Science.gov

Sample records for 3d display technology

  1. Recent developments in stereoscopic and holographic 3D display technologies

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2014-06-01

    Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.

  2. Stereoscopic display technologies for FHD 3D LCD TV

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Ko, Young-Ji; Park, Sang-Moo; Jung, Jong-Hoon; Shestak, Sergey

    2010-04-01

    Stereoscopic display technologies have been developed as one of advanced displays, and many TV industrials have been trying commercialization of 3D TV. We have been developing 3D TV based on LCD with LED BLU (backlight unit) since Samsung launched the world's first 3D TV based on PDP. However, the data scanning of panel and LC's response characteristics of LCD TV cause interference among frames (that is crosstalk), and this makes 3D video quality worse. We propose the method to reduce crosstalk by LCD driving and backlight control of FHD 3D LCD TV.

  3. Recent development of 3D display technology for new market

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Sik

    2003-11-01

    A multi-view 3D video processor was designed and implemented with several FPGAs for real-time applications and a projection-type 3D display was introduced for low-cost commercialization. One high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. It can cope with various arrangements of 3D camera systems (or pixel arrays) and resolutions of 3D displays. This system shows high 3-D image quality in terms of resolution, brightness, and contrast so it is well suited for the commercialization in the field of game and advertisement market.

  4. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Astrophysics Data System (ADS)

    Ericson, Mark; McKinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  5. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    NASA Astrophysics Data System (ADS)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  6. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  7. An eliminating method of motion-induced vertical parallax for time-division 3D display technology

    NASA Astrophysics Data System (ADS)

    Lin, Liyuan; Hou, Chunping

    2015-10-01

    A time difference between the left image and right image of the time-division 3D display makes a person perceive alternating vertical parallax when an object is moving vertically on a fixed depth plane, which causes the left image and right image perceived do not match and makes people more prone to visual fatigue. This mismatch cannot eliminate simply rely on the precise synchronous control of the left image and right image. Based on the principle of time-division 3D display technology and human visual system characteristics, this paper establishes a model of the true vertical motion velocity in reality and vertical motion velocity on the screen, and calculates the amount of the vertical parallax caused by vertical motion, and then puts forward a motion compensation method to eliminate the vertical parallax. Finally, subjective experiments are carried out to analyze how the time difference affects the stereo visual comfort by comparing the comfort values of the stereo image sequences before and after compensating using the eliminating method. The theoretical analysis and experimental results show that the proposed method is reasonable and efficient.

  8. 3D Image Display Courses for Information Media Students.

    PubMed

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators. PMID:26960028

  9. Spectroradiometric characterization of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  10. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  11. Integral 3D display using multiple LCDs

    NASA Astrophysics Data System (ADS)

    Okaichi, Naoto; Miura, Masato; Arai, Jun; Mishina, Tomoyuki

    2015-03-01

    The quality of the integral 3D images created by a 3D imaging system was improved by combining multiple LCDs to utilize a greater number of pixels than that possible with one LCD. A prototype of the display device was constructed by using four HD LCDs. An integral photography (IP) image displayed by the prototype is four times larger than that reconstructed by a single display. The pixel pitch of the HD display used is 55.5 μm, and the number of elemental lenses is 212 horizontally and 119 vertically. The 3D image pixel count is 25,228, and the viewing angle is 28°. Since this method is extensible, it is possible to display an integral 3D image of higher quality by increasing the number of LCDs. Using this integral 3D display structure makes it possible to make the whole device thinner than a projector-based display system. It is therefore expected to be applied to the home television in the future.

  12. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  13. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  14. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  15. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  16. New portable FELIX 3D display

    NASA Astrophysics Data System (ADS)

    Langhans, Knut; Bezecny, Daniel; Homann, Dennis; Bahr, Detlef; Vogt, Carsten; Blohm, Christian; Scharschmidt, Karl-Heinz

    1998-04-01

    An improved generation of our 'FELIX 3D Display' is presented. This system is compact, light, modular and easy to transport. The created volumetric images consist of many voxels, which are generated in a half-sphere display volume. In that way a spatial object can be displayed occupying a physical space with height, width and depth. The new FELIX generation uses a screen rotating with 20 revolutions per second. This target screen is mounted by an easy to change mechanism making it possible to use appropriate screens for the specific purpose of the display. An acousto-optic deflection unit with an integrated small diode pumped laser draws the images on the spinning screen. Images can consist of up to 10,000 voxels at a refresh rate of 20 Hz. Currently two different hardware systems are investigated. The first one is based on a standard PCMCIA digital/analog converter card as an interface and is controlled by a notebook. The developed software is provided with a graphical user interface enabling several animation features. The second, new prototype is designed to display images created by standard CAD applications. It includes the development of a new high speed hardware interface suitable for state-of-the- art fast and high resolution scanning devices, which require high data rates. A true 3D volume display as described will complement the broad range of 3D visualization tools, such as volume rendering packages, stereoscopic and virtual reality techniques, which have become widely available in recent years. Potential applications for the FELIX 3D display include imaging in the field so fair traffic control, medical imaging, computer aided design, science as well as entertainment.

  17. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  18. Optical characterization and measurements of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Salmimaa, Marja; Järvenpää, Toni

    2008-04-01

    3D or autostereoscopic display technologies offer attractive solutions for enriching the multimedia experience. However, both characterization and comparison of 3D displays have been challenging when the definitions for the consistent measurement methods have been lacking and displays with similar specifications may appear quite different. Earlier we have investigated how the optical properties of autostereoscopic (3D) displays can be objectively measured and what are the main characteristics defining the perceived image quality. In this paper the discussion is extended to cover the viewing freedom (VF) and the definition for the optimum viewing distance (OVD) is elaborated. VF is the volume inside which the eyes have to be to see an acceptable 3D image. Characteristics limiting the VF space are proposed to be 3D crosstalk, luminance difference and color difference. Since the 3D crosstalk can be presumed to be dominating the quality of the end user experience and in our approach is forming the basis for the calculations of the other optical parameters, the reliability of the 3D crosstalk measurements is investigated. Furthermore the effect on the derived VF definition is evaluated. We have performed comparison 3D crosstalk measurements with different measurement device apertures and the effect of different measurement geometry on the results on actual 3D displays is reported.

  19. Evaluation of viewing experiences induced by curved 3D display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-05-01

    As advanced display technology has been developed, much attention has been given to flexible panels. On top of that, with the momentum of the 3D era, stereoscopic 3D technique has been combined with the curved displays. However, despite the increased needs for 3D function in the curved displays, comparisons between curved and flat panel displays with 3D views have rarely been tested. Most of the previous studies have investigated their basic ergonomic aspects such as viewing posture and distance with only 2D views. It has generally been known that curved displays are more effective in enhancing involvement in specific content stories because field of views and distance from the eyes of viewers to both edges of the screen are more natural in curved displays than in flat panel ones. For flat panel displays, ocular torsions may occur when viewers try to move their eyes from the center to the edges of the screen to continuously capture rapidly moving 3D objects. This is due in part to differences in viewing distances from the center of the screen to eyes of viewers and from the edges of the screen to the eyes. Thus, this study compared S3D viewing experiences induced by a curved display with those of a flat panel display by evaluating significant subjective and objective measures.

  20. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  1. Panoramic, large-screen, 3-D flight display system design

    NASA Technical Reports Server (NTRS)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  2. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  3. High-definition 3D display for training applications

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Tchon, Joe; Barnidge, Tracy

    2010-04-01

    In this paper, we report on the development of a high definition stereoscopic liquid crystal display for use in training applications. The display technology provides full spatial and temporal resolution on a liquid crystal display panel consisting of 1920×1200 pixels at 60 frames per second. Display content can include mixed 2D and 3D data. Source data can be 3D video from cameras, computer generated imagery, or fused data from a variety of sensor modalities. Discussion of the use of this display technology in military and medical industries will be included. Examples of use in simulation and training for robot tele-operation, helicopter landing, surgical procedures, and vehicle repair, as well as for DoD mission rehearsal will be presented.

  4. Development of a stereo 3-D pictorial primary flight display

    NASA Technical Reports Server (NTRS)

    Nataupsky, Mark; Turner, Timothy L.; Lane, Harold; Crittenden, Lucille

    1989-01-01

    Computer-generated displays are becoming increasingly popular in aerospace applications. The use of stereo 3-D technology provides an opportunity to present depth perceptions which otherwise might be lacking. In addition, the third dimension could also be used as an additional dimension along which information can be encoded. Historically, the stereo 3-D displays have been used in entertainment, in experimental facilities, and in the handling of hazardous waste. In the last example, the source of the stereo images generally has been remotely controlled television camera pairs. The development of a stereo 3-D pictorial primary flight display used in a flight simulation environment is described. The applicability of stereo 3-D displays for aerospace crew stations to meet the anticipated needs for 2000 to 2020 time frame is investigated. Although, the actual equipment that could be used in an aerospace vehicle is not currently available, the lab research is necessary to determine where stereo 3-D enhances the display of information and how the displays should be formatted.

  5. 3D display considerations for rugged airborne environments

    NASA Astrophysics Data System (ADS)

    Barnidge, Tracy J.; Tchon, Joseph L.

    2015-05-01

    The KC-46 is the next generation, multi-role, aerial refueling tanker aircraft being developed by Boeing for the United States Air Force. Rockwell Collins has developed the Remote Vision System (RVS) that supports aerial refueling operations under a variety of conditions. The system utilizes large-area, high-resolution 3D displays linked with remote sensors to enhance the operator's visual acuity for precise aerial refueling control. This paper reviews the design considerations, trade-offs, and other factors related to the selection and ruggedization of the 3D display technology for this military application.

  6. In memoriam: Fumio Okano, innovator of 3D display

    NASA Astrophysics Data System (ADS)

    Arai, Jun

    2014-06-01

    Dr. Fumio Okano, a well-known pioneer and innovator of three-dimensional (3D) displays, passed away on 26 November 2013 in Kanagawa, Japan, at the age of 61. Okano joined Japan Broadcasting Corporation (NHK) in Tokyo in 1978. In 1981, he began researching high-definition television (HDTV) cameras, HDTV systems, ultrahigh-definition television systems, and 3D televisions at NHK Science and Technology Research Laboratories. His publications have been frequently cited by other researchers. Okano served eight years as chair of the annual SPIE conference on Three- Dimensional Imaging, Visualization, and Display and another four years as co-chair. Okano's leadership in this field will be greatly missed and he will be remembered for his enduring contributions and innovations in the field of 3D displays. This paper is a summary of the career of Fumio Okano, as well as a tribute to that career and its lasting legacy.

  7. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  8. 3D display design concept for cockpit and mission crewstations

    NASA Astrophysics Data System (ADS)

    Thayn, Jarod R.; Ghrayeb, Joseph; Hopper, Darrel G.

    1999-08-01

    Simple visual cues increase human awareness and perception and decrease reaction times. Humans are visual beings requiring visual cues to warn them of impending danger especially on combat aviation. The simplest cues are those that allow the individual to immerse themselves in the situations to which they must respond. Two-dimensional (2-D) display technology has real limits on what types of information and how much information it can present to the viewer without becoming disorienting or confusing. True situational awareness requires a transition from 2-D to three-dimensional (3-D) display technology.

