
2016-10-01
We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.
Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials
Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.
2016-01-01
We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476
Direct in vitro comparison of six 3D positive contrast methods for susceptibility marker imaging
Vonken, Evert-jan P. A.; Schär, Michael; Yu, Jing; Bakker, Chris J. G.; Stuber, Matthias
2012-01-01
Purpose To compare different techniques for positive contrast imaging of susceptibility markers with MRI for 3D visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. Materials and methods Six different positive contrast techniques are investigated for their ability to image at 3T a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. Results The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided and strengths and weaknesses of the different approaches are discussed. Conclusion The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data is now available. PMID:23281151
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro
2015-04-01
The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered
Pyro-EHD ink-jet printing for direct functionalization of 3D lab-on-chip devices
NASA Astrophysics Data System (ADS)
Coppola, S.; Vespini, V.; Bianco, V.; Mecozzi, L.; Olivieri, F.; Todino, M.; Paturzo, M.; Grilli, S.; Ferraro, P.
2016-03-01
A challenging request in the fabrication of microfluidics and biomedical microsystems is a flexible ink-jet printing for breaking the rigidity of classical lithography. A pyroelectric-EHD system is presented. The system has proved challenging spatial resolution down to nanoscale, printing of high ordered patterns, capability of dispensing bio-ink as DNA and protein array for biosensing fabrication, single cells printing and direct printing of nanoparticles. With the method proposed high viscous polymers could be easily printed at high resolution in 2D or in 3D configuration. The pyro-EHD process has been proved for the fabrication of biodegradable microneedles for trasndermal drug delivery and 3D optical waveguides.
NASA Astrophysics Data System (ADS)
Bazarov, Ivan V.; Dunham, Bruce M.; Gulliford, Colwyn; Li, Yulin; Liu, Xianghong; Sinclair, Charles K.; Soong, Ken; Hannon, Fay
2008-10-01
We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.
NASA Astrophysics Data System (ADS)
Bagaiev, Andrii; Ivanov, Vitaliy
2014-05-01
The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB
NASA Astrophysics Data System (ADS)
Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver
2016-04-01
The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The
NASA Astrophysics Data System (ADS)
Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping
2013-10-01
A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.
Effects of scene content and layout on the perceived light direction in 3D spaces.
Xia, Ling; Pont, Sylvia C; Heynderickx, Ingrid
2016-08-01
The lighting and furnishing of an interior space (i.e., the reflectance of its materials, the geometries of the furnishings, and their arrangement) determine the appearance of this space. Conversely, human observers infer lighting properties from the space's appearance. We conducted two psychophysical experiments to investigate how the perception of the light direction is influenced by a scene's objects and their layout using real scenes. In the first experiment, we confirmed that the shape of the objects in the scene and the scene layout influence the perceived light direction. In the second experiment, we systematically investigated how specific shape properties influenced the estimation of the light direction. The results showed that increasing the number of visible faces of an object, ultimately using globally spherical shapes in the scene, supported the veridicality of the estimated light direction. Furthermore, symmetric arrangements in the scene improved the estimation of the tilt direction. Thus, human perception of light should integrally consider materials, scene content, and layout. PMID:27548091
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.
Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang
2015-07-01
During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.
High-resolution direct 3D printed PLGA scaffolds: print and shrink.
Chia, Helena N; Wu, Benjamin M
2014-12-17
Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.
Fabrication of 3D photocatalytic α-Fe2O3 structure using direct ink writing method
NASA Astrophysics Data System (ADS)
Li, Yayun; Li, Bo; Li, Longtu
2014-02-01
Three-dimensional (3D) photocatalytic devices are economical and environmental, since they can be easily recycled and reused. In this paper, a kind of 3D photocatalytic device with a rod diameter of 250 μm was fabricated using the aqueous-based α-Fe2O3 ceramic inks by direct ink writing (DIW) method. The properties of the DIW woodpile samples were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and optical microscope. The result shows that the ink with solid content of 71.4 wt.% exhibits a shear thinning behavior and proper viscoelastic properties, which ensure a feasible extrusion in the whole shaping process. The sample sintered at 800°C in air causes photocatalytic degradation of methylene blue (MB) solution under the ultraviolet (UV) light. The photocatalytic properties of the α-Fe2O3 woodpile structure was characterized by the UV-visible light spectrophotometer, and it was found to be better than that of bulk sample with same weight for its higher specific surface. The DIW technique would offer a potential method for the design and fabrication of 3D photocatalytic devices.
NASA Astrophysics Data System (ADS)
Benmansour, Abdelkrim; Liazid, Abdelkrim; Logerais, Pierre-Olivier; Durastanti, Jean-Félix
2016-02-01
Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed.
Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan
2007-01-01
This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.
Directional adaptive deformable models for segmentation with application to 2D and 3D medical images
NASA Astrophysics Data System (ADS)
Rougon, Nicolas F.; Preteux, Francoise J.
1993-09-01
In this paper, we address the problem of adapting the functions controlling the material properties of 2D snakes, and show how introducing oriented smoothness constraints results in a novel class of active contour models for segmentation which extends standard isotropic inhomogeneous membrane/thin-plate stabilizers. These constraints, expressed as adaptive L2 matrix norms, are defined by two 2nd-order symmetric and positive definite tensors which are invariant with respect to rigid motions in the image plane. These tensors, equivalent to directional adaptive stretching and bending densities, are quadratic with respect to 1st- and 2nd-order derivatives of the image intensity, respectively. A representation theorem specifying their canonical form is established and a geometrical interpretation of their effects if developed. Within this framework, it is shown that, by achieving a directional control of regularization, such non-isotropic constraints consistently relate the differential properties (metric and curvature) of the deformable model with those of the underlying intensity surface, yielding a satisfying preservation of image contour characteristics.
Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
Tay, W B; van Oudheusden, B W; Bijl, H
2014-09-01
The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the
Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
Tay, W B; van Oudheusden, B W; Bijl, H
2014-09-01
The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the
Efficient Numerical Modeling of 3D, Half-Space, Slow-Slip and Quasi-Dynamic Earthquake Ruptures
NASA Astrophysics Data System (ADS)
Bradley, A. M.; Segall, P.
2011-12-01
Motivated by the hypothesis that dilatancy plays a critical role in faulting in subduction zones, we are developing FDRA2 (Fault Dynamics with the Radiation-damping Approximation), a software package to simulate three-dimensional quasi-dynamic faulting that includes rate-state friction, thermal pressurization, and dilatancy (following Segall and Rice [1995]) in a finite-width shear zone. This work builds on the two-dimensional simulations performed by FDRA1 (Bradley and Segall [AGU 2010], Segall and Bradley [submitted]). These simulations show that at lower background effective normal stress (\\bar σ), slow slip events occur spontaneously, whereas at higher \\bar σ , slip is inertially limited. At intermediate \\bar σ , dynamic events are followed by quiescent periods and then long durations of repeating slow slip events. Models with depth-dependent properties produce sequences similar to those observed in Cascadia. Like FDRA1, FDRA2 solves partial differential equations in pressure and temperature on profiles normal to the fault. The diffusion equations are discretized in space using finite differences on a nonuniform mesh having greater density near the fault. The full system of equations is a semiexplicit index-1 differential algebraic equation (DAE) in slip, slip rate, state, fault zone porosity, pressure, and temperature. We integrate state, porosity, and slip explicitly; solve the momentum balance equation on the fault for slip rate; and integrate pressure and temperature implicitly. Adaptive time steps are limited by accuracy and the stability criterion governing explicit integration of hyperbolic, but not the more stringent one governing parabolic, PDE. To compute elasticity in a 3D half-space, FDRA2 compresses the large, dense matrix arising from the boundary element method using an H-matrix. The work to perform a matrix-vector product scales almost linearly, rather than quadratically, in the number of fault cells. A new technique to relate the error
NASA Astrophysics Data System (ADS)
Kanda, R. V.; Suppe, J.; Ellis, S. M.; Buiter, S.
2012-12-01
Oblique convergence between the Luzon arc on the Philippine Sea plate (PSP) and the Eurasian continental margin is associated with a progressive termination of northwestward collision in northern Taiwan along with the eastward subduction of the Eurasian plate underneath the island. It has long been recognized that one model for this flipping of subduction polarity beneath Taiwan is the progressive tearing of the Eurasian plate along the continental margin. Modern global tomography, combined with local tomography near Taiwan images this predicted torn northern edge of the Eurasian slab within the continental mantle lithosphere, which is subducting underneath the collisional mountain belt as a single slab that is continuous with the subducting oceanic lithosphere of the South China Sea. Seismic observations also indicate that the subducting Philippine Sea plate experiences east-west compression - as well as horizontal flexure - at depths shallower than 100 km near its orthogonal contact with the Eurasian lithosphere. Here, we make a first attempt to understand the complex 3D plate interactions associated with the PSP-Eurasia convergence, and to evaluate the role of slab versus mantle driving forces in its evolution. Specifically, we aim to understand the relatively recent change in PSP motion that initiated the deformation of the Eurasian margin and the formation of Taiwan. Unfolding of tomographically inferred present-day subducted slab geometries surrounding the PSP provides kinematic constrains on its interactions with adjacent plates over the past 10s of Ma. The resulting relative plate motions provide the driving boundary conditions for our forward numerical models of lithospheric dynamics, thus allowing us to test new regional plate-tectonic hypotheses. We are exploring a hierarchical set of models with increasing complexity to investigate the sensitivity of model predictions to boundary conditions as well as upper-mantle and slab rheology. Our simulations can
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.
Lang, Nadine R; Münster, Stefan; Metzner, Claus; Krauss, Patrick; Schürmann, Sebastian; Lange, Janina; Aifantis, Katerina E; Friedrich, Oliver; Fabry, Ben
2013-11-01
The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter--the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration. PMID:24209841
Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales
Walters, Brandan D.; Stegemann, Jan P.
2013-01-01
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608
NASA Astrophysics Data System (ADS)
Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.
2015-02-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of
NASA Astrophysics Data System (ADS)
Rey, P. F.; Mondy, L. S.; Duclaux, G.; Teyssier, C. P.; Whitney, D. L.
2015-12-01
We have used Underworld to perform a series of numerical experiments involving a 256 x 256 x 128 km domain, at a grid resolution of 1.33 km. The kinematic boundary conditions simulate a lithospheric-scale pull-apart setting. We compare the structural and thermal evolution of a model involving a crust of thickness 40 km (TMoho=540ºC) with a model with a crust of thickness 60 km (TMoho=830ºC). We show that in the thick, hot crust model the flow in the pull-apart region is strongly partitioned between the strong upper crust and the weak lower crust. The weak, deep crust flows toward the pull-apart region to isostatically compensate the stretching and thinning of the upper crust. In contrast, the velocity field in the upper crust remains parallel to the imposed direction of extension. In the pull-apart region a transdome, made of two parallel foliation folds (or sub-domes), forms. In the dome, fabrics evolve from strong vertical flattening in between the two sub-domes, to shallow dipping constriction roughly parallel to the direction of extension in the upper part of the transdome.
Dai, Chenkai; Fridman, Gene Y; Chiang, Bryce; Rahman, Mehdi A; Ahn, Joong Ho; Davidovics, Natan S; Della Santina, Charles C
2013-12-01
high-acceleration transient rotations. VOR asymmetry changes did not reach statistical significance, although they did trend toward slight improvement over time. Prior studies had already shown that directional plasticity reduces misalignment when a subject with normal labyrinths views abnormal visual scene movement. Our results show that the converse is also true: individuals receiving misoriented vestibular sensation under normal viewing conditions rapidly adapt to restore a well-aligned 3D VOR. Considering the similarity of VOR physiology across primate species, similar effects are likely to occur in humans using a MVP to treat bilateral vestibular deficiency.
Abbott, W W; Faisal, A A
2012-08-01
Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.
Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang
2015-01-01
Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.
Alper Selver, M
2015-02-01
Intuitive and differentiating domains for transfer function (TF) specification for direct volume rendering is an important research area for producing informative and useful 3D images. One of the emerging branches of this research is the texture based transfer functions. Although several studies in two, three, and four dimensional image processing show the importance of using texture information, these studies generally focus on segmentation. However, TFs can also be built effectively using appropriate texture information. To accomplish this, methods should be developed to collect wide variety of shape, orientation, and texture of biological tissues and organs. In this study, volumetric data (i.e., domain of a TF) is enhanced using brushlet expansion, which represents both low and high frequency textured structures at different quadrants in transform domain. Three methods (i.e., expert based manual, atlas and machine learning based automatic) are proposed for selection of the quadrants. Non-linear manipulation of the complex brushlet coefficients is also used prior to the tiling of selected quadrants and reconstruction of the volume. Applications to abdominal data sets acquired with CT, MR, and PET show that the proposed volume enhancement effectively improves the quality of 3D rendering using well-known TF specification techniques. PMID:26357028
NASA Astrophysics Data System (ADS)
Hara, Tatsuhiko
2004-08-01
We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.
NASA Astrophysics Data System (ADS)
Abbott, W. W.; Faisal, A. A.
2012-08-01
Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.
NASA Astrophysics Data System (ADS)
Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken
Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.
Direct numerical simulation of reacting flows
NASA Technical Reports Server (NTRS)
Riley, J. J.; Metcalfe, R. W.