  9. Tangible holography: adding synthetic touch to 3D display

    NASA Astrophysics Data System (ADS)

    Plesniak, Wendy J.; Klug, Michael A.

    1997-04-01

    Just as we expect holographic technology to become a more pervasive and affordable instrument of information display, so too will high fidelity force-feedback devices. We describe a testbed system which uses both of these technologies to provide simultaneous, coincident visuo- haptic spatial display of a 3D scene. The system provides the user with a stylus to probe a geometric model that is also presented visually in full parallax. The haptics apparatus is a six degree-of-freedom mechanical device with servomotors providing active force display. This device is controlled by a free-running server that simulates static geometric models with tactile and bulk material properties, all under ongoing specification by a client program. The visual display is a full parallax edge-illuminated holographic stereogram with a wide angle of view. Both simulations, haptic and visual, represent the same scene. The haptic and visual displays are carefully scaled and aligned to provide coincident display, and together they permit the user to explore the model's 3D shape, texture and compliance.

  10. Monocular display unit for 3D display with correct depth perception

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  11. SOLIDFELIX: a transportable 3D static volume display

    NASA Astrophysics Data System (ADS)

    Langhans, Knut; Kreft, Alexander; Wörden, Henrik Tom

    2009-02-01

    Flat 2D screens cannot display complex 3D structures without the usage of different slices of the 3D model. Volumetric displays like the "FELIX 3D-Displays" can solve the problem. They provide space-filling images and are characterized by "multi-viewer" and "all-round view" capabilities without requiring cumbersome goggles. In the past many scientists tried to develop similar 3D displays. Our paper includes an overview from 1912 up to today. During several years of investigations on swept volume displays within the "FELIX 3D-Projekt" we learned about some significant disadvantages of rotating screens, for example hidden zones. For this reason the FELIX-Team started investigations also in the area of static volume displays. Within three years of research on our 3D static volume display at a normal high school in Germany we were able to achieve considerable results despite minor funding resources within this non-commercial group. Core element of our setup is the display volume which consists of a cubic transparent material (crystal, glass, or polymers doped with special ions, mainly from the rare earth group or other fluorescent materials). We focused our investigations on one frequency, two step upconversion (OFTS-UC) and two frequency, two step upconversion (TFTSUC) with IR-Lasers as excitation source. Our main interest was both to find an appropriate material and an appropriate doping for the display volume. Early experiments were carried out with CaF2 and YLiF4 crystals doped with 0.5 mol% Er3+-ions which were excited in order to create a volumetric pixel (voxel). In addition to that the crystals are limited to a very small size which is the reason why we later investigated on heavy metal fluoride glasses which are easier to produce in large sizes. Currently we are using a ZBLAN glass belonging to the mentioned group and making it possible to increase both the display volume and the brightness of the images significantly. Although, our display is currently

  12. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  13. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  14. 3D touchable holographic light-field display.

    PubMed

    Yamaguchi, Masahiro; Higashida, Ryo

    2016-01-20

    We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated. PMID:26835952

  15. Step barrier system multiview glassless 3D display

    NASA Astrophysics Data System (ADS)

    Mashitani, Ken; Hamagishi, Goro; Higashino, Masahiro; Ando, Takahisa; Takemoto, Satoshi

    2004-05-01

    The step barrier technology with multiple parallax images has overcome the problem of conventional parallax barrier system that the image quality of each image deteriorates only in the horizontal direction. The step barrier distributes the resolution problem both to the horizontal and the vertical directions. The system has a simple structure, which consists of a flat-panel display and a step barrier. The apertures of the step barrier are not stripes but tiny rectangles that are arranged in the shape of stairs, and the sub-pixels of each image have the same arrangement. And three image processes for the system applicable to computer graphics and real image have been proposed. Then, two types of 3-D displays were developed, 22-inch model and 50-inch model. The 22-inch model employs a very high-definition liquid crystal display of 3840 x 2400 pixels. The number of parallax images is seven and the resolution of one image is 1646 x 800. The 50-inch model has four viewing points on the plasma display panel of 1280 x 768 pixels. It can provide stereoscopic animations and the resolution of one image is 960 x 256 pixels. Moreover, the structural or electric 2-D 3-D compatible system was developed.

  16. Will true 3d display devices aid geologic interpretation. [Mirage

    SciTech Connect

    Nelson, H.R. Jr.

    1982-04-01

    A description is given of true 3D display devices and techniques that are being evaluated in various research laboratories around the world. These advances are closely tied to the expected application of 3D display devices as interpretational tools for explorationists. 34 refs.

  17. 3-D TV and display using multiview

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Kim, Shin-Hwan; Park, Min-Chul; Kim, Sung-Kyu

    2008-04-01

    The current multiview 3 dimensional imaging systems are mostly based on a multiview image set. Depending on the methods of presenting and arranging the image set on a display panel or a screen, the systems are basically classified into contact- and projection-type. The contact-type is further classified into MV(Multiview), IP(Integral Photography), Multiple Image, FLA(Focused light array) and Tracking. The depth cue provided by those types are both binocular and motion parallaxes. The differences between the methods in a same type can only be identified by the composition of images projected to viewer eyes at the viewing regions.

  18. Wide-viewing-angle floating 3D display system with no 3D glasses

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Previously, the author has described a new 3D imaging technology entitled 'real depth' with several different configurations and methods of implantation. Included were several methods to 'float' images in free space. Viewers can pass their hands through the image or appear to hold it in their hands. Most implementations provide an angle of view of approximately 45 degrees. The technology produces images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. Unlike stereoscopic 3D imaging, no glasses, headgear or other viewing aids are used. In addition to providing traditional depth cues, such as perspective and background images occlusion, the technology also provides both horizontal and vertical binocular parallax producing visual accommodation and convergence which coincide. Consequently, viewing these images do not produce headaches, fatigue, or eyestrain, regardless of how long they are viewed. A method was also proposed to provide a floating image display system with a wide angle of view. Implementation of this design proved problematic, producing various image distortions. In this paper the author discloses new methods to produce aerial images with a wide angel of view and improved image quality.

  19. The 3D visualization technology research of submarine pipeline based Horde3D GameEngine

    NASA Astrophysics Data System (ADS)

    Yao, Guanghui; Ma, Xiushui; Chen, Genlang; Ye, Lingjian

    2013-10-01

    With the development of 3D display and virtual reality technology, its application gets more and more widespread. This paper applies 3D display technology to the monitoring of submarine pipeline. We reconstruct the submarine pipeline and its surrounding submarine terrain in computer using Horde3D graphics rendering engine on the foundation database "submarine pipeline and relative landforms landscape synthesis database" so as to display the virtual scene of submarine pipeline based virtual reality and show the relevant data collected from the monitoring of submarine pipeline.

  20. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  1. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  2. Combining volumetric edge display and multiview display for expression of natural 3D images

    NASA Astrophysics Data System (ADS)

    Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki

    2006-02-01

    In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.

  3. Development of an automultiscopic true 3D display (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kurtz, Russell M.; Pradhan, Ranjit D.; Aye, Tin M.; Yu, Kevin H.; Okorogu, Albert O.; Chua, Kang-Bin; Tun, Nay; Win, Tin; Schindler, Axel

    2005-05-01

    True 3D displays, whether generated by volume holography, merged stereopsis (requiring glasses), or autostereoscopic methods (stereopsis without the need for special glasses), are useful in a great number of applications, ranging from training through product visualization to computer gaming. Holography provides an excellent 3D image but cannot yet be produced in real time, merged stereopsis results in accommodation-convergence conflict (where distance cues generated by the 3D appearance of the image conflict with those obtained from the angular position of the eyes) and lacks parallax cues, and autostereoscopy produces a 3D image visible only from a small region of space. Physical Optics Corporation is developing the next step in real-time 3D displays, the automultiscopic system, which eliminates accommodation-convergence conflict, produces 3D imagery from any position around the display, and includes true image parallax. Theory of automultiscopic display systems is presented, together with results from our prototype display, which produces 3D video imagery with full parallax cues from any viewing direction.

  4. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  5. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  6. Multiple footprint stereo algorithms for 3D display content generation

    NASA Astrophysics Data System (ADS)

    Boughorbel, Faysal

    2007-02-01

    This research focuses on the conversion of stereoscopic video material into an image + depth format which is suitable for rendering on the multiview auto-stereoscopic displays of Philips. The recent interest shown in the movie industry for 3D significantly increased the availability of stereo material. In this context the conversion from stereo to the input formats of 3D displays becomes an important task. In this paper we present a stereo algorithm that uses multiple footprints generating several depth candidates for each image pixel. We characterize the various matching windows and we devise a robust strategy for extracting high quality estimates from the resulting depth candidates. The proposed algorithm is based on a surface filtering method that employs simultaneously the available depth estimates in a small local neighborhood while ensuring correct depth discontinuities by the inclusion of image constraints. The resulting highquality image-aligned depth maps proved an excellent match with our 3D displays.

  7. Super stereoscopy technique for comfortable and realistic 3D displays.

    PubMed

    Akşit, Kaan; Niaki, Amir Hossein Ghanbari; Ulusoy, Erdem; Urey, Hakan

    2014-12-15

    Two well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters. The pinholes generate blur-free retinal images so as to enable correct accommodation, while the delivery of multiple parallax images per eye creates an approximate blur effect for defocused objects. Experiments performed with cameras and human viewers indicate that the technique works as desired. In case two, pinholes equipped with color filters per eye are used; the technique can be used on a regular stereoscopic display by only uploading a new content, without requiring any change in display hardware, driver, or frame rate. Apart from some tolerable loss in display brightness and decrease in natural spatial resolution limit of the eye because of pinholes, the technique is quite promising for comfortable and realistic 3D vision, especially enabling the display of close objects that are not possible to display and comfortably view on regular 3DTV and cinema. PMID:25503026

  8. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  9. True 3D displays for avionics and mission crewstations

    NASA Astrophysics Data System (ADS)

    Sholler, Elizabeth A.; Meyer, Frederick M.; Lucente, Mark E.; Hopper, Darrel G.

    1997-07-01

    3D threat projection has been shown to decrease the human recognition time for events, especially for a jet fighter pilot or C4I sensor operator when the advantage of realization that a hostile threat condition exists is the basis of survival. Decreased threat recognition time improves the survival rate and results from more effective presentation techniques, including the visual cue of true 3D (T3D) display. The concept of 'font' describes the approach adopted here, but whereas a 2D font comprises pixel bitmaps, a T3D font herein comprises a set of hologram bitmaps. The T3D font bitmaps are pre-computed, stored, and retrieved as needed to build images comprising symbols and/or characters. Human performance improvement, hologram generation for a T3D symbol font, projection requirements, and potential hardware implementation schemes are described. The goal is to employ computer-generated holography to create T3D depictions of a dynamic threat environments using fieldable hardware.

  10. Stereo and motion in the display of 3-D scattergrams

    SciTech Connect

    Littlefield, R.J.