1984-01-01
The objectives of this work are: (1) to extend the technique of direct numerical simulations to turbulent, chemically reacting flows, (2) to test the validity of the method by comparing computational results with laboratory data, and (3) to use the simulations to gain a better understanding of the effects of turbulence on chemical reactions. The effects of both the large scale structure and the smaller scale turbulence on the overall reaction rates are addressed. The relationship between infinite reaction rate and finite reaction rate chemistry is compared with some of the results of calculations with existing theories and laboratory data. The direct numerical simulation method involves the numerical solution of the detailed evolution of the complex turbulent velocity and concentration fields. Using very efficient numerical methods (e.g., pseudospectral methods), the fully nonlinear (possibly low pass filtered) equations of motion are solved and no closure assumptions or turbulence models are used. Statistical data are obtained by performing spatial, temporal, and/or ensemble averages over the computed flow fields.
Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens
Nevalainen, M.; Dodds, R.H. Jr.
1996-07-01
This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.
NASA Astrophysics Data System (ADS)
Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya
2016-02-01
An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.
NASA Astrophysics Data System (ADS)
Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner
2015-12-01
In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.
Lemaire, Arnaud; Rooke, Joanna Claire; Chen, Li-Hua; Su, Bao-Lian
2011-03-15
Hierarchically structured spongy meso-macroporous aluminosilicates with high tetrahedral aluminum content were synthesized from a mixture of single molecular alkoxide precursor, (sec-BuO)2-Al-O-Si(OEt)3, already containing Si-O-Al bonds, and a silica coreactant, tetramethoxysilane (TMOS). The spontaneous byproduct templated macroporous structure formation has been directly visualized using in situ high-resolution optical microscopy (OM), allowing the crucial observation of a microbubble dispersion which is directly correlated to the macrostructure observed by electronic microscopies (SEM and TEM). This discovery leads to a comparative study with meso-macroporous pure metal oxide and to a proposal of the formation mechanism of meso-macroporous aluminosilicates with 3D interconnectivity. The aluminosilicate phase/microbubbles emulsion is produced by a phase separation process occurring between the aluminosilicate nanoparticles and the liquid hydrolysis-condensation reaction byproducts (water, methanol, ethanol, and butanol). The use of alkoxysilane improves the heterocondensation rates between the highly reactive aluminum alkoxide part of the single precursor and added silica species but, above all, leads to the spontaneous generation of an unusual meso-macroporosity in alkaline media. The particles obtained at pH = 13.0 featured regular micrometer-sized macrospheres separated by very thin mesoporous walls and connected by submicrometric openings, providing a 3D interconnectivity. The slight increase in pH value to 13.5 induced significant modifications in morphology and textural properties due to the slower gelification process of the aluminosilicate phase, resulting in the formation of an aluminosilicate material constituted of 1-2 µm large independent hollow mesoporous spheres.
NASA Astrophysics Data System (ADS)
Autin, J.; Brune, S.
2013-12-01
Oblique rift systems like the Gulf of Aden are intrinsically three-dimensional. In order to understand the evolution of these systems, one has to decode the fundamental mechanical similarities of oblique rifts. One way to accomplish this, is to strip away the complexity that is generated by inherited fault structures. In doing so, we assume a laterally homogeneous segment of Earth's lithosphere and ask how many different fault populations are generated during oblique extension inbetween initial deformation and final break-up. We combine results of an analog and a numerical model that feature a 3D segment of a layered lithosphere. In both cases, rift evolution is recorded quantitatively in terms of crustal fault geometries. For the numerical model, we adopt a novel post-processing method that allows to infer small-scale crustal fault orientation from the surface stress tensor. Both models involve an angle of 40 degrees between the rift normal and the extensional direction which allows comparison to the Gulf of Aden rift system. The resulting spatio-temporal fault pattern of our models shows three normal fault orientations: rift-parallel, extension-orthogonal, and intermediate, i.e. with a direction inbetween the two previous orientations. The rift evolution involves three distinct phases: (i) During the initial rift phase, wide-spread faulting with intermediate orientation occurs. (ii) Advanced lithospheric necking enables rift-parallel normal faulting at the rift flanks, while strike-slip faulting in the central part of the rift system indicates strain partitioning. (iii) During continental break-up, displacement-orthogonal as well as intermediate faults occur. We compare our results to the structural evolution of the Eastern Gulf of Aden. External parts of the rift exhibit intermediate and displacement-orthogonal faults while rift-parallel faults are present at the rift borders. The ocean-continent transition mainly features intermediate and displacement
Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie
2014-11-10
Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the
NASA Astrophysics Data System (ADS)
Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie
2014-11-01
Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the
NASA Astrophysics Data System (ADS)
Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.
2013-01-01
-variance and root mean squared error analyses, comparing the proposed method to conventional post-reconstruction registration methods. An overall reduction in bias (for a cold region: from 41% down to 31% (2D) and 97% down to 65% (3D), and for a hot region: from 11% down to 8% (2D) and from 16% down to 14% (3D)) and in root mean squared error analyses (for a cold region: from 43% to 37% (2D) and from 97% to 65% (3D), and for a hot region: from 11% to 9% (2D) and from 16% down to 14% (3D)) in reconstructed regional mean activities (full regions of interest; all with statistical significance: p < 5 × 10-10) is found when including the motion correction and registration in the system matrix of the MLEM reconstruction, with resolution modeling. However, this improvement in performance comes with an extra computational cost of about 40 min. In this context, this work constitutes an important step toward the goal of estimating parameters of interest directly from the raw Poisson-distributed PET data, and hence toward the complete elimination of post-processing steps.
NASA Astrophysics Data System (ADS)
Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.
2015-12-01
The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.
Jiménez, Rolando Placeres; Pupo, Ana Elisa Bergues; Cabrales, Jesús Manuel Bergues; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Nava, Juan José Godina; Aguilera, Andrés Ramírez; Mateus, Miguel Angel O'Farril; Jarque, Manuel Verdecia; Brooks, Soraida Candida Acosta
2011-02-01
Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François
2014-01-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711
NASA Astrophysics Data System (ADS)
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Direct numerical simulation of the sea flows around blunt bodies
NASA Astrophysics Data System (ADS)
Matyushin, Pavel V.; Gushchin, Valentin A.
2015-11-01
The aim of the present paper is the demonstration of the opportunities of the mathematical modeling of the separated flows of the sea water around blunt bodies on the basis of the Navier-Stokes equations (NSE) in the Boussinesq approximation. The 3D density stratified incompressible viscous fluid flows around a sphere have been investigated by means of the direct numerical simulation (DNS) on supercomputers and the visualization of the 3D vortex structures in the wake. For solving of NSE the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, capable for work in wide range of the Reynolds (Re) and the internal Froude (Fr) numbers and monotonous) has been developed and successfully applied. The different transitions in sphere wakes with increasing of Re (10 < Re < 500) and decreasing of Fr (0.005 < Fr < 100) have been investigated in details. Thus the classifications of the viscous fluid flow regimes around a sphere have been refined.
3D numerical simulation of laser-generated Lamb waves propagation in 2D acoustic black holes
NASA Astrophysics Data System (ADS)
Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua; Han, Bing
2015-05-01
Acoustic black holes have been widely used in damping structural vibration. In this work, the Lamb waves are utilized to evaluate the specified structure. The three-dimensional numerical model of acoustic black holes with parabolic profile was established. The propagation of laser-generated Lamb wave in two-dimensional acoustic black holes was numerically simulated using the finite element method. The results indicated that the incident wave was trapped by the structure obviously.
NASA Astrophysics Data System (ADS)
Brimich, Ladislav; Charco, María; Kohút, Igor; Fernández, José
2011-01-01
Thermo-elastic strains and stresses play a considerable role in the stress state of the lithosphere and its dynamics, especially at pronounced positive geothermal anomalies. Topography has a significant effect on ground deformation. In this paper we describe two methods for including the topographic effects in the thermo-viscoelastic model. First we use an approximate methodology which assumes that the main effect of the topography is due to distance from the source to the free surface and permits to have an analytical solution very attractive for solving the inverse problem. A numerical solution using Finite Element Method (FEM) is also computed. The numerical method allows to include the local shape of the topography in the modelling. In the numerical model the buried magmatic body is represented by a finite volume thermal source. The temperature distribution is computed by the higher-degree FEM. For analytical as well as numerical model solution only the forces of thermal origin are considered. The comparison of the results obtained using both analytical and numerical techniques shows the qualitative agreement of the vertical displacements. In the numerical values small differences were obtained. The results show that for the volcanic areas with an important relief the perturbation of the thermo-viscoelastic solution (deformation and total gravity anomaly) due to the topography can be quite significant. In consequence, neglecting topography could give erroneous results in the estimated source parameters.
Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics
Snyder, P B; Wilson, H R; Xu, X Q
2004-12-13
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-11-01
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv
2010-11-21
MRI-controlled transurethral ultrasound therapy uses a linear array of transducer elements and active temperature feedback to create volumes of thermal coagulation shaped to predefined prostate geometries in 3D. The specific aims of this work were to demonstrate the accuracy and repeatability of producing large volumes of thermal coagulation (>10 cc) that conform to 3D human prostate shapes in a tissue-mimicking gel phantom, and to evaluate quantitatively the accuracy with which numerical simulations predict these 3D heating volumes under carefully controlled conditions. Eleven conformal 3D experiments were performed in a tissue-mimicking phantom within a 1.5T MR imager to obtain non-invasive temperature measurements during heating. Temperature feedback was used to control the rotation rate and ultrasound power of transurethral devices with up to five 3.5 × 5 mm active transducer elements. Heating patterns shaped to human prostate geometries were generated using devices operating at 4.7 or 8.0 MHz with surface acoustic intensities of up to 10 W cm(-2). Simulations were informed by transducer surface velocity measurements acquired with a scanning laser vibrometer enabling improved calculations of the acoustic pressure distribution in a gel phantom. Temperature dynamics were determined according to a FDTD solution to Pennes' BHTE. The 3D heating patterns produced in vitro were shaped very accurately to the prostate target volumes, within the spatial resolution of the MRI thermometry images. The volume of the treatment difference falling outside ± 1 mm of the target boundary was, on average, 0.21 cc or 1.5% of the prostate volume. The numerical simulations predicted the extent and shape of the coagulation boundary produced in gel to within (mean ± stdev [min, max]): 0.5 ± 0.4 [-1.0, 2.1] and -0.05 ± 0.4 [-1.2, 1.4] mm for the treatments at 4.7 and 8.0 MHz, respectively. The temperatures across all MRI thermometry images were predicted within -0.3 ± 1.6 °C and 0
NASA Astrophysics Data System (ADS)
Zhang, Weian; Wang, Long; Dong, Qixin
2011-06-01
The omni-directional laser warning equipment based on infrared fish-eye lens and short-wave infrared FPA has been used to protect large-scale targets, which can detect the threat laser scattered by the attacked targets or the objects surrounding them, and image the laser spot on FPA, then fix the position of spot. The application offsets the disadvantage of direct interception warner which need disposed largely. Before study of imaging mechanism about the scattered laser spot, the definition of geometry relationship is needed firstly. In this paper we developed a 3D geometry model by analyzing the position relationships in typical battlefield environment among the enemy's threat laser source, the laser spot radiated on one flat surface and our omni-directional laser warning fish-eye lens. The model including R, α, β, d, θ, φ, ψ, δ etc. 8 parameters and 4 coordinate systems was suitable for any general situations. After achievement of the model foundation, we obtained analytic expression of the laser spot contour on flat surface, then attained analytic expression of spot contour on image surface by calculating the object space half-field angle and the azimuth angle relative to fish-eye lens of an arbitrary point at the spot edge on flat surface. The attainment of the expression makes possible that we can analyze the spot energy distributions on image surface and the imaging characteristic of the scattered laser spot via fish-eye lens, then can compute the transmission direction of the threat laser. The foundation of the model in this paper has an importantly basic and guiding meaning to the latter research on this aspect.
NASA Astrophysics Data System (ADS)
Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras
2016-05-01
Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.
NASA Astrophysics Data System (ADS)
Chang, Haiping; Huang, Taiping; Chen, Wanbing
1996-01-01
The wall temperature distribution of the flame tube of the combustion chamber is strongly affected by the combustion, radiation and flow. The interaction of these influential factors forms a coupling system. In this paper, a new method, which is different from the previous methods, has been developed for calculating the temperature distribution of the flame tube wall together with the flow field inside and outside the flame tube. In the calculation, the combustion, heat radiation, cooling air film and injection stream mixing inside the flame tube as well as the secondary air flowing outside the flame tube have been simulated. The calculation, in this paper, uses the SIMPLE algorithm, the k - ɛ turbulence model and the auto-adjustable damping method. By using this method, the 3-D temperature distribution of the flame tube wall of the combustion chamber of an aeroengine has been simulated successfully. The calculation results are compared to the experimental data. The error of wall temperature is less than 10%.
Shen, Yanhong; Gao, Tao; Tian, Xiaofeng; Chen, Xiaojun; Xiao, ChengJian; Lu, Tiecheng
2015-01-01
The three-dimensional (3D) nanocrystalline models of lithium silicates with the log-normal grain size distribution are constructed by constrained Voronoi tessellation. During evolution process, the algorithm is improved. We proposed a new algorithm idea by combining Genetic Algorithm (GA) with Least Square (LS) method to make up for the disadvantages of traditional genetic algorithm which may be easily trapped in local optimal solution. In the process of modeling, it is the first time, to the best of our knowledge, that we keep the whole sample showing the charge neutrality by deleting the excess atoms on the polyhedron boundary during the modeling. By using the molecular-dynamics method, the relaxation procedure of nanostructured Li4SiO4 is carried out. The results show that the average mass density of the sample is slightly lower than the experimental data of the perfect crystal after relaxation process. In addition, boundary component proportion (BCP) and density reduction proportion (DRP) of the sample is obtained, respectively. The present results display a significantly reduced BCP but an increased DRP when increasing the mean grain size of the sample. PMID:26031562
Yuan, Hanwen; Cambron, Scott D.; Keynton, Robert S.