    1982-04-01

    A display technique is described that is useful for detecting structure in a 3-dimensional distribution of points. The technique uses a high resolution color raster display to produce a 3-D scattergram. Depth cueing is provided by motion parallax using a capture-replay mechanism. Stereo vision depth cues can also be provided. The paper discusses some general aspects of stereo scattergrams and describes their implementation as red/green anaglyphs. These techniques have been used with data sets containing over 20,000 data points. They can be implemented on relatively inexpensive hardware. (A film of the display was shown at the conference.)

  11. Study on basic problems in real-time 3D holographic display

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Liu, Juan; Wang, Yongtian; Pan, Yijie; Li, Xin

    2013-05-01

    In recent years, real-time three-dimensional (3D) holographic display has attracted more and more attentions. Since a holographic display can entirely reconstruct the wavefront of an actual 3D scene, it can provide all the depth cues for human eye's observation and perception, and it is believed to be the most promising technology for future 3D display. However, there are several unsolved basic problems for realizing large-size real-time 3D holographic display with a wide field of view. For examples, commercial pixelated spatial light modulators (SLM) always lead to zero-order intensity distortion; 3D holographic display needs a huge number of sampling points for the actual objects or scenes, resulting in enormous computational time; The size and the viewing zone of the reconstructed 3D optical image are limited by the space bandwidth product of the SLM; Noise from the coherent light source as well as from the system severely degrades the quality of the 3D image; and so on. Our work is focused on these basic problems, and some initial results are presented, including a technique derived theoretically and verified experimentally to eliminate the zero-order beam caused by a pixelated phase-only SLM; a method to enlarge the reconstructed 3D image and shorten the reconstruction distance using a concave reflecting mirror; and several algorithms to speed up the calculation of computer generated holograms (CGH) for the display.

  12. Current status of stereoscopic 3D LCD TV technologies

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jin

    2011-06-01

    The year 2010 may be recorded as a first year of successful commercial 3D products. Among them, the 3D LCD TVs are expected to be the major one regarding the sales volume. In this paper, the principle of current stereoscopic 3D LCD TV techniques and the required flat panel display (FPD) technologies for the realization of them are reviewed. [Figure not available: see fulltext.

  13. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  14. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  15. A low-resolution 3D holographic volumetric display

    NASA Astrophysics Data System (ADS)

    Khan, Javid; Underwood, Ian; Greenaway, Alan; Halonen, Mikko

    2010-05-01

    A simple low resolution volumetric display is presented, based on holographic volume-segments. The display system comprises a proprietary holographic screen, laser projector, associated optics plus a control unit. The holographic screen resembles a sheet of frosted glass about A4 in size (20x30cm). The holographic screen is rear-illuminated by the laser projector, which is in turn driven by the controller, to produce simple 3D images that appear outside the plane of the screen. A series of spatially multiplexed and interleaved interference patterns are pre-encoded across the surface of the holographic screen. Each illumination pattern is capable of reconstructing a single holographic volume-segment. Up to nine holograms are multiplexed on the holographic screen in a variety of configurations including a series of numeric and segmented digits. The demonstrator has good results under laboratory conditions with moving colour 3D images in front of or behind the holographic screen.

  16. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  17. Flatbed-type 3D display systems using integral imaging method

    NASA Astrophysics Data System (ADS)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  18. Virtual environment display for a 3D audio room simulation

    NASA Astrophysics Data System (ADS)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  19. A full-parallax 3D display with restricted viewing zone tracking viewer's eye

    NASA Astrophysics Data System (ADS)

    Beppu, Naoto; Yendo, Tomohiro

    2015-03-01

    The Three-Dimensional (3D) vision became widely known as familiar imaging technique now. The 3D display has been put into practical use in various fields, such as entertainment and medical fields. Development of 3D display technology will play an important role in a wide range of fields. There are various ways to the method of displaying 3D image. There is one of the methods that showing 3D image method to use the ray reproduction and we focused on it. This method needs many viewpoint images when achieve a full-parallax because this method display different viewpoint image depending on the viewpoint. We proposed to reduce wasteful rays by limiting projector's ray emitted to around only viewer using a spinning mirror, and to increase effectiveness of display device to achieve a full-parallax 3D display. We propose a method by using a tracking viewer's eye, a high-speed projector, a rotating mirror that tracking viewer (a spinning mirror), a concave mirror array having the different vertical slope arranged circumferentially (a concave mirror array), a cylindrical mirror. About proposed method in simulation, we confirmed the scanning range and the locus of the movement in the horizontal direction of the ray. In addition, we confirmed the switching of the viewpoints and convergence performance in the vertical direction of rays. Therefore, we confirmed that it is possible to realize a full-parallax.

  20. Virtual image display as a backlight for 3D.

    PubMed

    Travis, Adrian; MacCrann, Niall; Emerton, Neil; Kollin, Joel; Georgiou, Andreas; Lanier, Jaron; Bathiche, Stephen

    2013-07-29

    We describe a device which has the potential to be used both as a virtual image display and as a backlight. The pupil of the emitted light fills the device approximately to its periphery and the collimated emission can be scanned both horizontally and vertically in the manner needed to illuminate an eye in any position. The aim is to reduce the power needed to illuminate a liquid crystal panel but also to enable a smooth transition from 3D to a virtual image as the user nears the screen. PMID:23938645

  1. Perceived crosstalk assessment on patterned retarder 3D display

    NASA Astrophysics Data System (ADS)

    Zou, Bochao; Liu, Yue; Huang, Yi; Wang, Yongtian

    2014-03-01

    CONTEXT: Nowadays, almost all stereoscopic displays suffer from crosstalk, which is one of the most dominant degradation factors of image quality and visual comfort for 3D display devices. To deal with such problems, it is worthy to quantify the amount of perceived crosstalk OBJECTIVE: Crosstalk measurements are usually based on some certain test patterns, but scene content effects are ignored. To evaluate the perceived crosstalk level for various scenes, subjective test may bring a more correct evaluation. However, it is a time consuming approach and is unsuitable for real­ time applications. Therefore, an objective metric that can reliably predict the perceived crosstalk is needed. A correct objective assessment of crosstalk for different scene contents would be beneficial to the development of crosstalk minimization and cancellation algorithms which could be used to bring a good quality of experience to viewers. METHOD: A patterned retarder 3D display is used to present 3D images in our experiment. By considering the mechanism of this kind of devices, an appropriate simulation of crosstalk is realized by image processing techniques to assign different values of crosstalk to each other between image pairs. It can be seen from the literature that the structures of scenes have a significant impact on the perceived crosstalk, so we first extract the differences of the structural information between original and distorted image pairs through Structural SIMilarity (SSIM) algorithm, which could directly evaluate the structural changes between two complex-structured signals. Then the structural changes of left view and right view are computed respectively and combined to an overall distortion map. Under 3D viewing condition, because of the added value of depth, the crosstalk of pop-out objects may be more perceptible. To model this effect, the depth map of a stereo pair is generated and the depth information is filtered by the distortion map. Moreover, human attention

  2. Crosstalk in automultiscopic 3-D displays: blessing in disguise?

    NASA Astrophysics Data System (ADS)

    Jain, Ashish; Konrad, Janusz

    2007-02-01

    Most of 3-D displays suffer from interocular crosstalk, i.e., the perception of an unintended view in addition to intended one. The resulting "ghosting" at high-contrast object boundaries is objectionable and interferes with depth perception. In automultiscopic (no glasses, multiview) displays using microlenses or parallax barrier, the effect is compounded since several unintended views may be perceived at once. However, we recently discovered that crosstalk in automultiscopic displays can be also beneficial. Since spatial multiplexing of views in order to prepare a composite image for automultiscopic viewing involves sub-sampling, prior anti-alias filtering is required. To date, anti-alias filter design has ignored the presence of crosstalk in automultiscopic displays. In this paper, we propose a simple multiplexing model that takes crosstalk into account. Using this model we derive a mathematical expression for the spectrum of single view with crosstalk, and we show that it leads to reduced spectral aliasing compared to crosstalk-free case. We then propose a new criterion for the characterization of ideal anti-alias pre-filter. In the experimental part, we describe a simple method to measure optical crosstalk between views using digital camera. We use the measured crosstalk parameters to find the ideal frequency response of anti-alias filter and we design practical digital filters approximating this response. Having applied the designed filters to a number of multiview images prior to multiplexing, we conclude that, due to their increased bandwidth, the filters lead to visibly sharper 3-D images without increasing aliasing artifacts.

  3. Recent research results in stereo 3-D pictorial displays at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.

    1990-01-01

    Recent results from a NASA-Langley program which addressed stereo 3D pictorial displays from a comprehensive standpoint are reviewed. The program dealt with human factors issues and display technology aspects, as well as flight display applications. The human factors findings include addressing a fundamental issue challenging the application of stereoscopic displays in head-down flight applications, with the determination that stereoacuity is unaffected by the short-term use of stereo 3D displays. While stereoacuity has been a traditional measurement of depth perception abilities, it is a measure of relative depth, rather than actual depth (absolute depth). Therefore, depth perception effects based on size and distance judgments and long-term stereo exposure remain issues to be investigated. The applications of stereo 3D to pictorial flight displays within the program have repeatedly demonstrated increases in pilot situational awareness and task performance improvements. Moreover, these improvements have been obtained within the constraints of the limited viewing volume available with conventional stereo displays. A number of stereo 3D pictorial display applications are described, including recovery from flight-path offset, helicopter hover, and emulated helmet-mounted display.

  4. Calibrating camera and projector arrays for immersive 3D display

    NASA Astrophysics Data System (ADS)

    Baker, Harlyn; Li, Zeyu; Papadas, Constantin

    2009-02-01

    Advances in building high-performance camera arrays [1, 12] have opened the opportunity - and challenge - of using these devices for autostereoscopic display of live 3D content. Appropriate autostereo display requires calibration of these camera elements and those of the display facility for accurate placement (and perhaps resampling) of the acquired video stream. We present progress in exploiting a new approach to this calibration that capitalizes on high quality homographies between pairs of imagers to develop a global optimal solution delivering epipoles and fundamental matrices simultaneously for the entire system [2]. Adjustment of the determined camera models to deliver minimal vertical misalignment in an epipolar sense is used to permit ganged rectification of the separate streams for transitive positioning in the visual field. Individual homographies [6] are obtained for a projector array that presents the video on a holographically-diffused retroreflective surface for participant autostereo viewing. The camera model adjustment means vertical epipolar disparities of the captured signal are minimized, and the projector calibration means the display will retain these alignments despite projector pose variations. The projector calibration also permits arbitrary alignment shifts to accommodate focus-of-attention vengeance, should that information be available.

  5. 3D head mount display with single panel

    NASA Astrophysics Data System (ADS)

    Wang, Yuchang; Huang, Junejei

    2014-09-01

    The head mount display for entertainment usually requires light weight. But in the professional application has more requirements. The image quality, field of view (FOV), color gamut, response and life time are considered items, too. A head mount display based on 1-chip TI DMD spatial light modulator is proposed. The multiple light sources and splitting images relay system are the major design tasks. The relay system images the object (DMD) into two image planes to crate binocular vision. The 0.65 inch 1080P DMD is adopted. The relay has a good performance which includes the doublet to reduce the chromatic aberration. Some spaces are reserved for placing the mirror and adjustable mechanism. The mirror splits the rays to the left and right image plane. These planes correspond to the eyepieces objects and image to eyes. A changeable mechanism provides the variable interpupillary distance (IPD). The folding optical path makes sure that the HMD center of gravity is close to the head and prevents the uncomfortable downward force being applied to head or orbit. Two RGB LED assemblies illuminate to the DMD in different angle. The light is highly collimated. The divergence angle is small enough such that one LED ray would only enters to the correct eyepiece. This switching is electronic controlled. There is no moving part to produce vibration and fast switch would be possible. Two LED synchronize with 3D video sync by a driving board which also controls the DMD. When the left eye image is displayed on DMD, the LED for left optical path turns on. Vice versa for right image and 3D scene is accomplished.

  6. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  7. Display depth analyses with the wave aberration for the auto-stereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Chen, Duo; Chen, Zhidong; Zhang, Wanlu; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    Because the aberration severely affects the display performances of the auto-stereoscopic 3D display, the diffraction theory is used to analyze the diffraction field distribution and the display depth through aberration analysis. Based on the proposed method, the display depth of central and marginal reconstructed images is discussed. The experimental results agree with the theoretical analyses. Increasing the viewing distance or decreasing the lens aperture can improve the display depth. Different viewing distances and the LCD with two lens-arrays are used to verify the conclusion.

  8. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  9. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  10. Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.

    PubMed

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-05-18

    We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart. PMID:26074575

  11. Dual side transparent OLED 3D display using Gabor super-lens

    NASA Astrophysics Data System (ADS)

    Chestak, Sergey; Kim, Dae-Sik; Cho, Sung-Woo

    2015-03-01

    We devised dual side transparent 3D display using transparent OLED panel and two lenticular arrays. The OLED panel is sandwiched between two parallel confocal lenticular arrays, forming Gabor super-lens. The display provides dual side stereoscopic 3D imaging and floating image of the object, placed behind it. The floating image can be superimposed with the displayed 3D image. The displayed autostereoscopic 3D images are composed of 4 views, each with resolution 64x90 pix.

  12. Comprehensive evaluation of latest 2D/3D monitors and comparison to a custom-built 3D mirror-based display in laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Reiser, Silvano; Kohn, Nils; Witte, Michael; Leiner, Ulrich; Mühlbach, Lothar; Ruschin, Detlef; Reiner, Wolfgang; Feussner, Hubertus

    2014-03-01

    Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.

  13. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display. PMID:27136814

  14. Toward a 3D video format for auto-stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Vetro, Anthony; Yea, Sehoon; Smolic, Aljoscha

    2008-08-01

    There has been increased momentum recently in the production of 3D content for cinema applications; for the most part, this has been limited to stereo content. There are also a variety of display technologies on the market that support 3DTV, each offering a different viewing experience and having different input requirements. More specifically, stereoscopic displays support stereo content and require glasses, while auto-stereoscopic displays avoid the need for glasses by rendering view-dependent stereo pairs for a multitude of viewing angles. To realize high quality auto-stereoscopic displays, multiple views of the video must either be provided as input to the display, or these views must be created locally at the display. The former approach has difficulties in that the production environment is typically limited to stereo, and transmission bandwidth for a large number of views is not likely to be available. This paper discusses an emerging 3D data format that enables the latter approach to be realized. A new framework for efficiently representing a 3D scene and enabling the reconstruction of an arbitrarily large number of views prior to rendering is introduced. Several design challenges are also highlighted through experimental results.

  15. 3D Technology for intelligent trackers

    SciTech Connect

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  16. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  17. The hype cycle in 3D displays: inherent limits of autostereoscopy

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2013-06-01

    Since a couple of years, a renaissance of 3dimensional cinema can be observed. Even though the stereoscopy was quite popular within the last 150 years, the 3d cinema has disappeared and re-established itself several times. The first boom in the late 19th century stagnated and vanished after a few years of success, the same happened again in 50's and 80's of the 20th century. With the commercial success of the 3d blockbuster "Avatar" in 2009, at the latest, it is obvious that the 3d cinema is having a comeback. How long will it last this time? There are already some signs of a declining interest in 3d movies, as the discrepancy between expectations and the results delivered becomes more evident. From the former hypes it is known: After an initial phase of curiosity (high expectations and excessive fault tolerance), a phase of frustration and saturation (critical analysis and subsequent disappointment) will follow. This phenomenon is known as "Hype Cycle" The everyday experienced evolution of technology has conditioned the consumers. The expectation "any technical improvement will preserve all previous properties" cannot be fulfilled with present 3d technologies. This is an inherent problem of stereoscopy and autostereoscopy: The presentation of an additional dimension caused concessions in relevant characteristics (i.e. resolution, brightness, frequency, viewing area) or leads to undesirable physical side effects (i.e. subjective discomfort, eye strain, spatial disorientation, feeling of nausea). It will be verified that the 3d apparatus (3d glasses or 3d display) is also the source for these restrictions and a reason for decreasing fascination. The limitations of present autostereoscopic technologies will be explained.

  18. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  19. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  20. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  1. IPMC actuator array as a 3D haptic display

    NASA Astrophysics Data System (ADS)

    Nakano, Masanori; Mazzone, Andrea; Piffaretti, Filippo; Gassert, Roger; Nakao, Masayuki; Bleuler, Hannes

    2005-05-01

    Based on the concept of Mazzone et al., we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.

  2. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  3. Integration of a 3D perspective view in the navigation display: featuring pilot's mental model

    NASA Astrophysics Data System (ADS)

    Ebrecht, L.; Schmerwitz, S.

    2015-05-01

    Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.

  4. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components. PMID:27136858

  5. Future of photorefractive based holographic 3D display

    NASA Astrophysics Data System (ADS)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  6. Special subpixel arrangement-based 3D display with high horizontal resolution.

    PubMed

    Lv, Guo-Jiao; Wang, Qiong-Hua; Zhao, Wu-Xiang; Wu, Fei

    2014-11-01

    A special subpixel arrangement-based 3D display is proposed. This display consists of a 2D display panel and a parallax barrier. On the 2D display panel, subpixels have a special arrangement, so they can redefine the formation of color pixels. This subpixel arrangement can bring about triple horizontal resolution for a conventional 2D display panel. Therefore, when these pixels are modulated by the parallax barrier, the 3D images formed also have triple horizontal resolution. A prototype of this display is developed. Experimental results show that this display with triple horizontal resolution can produce a better display effect than the conventional one. PMID:25402897

  7. High-Performance 3D Articulated Robot Display

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy

    2011-01-01

    In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle

  8. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  9. Development and Evaluation of 2-D and 3-D Exocentric Synthetic Vision Navigation Display Concepts for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  10. Multiview image integration system for glassless 3D display

    NASA Astrophysics Data System (ADS)

    Ando, Takahisa; Mashitani, Ken; Higashino, Masahiro; Kanayama, Hideyuki; Murata, Haruhiko; Funazou, Yasuo; Sakamoto, Naohisa; Hazama, Hiroshi; Ebara, Yasuo; Koyamada, Koji

    2005-03-01

    We have developed a multi-view image integration system, which combines seven parallax video images into a single video image so that it fits the parallax barrier. The apertures of this barrier are not stripes but tiny rectangles that are arranged in the shape of stairs. Commodity hardware is used to satisfy a specification which requires that the resolution of each parallax video image is SXGA(1645×800 pixel resolution), the resulting integrated image is QUXGA-W(3840×2400 pixel resolution), and the frame rate is fifteen frames per second. The point is that the system can provide with QUXGA-W video image, which corresponds to 27MB, at 15fps, that is about 2Gbps. Using the integration system and a Liquid Crystal Display with the parallax barrier, we can enjoy an immersive live video image which supports seven viewpoints without special glasses. In addition, since the system can superimpose the CG images of the relevant seven viewpoints into the live video images, it is possible to communicate with remote users by sharing a virtual object.

  11. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images. PMID:27410090

  12. Monocular 3D see-through head-mounted display via complex amplitude modulation.

    PubMed

    Gao, Qiankun; Liu, Juan; Han, Jian; Li, Xin

    2016-07-25

    The complex amplitude modulation (CAM) technique is applied to the design of the monocular three-dimensional see-through head-mounted display (3D-STHMD) for the first time. Two amplitude holograms are obtained by analytically dividing the wavefront of the 3D object to the real and the imaginary distributions, and then double amplitude-only spatial light modulators (A-SLMs) are employed to reconstruct the 3D images in real-time. Since the CAM technique can inherently present true 3D images to the human eye, the designed CAM-STHMD system avoids the accommodation-convergence conflict of the conventional stereoscopic see-through displays. The optical experiments further demonstrated that the proposed system has continuous and wide depth cues, which enables the observer free of eye fatigue problem. The dynamic display ability is also tested in the experiments and the results showed the possibility of true 3D interactive display. PMID:27464184

  13. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  14. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  15. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  16. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-01

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method. PMID:23669981

  17. Display technology - Human factors concepts

    NASA Astrophysics Data System (ADS)

    Stokes, Alan; Wickens, Christopher; Kite, Kirsten

    1990-03-01

    Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.

  18. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  19. Front and rear projection autostereoscopic 3D displays based on lenticular sheets

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Zang, Shang-Fei; Qi, Lin

    2015-03-01

    A front projection autostereoscopic display is proposed. The display is composed of eight projectors and a 3D-imageguided screen which having a lenticular sheet and a retro-reflective diffusion screen. Based on the optical multiplexing and de-multiplexing, the optical functions of the 3D-image-guided screen are parallax image interlacing and viewseparating, which is capable of reconstructing 3D images without quality degradation from the front direction. The operating principle, optical design calculation equations and correction method of parallax images are given. A prototype of the front projection autostereoscopic display is developed, which enhances the brightness and 3D perceptions, and improves space efficiency. The performance of this prototype is evaluated by measuring the luminance and crosstalk distribution along the horizontal direction at the optimum viewing distance. We also propose a rear projection autostereoscopic display. The display consists of eight projectors, a projection screen, and two lenticular sheets. The operation principle and calculation equations are described in detail and the parallax images are corrected by means of homography. A prototype of the rear projection autostereoscopic display is developed. The normalized luminance distributions of viewing zones from the measurement are given. Results agree well with the designed values. The prototype presents high resolution and high brightness 3D images. The research has potential applications in some commercial entertainments and movies for the realistic 3D perceptions.