2015-01-01
A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution’s evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds. PMID:26132732
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-01
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer. PMID:27269362
Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman
2015-01-01
Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599
Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman
2015-01-01
Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie
2015-09-01
Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.
NASA Astrophysics Data System (ADS)
Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul
2015-10-01
The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-01-01
Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831
NASA Astrophysics Data System (ADS)
Yang, Jianfeng; Kaus, Boris
2016-04-01
The mechanism of intraplate deformation remains incompletely understood by plate tectonics theory. The India-Asia collision zone is the largest present-day example of continental collision, which makes it an ideal location to study the processes of continental deformation. Existing models of lithospheric deformation are typically quasi two-dimensional and often assume that the lithosphere is a thin viscous sheet, which deforms homogeneously as a result of the collision, or flows above a partially molten lower crust, which explains the exhumation of Himalayan units and lateral spreading of Tibetan plateau. An opposing view is that most deformation localize in shear zones separating less deformed blocks, requiring the lithosphere to have an elasto-plastic rather than a viscous rheology. In order to distinguish which model best fits the observations we develop a 3-D visco-elasto-plastic model, which can model both distributed and highly localized deformation. In our preliminary result, most of the large-scale strike-slips faults including Altyn-Tagh fault, Xianshuihe fault, Red-River fault, Sagaing fault and Jiali fault can be simulated. The topography is consistent with observations that flat plateau in central Tibet and steep, abrupt margins adjacent to Sichuan basin, and gradual topography in southeast Tibet. These models suggest that the localized large-scale strike-slip faults accommodate the continental deformation. These results show the importance of a weak lower crust and topographic effects, as well as the effect of rheology and temperature structure of the lithosphere on the deformation patterns.
NASA Astrophysics Data System (ADS)
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-02-01
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
NASA Astrophysics Data System (ADS)
von Tscharner, M.; Schmalholz, S. M.; Epard, J.-L.
2016-05-01
The Helvetic nappe system exhibits three-dimensional (3-D) features such as the lateral variation in geometry between the Morcles and Doldenhorn fold nappes or the Rawil depression. We perform 3-D finite element simulations of linear and power-law viscous flow to investigate fold nappe formation during shortening of a half graben with laterally varying thickness. 3-D ellipsoids and corresponding 2-D intersection ellipses are used to quantify finite strain. Fold nappes which formed above a thicker graben have (i) larger amplitudes, (ii) a less sheared and thinned overturned limb, and (iii) a larger thickness than fold nappes formed above a thinner graben. These results agree with observations for the Morcles and Doldenhorn nappes. We also perform 3-D simulations for a tectonic scenario suggested for the evolution of the Rawil depression. The basement is shortened and extended laterally and includes a graben which is oblique to the shortening direction and acts as mechanical weak zone. The graben causes laterally varying basement uplift generating a depression whose amplitude depends on the graben orientation and the stress exponent of basement and sediments. The axial plunge of the depression is smaller (approximately 10°) than the observed plunge (approximately 30°) indicating that additional processes are required to explain the geometry of the Rawil depression.
NASA Technical Reports Server (NTRS)
Kwak, D.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
NASA Astrophysics Data System (ADS)
Kelbert, A.; Schultz, A.; Egbert, G.
2006-12-01
We address the non-linear ill-posed inverse problem of reconstructing the global three-dimensional distribution of electrical conductivity in Earth's mantle. The authors have developed a numerical regularized least-squares inverse solution based on the non-linear conjugate gradients approach. We apply this methodology to the most current low-frequency global observatory data set by Fujii &Schultz (2002), that includes c- and d-responses. We obtain 4-8 layer models satisfying the data. We then describe the features common to all these models and discuss the resolution of our method.
NASA Astrophysics Data System (ADS)
Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio
2016-03-01
We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.
NASA Astrophysics Data System (ADS)
Lin, Chia-Wen; Jang, Jiin-Yuh
2005-05-01
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
NASA Astrophysics Data System (ADS)
Doronzo, Domenico Maria; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco
2010-05-01
Pyroclastic density currents are ground hugging, hot, gas-particle flows representing the most hazardous events of explosive volcanism. Their impact on structures is a function of dynamic pressure, which expresses the lateral load that such currents exert over buildings. In this paper we show how analog experiments can be matched with numerical simulations for capturing the essential physics of the multiphase flow. We used an immersed boundary scheme for the mesh generation, which helped in reconstructing the steep velocity and particle concentration gradients near the ground surface. Results show that the calculated values of dynamic pressure agree reasonably with the experimental measurements. These outcomes encourage future application of our method for the assessment of the impact of pyroclastic density currents at the natural scale.
NASA Astrophysics Data System (ADS)
Castellanza, Riccardo; Fernandez Merodo, Josè Antonio; di Prisco, Claudio; Frigerio, Gabriele; Crosta, Giovanni B.; Orlandi, Gianmarco
2013-04-01
Aim of the study is the assessment of stability conditions for an abandoned gypsum mine (Bologna , Italy). Mining was carried out til the end of the 70s by the room and pillar method. During mining a karst cave was crossed karstic waters flowed into the mine. As a consequence, the lower level of the mining is completely flooded and portions of the mining levels show critical conditions and are structurally prone to instability. Buildings and infrastructures are located above the first and second level and a large portion of the area below the mine area, and just above of the Savena river, is urbanised. Gypsum geomechanical properties change over time; water, or even air humidity, dissolves or weaken gypsum pillars, leading progressively to collapse. The mine is located in macro-crystalline gypsum beds belonging to the Messinian Gessoso Solfifera Formation. Selenitic gypsum beds are interlayered with by centimetre to meter thick shales layers. In order to evaluate the risk related to the collapse of the flooded level (level 3) a deterministic approach based on 3D numerical analyses has been considered. The entire abandoned mine system up to the ground surface has been generated in 3D. The considered critical scenario implies the collapse of the pillars and roof of the flooded level 3. In a first step, a sequential collapse starting from the most critical pillar has been simulated by means of a 3D Finite Element code. This allowed the definition of the subsidence basin at the ground surface and the interaction with the buildings in terms of ground displacements. 3D numerical analyses have been performed with an elasto-perfectly plastic constitutive model. In a second step, the effect of a simultaneous collapse of the entire level 3 has been considered in order to evaluate the risk of a flooding due to the water outflow from the mine system. Using a 3D CFD (Continuum Fluid Dynamics) finite element code the collapse of the level 3 has been simulated and the volume of
Anderson, D.V.; Fry, A.R.; Gruber, R.; Roy, A.
1989-03-01
In the discretization of the 3-D partial differential equations of many physics problems, it is found that the resultant system of linear equations can be represented by a block tridiagonal matrix. Depending on the substructure of the blocks, one can devise many algorithms for the solution of these systems. For plasma physics problems of interest to the authors, several interesting matrix problems arise that should be useful in other applications as well. In one case, where the blocks are dense, it was found that by using a multitasked cyclic reduction procedure, it was possible to reach gigaflop rates on a Cray-2 for the direct solve of these large linear systems. The recently built code PAMS (parallelized matrix solver) embodies this technique and uses fast vendor-supplied routines and obtains this good performance. Manipulations within the blocks are done by these highly optimized linear algebra subroutines that exploit vectorization as well as overlap of the functional units within each CPU. In unitasking mode, speeds well above 340 Mflops have been measured. The cyclic reduction method multitasks quite well with overlap factors in the range of three to four. In multitasking mode, average speeds of 1.1 gigaflops have been measured for the entire PAMS algorithm. In addition to the presentation of the PAMS algorithm, it is shown how related systems having banded blocks may be treated efficiently by multitasked cyclic reduction in the Cray-2 multiprocessor environment. The PAMS method is intended for multiprocessors and would not be a method of choice on a uniprocessor. Furthermore, this method's advantage was found to be critically dependent on the hardware, software, and charging algorithm installed on any given multiprocessor system.
NASA Astrophysics Data System (ADS)
Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.
2014-09-01
Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.
NASA Astrophysics Data System (ADS)
Sun, Yongle; Li, Q. M.; Withers, P. J.
2015-09-01
Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to
NASA Astrophysics Data System (ADS)
Bergeon, N.; Mota, F. L.; Chen, L.; Tourret, D.; Debierre, J. M.; Guérin, R.; Karma, A.; Billia, B.; Trivedi, R.
2015-06-01
To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile - 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the International Space Station. These experiments offered the very unique opportunity to in situ observe and characterize the whole development of the microstructure in extended 3D patterns. The experimental methods will be first briefly described, including in particular the observation modes and the image analysis procedures developed to quantitatively characterize the patterns. Microgravity environment provided the conditions to get quantitative benchmark data: homogeneous patterns corresponding to homogeneous values of control parameters along the whole interface were obtained. The sequence of microstructure formation will be presented as well as the evolution of the primary spacing which is one of the most important pattern characteristic. Time evolution of this primary spacing during the microstructure development will be analysed to identify the mechanisms of spacing selection and adjustment; the importance of the macroscopic interfacial curvature will be pointed out.
NASA Astrophysics Data System (ADS)
Miyama, Naoto; Inaba, Kazuaki; Yamamoto, Makoto
2008-06-01
In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ɛ turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves
2013-04-01
Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well. PMID:25144442
Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant
2014-09-16
Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.
NASA Astrophysics Data System (ADS)
Liu, M.; Yang, Y.
2002-12-01
Our understanding of the geodynamics of the formation of the Himalayan-Tibetan Plateau has been largely based on two end-member models: the viscous thin-sheet model that suggests crustal thickening as the dominant accommodation for larger than 2000 km crustal shortening following the Indian-Asian collision, and the plasticine indentation model that emphases the role of lateral extrusion of Asian continent along numerous strike-slip faults. To understand better the strain partitioning between crustal thickening and extrusion during the formation of the Tibetan Plateau, we have developed a three-dimensional finite element model with vertically variable power-law rheology and large-scale strike-slip faults, including the Altyn Tagh, Longmen Shan, Xianshuihe and the Ailao Shan-Red River faults. We simulated the formation of the Tibetan plateau resulting from convergence between the Indian and Eurasian plates during the past 50 Myr. The model assumes the Tarim block and the South China block to be relatively fixed, and the Indian plate moved northward as indicated by marine magnetic anomalies. During the early stages following the initial collision, the predicted stress states within the collision zone favor predominantly strike-slip motion, and a large extrusion conduit between the collision zone and the South China block allowed most of the shortened crustal material to be accommodated by east-southeastward extrusion. As the Indian plate continued to indent into the Asian continent, the extrusion conduit was gradually narrowed, leading to reduced rate of crustal extrusion, and increased crustal thickening and lateral expansion of the plateau. The predicted crustal extrusion is significantly greater with the strike-slip faults than without, and ductile flow within the lower crust is shown to play a critical role in reproducing the observed topography of the Tibetan plateau and surrounding regions.
High performance Python for direct numerical simulations of turbulent flows
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Langtangen, Hans Petter
2016-06-01
Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.
Direct numerical simulation of active fiber composite
NASA Astrophysics Data System (ADS)
Kim, Seung J.; Hwang, Joon S.; Paik, Seung H.
2003-08-01
Active Fiber Composites (AFC) possess desirable characteristics for smart structure applications. One major advantage of AFC is the ability to create anisotropic laminate layers useful in applications requiring off-axis or twisting motions. AFC is naturally composed of two different constituents: piezoelectric fiber and matrix. Therefore, homogenization method, which is utilized in the analysis of laminated composite material, has been used to characterize the material properties. Using this approach, the global behaviors of the structures are predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. Actually, the failure analysis of AFC requires the knowledge of the local behaviors. Therefore, microscopic approach is necessary to predict the behaviors of AFC. In this work, a microscopic approach for the analysis of AFC was performed. Piezoelectric fiber and matrix were modeled separately and finite element method using three-dimensional solid elements was utilized. Because fine mesh is essential, high performance computing technology was applied to the solution of the immense degree-of-freedom problem. This approach is called Direct Numerical Simulation (DNS) of structure. Through the DNS of AFC, local stress distribution around the interface of fiber and matrix was analyzed.
Gaharwar, Akhilesh K; Arpanaei, Ayyoob; Andresen, Thomas L; Dolatshahi-Pirouz, Alireza
2016-01-27
Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem cell differentiation into tissue-specific lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive for tissue engineering and drug screening applications.
Jeong, J.Y.; Ryou, H.S.
1997-03-01
Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
NASA Astrophysics Data System (ADS)
Castellanza, R.; Orlandi, G. M.; di Prisco, C.; Frigerio, G.; Flessati, L.; Fernandez Merodo, J. A.; Agliardi, F.; Grisi, S.; Crosta, G. B.
2015-09-01
After the abandonment occurred in the '70s, the mining system (rooms and pillars) located in S. Lazzaro di Savena (BO, Italy), grown on three levels with the method rooms and pillars, has been progressively more and more affected by degradation processes due to water infiltration. The mine is located underneath a residential area causing significant concern to the local municipality. On the basis of in situ surveys, laboratory and in situ geomechanical tests, some critical scenarios were adopted in the analyses to simulate the progressive collapse of pillars and of roofs in the most critical sectors of the mine. A first set of numerical analyses using 3D geotechnical FEM codes were performed to predict the extension of the subsidence area and its interaction with buildings. Secondly 3D CFD analyses were used to evaluated the amount of water that could be eventually ejected outside the mine and eventually flooding the downstream village. The predicted extension of the subsidence area together with the predicted amount of the ejected water have been used to design possible remedial measurements.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Yvonnet, J.; Bornert, M.; Chateau, C.