  20. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays

    PubMed Central

    2014-01-01

    Background To validate the association between accommodation and visual asthenopia by measuring objective accommodative amplitude with the Optical Quality Analysis System (OQAS®, Visiometrics, Terrassa, Spain), and to investigate associations among accommodation, ocular surface instability, and visual asthenopia while viewing 3D displays. Methods Fifteen normal adults without any ocular disease or surgical history watched the same 3D and 2D displays for 30 minutes. Accommodative ability, ocular protection index (OPI), and total ocular symptom scores were evaluated before and after viewing the 3D and 2D displays. Accommodative ability was evaluated by the near point of accommodation (NPA) and OQAS to ensure reliability. The OPI was calculated by dividing the tear breakup time (TBUT) by the interblink interval (IBI). The changes in accommodative ability, OPI, and total ocular symptom scores after viewing 3D and 2D displays were evaluated. Results Accommodative ability evaluated by NPA and OQAS, OPI, and total ocular symptom scores changed significantly after 3D viewing (p = 0.005, 0.003, 0.006, and 0.003, respectively), but yielded no difference after 2D viewing. The objective measurement by OQAS verified the decrease of accommodative ability while viewing 3D displays. The change of NPA, OPI, and total ocular symptom scores after 3D viewing had a significant correlation (p < 0.05), implying direct associations among these factors. Conclusions The decrease of accommodative ability after 3D viewing was validated by both subjective and objective methods in our study. Further, the deterioration of accommodative ability and ocular surface stability may be causative factors of visual asthenopia in individuals viewing 3D displays. PMID:24612686

  1. Developing three-dimensional display technologies

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Allen, Daniel J.

    2008-08-01

    Stereo, multi-perspective, and volumetric display technologies have made several recent gains. We are seeing increased availability of such systems for entertainment, both in theaters and for the home. The concurrent advent of medical imaging modalities that deliver very large data sets such as, spiral CT, high-field MRI, and 3-D ultrasound, makes renewed assessment of 3-D display of medical images attractive. We concentrate on autostereographic displays, those that are viewed without viewing aids such as special eye-glasses or goggles. We begin with a very brief review of a few stereo-display, multi-perspective, and volumetric display technologies. We focus our attention primarily on the integral display (ID) and the computer-generated hologram (CGH). We will examine the boost that ID has gotten from the availability of flat-panel displays with very high pixel counts. We also discuss some recent advances in CGH's included the emergence of rewritable holographic materials. We also look at one, undeveloped 3-D display technology: the Correlelogram.

  2. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  3. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  4. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  5. Research on gaze-based interaction to 3D display system

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Moo; Jeon, Kyeong-Won; Kim, Sung-Kyu

    2006-10-01

    There have been reported several researches on gaze tracking techniques using monocular camera or stereo camera. The most popular used gaze estimation techniques are based on PCCR (Pupil Center & Cornea Reflection). These techniques are for gaze tracking for 2D screen or images. In this paper, we address the gaze-based 3D interaction to stereo image for 3D virtual space. To the best of our knowledge, our paper first addresses the 3D gaze interaction techniques to 3D display system. Our research goal is the estimation of both of gaze direction and gaze depth. Until now, the most researches are focused on only gaze direction for the application to 2D display system. It should be noted that both of gaze direction and gaze depth should be estimated for the gaze-based interaction in 3D virtual space. In this paper, we address the gaze-based 3D interaction techniques with glassless stereo display. The estimation of gaze direction and gaze depth from both eyes is a new important research topic for gaze-based 3D interaction. We present our approach for the estimation of gaze direction and gaze depth and show experimentation results.

  6. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  7. Evaluation of 3D technologies in dentistry.

    PubMed

    Gracco, Antonio; Mazzoli, Alida; Raffaeli, Roberto; Germani, Michele

    2008-01-01

    Quality of service, in terms of improvement in patient satisfaction, is an increasingly important objective in all medical fields, and is especially imperative in orthodontics due to the high numbers of patients treated. Information technology can provide a meaningful contribution to bettering treatment processes, and we maintain that systems such as CAD, CAM and CAE, although initially conceived for industrial purposes, should be evaluated, studied and customized with a view to use in medicine. The present study aims to evaluate Reverse Engineering (RE) and Rapid Prototyping (RP) in order to define an ideal chain of advanced technological solutions to support the critical processes of orthodontic activity. PMID:19294238

  8. Analysis of optical characteristics of photopolymer-based VHOE for multiview autostereoscopic 3D display system

    NASA Astrophysics Data System (ADS)

    Cho, Byung-Chul; Gu, Jung-Sik; Kim, Eun-Soo

    2002-06-01

    Generally, an autostereoscopic display presents a 3D image to a viewer without the need for glasses or other encumbering viewing aids. In this paper, we propose a new autostereoscopic 3D video display system which allows viewers to observe 3D images in the same range of viewing angle. In this system, a photopolymer-based VHOE is made from volume holographic recording materials and it is used for projecting a multiview images to the spatially different directions sequentially in time. Since this technique is based on the VHOE made from the photorefractive photopolymer instead of the conventional parallax barrier or lenticular sheet, the resolution and parallax number of the proposed VHOE-based 3D display system are limited by the photopolymer's physical and optical properties. To make the photopolymer to be applicable for a multiview autostereoscopic 3D display system, the photopolymer must be capable of achieving some properties such as a low distortion of the diffracted light beam, high diffraction efficiency, and uniform intensities of the reconstructed diffracted lights from the fully recorded diffraction gratings. In this paper, the optical and physical characteristics of the DuPont HRF photopolymer-based VHOE such as a distortion of displayed image, uniformity of the diffracted light intensity, photosensitivity and diffraction efficiency are measured and discussed.

  9. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  10. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  11. Color and brightness uniformity compensation of a multi-projection 3D display

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Juyong; Nam, Dongkyung; Park, Du-Sik

    2015-09-01

    Light-field displays are good candidates in the field of glasses-free 3D display for showing real 3D images without decreasing the image resolution. Light-field displays can create light rays using a large number of projectors in order to express the natural 3D images. However, in light-field displays using multi-projectors, the compensation is very critical due to different characteristics and arrangement positions of each projector. In this paper, we present an enhanced 55- inch, 100-Mpixel multi-projection 3D display consisting of 96 micro projectors for immersive natural 3D viewing in medical and educational applications. To achieve enhanced image quality, color and brightness uniformity compensation methods are utilized along with an improved projector configuration design and a real-time calibration process of projector alignment. For color uniformity compensation, projected images from each projector are captured by a camera arranged in front of the screen, the number of pixels based on RGB color intensities of each captured image is analyzed, and the distributions of RGB color intensities are adjusted by using the respective maximum values of RGB color intensities. For brightness uniformity compensation, each light-field ray emitted from a screen pixel is modeled by a radial basis function, and compensating weights of each screen pixel are calculated and transferred to the projection images by the mapping relationship between the screen and projector coordinates. Finally, brightness compensated images are rendered for each projector. Consequently, the display shows improved color and brightness uniformity, and consistent, exceptional 3D image quality.

  12. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  13. System crosstalk measurement of a time-sequential 3D display using ideal shutter glasses

    NASA Astrophysics Data System (ADS)

    Chen, Fu-Hao; Huang, Kuo-Chung; Lin, Lang-Chin; Chou, Yi-Heng; Lee, Kuen

    2011-03-01

    The market of stereoscopic 3D TV grows up fast recently; however, for 3D TV really taking off, the interoperability of shutter glasses (SG) to view different TV sets must be solved, so we developed a measurement method with ideal shutter glasses (ISG) to separate time-sequential stereoscopic displays and SG. For measuring the crosstalk from time-sequential stereoscopic 3D displays, the influences from SG must be eliminated. The advantages are that the sources to crosstalk are distinguished, and the interoperability of SG is broadened. Hence, this paper proposed ideal shutter glasses, whose non-ideal properties are eliminated, as a platform to evaluate the crosstalk purely from the display. In the ISG method, the illuminance of the display was measured in time domain to analyze the system crosstalk SCT of the display. In this experiment, the ISG method was used to measure SCT with a high-speed-response illuminance meter. From the time-resolved illuminance signals, the slow time response of liquid crystal leading to SCT is visualized and quantified. Furthermore, an intriguing phenomenon that SCT measured through SG increases with shortening view distance was observed, and it may arise from LC leakage of the display and shutter leakage at large view angle. Thus, we measured how LC and shutter leakage depending on view angle and verified our argument. Besides, we used the ISG method to evaluate two displays.

  14. Four-view stereoscopic imaging and display system for web-based 3D image communication

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Park, Young-Gyoo; Kim, Eun-Soo

    2004-10-01

    In this paper, a new software-oriented autostereoscopic 4-view imaging & display system for web-based 3D image communication is implemented by using 4 digital cameras, Intel Xeon server computer system, graphic card having four outputs, projection-type 4-view 3D display system and Microsoft' DirectShow programming library. And its performance is also analyzed in terms of image-grabbing frame rates, displayed image resolution, possible color depth and number of views. From some experimental results, it is found that the proposed system can display 4-view VGA images with a full color of 16bits and a frame rate of 15fps in real-time. But the image resolution, color depth, frame rate and number of views are mutually interrelated and can be easily controlled in the proposed system by using the developed software program so that, a lot of flexibility in design and implementation of the proposed multiview 3D imaging and display system are expected in the practical application of web-based 3D image communication.

  15. Research on steady-state visual evoked potentials in 3D displays

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  16. Advanced and tendencies in the development of display technologies

    NASA Astrophysics Data System (ADS)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  17. Low-cost approach of a 3D display for general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Sachs, Gottfried; Sperl, Roman; Karl, Wunibald

    2001-08-01

    A low cost 3D-display and navigation system is described which presents guidance information in a 3-dimensional format to the pilot. For achieving the low cost goal, Commercial-off-the-Shelf components are used. The visual information provided by the 3D-display includes a presentation of the future flight path and other guidance elements as well as an image of the outside world. For generating the displayed information, a PC will be used. An appropriate computer software is available to generate the displayed information in real-time with an adequately high update rate. Precision navigation data which is required for accurately adjusting the displayed guidance information are provided by an integrated low cost navigation system. This navigation system consists of a differential global positioning system and an inertial measurement unit. Data from the navigation system is fed into an onboard-computer, using terrain elevation and feature analysis data to generate a synthetic image of the outside world. The system is intended to contribute to the safety of General Aviation aircraft, providing an affordable guidance and navigation aid for this type of aircraft. The low cost 3D display and navigation system will be installed in a two-seat Grob 109B aircraft which is operated by the Institute of Flight Mechanics and Flight Control of the Technische Universitchen as a research vehicle.

  18. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  19. Electro-holography display using computer generated hologram of 3D objects based on projection spectra

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Wang, Duocheng; He, Chao

    2012-11-01

    A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.

  20. 3D Printing technologies for drug delivery: a review.

    PubMed

    Prasad, Leena Kumari; Smyth, Hugh

    2016-07-01

    With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years. PMID:26625986

  1. On-screen-display (OSD) menu detection for proper stereo content reproduction for 3D TV

    NASA Astrophysics Data System (ADS)

    Tolstaya, Ekaterina V.; Bucha, Victor V.; Rychagov, Michael N.

    2011-03-01

    Modern consumer 3D TV sets are able to show video content in two different modes: 2D and 3D. In 3D mode, stereo pair comes from external device such as Blue-ray player, satellite receivers etc. The stereo pair is split into left and right images that are shown one after another. The viewer sees different image for left and right eyes using shutter-glasses properly synchronized with a 3DTV. Besides, some devices that provide TV with a stereo content are able to display some additional information by imposing an overlay picture on video content, an On-Screen-Display (OSD) menu. Some OSDs are not always 3D compatible and lead to incorrect 3D reproduction. In this case, TV set must recognize the type of OSD, whether it is 3D compatible, and visualize it correctly by either switching off stereo mode, or continue demonstration of stereo content. We propose a new stable method for detection of 3D incompatible OSD menus on stereo content. Conventional OSD is a rectangular area with letters and pictograms. OSD menu can be of different transparency levels and colors. To be 3D compatible, an OSD is overlaid separately on both images of a stereo pair. The main problem in detecting OSD is to distinguish whether the color difference is due to OSD presence, or due to stereo parallax. We applied special techniques to find reliable image difference and additionally used a cue that usually OSD has very implicit geometrical features: straight parallel lines. The developed algorithm was tested on our video sequences database, with several types of OSD with different colors and transparency levels overlaid upon video content. Detection quality exceeded 99% of true answers.

  2. 3D-printing technologies for electrochemical applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool. PMID:27048921

  3. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  4. Web-based intermediate view reconstruction for multiview stereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kyu; Lee, Won-Kyung; Ko, Jung-Hwan; Bae, Kyung-hoon; Kim, Eun-Soo

    2005-08-01

    In this paper, web-based intermediate view reconstruction for multiview stereoscopic 3D display system is proposed by using stereo cameras and disparity maps, Intel Xeon server computer system and Microsoft's DirectShow programming library and its performance is analyzed in terms of image-grabbing frame rate and number of views. In the proposed system, stereo images are initially captured by using stereo digital cameras and then, these are processed in the Intel Xeon server computer system. And then, the captured two-view image data is compressed by extraction of disparity data between them and transmitted to another client system through the information network, in which the received stereo data is displayed on the 16-view stereoscopic 3D display system by using intermediate view reconstruction. The program for controlling the overall system is developed based on the Microsoft DirectShow SDK. From some experimental results, it is found that the proposed system can display 16-view 3D images with a gray of 8bits and a frame rate of 15fps in real-time.

  5. Assessment of eye fatigue caused by 3D displays based on multimodal measurements.

    PubMed

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  6. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    PubMed Central

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  7. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  8. Development and test of a low-cost 3D display for small aircraft

    NASA Astrophysics Data System (ADS)

    Sachs, Gottfried; Sperl, Roman; Nothnagel, Klaus

    2002-07-01

    A low-cost 3D-display and navigation system providing guidance information in a 3-dimensional format is described. The system including a LC display, a PC based computer for generating the 3-dimensional guidance information, a navigation system providing D/GPS and inertial sensor based position and attitude data was realized using Commercial-off-the-Shelf components. An efficient computer software has been developed to generate the 3-dimensional guidance information with a high update rate. The guidance concept comprises an image of the outside world as well as a presentation of the command flight path, a predictor and other guidance elements in a 3-dimensional format.

  9. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  10. Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display

    NASA Technical Reports Server (NTRS)

    Liao, Min-Ju; Johnson, Walter W.

    2004-01-01

    The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.

  11. Single DMD time-multiplexed 64-views autostereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Loreti, Luigi

    2013-03-01

    Based on previous prototype of the Real time 3D holographic display developed last year, we developed a new concept of auto-stereoscopic multiview display (64 views), wide angle (90°) 3D full color display. The display is based on a RGB laser light source illuminating a DMD (Discovery 4100 0,7") at 24.000 fps, an image deflection system made with an AOD (Acoustic Optic Deflector) driven by a piezo-electric transducer generating a variable standing acoustic wave on the crystal that acts as a phase grating. The DMD projects in fast sequence 64 point of view of the image on the crystal cube. Depending on the frequency of the standing wave, the input picture sent by the DMD is deflected in different angle of view. An holographic screen at a proper distance diffuse the rays in vertical direction (60°) and horizontally select (1°) only the rays directed to the observer. A telescope optical system will enlarge the image to the right dimension. A VHDL firmware to render in real-time (16 ms) 64 views (16 bit 4:2:2) of a CAD model (obj, dxf or 3Ds) and depth-map encoded video images was developed into the resident Virtex5 FPGA of the Discovery 4100 SDK, thus eliminating the needs of image transfer and high speed links

  12. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  13. Development of 3D in vitro technology for medical applications.

    PubMed

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  14. 3D Printing in Technology and Engineering Education

    ERIC Educational Resources Information Center

    Martin, Robert L.; Bowden, Nicholas S.; Merrill, Chris

    2014-01-01

    In the past five years, there has been tremendous growth in the production and use of desktop 3D printers. This growth has been driven by the increasing availability of inexpensive computing and electronics technologies. The ability to rapidly share ideas and intelligence over the Internet has also played a key role in the growth. Growth is also…

  15. Looking At Display Technologies

    ERIC Educational Resources Information Center

    Bull, Glen; Bull, Gina

    2005-01-01

    A projection system in a classroom with an Internet connection provides a window on the world. Until recently, projectors were expensive and difficult to maintain. Technological advances have resulted in solid-state projectors that require little maintenance and cost no more than a computer. Adding a second or third computer to a classroom…

  16. Coherence cube technology adds geologic insight to 3-D data

    SciTech Connect

    Morris, D.

    1997-05-01

    Three-dimensional (3-D) seismic technology is now widely applied to assess the risk associated with hydrocarbon trap definition, including faulting, stratigraphic features, and reservoir description. Critical new technologies to exploit the wealth of information contained within 3-D seismic have recently begun to emerge; most notably, coherence cube technology, developed by Amoco Production Research and licensed to Coherence Technology Co. (CTC). Coherence cube processing produces interpretable images of faults and subtle stratigraphic features, such as buried deltas, river channels, and beaches, by quantifying seismic coherence attributes. The technique has important implications for geophysical, geological, and reservoir engineering applications. The paper discusses how coherency works, applications, and an example in delineating southern North Sea faulting.

  17. A guide for human factors research with stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Pinkus, Alan R.

    2015-05-01

    In this work, we provide some common methods, techniques, information, concepts, and relevant citations for those conducting human factors-related research with stereoscopic 3D (S3D) displays. We give suggested methods for calculating binocular disparities, and show how to verify on-screen image separation measurements. We provide typical values for inter-pupillary distances that are useful in such calculations. We discuss the pros, cons, and suggested uses of some common stereovision clinical tests. We discuss the phenomena and prevalence rates of stereoanomalous, pseudo-stereoanomalous, stereo-deficient, and stereoblind viewers. The problems of eyestrain and fatigue-related effects from stereo viewing, and the possible causes, are enumerated. System and viewer crosstalk are defined and discussed, and the issue of stereo camera separation is explored. Typical binocular fusion limits are also provided for reference, and discussed in relation to zones of comfort. Finally, the concept of measuring disparity distributions is described. The implications of these issues for the human factors study of S3D displays are covered throughout.

  18. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  19. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  20. Application of 3D printing technology in aerodynamic study

    NASA Astrophysics Data System (ADS)

    Olasek, K.; Wiklak, P.

    2014-08-01

    3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.

  1. Overview of 3D surface digitization technologies in Europe

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2006-02-01

    This paper presents an overview of the different 3D surface digitization technologies commercially available in the European market. The solutions for 3D surface measurement offered by major European companies can be divided into different groups depending on various characteristics, such as technology (e.g. laser scanning, white light projection), system construction (e.g. fix, on CMM/robot/arm) or measurement type (e.g. surface scanning, profile scanning). Crossing between the categories is possible, however, the majority of commercial products can be divided into the following groups: (a) laser profilers mounted on CMM, (b) portable coded light projection systems, (c) desktop solutions with laser profiler or coded light projectin system and multi-axes platform, (d) laser point measurement systems where both sensor and object move, (e) hand operated laser profilers, hand held laser profiler or point measurement systems, (f) dedicated systems. This paper presents the different 3D surface digitization technologies and describes them with their advantages and disadvantages. Various examples of their use are shown for different application fields. A special interest is given to applications regarding the 3D surface measurement of the human body.

  2. Quality of 3D Models Generated by SFM Technology

    NASA Astrophysics Data System (ADS)

    Marčiš, Marián

    2013-12-01

    Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.

  3. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process. PMID:24663563

  4. Integration of multiple view plus depth data for free viewpoint 3D display

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Yoshida, Yuko; Kawamoto, Tetsuya; Fujii, Toshiaki; Mase, Kenji

    2014-03-01

    This paper proposes a method for constructing a reasonable scale of end-to-end free-viewpoint video system that captures multiple view and depth data, reconstructs three-dimensional polygon models of objects, and display them on virtual 3D CG spaces. This system consists of a desktop PC and four Kinect sensors. First, multiple view plus depth data at four viewpoints are captured by Kinect sensors simultaneously. Then, the captured data are integrated to point cloud data by using camera parameters. The obtained point cloud data are sampled to volume data that consists of voxels. Since volume data that are generated from point cloud data are sparse, those data are made dense by using global optimization algorithm. Final step is to reconstruct surfaces on dense volume data by discrete marching cubes method. Since accuracy of depth maps affects to the quality of 3D polygon model, a simple inpainting method for improving depth maps is also presented.

  5. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  6. fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media

    NASA Astrophysics Data System (ADS)

    Yoshida, Shunsuke

    2012-06-01

    A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.

  7. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  8. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  9. Possible Applications of 3D Printing Technology on Textile Substrates

    NASA Astrophysics Data System (ADS)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  10. Sound localization with head movement: implications for 3-d audio displays

    PubMed Central

    McAnally, Ken I.; Martin, Russell L.

    2014-01-01

    Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants' heads had rotated through windows ranging in width of 2, 4, 8, 16, 32, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: the utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions) used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth) may be required to ensure that spatial information is conveyed with high accuracy. PMID:25161605

  11. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed. PMID:27137284

  12. Implementation of real-time 3D image communication system using stereoscopic imaging and display scheme

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Chul; Kim, Dong-Kyu; Ko, Jung-Hwan; Kim, Eun-Soo

    2004-11-01

    In this paper, a new stereoscopic 3D imaging communication system for real-time teleconferencing application is implemented by using IEEE 1394 digital cameras, Intel Xeon server computer system and Microsoft"s DirectShow programming library and its performance is analyzed in terms of image-grabbing frame rate. In the proposed system, two-view images are captured by using two digital cameras and processed in the Intel Xeon server computer system. And then, disparity data is extracted from them and transmitted to the client system with the left image through an information network and in the recipient two-view images are reconstructed and displayed on the stereoscopic 3D display system. The program for controlling the overall system is developed using the Microsoft DirectShow SDK. From some experimental results, it is found that the proposed system can display stereoscopic images in real-time with a full-color of 16 bits and a frame rate of 15fps.