2016-10-01
We provide the first direct comparisons, to our knowledge, of complex 3D micro cracking initiation and propagation in heterogeneous quasi-brittle materials modelled by the phase field numerical method and observed in X-ray microtomography images recorded during in situ mechanical testing. Some material parameters of the damage model, including the process zone (internal) length, are identified by an inverse approach combining experimental data and 3D simulations. A new technique is developed to study the micro cracking at a finer scale by prescribing the local displacements measured by digital volume correlation over the boundary of a small sub-volume inside the sample during the numerical simulations. The comparisons, performed on several samples of lightweight plaster and concrete, show a remarkable quantitative agreement between the 3D crack morphology obtained by the model and by the experiments, without any a priori knowledge about the location of the initiation of the cracks in the numerical model. The results indicate that the crack paths can be predicted in a fully deterministic way in spite of the highly random geometry of the microstructure and the brittle nature of its constituents.
Ahmad, Rizwan; Deng, Yuanmu; Vikram, Deepti S.; Clymer, Bradley; Srinivasan, Parthasarathy; Zweier, Jay L.; Kuppusamy, Periannan
2007-01-01
In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstructed image along with fast and reliable data acquisition is highly desirable for many biological applications. An accurate representation of uniform distribution of projection data is necessary to ensure high reconstruction quality. The current techniques for data acquisition suffer from nonuniformities or local anisotropies in the distribution of projection data and present a poor approximation of a true uniform and isotropic distribution. In this work, we have implemented a technique based on Quasi-Monte Carlo method to acquire projections with more uniform and isotropic distribution of data over a 3D acquisition space. The proposed technique exhibits improvements in the reconstruction quality in terms of both mean-square-error and visual judgment. The effectiveness of the suggested technique is demonstrated using computer simulations and 3D EPRI experiments. The technique is robust and exhibits consistent performance for different object configurations and orientations. PMID:17095271
Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-01
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546
NASA Astrophysics Data System (ADS)
Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri
2016-01-01
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
Das, Koushik; Mishra, Subhash C
2015-08-01
This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast. PMID:26267509
NASA Astrophysics Data System (ADS)
Medvedev, Ivan R.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.
2009-06-01
Experimental determination of the lower state energy for every transition in molecular spectra, made possible by temperature resolved 3-D spectroscopy, opens new frontiers in our ability to predict molecular spectra over a wide range of temperatures and to assign rotational spectra in many vibrational states. Our improved collisional cooling cell design extends temperature coverage of this technique to 77 K. This enhances our ability to simulate molecular spectra at temperatures of astronomical relevance. We are reporting on experimental and numerical aspects of dealing with exceptionally high information content of these spectra. New data reduction algorithms allow us to process this data in timely fashion in an attempt to make them available to astronomical community.
NASA Astrophysics Data System (ADS)
Torfeh, Tarraf; Beaumont, Stéphane; Guédon, Jeanpierre; Benhdech, Yassine
2010-04-01
Mechanical stability of a medical LINear ACcelerator (LINAC), particularly the quality of the gantry, collimator and table rotations and the accuracy of the isocenter position, are crucial for the radiation therapy process, especially in stereotactic radio surgery and in Image Guided Radiation Therapy (IGRT) where this mechanical stability is perturbed due to the additional weight the kV x-ray tube and detector. In this paper, we present a new method to evaluate a software which is used to perform an automatic measurement of the "size" (flex map) and the location of the kV and the MV isocenters of the linear accelerator. The method consists of developing a complete numerical 3D simulation of a LINAC and physical phantoms in order to produce Electronic Portal Imaging Device (EPID) images including calibrated distortions of the mechanical movement of the gantry and isocenter misalignments.
NASA Astrophysics Data System (ADS)
Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.
2013-12-01
The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales
McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G
2016-05-01
R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment. PMID:27166616
McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G
2016-05-01
R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment.
Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media
NASA Astrophysics Data System (ADS)
Palakurthi, Nikhil Kumar
Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments
Chen, Kang; Tjandra, Nico
2009-03-01
Protein backbone (15)N spin relaxation rates measured by solution NMR provide useful dynamic information with a site-specific resolution. The conventional method is to record a series of 2D (1)H-(15)N HSQC spectra with varied relaxation delays, and derive relaxation rate from the following curve fitting on the resonance intensities. Proteins with poorly resolved spectra often require several 3D HNCO spectra to be collected on a (15)N/(13)C double labeled protein sample. In order to reduce the relaxation dimension Carr et al. (P.A. Carr, D.A. Fearing, A.G. Palmer, 3D accordion spectroscopy for measuring N-15 and (CO)-Carbon-13 relaxation rates in poorly resolved NMR spectra, J. Magn. Reson. 132 (1998) 25-33) employed an Accordion type HNCO pulse sequence to obtain (15)N or (13)C T(1) relaxation rates by numerical fitting of the relaxation interfered free induction decay (FID) data. To avoid intensive analysis of the time domain data, we propose a modified protocol to measure (15)N T(1) and T(2) relaxation rates from easily obtained line-widths in an Accordion HNCO spectrum. Both T(1) and T(2) relaxation could be simultaneously convoluted into the constant-time evolution periods of (13)C' and (15)N, respectively. The relaxation delay was allowed to reach at least 3 x T(1) or 3 x T(2) so that the signal was substantially decayed by the end of the FID, and the resulting peak full-width at half height (FWHH) could be directly used to calculate relaxation rate. When applied to the 76-residue Ubiquitin and the 226-residue glutamine-binding protein (GlnBP), this method yielded T(1) and T(2) values deviating on average by 4-6% and 5-7%, respectively, from the measurements based on the conventional 2D method. In comparison, the conventional methods possessed intrinsic error ranges of 2-4% for T(1) and 3-6% for T(2). In addition to comparable accuracy, the fully-relaxed Accordion HNCO method presented here allowed measurements of relaxation rates for resonances unresolved in
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi
2012-07-01
Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.
NASA Astrophysics Data System (ADS)
van de Kraats, Everine B.; Carelsen, Bart; Fokkens, Wytske J.; Boon, Sjirk N.; Noordhoek, Niels; Niessen, Wiro J.; van Walsum, Theo
2005-12-01
Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Liu, Guoliang; Qin, Yujie
2014-10-01
The levitation force of a bulk high temperature superconductor (HTSC) over Halbach permanent magnet guideways (PMG) with different cross-section configuration is studied by numerical method. The Halbach PMG is composed of three host permanent magnets (HPMs) and two slave permanent magnets (SPMs). One cylindrical bulk HTSC with a diameter of 30 mm and height of 15 mm is used. The 3D-modeling is formulated by the H-method. The numerical resolving codes are practiced using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of bulk HTSC. By the method, the influence of the cross-section physical dimensions of Halbach PMG on the levitation forces of bulk HTSC levitated above the PMG is studied. The simulation results show that increasing the width of SPM ( can enhance the bulk HTSC levitation performance immediately under the condition of keeping the ratio of ( : the width of HPM) to between 1.6 and 1.8, the ratio of td (the height of the PMG) to between 1.2 and 1.4. By the method, the bulk HTSC better levitation performance can be expected.
NASA Astrophysics Data System (ADS)
Anka, Z.; Rodrigues, E.; Ostanin, I.; di Primio, R.; Stoddart, D.; Horsfield, B.
2012-04-01
The Hammerfest Basin, located in the SW Barents Sea, is characterized by present-day under-filled hydrocarbon accumulations, which are known to have leaked in the past (Dimakis, 1998; Ohm et al. 2008). Late Cenozoic erosion and high latitude glaciations are thought to have driven the redistribution and leakage of these thermogenic fluids providing a source of thermogenic methane to the hydrosphere. The timing, extent and driving factors for the leakage events are still largely unconstrained. Therefore, we investigated present and past leakage of liquid and gaseous hydrocarbons over the Snøhvit and Albatross gas fields of the Hammerfest Basin and analyse its dynamics in response to multiple phases of tectonic uplift and glaciations by means of a combined approach of numerical modelling and interpretation of a high resolution 3D seismic reflection cube. Our data-constrained 3D basin model of the basin allowed us to quantify the masses of hydrocarbons generated, accumulated and eventually leaked from the reservoirs during the evolution of the basin. Particular emphasis was placed on analysing the fate of leaked volumes of methane within the dynamics of Plio-Quaternary glacial cycles and possible formation or destabilization of gas hydrate deposits. Besides reproducing quite accurately the composition and volume of the hydrocarbons -particularly the gaseous phase- present in the main reservoirs, the model predicts the development of overpressures in the reservoirs due to the ice loading of the basin during the glacial periods. Predicted reservoir pressure fluctuations derived from cyclic loading-unloading during the glacial-interglacial periods are up to 5 MPa. The under-filled nature of the present-day accumulations would result from leakage events during the episodes of glacial retreat, in the transition from glacial to interglacial periods. Considerations of the gas hydrate stability conditions in the basin during the time span between 1.00Ma and ≈11,500 years
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2014-12-01
The Himalayas and the adjacent Tibetan Plateau represent the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of the region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed a large number of 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the continental collision side (trench advance, slab detachment, topographic uplift and lateral extrusion of material). Despite the complex dynamics and the great variation in slab shape across the subduction-collision zone, which are consistent with tomographic observations, we note that slab-pull alone is insufficient to generate high topography in the upper plate. Several studies suggested that external forces (i.e. ridge push, plume push or slab suction) must be important in order to sustain the on-going convergence of India towards Eurasia. We show that external forcing and the presence of strong blocks such as the Tarim Basin within the Asian lithosphere are necessary to create and shape anomalously high topographic fronts and plateaus
Terascale Direct Numerical Simulations of Turbulent Combustion: Capabilities and Limits (PReSS Talk)
Yoo, Chun Sang
2009-03-26
The rapid growth in computational capabilities has provided great opportunities for direct numerical simulations (DNS) of turbulent combustion, a type of simulations without any turbulence model. With the help of terascale high performance supercomputing (HPC) resources, we are now able to provide fundamental insight into turbulence-chemistry interaction in simple laboratory-scale turbulent flames with detailed chemistry using three-dimensional (3D) DNS. However, the actual domain size of 3D-DNS is still limited within {approx} O(10 cm{sup 3}) due to its tremendously high grid resolution required to resolve the smallest turbulent length scale as well as flame structures. Moreover, 3D-DNS will require more computing powers to investigate next-generation engines, of which operating conditions will be characterized by higher pressures, lower temperatures, and higher levels of dilution. In this talk, I will discuss the capabilities and limits of DNS of turbulent combustion and present some results of ignition/extinction characteristics of a highly diluted hydrogen flame counter-flowing against heated air. The results of our recent 3D-DNS of a spatially-developing turbulent lifted hydrogen jet flame in heated coflow will also be presented. The 3D-DNS was performed at a jet Reynolds number of 11,000 with {approx} 1 billion grid points, which required 3.5 million CPU hours on Cray XT3/XT4 at Oak Ridge National Laboratories.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
Direct Numerical Simulation of Automobile Cavity Tones
NASA Technical Reports Server (NTRS)
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Nithiyanantham, Karthikeyan; Mani, Ganesh K; Subramani, Vikraman; Mueller, Lutz; Palaniappan, Karrthick K; Kataria, Tejinder
2015-09-08
In advanced, intensity-modulated external radiotherapy facility, the multileaf collimator has a decisive role in the beam modulation by creating multiple segments or dynamically varying field shapes to deliver a uniform dose distribution to the target with maximum sparing of normal tissues. The position of each MLC leaf has become more critical for intensity-modulated delivery (step-and-shoot IMRT, dynamic IMRT, and VMAT) compared to 3D CRT, where it defines only field boundaries. We analyzed the impact of the MLC positional errors on the dose distribution for volumetric-modulated arc therapy, using a 3D dosimetry system. A total of 15 VMAT cases, five each for brain, head and neck, and prostate cases, were retrospectively selected for the study. All the plans were generated in Monaco 3.0.0v TPS (Elekta Corporation, Atlanta, GA) and delivered using Elekta Synergy linear accelerator. Systematic errors of +1, +0.5, +0.3, 0, -1, -0.5, -0.3 mm were introduced in the MLC bank of the linear accelerator and the impact on the dose distribution of VMAT delivery was measured using the COMPASS 3D dosim-etry system. All the plans were created using single modulated arcs and the dose calculation was performed using a Monte Carlo algorithm in a grid size of 3 mm. The clinical endpoints D95%, D50%, D2%, and Dmax,D20%, D50% were taken for the evaluation of the target and critical organs doses, respectively. A significant dosimetric effect was found for many cases even with 0.5 mm of MLC positional errors. The average change of dose D 95% to PTV for ± 1 mm, ± 0.5 mm, and ±0.3mm was 5.15%, 2.58%, and 0.96% for brain cases; 7.19%, 3.67%, and 1.56% for head and neck cases; and 8.39%, 4.5%, and 1.86% for prostate cases, respectively. The average deviation of dose Dmax was 5.4%, 2.8%, and 0.83% for brainstem in brain cases; 8.2%, 4.4%, and 1.9% for spinal cord in H&N; and 10.8%, 6.2%, and 2.1% for rectum in prostate cases, respectively. The average changes in dose followed a linear
NASA Astrophysics Data System (ADS)
Petersen, K. D.; Nielsen, S. B.