  13. Investigation of a 3D head-mounted projection display using retro-reflective screen.

    PubMed

    Héricz, Dalma; Sarkadi, Tamás; Lucza, Viktor; Kovács, Viktor; Koppa, Pál

    2014-07-28

    We propose a compact head-worn 3D display which provides glasses-free full motion parallax. Two picoprojectors placed on the viewer's head project images on a retro-reflective screen that reflects left and right images to the appropriate eyes of the viewer. The properties of different retro-reflective screen materials have been investigated, and the key parameters of the projection - brightness and cross-talk - have been calculated. A demonstration system comprising two projectors, a screen tracking system and a commercial retro-reflective screen has been developed to test the visual quality of the proposed approach. PMID:25089403

  14. Fast-response switchable lens for 3D and wearable displays.

    PubMed

    Lee, Yun-Han; Peng, Fenglin; Wu, Shin-Tson

    2016-01-25

    We report a switchable lens in which a twisted nematic (TN) liquid crystal cell is utilized to control the input polarization. Different polarization state leads to different path length in the proposed optical system, which in turn results in different focal length. This type of switchable lens has advantages in fast response time, low operation voltage, and inherently lower chromatic aberration. Using a pixelated TN panel, we can create depth information to the selected pixels and thus add depth information to a 2D image. By cascading three such device structures together, we can generate 8 different focuses for 3D displays, wearable virtual/augmented reality, and other head mounted display devices. PMID:26832545

  15. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  16. 3D Printing In Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth; Edmunson, Jennifer; Dunn, Jason; Snyder, Michael

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station (ISS) up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up multiple drill bits that would be required to machine parts from aerospace-grade materials such as titanium 6-4 alloy and Inconel. The technology to produce parts on demand, in space, offers

  17. Holographic display system for dynamic synthesis of 3D light fields with increased space bandwidth product.

    PubMed

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2016-06-27

    We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593

  18. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2005-01-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  19. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2004-12-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  20. Study of a viewer tracking system with multiview 3D display

    NASA Astrophysics Data System (ADS)

    Yang, Jinn-Cherng; Wu, Chang-Shuo; Hsiao, Chuan-Heng; Yang, Ming-Chieh; Liu, Wen-Chieh; Hung, Yi-Ping

    2008-02-01

    An autostereoscopic display provides users great enjoyment of stereo visualization without uncomfortable and inconvenient drawbacks of wearing stereo glasses. However, bandwidth constraints of current multi-view 3D display severely restrict the number of views that can be simultaneously displayed without degrading resolution or increasing display cost unacceptably. An alternative to multiple view presentation is that the position of observer can be measured by using viewer-tracking sensor. It is a very important module of the viewer-tracking component for fluently rendering and accurately projecting the stereo video. In order to render stereo content with respect to user's view points and to optically project the content onto the left and right eyes of the user accurately, the real-time viewer tracking technique that allows the user to move around freely when watching the autostereoscopic display is developed in this study. It comprises the face detection by using multiple eigenspaces of various lighting conditions, fast block matching for tracking four motion parameters of the user's face region. The Edge Orientation Histogram (EOH) on Real AdaBoost to improve the performance of original AdaBoost algorithm is also applied in this study. The AdaBoost algorithm using Haar feature in OpenCV library developed by Intel to detect human face and enhance the accuracy performance with rotating image. The frame rate of viewer tracking process can achieve up to 15 Hz. Since performance of the viewer tracking autostereoscopic display is still influenced under variant environmental conditions, the accuracy, robustness and efficiency of the viewer-tracking system are evaluated in this study.

  1. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  2. Artifact reduction in lenticular multiscopic 3D displays by means of anti-alias filtering

    NASA Astrophysics Data System (ADS)

    Konrad, Janusz; Agniel, Philippe

    2003-05-01

    This paper addresses the issue of artifact visibility in automultiscopic 3-D lenticular displays. A straightforward extension of the two-view lenticular autostereoscopic principle to M views results in an M-fold loss of horizontal resolution due to the subsampling needed to properly multiplex the views. In order to circumvent the imbalance between the horizontal and vertical resolution, a tilt can be applied to the lenticules to orient them at a small angle to the vertical direction, as is done in the SynthaGram display from Stereographics Corp. In either case, to avoid aliasing the subsampling should be preceded by suitable lowpass pre-filtering. Although for purely vertical lenticules a sufficiently narrowband lowpass horizontal filtering suffices, the situation is more complicated for diagonal lenticules; the subsampling of each view is no more orthogonal, and more complex sampling models need to be considered. Based on multidimensional sampling theory, we have studied multiview sampling models based on lattices. These models approximate pixel positions on a lenticular automultiscopic display and lead to optimal anti-alias filters. In this paper, we report results for a separable approximation to non-separable 2-D anti-alias filters based on the assumption that the lenticule slant is small. We have carried out experiments on a variety of images, and different filter bandwidths. We have observed that the theoretically-optimal bandwidth is too restrictive; aliasing artifacts disappear, but some image details are lost as well. Somewhat wider bandwidths result in images with almost no aliasing and largely preserved detail. For subjectively-optimized filters, the improvements, although localized, are clear and enhance the 3-D viewing experience.

  3. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  4. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance

    NASA Astrophysics Data System (ADS)

    Qiu, Jimmy; Hope, Andrew J.; Cho, B. C. John; Sharpe, Michael B.; Dickie, Colleen I.; DaCosta, Ralph S.; Jaffray, David A.; Weersink, Robert A.

    2012-10-01

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ˜2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  5. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  6. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  7. 3D display and image processing system for metal bellows welding

    NASA Astrophysics Data System (ADS)

    Park, Min-Chul; Son, Jung-Young

    2010-04-01

    Industrial welded metal Bellows is in shape of flexible pipeline. The most common form of bellows is as pairs of washer-shaped discs of thin sheet metal stamped from strip stock. Performing arc welding operation may cause dangerous accidents and bad smells. Furthermore, in the process of welding operation, workers have to observe the object directly through microscope adjusting the vertical and horizontal positions of welding rod tip and the bellows fixed on the jig, respectively. Welding looking through microscope makes workers feel tired. To improve working environment that workers sit in an uncomfortable position and productivity we introduced 3D display and image processing. Main purpose of the system is not only to maximize the efficiency of industrial productivity with accuracy but also to keep the safety standards with the full automation of work by distant remote controlling.

  8. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    SciTech Connect

    Edwards, Robert; Huang, Zhengyu

    2001-06-17

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown.

  9. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  10. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  11. Effective declutter of complex flight displays using stereoptic 3-D cueing

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    The application of stereo technology to new, integrated pictorial display formats has been effective in situational awareness enhancements, and stereo has been postulated to be effective for the declutter of complex informational displays. This paper reports a full-factorial workstation experiment performed to verify the potential benefits of stereo cueing for the declutter function in a simulated tracking task. The experimental symbology was designed similar to that of a conventional flight director, although the format was an intentionally confused presentation that resulted in a very cluttered dynamic display. The subject's task was to use a hand controller to keep a tracking symbol, an 'X', on top of a target symbol, another X, which was being randomly driven. In the basic tracking task, both the target symbol and the tracking symbol were presented as red X's. The presence of color coding was used to provide some declutter, thus making the task more reasonable to perform. For this condition, the target symbol was coded red, and the tracking symbol was coded blue. Noise conditions, or additional clutter, were provided by the inclusion of randomly moving, differently colored X symbols. Stereo depth, which was hypothesized to declutter the display, was utilized by placing any noise in a plane in front of the display monitor, the tracking symbol at screen depth, and the target symbol behind the screen. The results from analyzing the performances of eight subjects revealed that the stereo presentation effectively offsets the cluttering effects of both the noise and the absence of color coding. The potential of stereo cueing to declutter complex informational displays has therefore been verified; this ability to declutter is an additional benefit from the application of stereoptic cueing to pictorial flight displays.

  12. Arctic Research Mapping Application 3D Geobrowser: Accessing and Displaying Arctic Information From the Desktop to the Web

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gonzalez, J.; Brady, J. J.; Gaylord, A.; Manley, W. F.; Cody, R.; Dover, M.; Score, R.; Garcia-Lavigne, D.; Tweedie, C. E.

    2009-12-01

    ARMAP 3D allows users to dynamically interact with information about U.S. federally funded research projects in the Arctic. This virtual globe allows users to explore data maintained in the Arctic Research & Logistics Support System (ARLSS) database providing a very valuable visual tool for science management and logistical planning, ascertaining who is doing what type of research and where. Users can “fly to” study sites, view receding glaciers in 3D and access linked reports about specific projects. Custom “Search” tasks have been developed to query by researcher name, discipline, funding program, place names and year and display results on the globe with links to detailed reports. ARMAP 3D was created with ESRI’s free ArcGIS Explorer (AGX) new build 900 providing an updated application from build 500. AGX applications provide users the ability to integrate their own spatial data on various data layers provided by ArcOnline (http://resources.esri.com/arcgisonlineservices). Users can add many types of data including OGC web services without any special data translators or costly software. ARMAP 3D is part of the ARMAP suite (http://armap.org), a collection of applications that support Arctic science tools for users of various levels of technical ability to explore information about field-based research in the Arctic. ARMAP is funded by the National Science Foundation Office of Polar Programs Arctic Sciences Division and is a collaborative development effort between the Systems Ecology Lab at the University of Texas at El Paso, Nuna Technologies, the INSTAAR QGIS Laboratory, and CH2M HILL Polar Services.

  13. Memory usage reduction and intensity modulation for 3D holographic display using non-uniformly sampled computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Pan, Yijie; Han, Jian; Hu, Bin; Wang, Yongtian

    2013-12-01

    The real-time holographic display encounters heavy computational load of computer-generated holograms and precisely intensity modulation of 3D images reconstructed by phase-only holograms. In this study, we demonstrate a method for reducing memory usage and modulating the intensity in 3D holographic display. The proposed method can eliminate the redundant information of holograms by employing the non-uniform sampling technique. By combining with the novel look-up table method, 70% reduction in the storage amount can be reached. The gray-scale modulation of 3D images reconstructed by phase-only holograms can be extended either. We perform both numerical simulations and optical experiments to verify the practicability of this method, and the results match well with each other. It is believed that the proposed method can be used in 3D dynamic holographic display and design of the diffractive phase elements.

  14. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  15. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  16. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  17. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  18. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  19. Diffraction effects incorporated design of a parallax barrier for a high-density multi-view autostereoscopic 3D display.

    PubMed

    Yoon, Ki-Hyuk; Ju, Heongkyu; Kwon, Hyunkyung; Park, Inkyu; Kim, Sung-Kyu

    2016-02-22

    We present optical characteristics of view image provided by a high-density multi-view autostereoscopic 3D display (HD-MVA3D) with a parallax barrier (PB). Diffraction effects that become of great importance in such a display system that uses a PB, are considered in an one-dimensional model of the 3D display, in which the numerical simulation of light from display panel pixels through PB slits to viewing zone is performed. The simulation results are then compared to the corresponding experimental measurements with discussion. We demonstrate that, as a main parameter for view image quality evaluation, the Fresnel number can be used to determine the PB slit aperture for the best performance of the display system. It is revealed that a set of the display parameters, which gives the Fresnel number of ∼ 0.7 offers maximized brightness of the view images while that corresponding to the Fresnel number of 0.4 ∼ 0.5 offers minimized image crosstalk. The compromise between the brightness and crosstalk enables optimization of the relative magnitude of the brightness to the crosstalk and lead to the choice of display parameter set for the HD-MVA3D with a PB, which satisfies the condition where the Fresnel number lies between 0.4 and 0.7. PMID:26907057

  20. Development of a stereoscopic 3D display system to observe restored heritage

    NASA Astrophysics Data System (ADS)

    Morikawa, Hiroyuki; Kawaguchi, Mami; Kawai, Takashi; Ohya, Jun

    2004-05-01

    The authors have developed a binocular-type display system that allows digital archives of cultural assets to be viewed in their actual environment. The system is designed for installation in locations where such cultural assets were originally present. The viewer sees buildings and other heritage items as they existed historically by looking through the binoculars. Images of the cultural assets are reproduced by stereoscopic 3D CG in cyberspace, and the images are superimposed on actual images in real-time. This system consists of stereoscopic CCD cameras that capture a stereo view of the landscape and LCDs for presentation to the viewer. Virtual cameras, used to render CG images from digital archives, move in synchrony with the actual cameras, so the relative position of the CG images and the landscape on which they are superimposed is always fixed. The system has manual controls for digital zoom. Furthermore, the transparency of the CG images can be altered by the viewer. As a case study for the effectiveness of this system, the authors chose the Heijyoukyou ruins in Nara, Japan. The authors evaluate the sense of immersion, stereoscopic effect, and usability of the system.