2007-12-01
The North Sea sedimentary basin contains more than 3km of post Mid-Jurassic sediments. These are located in a trilete graben system consisting of the Moray Firth and the Viking and Central grabens, but also in a broad region surrounding the grabens, corresponding to the post-mid Cretaceous sediment deposits During the Mid- Jurassic the area was exposed to volcanism, domal regional uplift and erosion, followed by crustal thinning and normal faulting in the grabens. We use a numerical model considering 3D thermal evolution, flexural isostasy, erosion, sedimentation and compaction together with isopach data to simulate the geodynamic evolution of the area since the Mid-Jurassic. Our modelling studies show that the broad distribution of post Jurassic sediments cannot be explained by uniform stretching in the graben areas alone. Regional Mid-Jurassic thinning of the subcrustal lithosphere producing first uplift and erosion and later accommodation space for Cretaceous and Cenozoic sediments is also required. The uniform crustal thinning factor in the grabens amounts to a maximum of 1.14. The required subcrustal lithospheric thinning amounts to about 15 km. Our results are in accordance with observations from recent rift systems such as the Rhine Graben, Eastern Africa and the Baikal Rift, which show that crustal thinning is restricted to the graben areas while thinning of the subcrustal lithosphere (up to 100 km) and the associated domal surface uplift are more regionally distributed.
NASA Astrophysics Data System (ADS)
Petersen, K. D.; Nielsen, S. B.
2004-12-01
The North Sea sedimentary basin contains more than 3km of post Mid-Jurassic sediments. These are located in a trilete graben system consisting of the Moray Firth and the Viking and Central grabens, but also in a broad region surrounding the grabens, corresponding to the post-mid Cretaceous sediment deposits During the Mid- Jurassic the area was exposed to volcanism, domal regional uplift and erosion, followed by crustal thinning and normal faulting in the grabens. We use a numerical model considering 3D thermal evolution, flexural isostasy, erosion, sedimentation and compaction together with isopach data to simulate the geodynamic evolution of the area since the Mid-Jurassic. Our modelling studies show that the broad distribution of post Jurassic sediments cannot be explained by uniform stretching in the graben areas alone. Regional Mid-Jurassic thinning of the subcrustal lithosphere producing first uplift and erosion and later accommodation space for Cretaceous and Cenozoic sediments is also required. The uniform crustal thinning factor in the grabens amounts to a maximum of 1.14. The required subcrustal lithospheric thinning amounts to about 15 km. Our results are in accordance with observations from recent rift systems such as the Rhine Graben, Eastern Africa and the Baikal Rift, which show that crustal thinning is restricted to the graben areas while thinning of the subcrustal lithosphere (up to 100 km) and the associated domal surface uplift are more regionally distributed.
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.; Aydin, Atilla; Pollard, David D.
2000-01-01
Structural methods based on homogeneous stress states predict that joints growing in an extending crust form with strike orientations identical to normal faults. However, we document a field example where the strikes of genetically related normal faults and joints are almost mutually perpendicular. Field relationships allowed us to constrain the fracture sequence and tectonic environment for fault and joint growth. We hypothesize that fault slip can perturb the surrounding stress field in a manner that controls the orientations of induced secondary structures. Numerical models were used to examine the stress field around normal faults, taking into consideration the effects of 3-D fault shape, geometrical arrangement of overlapping faults, and a range of stress states. The calculated perturbed stress fields around model normal faults indicate that it is possible for joints to form at high angles to fault strike. Such joint growth may occur at the lateral tips of an isolated fault, but is most likely in a relay zone between overlapping faults. However, the angle between joints and faults is also influenced by the remote stress state, and is particularly sensitive to the ratio of fault-parallel to fault-perpendicular stress. As this ratio increases, joints can propagate away from faults at increasingly higher angles to fault strike. We conclude that the combined remote stress state and perturbed local stress field associated with overlapping fault geometries resulted in joint growth at high angles to normal fault strike at a field location in Arches National Park, Utah.
Perri, R T; Wilson, B S; Kay, N E
1986-04-01
Normal human B cell proliferation is controlled by various immunoregulatory signals including the T cell-derived lymphokine B cell growth factor (BCGF). Human BCGF provides the final proliferative signal to normal, activated B cells. We herein show that anti-CR2 monoclonal antibodies inhibit human B cell responsiveness to purified BCGF. Addition of anti-CR2 antibody, AB5, was capable of completely inhibiting BCGF-mediated enhancement of either anti-mu or staphylococcal protein A-activated human B cells (191 +/- 21 cpm vs. 3942 +/- 622 cpm, mean +/- SEM). Inhibition of B cell response to BCGF by AB5 occurred in a dose-dependent manner. Monoclonal antibody anti-B2, which recognizes the same 140-kDa glycoprotein as AB5, in comparable concentrations also inhibited B cell responsiveness to BCGF. Monoclonal antibodies of the same subclass (IgG1) showed no inhibitory effect on BCGF enhancement of B cell proliferation. The F(ab')2 fragment of AB5 generated by pepsin digestion was similarly inhibitory as was the intact Ig. AB5-mediated inhibition was independent of the target B cell state of activation. Both resting and activated B cells (anti-mu or staphylococcal protein A activated) incubated with similar concentrations of AB5 were unresponsive to BCGF. The ability of anti-CR2 antibodies to block BCGF-dependent B cell proliferation suggests that occupancy of C3d membrane receptors may result in modulation of B cell proliferation in physiologic or clinical disease states. PMID:2938967
Pan, David; Ombaba, Matthew; Zhou, Zhi-You; Liu, Yang; Chen, Shaowei; Lu, Jennifer
2012-12-21
For carbon nanotube-based electronics to achieve their full performance potential, it is imperative to minimize the contact resistance between macroscale metal contacts and the carbon nanotube (CNT) nanoelectrodes. We have developed a three-dimensional electrode platform that consists of carbon nanofibers (CNFs) that are directly grown on a metal contact, such as copper (Cu). Carbon nanofiber morphology can be tailored by adjusting the annealing time of a thin electrochemically deposited nickel catalyst layer on copper. We demonstrate that increasing the annealing time increases the amount of copper infused into the nickel catalyst layer. This reduces the carbon deposition rate, and consequently a more well-defined CNF 3D architecture can be fabricated. This direct growth of CNFs on a Cu substrate yields an excellent electron transfer pathway, with contact resistance between CNFs and Cu being comparable to that of a Cu-Cu interface. Furthermore, the excellent bonding strength between CNFs and Cu can be maintained over prolonged periods of ultrasonication. The porous 3D platform affixed with intertwined CNFs allows facile surface functionalization. Using a simple solution soaking procedure, the CNF surface has been successfully functionalized with iron(II) phthalocyanine (FePc). FePc functionalized CNFs exhibit excellent oxygen reduction capability, equivalent to platinum-carbon electrodes. This result demonstrates the technological promise of this new 3D electrode platform that can be exploited in other applications that include sensing, battery, and supercapacitors. PMID:23171171
NASA Astrophysics Data System (ADS)
Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.
2015-12-01
The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the
NASA Astrophysics Data System (ADS)
Zhang, Miao; Piao, Yongri; Kim, Eun-Soo
2011-10-01
In this paper, we proposed a novel approach for reconstruction of the magnified, real and orthoscopic three-dimensional (3-D) object images by using the moving-direct-pixel-mapping (MDPM) method in the MALT(moving-array-lenslet-technique)-based scalable integral-imaging system. In the proposed system, multiple sets of elemental image arrays (EIAs) are captured with the MALT, and these picked-up EIAs are computationally transformed into the depth-converted ones by using the proposed MDPM method. Then, these depth-converted EIAs are combined and interlaced together to form an enlarged EIA, from which a magnified, real and orthoscopic 3-D object images can be optically displayed without any degradation of resolution. Good experimental results finally confirmed the feasibility of the proposed method.
A novel 3D Ag(I)-MOF: Surfactant-directed syntheses and catalytic degradation of o/m/p-Nitrophenol
NASA Astrophysics Data System (ADS)
Wu, Xue-Qian; Wen, Guo-Xuan; Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng
2016-10-01
For the first time, sodium caprylate has been investigated to direct the crystal growth of 3D Ag-MOF, [Ag2(ddcba)(4,4‧-bipy)2] (1), constructing from 3,5-(di(2‧,5‧-dicarboxylphenyl)benozoic acid and 4,4‧-bipy. The single crystal diffraction analyses shows that complex 1 possess 3D neutral framework with a three-connected ThSi2 (103-b) topology. Compound 1 exhibits predominant catalytic activity towards the degradation of o-Nitrophenol (ONP), m-Nitrophenol (MNP) and p-Nitrophenol (PNP) in aqueous solution. The kinetics of such catalytic degradation reactions was also studied.
Direct Numerical Simulations of Phytoplankton Blooms
NASA Astrophysics Data System (ADS)
Luna, Christopher; Tang, Wenbo
2013-04-01
Motivated by observations of phytoplankton blooms in the North Atlantic obtained through satellite imaging, and by the recent developments with objective extractions of flow topologies using Lagrangian Coherent Structures, we studied the Fisher-Kolmogorov equations inside a double-gyre system. We quantified the variabilities in biochemical reaction processes based on a natural coordinate system extracted from the Lagrangian topologies and examined how the initial placement of a biomass in this coordinate system correlated to its growth rate. The Lagrangian topologies are extracted as the extrema of the Finite-Time Lyapunov Exponent (FTLE) field for the flow, and the natural coordinate system used is based on the extracted invariant barriers. We found the dependence of reaction rates on the hyperbolic finite time invariant manifolds highlighting the largest stretching of scalars as well as the reaction rates in the transversal direction from eddy centers to their edges. It was observed that the biological reaction processes are heavily modulated by Coherent Structures in the flow. With initial placement in repelling structures, the biological species is helped to spread out much faster, hence allowing biochemical reactions to take place more quickly. With initial placement in attracting structures, the biological species is brought to be highly concentrated, hence suppressing the overall growth of the biomass.
Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts
NASA Astrophysics Data System (ADS)
Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger
2015-04-01
We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-01-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with. PMID:23531763
NASA Astrophysics Data System (ADS)
Park, Junhan; Lee, Changwoo; Baek, Jongduk
2015-03-01
In medical imaging systems, several factors (e.g., reconstruction algorithm, noise structures, target size, contrast, etc) affect the detection performance and need to be considered for object detection. In a cone beam CT system, FDK reconstruction produces different noise structures in axial and coronal slices, and thus we analyzed directional dependent detectability of objects using detection SNR of Channelized Hotelling observer. To calculate the detection SNR, difference-of-Gaussian channel model with 10 channels was implemented, and 20 sphere objects with different radius (i.e., 0.25 (mm) to 5 (mm) equally spaced by 0.25 (mm)), reconstructed by FDK algorithm, were used as object templates. Covariance matrix in axial and coronal direction was estimated from 3000 reconstructed noise volumes, and then the SNR ratio between axial and coronal direction was calculated. Corresponding 2D noise power spectrum was also calculated. The results show that as the object size increases, the SNR ratio decreases, especially lower than 1 when the object size is larger than 2.5 mm radius. The reason is because the axial (coronal) noise power is higher in high (low) frequency band, and therefore the detectability of a small (large) object is higher in coronal (axial) images. Our results indicate that it is more beneficial to use coronal slices in order to improve the detectability of a small object in a cone beam CT system.
NASA Astrophysics Data System (ADS)
Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D.; Schick, Fritz
2010-09-01
The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3 T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.
NASA Technical Reports Server (NTRS)
Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)
2001-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
NASA Astrophysics Data System (ADS)
Rautenhaus, M.; Kern, M.; Schäfler, A.; Westermann, R.
2015-02-01
We present Met.3D, a new open-source tool for the interactive 3-D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output - 3-D visualization, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantitites. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 campaign.
Du, Cheng-Feng; Shen, Nan-Nan; Li, Jian-Rong; Hao, Min-Ting; Wang, Zi; Huang, Xiao-Ying
2016-05-20
Presented are the ionothermal syntheses, characterizations, and properties of a series of two- and three-dimensional selenidostannate compounds synergistically directed by metal-amine complex (MAC) cations and ionic liquids (ILs) of [Bmmim]Cl (Bmmim=1-butyl-2,3-dimethylimidazolium). Four selenidostannates, namely, 2D-(Bmmim)3 [Ni(en)3 ]2 [Sn9 Se21 ]Cl (1, en=ethylenediamine), 2D-(Bmmim)8 [Ni2 (teta)2 (μ-teta)]Sn18 Se42 (2, teta=triethylenetetramine), 2D-(Bmmim)4 [Ni(tepa)Cl]2 [Ni(tepa)Sn12 Se28 ] (3, tepa=tetraethylenepentamine), and 3D-(Bmmim)2 [Ni(1,2-pda)3 ]Sn8 Se18 (4, 1,2-pda=1,2-diaminopropane), were obtained. Single-crystal X-ray diffraction analyses revealed that compounds 1 and 2 possess a lamellar anionic [Sn3 Se7 ]n (2n-) structure comprising distinct eight-membered ring units, whereas 3 features a MAC-decorated anionic [Ni(tepa)Sn12 Se28 ]n (6n-) layered structure. In contrast to 1-3, compound 4 exhibits a 3D open framework of anionic [Sn4 Se9 ]n (2n-) . The structural variation from 1 to 4 clearly indicates that on the basis of the synergistic structure-directing ability of the MACs and ILs, variation of the organic polyamine ligand has a significant impact on the formation of selenidostannates. PMID:27037731
Turner, D.
1983-08-01
The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian. PMID:26831396
NASA Astrophysics Data System (ADS)
Wyseure, Guido; Chou, Po-Yi
2010-05-01
All hydrological handbooks contain methods for direct runoff and base-flow separation. The semi-log separation method is the most classical one. One can, however, question the physical base for such method. In addition, the water fluxes in the riverbed are important for ecology and water quality. In our study an 2-D cross-section including the river and the surrounding aquifer was set-up in HYDRUS 2D/3D. Initial conditions were a steady-state subsurface flow feeding the river with a recharge from the soil surface. A surface runoff event was simulated by a rise and recession of the water level in the river. Differences between summer and winter situation were explored by given representative temperatures to the different components of the river-aquifer system. The simulations show that the fluxes are very different along the riverbed. Even during steady state baseflow we see that the fluxes through the bottom were 2 to 3 times smaller as compared to the side banks. During the hydrographs the proportion can become up to 5 times. Another interesting result is that within the time frame of the hydrograph and its immediate recession relatively little water, which pentetrated in the aquifer, returns to the river. Most of the water replenishes the aquifer and there is only a very small rise of baseflow. In our simulation we returned to the original level as before the hydrograph, so in reality even less or no rise in baseflow may occur immediately after a hydrograph. Of course, in a longer time-frame the recharge of the aquifer will give a rise to the actual subsurface drainage. The change in seasonal temperatures within the river-aquifer system has a substantial effect. For identical river stage hydrograph changes the hyporheic exchange fluxes are more intense in summer than in winter. If we define the hyporheic zone as the extedn to which the water fluxes from the river can penetrate, then we see that this zone is wider on the sides as compared to the bottom of the
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
NASA Astrophysics Data System (ADS)
Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.
2015-04-01
Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic
Wang, Chunhui; Lee, Xiaobao; Cui, Tianxiang; Qu, Yang; Li, Yunxi; Li, Hailong; Wang, Qi
2016-03-01
The direction rule of the laser beam traveling through a deflected polarizing beam splitter (PBS) cube is derived. It reveals that, due to the influence of end-face reflection of the PBS at the detector side, the emergent beam coming from the incident beam parallels the direction of the original case without rotation, with only a very small translation interval between them. The formula of the translation interval is also given. Meanwhile, the emergent beam from the return signal at the detector side deflects at an angle twice that of the PBS rotation angle. The correctness has been verified by an experiment. The intensity transmittance of the emergent beam when propagating in the PBS is changes very little if the rotation angle is less than 35 deg. In a 3D imaging lidar system, by rotating the PBS cube by an angle, the direction of the return signal optical axis is separated from that of the origin, which can decrease or eliminate the influence of direct reflection caused by the prism end face on target return signal detection. This has been checked by experiment. PMID:26974613
NASA Astrophysics Data System (ADS)
Ramirez, A.; Chen, L.; Bergeon, N.; Billia, B.; Gu, Jiho; Trivedi, R.
2012-01-01
Dynamical microstructure formation and selection during solidification processing, which has a major influence on the properties in the use of elaborated materials, occur during the growth process. In situ observation of the solid-liquid interface morphology evolution is thus necessary. On earth, convection effects dominate in bulk samples and may strongly interact with microstructure dynamics and alter pattern characterization. Series of solidification experiments with 3D cylindrical sample geometry were conducted in succinonitrile (SCN) -0.24 wt%camphor (model transparent system), in microgravity environment in the Directional Solidification Insert of the DECLIC facility of CNES (French space agency) on the International Space Station (ISS). Microgravity enabled homogeneous values of control parameters over the whole interface allowing the obtaining of homogeneous patterns suitable to get quantitative benchmark data. First analyses of the characteristics of the pattern (spacing, order, etc.) and of its dynamics in microgravity will be presented.
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.
2010-01-01
It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
NASA Astrophysics Data System (ADS)
Wautier, A.; Geindreau, C.; Flin, F.
2015-10-01
The full 3-D macroscopic mechanical behavior of snow is investigated by solving kinematically uniform boundary condition problems derived from homogenization theories over 3-D images obtained by X-ray tomography. Snow is modeled as a porous cohesive material, and its mechanical stiffness tensor is computed within the framework of the elastic behavior of ice. The size of the optimal representative elementary volume, expressed in terms of correlation lengths, is determined through a convergence analysis of the computed effective properties. A wide range of snow densities is explored, and power laws with high regression coefficients are proposed to link the Young's and shear moduli of snow to its density. The degree of anisotropy of these properties is quantified, and Poisson's ratios are also provided. Finally, the influence of the main types of metamorphism (isothermal, temperature gradient, and wet snow metamorphism) on the elastic properties of snow and on their anisotropy is reported.
NASA Astrophysics Data System (ADS)
Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; McKinley, Matthew I.
2013-04-01
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. 2012 Elsevier Science.
Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter
2002-11-01
Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.
Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao
2015-01-01
We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine. PMID:26486521
Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao
2015-01-01
We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
NASA Astrophysics Data System (ADS)
Cho, Y.; Kumar, A.; Xu, S.; Zou, J.
2016-10-01
Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.
Direct numerical simulation of wall turbulent flows with microbubbles
NASA Astrophysics Data System (ADS)
Kanai, Akihiro; Miyata, Hideaki
2001-03-01
The marker-density-function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three-dimensional structure of the turbulent flow. Copyright
Kotasidis, F A; Mehranian, A; Zaidi, H
2016-05-01
reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
NASA Astrophysics Data System (ADS)
Kotasidis, F. A.; Mehranian, A.; Zaidi, H.
2016-05-01
reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
Direct Numerical Simulation of electrochemical reactions in a turbulent electrolyte
NASA Astrophysics Data System (ADS)
Doche, Olivier; Bauer, Frederic; Tardu, Sedat
2010-11-01
In electrochemical processes, such as industrial electrodeposition, the flow state can influence the mass transfer of the active chemical species in solution. This could lead to significant modifications of reaction kinetics at the electrode and obviously affects the global performance of the system. We aim here to describe via DNS the behavior of a turbulent electrolyte in a channel configuration where electrode are placed at each wall. Since the whole problem is governed by a full multiphysic coupling, we resolve in 3D and at each time step a set of equations constituted by 2 turbulent transport equations -momentum and a passive scalar- completed by the potential distribution resolution. These 3 distinct physics are coupled through the Butler-Volmer boundary condition which acts at the electrode/electrolyte interface and governs the whole electrochemical activity. We present the numerical methodology used in this work and all the quantitative results obtained. We also report significant differences with the literature, mainly on the mass transfer statistics, which tend to confirm that a fully coupled approach is necessary to obtain a reliable description of the physic involved in such electrochemical transformations.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Astrophysics Data System (ADS)
Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.
2015-12-01
The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to
Direct numerical simulations of a spatially developing plane wake
NASA Technical Reports Server (NTRS)
Maekawa, Hiroshi; Mansour, Nagi N.
1992-01-01
In the present paper, direct numerical methods by which to simulate the spatially developing free shear flows in the transitional region are described and the numerical results of a spatially developing plane wake are presented. The incompressible time-dependent Navier-Stokes equations were solved using Pade finite difference approximations in the streamwise direction, a mapped pseudospectral Fourier method in the cross-stream direction, and a third-order compact Runge-Kutta scheme for time advancement. The unstable modes of the Orr-Sommerfeld equations were used to perturb the inlet of the wake. Statistical analyses were performed and some numerical results were compared with experimental measurements. When only the fundamental mode is forced, the energy spectra show amplification of the fundamental and its higher harmonics. In this case, unperturbed alternate vortices develop in the saturation region of the wake. The phase jitter around the fundamental frequency plays a critical role in generating vortices of random shape and spacing. Large- and small-scale distortions of the fundamental structure are observed. Pairing of vortices of the same sign is observed, as well as vortex coupling of vortices of the opposite sign.
NASA Astrophysics Data System (ADS)
Lechmann, S. M.; Schmalholz, S. M.; Hetényi, G.; May, D. A.; Kaus, B. J. P.
2014-01-01
The impact of mechanical layering and the strength of the Indian lower crust on the dynamics of the modern India-Asia collisional system are studied using 3-D thermomechanical modeling. The model includes an Indian oceanic domain, Indian continental domain, and an Asian continental domain. Each domain consists of four layers: upper/lower crust, and upper/lower lithospheric mantle. The Tarim and Sichuan Basins are modeled as effectively rigid blocks and the Quetta-Chaman and Sagaing strike-slip faults as vertical weak zones. The geometry, densities, and viscosities are constrained by geophysical data sets (CRUST2.0, gravity, and seismology). Both static (no horizontal movement of model boundaries) and dynamic scenarios (indentation) are modeled. It is demonstrated that 3-D viscosity distributions resulting from typical creep flow laws and temperature fields generate realistic surface velocities. Lateral variations in the gravitational potential energy cause locally significant tectonic overpressure (i.e., difference between pressure and lithostatic pressure) in a mechanically strong Indian lower crust (up to ~500 MPa for the static scenario and ~800 MPa for the dynamic scenario). Different density distributions in the lithosphere as well as different viscosities (3 orders of magnitude) in the Indian lower crust cause only minor differences in the surface velocity field. This result suggests that surface velocities alone are insufficient to infer the state of mechanical coupling of the lithosphere. Model results are in agreement with GPS velocities for Indian lower crustal viscosities of 1021-1024 Pa s, for a strong Quetta-Chaman Fault (1022 Pa s) and a weak Sagaing Fault (1020 Pa s).
NASA Astrophysics Data System (ADS)
Vinas, A. F.; Gurgiolo, C. A.; Nieves-Chinchilla, T.; Wendel, D. E.; Goldstein, M. L.; Fazakerley, A. N.
2010-12-01
The current hypothesis of the formation of the solar wind halo electrons is that they are produced from scattering of the strahl. This hypothesis is strengthened by direct observations of the strahl electrons being scattered into the halo in an isolated event. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions, a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a limited energy range. The observation implies that the formation of the halo is not a continuous process but occurs in bursts in regions where conditions for wave growth providing the scattering are optimum. Sometimes, observations indicates that the strahl component is anisotropic (Tper/Tpal ~ 2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism, however this condition is not always observed. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
NASA Astrophysics Data System (ADS)
Jin, Shouwen; Guo, Ming; Wang, Daqi; Wei, Shuaishuai; Zhou, Yong; Zhou, Yingping; Cao, Xinchao; Yu, Zeyun
2012-08-01
Five crystalline organic acid-base adducts derived from bis(N-imidazolyl) and carboxylic acid (p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dihydroxybenzoic acid, sebacic acid, and fumaric acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five compounds three are organic salts (1, 3, and 5) and the other two (2, and 4) are cocrystals. In salts 1, and 5, the L1 are diprotonated, while in 3 the L1 is only monoprotonated. All supramolecular architectures of the adducts 1-5 involve extensive intermolecular Nsbnd H⋯O, Osbnd H⋯O, and Csbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. All the complexes displayed 3D framework structure for the synergistic effect of the various noncovalent interactions. The results presented herein indicate that the strength and directionality of the N+sbnd H⋯O-, Osbnd H⋯O, and Osbnd H⋯N hydrogen bonds between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary cocrystals or organic salts.
The effect of activity outside the direct field of view in a 3D-only whole-body positron tomograph
NASA Astrophysics Data System (ADS)
Spinks, T. J.; Miller, M. P.; Bailey, D. L.; Bloomfield, P. M.; Livieratos, L.; Jones, T.
1998-04-01
The ECAT EXACT3D (CTI/Siemens 966) 3D-only PET tomograph has unprecedented sensitivity due to the large BGO (bismuth germanate) detector volume. However, the consequences of a large (23.4 cm) axial field-of-view (FOV) and the need for a patient port diameter to accommodate body scanning make the device more sensitive to photons arising from activity outside the direct (coincidence) FOV. This leads to relatively higher deadtime and an increased registration of random and scatter (true) coincidences. The purpose of this study is to determine the influence of activity outside the FOV on (i) noise-equivalent counts (NEC) and (ii) the performance of a `model-based' scatter correction algorithm, and to investigate the effect of side shielding additional to that supplied with the tomograph. Annular shielding designed for brain scanning increased the NEC for blood flow (O) measurement (integrated over 120 s) by up to 25%. For tracer studies, the increase is less than 5% over 120 min. Purpose-built additional body shielding, made to conform to the shape of a volunteer, reduced the randoms count rate in a heart blood flow measurement (O) by about 30%. After scatter correction the discrepancy between ROI count ratios for compartments within the 20 cm diameter `Utah' phantom differed by less than 5% from true (sampled) activity concentration ratios. This was so with or without activity outside the FOV and with or without additional side shielding. Count rate performance is thus improved by extra shielding but more improvement is seen in head than in body scanning. Measurement of heart blood flow using bolus injections of O would benefit from the use of detectors
NASA Technical Reports Server (NTRS)
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Rix, Hans-Walter; Skelton, Rosalind E.; VanDokkum, Pieter G.; Tease, Katherine Whitaker; Wuyts, Stijn
2013-01-01
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.
2014-06-10
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A {sub V,} {sub H} {sub II}) and the integrated dust content (A {sub V,} {sub star}). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A {sub V,} {sub H} {sub II}. First, we stack spectra in bins of A {sub V,} {sub star}, and find that A {sub V,} {sub H} {sub II} = 1.86 A {sub V,} {sub star}, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M {sub *}). We find that on average A {sub V,} {sub H} {sub II} increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.
Maxim, Voichita; Lojacono, Xavier; Hilaire, Estelle; Krimmer, Jochen; Testa, Etienne; Dauvergne, Denis; Magnin, Isabelle; Prost, Rémy
2016-01-01
This paper addresses the problem of evaluating the system matrix and the sensitivity for iterative reconstruction in Compton camera imaging. Proposed models and numerical calculation strategies are compared through the influence they have on the three-dimensional reconstructed images. The study attempts to address four questions. First, it proposes an analytic model for the system matrix. Second, it suggests a method for its numerical validation with Monte Carlo simulated data. Third, it compares analytical models of the sensitivity factors with Monte Carlo simulated values. Finally, it shows how the system matrix and the sensitivity calculation strategies influence the quality of the reconstructed images.
Direct numerical investigation of turbulence of capillary waves.
Pan, Yulin; Yue, Dick K P
2014-08-29
We consider the inertial range spectrum of capillary wave turbulence. Under the assumptions of weak turbulence, the theoretical surface elevation spectrum scales with wave number k as Iη∼k(α), where α=α0=-19/4, energy (density) flux P as P(1/2). The proportional factor C, known as the Kolmogorov constant, has a theoretical value of C=C0=9.85 (we show that this value holds only after a formulation in the original derivation is corrected). The k(-19/4) scaling has been extensively, but not conclusively, tested; the P(1/2) scaling has been investigated experimentally, but until recently remains controversial, while direct confirmation of the value of C0 remains elusive. We conduct a direct numerical investigation implementing the primitive Euler equations. For sufficiently high nonlinearity, the theoretical k^{-19/4} and P(1/2) scalings as well as value of C0 are well recovered by our numerical results. For a given number of numerical modes N, as nonlinearity decreases, the long-time spectra deviate from theoretical predictions with respect to scaling with P, with calculated values of α<α0 and C>C0, all due to finite box effect. PMID:25215986
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
Direct numerical simulation of transitional flow in a staggered tube bundle
NASA Astrophysics Data System (ADS)
Linton, D.; Thornber, B.
2016-02-01
A series of Direct Numerical Simulations (DNS) of the flow through a staggered tube bundle has been performed over the range 1030 ≤ Rem ≤ 5572 to capture the flow transition that occurs at the matrix transition point of Rem ≈ 3000. The matrix transition is the point at which a second frequency becomes prominent in tube bundles. To date, this is the highest published Reynolds number at which a DNS has been performed on cross-flow over a tube bundle. This study describes the flow behaviour in terms of: the mean flow field, Strouhal numbers, vortex shedding, 3-D flow features, and turbulence properties. These results support the hypothesis that the transition in the vortex shedding behaviour at Rem ≈ 3000 is similar to that which occurs in single cylinder flow at the equivalent Reynolds number. The visualisations presented also demonstrate the nature of the shedding mechanisms before and after the matrix transition point.
3D Printed Programmable Release Capsules.
Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C
2015-08-12
The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients. PMID:26042472
3D Printed Programmable Release Capsules
Gupta, Maneesh K.; Meng, Fanben; Johnson, Blake N.; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C.
2015-01-01
The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic–abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) “on the fly” programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients. PMID:26042472
3D Printed Programmable Release Capsules.
Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C
2015-08-12
The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.
Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa
2015-03-20
The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics.
Schnitzer, J E; Lambrakis, K C
1991-09-21
Understanding the physicochemical basis of the interaction of molecules with lipid bilayers is fundamental to membrane biology. In this study, a new, three-dimensional numerical solution of the full Poisson equation including local dielectric variation is developed using finite difference techniques in order to model electrostatic interactions of charged molecules with a non-uniform dielectric. This solution is used to describe the electric field and electrostatic potential profile of a charged molecule interacting with a phospholipid bilayer in a manner consistent with the known composition and structure of the membrane. Furthermore, the Born interaction energy is then calculated by appropriate integration of the electric field over whole space. Numerical computations indicate that the electrostatic potential profile surrounding a charge molecule and its resultant Born interaction energy are a function of molecular position within the membrane and change most significantly within the polar region of the bilayer. The maximum interaction energy is observed when the charge is placed at the center of the hydrophobic core of the membrane and is strongly dependent on the size of the charge and on the thickness of the hydrocarbon core of the bilayer. The numerical results of this continuum model are compared with various analytical approximations for the Born energy including models established for discontinuous slab dielectrics. The calculated energies agree with the well-known Born analytical expression only when the charge is located near the center of a hydrocarbon core of greater than 60 A in thickness. The Born-image model shows excellent agreement with the numerical results only when modified to include an appropriate effective thickness of the low dielectric region. In addition, a newly derived approximation which considers the local mean dielectric provides a simple and continuous solution that also agrees well with the numerical results.
NASA Astrophysics Data System (ADS)
Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine
2011-04-01
This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian
2015-12-28
Including an entrance pupil in optical systems provides clear benefits for balancing the overall performance of freeform and/or rotationally symmetric imaging systems. Current existing direct design methods that are based on perfect imaging of few discrete ray bundles are not well suited for wide field of view systems. In this paper, a three-dimensional multi-fields direct design approach is proposed to balance the full field imaging performance of a two-surface freeform lens. The optical path lengths and image points of numerous fields are calculated during the procedures, wherefore very few initial parameters are needed in advance. Design examples of a barcode scanner lens as well as a line imaging objective are introduced to demonstrate the effectiveness of this method. PMID:26832061
Direct numerical simulation of double-diffusive gravity currents
NASA Astrophysics Data System (ADS)
Penney, Jared; Stastna, Marek
2016-08-01
This paper presents three-dimensional direct numerical simulations of laboratory-scale double-diffusive gravity currents. Flow is governed by the incompressible Navier-Stokes equations under the Boussinesq approximation, with salinity and temperature coupled to the equations of motion using a nonlinear approximation to the UNESCO equation of state. The effects of vertical boundary conditions and current volume are examined, with focus on flow pattern development, current propagation speed, three-dimensionalization, dissipation, and stirring and mixing. It was observed that no-slip boundaries cause the gravity current head to take the standard lobe-and-cleft shape and encourage both a greater degree and an earlier onset of three-dimensionalization when compared to what occurs in the case of a free-slip boundary. Additionally, numerical simulations with no-slip boundary conditions experience greater viscous dissipation, stirring, and mixing when compared to similar configurations using free-slip conditions.
Direct numerical simulation of turbulent channel flow with permeable walls
NASA Astrophysics Data System (ADS)
Hahn, Seonghyeon; Je, Jongdoo; Choi, Haecheon
2002-01-01
The main objectives of this study are to suggest a proper boundary condition at the interface between a permeable block and turbulent channel flow and to investigate the characteristics of turbulent channel flow with permeable walls. The boundary condition suggested is an extended version of that applied to laminar channel flow by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the streamwise and spanwise directions at the interface between the permeable block and turbulent channel flow. With the proposed boundary condition, direct numerical simulations of turbulent channel flow that is bounded by the permeable wall are performed and significant skin-friction reductions at the permeable wall are obtained with modification of overall flow structures. The viscous sublayer thickness is decreased and the near-wall vortical structures are significantly weakened by the permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds shear stress, and pressure and vorticity fluctuations throughout the channel except very near the wall. The increase of some turbulence quantities there is due to the slip-velocity fluctuations at the wall. The boundary condition proposed for the permeable wall is validated by comparing solutions with those obtained from a separate direct numerical simulation using both the Brinkman equation for the interior of a permeable block and the Navier Stokes equation for the main channel bounded by a permeable block.
Hassam, Adil
2015-09-21
We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.
NASA Astrophysics Data System (ADS)
Zeumann, Stefanie; Hampel, Andrea
2015-04-01
Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To investigate the role of ridge orientation relative to the margin and convergence direction on the style of forearc deformation, we developed a series of 3D finite-elemente models, in which a rigid oceanic plate carrying the model ridge subducts beneath a deformable forearc wedge. Experiments were carried out for angles of 30°, 60° and 90° between the ridge axis and the trench and for different convergence directions. In the experiments, in which the ridge axis is parallel to the convergence direction, the ridge is stationary; in all other experiments, the ridge migrates along the margin and thus affects different regions of the forearc. Our results show that the ridge indents and uplifts the forearc in all models. For obliquely subducting ridges the displacement and strain fields become highly asymmetric regardless if the ridge is stationary or migrates along the forearc. Only if the ridge is stationary and oriented perpendicular to the margin, the deformation is symmetric relative to the ridge axis. Stationary ridges show uplift only above the ridge tip, whereas a migrating ridge causes a wave of uplift above the leading flank of the ridge followed by subsidence above the trailing flank. Horizontal strain components show domains of both extension and shortening, with extension occurring above the ridge tip and shortening above the ridge flanks. To compare our results with natural case studies, we computed additional models reflecting the setting of the stationary Cocos Ridge subducting beneath southern Costa Rica and of the Nazca Ridge, which migrates along the Peruvian margin. The results of these adjusted models are in good agreement with field observations. For the model of the Cocos Ridge the highest degree of shortening occurs normal to the margin, which coincides with the location of a thrust belt in the forearc of Costa Rica with its maximum shortening inboard
3D Elastic Wavefield Tomography
NASA Astrophysics Data System (ADS)
Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.
2010-12-01
Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Occhipinti, Emanuela; Martelli, Pier Luigi; Spinozzi, Francesco; Corsi, Federica; Formantici, Cristina; Molteni, Laura; Amenitsch, Heintz; Mariani, Paolo; Tortora, Paolo; Casadio, Rita
2003-01-01
Sulfolobus solfataricus carboxypeptidase (CPSso) is a thermostable zinc-metalloenzyme with a Mr of 43,000. Taking into account the experimentally determined zinc content of one ion per subunit, we developed two alternative 3D models, starting from the available structures of Thermoactinomyces vulgaris carboxypeptidase (Model A) and Pseudomonas carboxypeptidase G2 (Model B). The former enzyme is monomeric and has one metal ion in the active site, while the latter is dimeric and has two bound zinc ions. The two models were computed by exploiting the structural alignment of the one zinc- with the two zinc-containing active sites of the two templates, and with a threading procedure. Both computed structures resembled the respective template, with only one bound zinc with tetrahedric coordination in the active site. With these models, two different quaternary structures can be modeled: one using Model A with a hexameric symmetry, the other from Model B with a tetrameric symmetry. Mutagenesis experiments directed toward the residues putatively involved in metal chelation in either of the models disproved Model A and supported Model B, in which the metal-binding site comprises His108, Asp109, and His168. We also identified Glu142 as the acidic residue interacting with the water molecule occupying the fourth chelation site. Furthermore, the overall fold and the oligomeric structure of the molecule was validated by small angle x-ray scattering (SAXS). An ab initio original approach was used to reconstruct the shape of the CPSso in solution from the experimental curves. The results clearly support a tetrameric structure. The Monte Carlo method was then used to compare the crystallographic coordinates of the possible quaternary structures for CPSso with the SAXS profiles. The fitting procedure showed that only the model built using the Pseudomonas carboxypeptidase G2 structure as a template fitted the experimental data. PMID:12885660
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
3D laptop for defense applications
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
Ge, Liang; Sotiropoulos, Fotis
2008-01-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
Direct Numerical Simulation of A Shaped Hole Film Cooling Flow
NASA Astrophysics Data System (ADS)
Oliver, Todd; Moser, Robert
2015-11-01
The combustor exit temperatures in modern gas turbine engines are generally higher than the melting temperature of the turbine blade material. Film cooling, where cool air is fed through holes in the turbine blades, is one strategy which is used extensively in such engines to reduce heat transfer to the blades and thus reduce their temperature. While these flows have been investigated both numerically and experimentally, many features are not yet well understood. For example, the geometry of the hole is known to have a large impact on downstream cooling performance. However, the details of the flow in the hole, particularly for geometries similar to those used in practice, are generally know well-understood, both because it is difficult to experimentally observe the flow inside the hole and because much of the numerical literature has focused on round hole simulations. In this work, we show preliminary direct numerical simulation results for a film cooling flow passing through a shaped hole into a the boundary layer developing on a flat plate. The case has density ratio 1.6, blowing ratio 2.0, and the Reynolds number (based on momentum thickness) of incoming boundary layer is approximately 600. We compare the new simulations against both previous experiments and LES.
NASA Astrophysics Data System (ADS)
Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
2016-05-01
An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
NASA Astrophysics Data System (ADS)
Pyszczek, R.; Mazuro, P.; Teodorczyk, A.
2016-09-01
This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.
Brachat, Sophie; Braccini, Alessandra; Wendt, David; Barbero, Andrea; Jacobi, Carsten; Martin, Ivan
2014-01-01
Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems. PMID:25020062
NASA Astrophysics Data System (ADS)
Kang, Daiwen; Hogrefe, Christian; Foley, Kristen L.; Napelenok, Sergey L.; Mathur, Rohit; Trivikrama Rao, S.
2013-12-01
Regional air quality models are being used in a policy-setting to assess the changes in air pollutant concentrations from changes in emissions and meteorology. Dynamic evaluation entails examination of a retrospective case(s) to examine whether an air quality model has properly predicted the air quality response to known changes in emissions and/or meteorology. In this study, the Kolmogorov-Zurbenko (KZ) filter has been used to spectrally decompose pollutant time series into different forcings that are controlled by different atmospheric processes influencing the predicted and observed pollutant concentrations. Through analyses of the different components influenced by different forcings as part of dynamic model evaluation, we can discern which of the component(s) or scale(s) of forcing are simulated well by the model and the component(s) or scale(s) of forcing needing further improvement in the model. The KZ filter has been applied to both the observed and Community Multiscale Air Quality (CMAQ) model-predicted summertime ozone (O3) time series in years 2002 and 2005. The 2002-2005 time period is a good candidate for the dynamic evaluation case study because of the large changes in NOx emissions as a result of the U.S. Environmental Protection Agency's (USEPA) NOx State Implementation Plan (SIP) call together with a gradual decline in mobile emissions. Results suggest that the CMAQ model performs similarly for both years in terms of capturing the observed synoptic-scale forcing. However, the changes in the observed ozone baseline component (i.e. longer-term variations) are not properly captured by the model at some locations. The factors contributing to the ozone baseline include emissions loading, boundary conditions, and other parameters that vary slowly over time. Analysis using a reduced form model developed from the sensitivity coefficients calculated from the decoupled direct method in three dimensions (DDM-3D) reveals that ground-level NOx emissions
Yu-Shu Wu
2006-02-28
A three-dimensional site-scale numerical model has been developed to simulate water and gas flow, heat transfer, and radionuclide transport in the unsaturated zone of Yucca Mountain, Nevada, the American underground repository site for high level radioactive waste. The modeling approach is based on a mathematical formulation of coupled multiphase fluid and heat flow and tracer transport through porous and fractured rock. This model is intended for use in predicting current and future conditions in the unsaturated zone, so as to aid in assessing the system performance of the repository. In particular, an integrated modeling methodology is discussed for integrating a wide variety of moisture, pneumatic, thermal, and isotopic geochemical data into comprehensive modeling analyses. The reliability and accuracy of the model predictions were the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential, and temperature. This study indicates that the model is able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure and chloride concentration variations in different geological units, and ambient geothermal conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... (Eurocopter) Model AS350B, BA, B1, B2, B3, D, AS355E, F, F1, F2, and N Helicopters AGENCY: Federal Aviation... Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Community... it to crack. A crack can reduce the yaw control travel. This AD requires actions that are intended...
Direct numerical simulation of a turbulent premixed flame
Hasegawa, Tatsuya; Morifuji, Tetsuya; Borghi, R.
1999-07-01
Direct numerical simulation of a stationary turbulent premixed flame with a single-step irreversible Arrhenius-type reaction is performed in order to understand detail physics of turbulent premixed flames and to evaluate modeling of turbulent premixed flame. The 6th-order central finite difference method is used in the streamwise direction with non-periodic boundaries, giving enough grid points in the domain to assure reasonable accuracy. The pseudo spectral method is used for transversal directions with periodic boundaries. The results obtained by their preliminary simulation is presented here with the initial turbulent intensity of u{prime}{sub 0}/u{sub L} = 4.8, the initial integral scale of l{sub t0}/{delta} = 8, and the density ratio of {rho}{sub u}/{rho}{sub b} = 7.53. The obtained flame is a developing wrinkled flame. Mean temperature, mean mass fraction, mean reaction rate and mean velocity components in space show a thickened flame region where the reaction rate appears at all points. Turbulent kinetic energy decays along the stream, but it increases somewhat in the flame region due to the increase of streamwise component of velocity fluctuation. The energy spectra in front of the flame region and behind it show that small scale decays by combustion and that the microscale and the Kolmogorov scale increase several times behind the flame region. Local structure of the turbulent flame is then analyzed.
NASA Astrophysics Data System (ADS)
Rodríguez-González, Juan; Billen, Magali I.; Negredo, Ana M.; Montesi, Laurent G. J.
2016-10-01
Subduction dynamics can be understood as the result of the balance between driving and resisting forces. Previous work has traditionally regarded gravitational slab pull and viscous mantle drag as the main driving and resistive forces for plate motion respectively. However, this paradigm fails to explain many of the observations in subduction zones. For example, subducting plate velocity varies significantly along-strike in many subduction zones and this variation is not correlated to the age of subducting lithosphere. Here we present three-dimensional and time-dependent numerical models of subduction. We show that along-strike variations of the overriding plate thermal structure can lead to along-strike variations in subducting plate velocity. In turn, velocity variations lead to significant migration of the Euler pole over time. Our results show that the subducting plate is slower beneath the colder portion of the overriding plate due to two related mechanisms. First, the mantle wedge beneath the colder portion of the overriding plate is more viscous, which increases mantle drag. Second, where the mantle wedge is more viscous, hydrodynamic suction increases, leading to a lower slab dip. Both factors contribute to decreasing subducting plate velocity in the region; therefore, if the overriding plate is not uniform, the resulting velocity varies significantly along-strike, which causes the Euler pole to migrate closer to the subducting plate. We present a new mechanism to explain observations of subducting plate velocity in the Cocos and Nazca plates. These results shed new light on the balance of forces that control subduction dynamics and prove that future studies should take into consideration the three-dimensional structure of the overriding plate.
Direct numerical simulation of nonpremixed flame-wall interactions
Wang, Yi; Trouve, Arnaud
2006-02-01
The objective of the present study is to use detailed numerical modeling to obtain basic information on the interaction of nonpremixed flames with cold wall surfaces. The questions of turbulent fuel-air-temperature mixing, flame extinction, and wall-surface heat transfer are studied using direct numerical simulation (DNS). The DNS configuration corresponds to an ethylene-air diffusion flame stabilized in the near-wall region of a chemically inert solid surface. Simulations are performed with adiabatic or isothermal wall boundary conditions and with different turbulence intensities. The simulations feature flame extinction events resulting from excessive wall cooling and convective heat transfer rates up to 90 kW/m{sup 2}. The structure of the simulated wall flames is studied in terms of a classical mass-mixing variable, the fuel-air based mixture fraction, and a less familiar heat loss variable, the excess enthalpy variable, introduced to provide a measure of nonadiabatic behavior due to wall cooling. In addition to the flame structure, extinction events are also studied in detail and a modified flame extinction criterion that combines the concepts of mixture fraction and excess enthalpy is proposed and then tested against the DNS data. (author)
Direct numerical simulation of flow past cactus--shaped cylinders
NASA Astrophysics Data System (ADS)
Babu, Pradeep; Mahesh, Krishnan
2006-11-01
The Saguaro cacti are tall, have short root systems and can withstand high wind velocities (Bulk 1984, Talley et al. 2002). Their trunks are essentially cylindrical with V--shaped longitudinal cavities. The size and number of cavities on the Saguaro cacti vary so that they have a near--constant fraction cavity depth (l/D ratio of about 0.07, Geller & Nobel 1984). Direct numerical simulations is used to assess the aerodynamic effect of the grooves on the cactus. DNS is performed for cactus shaped cylinders with l/d ratio's of 0.07 and 0.105, and smooth cylinders (l/d=0) at the same Reynolds number. Presence of the V--shaped cavities is found to decrease the drag on the cylindrical trunk as well as affect the fluctuating lift forces. The talk will quantify these differences, and discuss the physical mechanisms by which V--shaped cavities on the surface influence the flow.
Cascade processes in stratified media: experiment and direct numerical simulation.
NASA Astrophysics Data System (ADS)
Sibgatullin, Ilias; Brouzet, Christophe; Joubaud, Sylvain; Ermanyuk, Evgeny; Dauxois, Thierry
2016-04-01
Internal gravity waves may transfer substantial part of energy in oceans and astrophysical objects, influence the background stratification, and angular momentum. Internal waves can be generated by convection in astrophysical objects, by tidal motion and interaction with orography in oceans. Internal and inertial waves obey similar system of equations. Due to very particular type of dispersive relation and the way internal waves are reflected from surfaces, in confined domains the monochromatic internal waves after sequence of reflections may form closed paths, the "wave attractors" [1]. Presently, linear theory of wave attractors is quite elaborated and a principal interest of research is focused on nonlinear regimes and unstable configurations, overturning events and mixing. We have performed direct numerical simulation of wave attractors which closely reproduces experiments [2] being carried out in Ecole Normal Superior de Lyon (ENS de Lyon). Direct numerical simulation is realized with the help of spectral element approach and code nek5000. Triadic resonance is confirmed as the first instability which appears on the most energetic ray of the attractor at sufficiently large forcing. With further increase of the forcing amplitude the daughter waves also become unstable resulting in a sophisticated cascade process which was first observed experimentally. For very high forcing amplitude interaction of focused waves with the walls results in appearance of small-scale folded structures. Their interaction with principal flow is the subject of further research. 1. Maas, L. R. M. & Lam, F.-P. A., Geometric focusing of internal waves. J. Fluid Mech, 1995,. 300, 1-41 2. Scolan, H., Ermanyuk, E., Dauxois, T., 2013, Physical Review Letters, 110, 234501
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
Bedrock incision by bedload: insights from direct numerical simulations
NASA Astrophysics Data System (ADS)
Aubert, Guilhem; Langlois, Vincent J.; Allemand, Pascal
2016-04-01
Bedload sediment transport is one of the main processes that contribute to bedrock incision in a river and is therefore one of the key control parameters in the evolution of mountainous landscapes. In recent years, many studies have addressed this issue through experimental setups, direct measurements in the field, or various analytical models. In this article, we present a new direct numerical approach: using the classical methods of discrete-element simulations applied to granular materials, we explicitly compute the trajectories of a number of pebbles entrained by a turbulent water stream over a rough solid surface. This method allows us to extract quantitatively the amount of energy that successive impacts of pebbles deliver to the bedrock, as a function of both the amount of sediment available and the Shields number. We show that we reproduce qualitatively the behaviour observed experimentally by Sklar and Dietrich (2001) and observe both a "tool effect" and a "cover effect". Converting the energy delivered to the bedrock into an average long-term incision rate of the river leads to predictions consistent with observations in the field. Finally, we reformulate the dependency of this incision rate with Shields number and sediment flux, and predict that the cover term should decay linearly at low sediment supply and exponentially at high sediment supply.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
NASA Astrophysics Data System (ADS)
Hollander, Ari; Rose, Howard; Kollin, Joel; Moss, William
2011-03-01
Attack! of the S. Mutans is a multi-player game designed to harness the immersion and appeal possible with wide-fieldof- view stereoscopic 3D to combat the tooth decay epidemic. Tooth decay is one of the leading causes of school absences and costs more than $100B annually in the U.S. In 2008 the authors received a grant from the National Institutes of Health to build a science museum exhibit that included a suite of serious games involving the behaviors and bacteria that cause cavities. The centerpiece is an adventure game where five simultaneous players use modified Wii controllers to battle biofilms and bacteria while immersed in environments generated within a 11-foot stereoscopic WUXGA display. The authors describe the system and interface used in this prototype application and some of the ways they attempted to use the power of immersion and the appeal of S3D revolution to change health attitudes and self-care habits.
Bernini, María C; Snejko, Natalia; Gutierrez-Puebla, Enrique; Brusau, Elena V; Narda, Griselda E; Monge, M Ángeles
2011-07-01
Two new holmium-succinate frameworks have been synthesized by hydrolysis in situ of the succinylsalicylic acid under different hydrothermal conditions. Compound 1, [Ho(2)(C(4)H(4)O(4))(3)(H(2)O)(2)]·0.33(C(7)H(6)O(3)), P ̅i space group, has a novel structure composed by 1D-SBUs consisting of [HoO(9)] chains of polyhedra linked by the succinate ligands giving a 3D framework. Compound 2, [Ho(2)(C(4)H(4)O(4))(3)(H(2)O)(2)], also belonging to the P ̅i space group, has a denser structure. The role of the in-situ-generated salicylic acid on formation of both structures is studied by means of a synthesis design methodology. A topological study of the new holmium succinate compounds in comparison with the previously reported 3D holmium-succinate framework is performed here.
Direct Numerical Simulation of a Film Cooling Configuration with a Micro-ramp Vortex Generator
NASA Astrophysics Data System (ADS)
Shinn, Aaron; Pratap Vanka, S.
2010-11-01
A Direct Numerical Simulation (DNS) of an inclined turbulent jet interacting with a cross-flow in a film cooling configuration is performed. The inclined turbulent jet represents the coolant flow and the cross-flow represents the hot combustion gases. In this configuration, it is known that the coolant jet tends to lift off the wall that is to be cooled, thus decreasing heat transfer effectiveness. The micro-ramp vortex generator is placed downstream of the coolant jet and is used to modify the trajectory of the coolant jet such that it remains closer to the wall, thus enhancing heat transfer. The purpose of this study is to examine the micro-ramp's effect on both the flowfield and heat transfer of the film cooling problem. The coolant jet is inclined at an angle of 35 degrees to the freestream, the blowing ratio is 1.5, and the Reynolds number based on the jet diameter and freestream cross-flow velocity is 8000. The incompressible Navier-Stokes equations are solved numerically using a 3D finite volume solver (CU-FLOW) implemented on a Graphics Processing Unit (GPU).
NASA Astrophysics Data System (ADS)
Suckale, Jenny; Sethian, James A.; Yu, Jiun-der; Elkins-Tanton, Linda T.
2012-08-01
This is the first paper in a two-part series examining the fluid dynamics of crystal settling and flotation in the lunar magma ocean. A key challenge in constraining solidification processes is determining the ability of individual crystals to decouple from vigorous thermal convection and settle out or float. The goal of this paper is to develop a computational methodology capable of capturing the complex solid-fluid interactions that determine settling and flotation. In the second paper, we use this computational approach to explore the conditions under which plagioclase feldspar would be able to buoyantly float and form the earliest crust on the Moon. The direct numerical method described in this paper relies on a fictitious domain approach and captures solid-body motion in 2D and 3D with little overhead beyond single fluid calculations. The two main innovations of our numerical implementation of a fictitious domain approach are an analytical quadrature scheme, which increases accuracy and reduces computational expense, and the derivation of a multibody collision scheme. Advantages of this approach over previous simulations of crystal-bearing magmatic suspensions include the following: (1) we fully resolve the two-way interaction between fluid and solid phases, implying that crystals are not only passively advected in an ambient flow field but are also actively driving flow, and (2) we resolve the flow around each individual crystal without assuming specific settling speeds or drag coefficients. We present several benchmark problems and convergence tests to validate our approach.