  1. Glasses-free 3D display based on micro-nano-approach and system

    NASA Astrophysics Data System (ADS)

    Lou, Yimin; Ye, Yan; Shen, Su; Pu, Donglin; Chen, Linsen

    2014-11-01

    Micro-nano optics and digital dot matrix hologram (DDMH) technique has been combined to code and fabricate glassfree 3D image. Two kinds of true color 3D DDMH have been designed. One of the design releases the fabrication complexity and the other enlarges the view angle of 3D DDMH. Chromatic aberration has been corrected using rainbow hologram technique. A holographic printing system combined the interference and projection lithography technique has been demonstrated. Fresnel lens and large view angle 3D DDMH have been outputted, excellent color performance of 3D image has been realized.

  2. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-08-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  3. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-04-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  4. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. PMID:27189134

  5. Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information

    PubMed Central

    Heo, Hwan; Lee, Won Oh; Shin, Kwang Yong; Park, Kang Ryoung

    2014-01-01

    We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD), stereoscopic disparity (SD), frame cancellation effect (FCE), and edge component (EC) of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors. PMID:24834910

  6. JTEC panel on display technologies in Japan

    NASA Technical Reports Server (NTRS)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  7. Recognition technology research based on 3D fingerprint

    NASA Astrophysics Data System (ADS)

    Tian, Qianxiao; Huang, Shujun; Zhang, Zonghua

    2014-11-01

    Fingerprint has been widely studied and applied to personal recognition in both forensics and civilian. However, the current widespread used fingerprint is identified by 2D (two-dimensional) fingerprint image and the mapping from 3D (three-dimensional) to 2D loses 1D information, which leads to low accurate and even wrong recognition. This paper presents a 3D fingerprint recognition method based on the fringe projection technique. A series of fringe patterns generated by software are projected onto a finger surface through a projecting system. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. The deformed fringe pattern images give the 3D shape data of the finger and the 3D fingerprint features. Through converting the 3D fingerprints to 2D space, traditional 2D fingerprint recognition method can be used to 3D fingerprints recognition. Experimental results on measuring and recognizing some 3D fingerprints show the accuracy and availability of the developed 3D fingerprint system.

  8. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  9. Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Bove, V. Michael; Smalley, Daniel

    2016-03-01

    Waveguide holography refers to the use of holographic techniques for the control of guided-wave light in integrated optical devices (e.g., off-plane grating couplers and in-plane distributed Bragg gratings for guided-wave optical filtering). Off-plane computer-generated waveguide holography (CGWH) has also been employed in the generation of simple field distributions for image display. We have previously depicted the design and fabrication of a binary-phase CGWH operating in the Raman-Nath regime for the purposes of near-to-eye 3-D display and as a precursor to a dynamic, transparent flat-panel guided-wave holographic video display. In this paper, we describe design algorithms and fabrication techniques for multilevel phase CGWHs for near-to-eye 3-D display.

  10. Three-dimensional (3D) GIS-based coastline change analysis and display using LIDAR series data

    NASA Astrophysics Data System (ADS)

    Zhou, G.

    This paper presents a method to visualize and analyze topography and topographic changes on coastline area. The study area, Assantage Island Nation Seashore (AINS), is located along a 37-mile stretch of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000) are created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed. The system was developed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display, and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.

  11. 3D cutting tool inspection system and its key technologies

    NASA Astrophysics Data System (ADS)

    Du, X. M.; Chen, T.; Zou, X. J.; Harding, K. G.

    2009-08-01

    Cutting tools are an essential component used in manufacturing parts for different products. Many cutting tools are manufactured with complex geometric shapes and sharp and/or curved edges. As such, maintaining quality control of cutting tools during their fabrication may be essential to controlling the quality of components manufactured using the cutting tools. In this paper, a 3D cutting tool inspection system, is presented. The architecture of the system, the cutter inspection workflow and some key technologies are discussed. The relative key technologies include two aspects. The first aspect is the system extrinsic self-calibration method for ensuring the system accuracy. This paper will elaborate on how to calibrate the orientation and location of the rotary stage in the coordination system, including the relative relationship between the axis of the chuck used to hold the tool and the rotary axis used to position the tool, along with the relative relationship between Z stage and rotary axis. Further, this paper will analyze self-calibration solutions for separately correcting the error of the squareness and optical measuring beam and the error of the alignment between a side scan and a tip scan. The second aspect this paper will address is a method of scan planning for automatic and effective data collection. Tool measurement planning plays a big role in saving tool measurement time, improving data accuracy, as well as ensuring data completeness. Ths paper will present a round-part oriented measurement method that includes coarse/fine section scans that aim at getting 2D section geometry in a progressive manner, covering the key sharp/curved edge areas, and the side helical scan combined with the tip round scan for shape-simulated full geometry capture. Finally, this paper will present experimental results and some field tests data.

  12. Enhanced perception of terrain hazards in off-road path choice: stereoscopic 3D versus 2D displays

    NASA Astrophysics Data System (ADS)

    Merritt, John O.; CuQlock-Knopp, V. Grayson; Myles, Kimberly

    1997-06-01

    Off-road mobility at night is a critical factor in modern military operations. Soldiers traversing off-road terrain, both on foot and in combat vehicles, often use 2D viewing devices (such as a driver's thermal viewer, or biocular or monocular night-vision goggles) for tactical mobility under low-light conditions. Perceptual errors can occur when 2D displays fail to convey adequately the contours of terrain. Some off-road driving accidents have been attributed to inadequate perception of terrain features due to using 2D displays (which do not provide binocular-parallax cues to depth perception). In this study, photographic images of terrain scenes were presented first in conventional 2D video, and then in stereoscopic 3D video. The percentage of possible correct answers for 2D and 3D were: 2D pretest equals 52%, 3D pretest equals 80%, 2D posttest equals 48%, 3D posttest equals 78%. Other recent studies conducted at the US Army Research Laboratory's Human Research and Engineering Directorate also show that stereoscopic 3D displays can significantly improve visual evaluation of terrain features, and thus may improve the safety and effectiveness of military off-road mobility operation, both on foot and in combat vehicles.

  13. Novel volumetric 3D display based on point light source optical reconstruction using multi focal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Jin su; Lee, Mu young; Kim, Jun oh; Kim, Cheol joong; Won, Yong Hyub

    2015-03-01

    Generally, volumetric 3D display panel produce volume-filling three dimensional images. This paper discusses a volumetric 3D display based on periodical point light sources(PLSs) construction using a multi focal lens array(MFLA). The voxel of discrete 3D images is formed in the air via construction of point light source emitted by multi focal lens array. This system consists of a parallel beam, a spatial light modulator(SLM), a lens array, and a polarizing filter. The multi focal lens array is made with UV adhesive polymer droplet control using a dispersing machine. The MFLA consists of 20x20 circular lens array. Each lens aperture of the MFLA shows 300um on average. The polarizing filter is placed after the SLM and the MFLA to set in phase mostly mode. By the point spread function, the PLSs of the system are located by the focal length of each lens of the MFLA. It can also provide the moving parallax and relatively high resolution. However it has a limit of viewing angle and crosstalk by a property of each lens. In our experiment, we present the letter `C', `O', `DE' and ball's surface with the different depth location. It could be seen clearly that when CCD camera is moved to its position following as transverse axis of the display system. From our result, we expect that varifocal lens like EWOD and LC-lens can be applied for real time volumetric 3D display system.

  14. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989

  15. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Lanzi, Alison M.; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989

  16. Autostereoscopic display technology for mobile 3DTV applications

    NASA Astrophysics Data System (ADS)

    Harrold, Jonathan; Woodgate, Graham J.

    2007-02-01

    Mobile TV is now a commercial reality, and an opportunity exists for the first mass market 3DTV products based on cell phone platforms with switchable 2D/3D autostereoscopic displays. Compared to conventional cell phones, TV phones need to operate for extended periods of time with the display running at full brightness, so the efficiency of the 3D optical system is key. The desire for increased viewing freedom to provide greater viewing comfort can be met by increasing the number of views presented. A four view lenticular display will have a brightness five times greater than the equivalent parallax barrier display. Therefore, lenticular displays are very strong candidates for cell phone 3DTV. Selection of Polarisation Activated Microlens TM architectures for LCD, OLED and reflective display applications is described. The technology delivers significant advantages especially for high pixel density panels and optimises device ruggedness while maintaining display brightness. A significant manufacturing breakthrough is described, enabling switchable microlenses to be fabricated using a simple coating process, which is also readily scalable to large TV panels. The 3D image performance of candidate 3DTV panels will also be compared using autostereoscopic display optical output simulations.

  17. Determination of the optimum viewing distance for a multi-view auto-stereoscopic 3D display.

    PubMed

    Yoon, Ki-Hyuk; Ju, Heongkyu; Park, Inkyu; Kim, Sung-Kyu

    2014-09-22

    We present methodologies for determining the optimum viewing distance (OVD) for a multi-view auto-stereoscopic 3D display system with a parallax barrier. The OVD can be efficiently determined as the viewing distance where statistical deviation of centers of quasi-linear distributions of illuminance at central viewing zones is minimized using local areas of a display panel. This method can offer reduced computation time because it does not use the entire area of the display panel during a simulation, but still secures considerable accuracy. The method is verified in experiments, showing its applicability for efficient optical characterization. PMID:25321731

  18. Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays.

    PubMed

    Takaki, Yasuhiro; Urano, Yohei; Nishio, Hiroyuki

    2012-11-19

    The discontinuity of motion parallax offered by multi-view displays was assessed by subjective evaluation. A super multi-view head-up display, which provides dense viewing points and has short-, medium-, and long-distance display ranges, was used. The results showed that discontinuity perception depended on the ratio of an image shift between adjacent parallax images to a pixel pitch of three-dimensional (3D) images and the crosstalk between viewing points. When the ratio was less than 0.2 and the crosstalk was small, the discontinuity was not perceived. When the ratio was greater than 1 and the crosstalk was small, the discontinuity was perceived, and the resolution of the 3D images decreased twice. When the crosstalk was large, the discontinuity was not perceived even when the ratio was 1 or 2. However, the resolution decreased two or more times. PMID:23187574

  19. A series of new lanthanide fumarates displaying three types of 3-D frameworks.

    PubMed

    Tan, Xiao-Feng; Zhou, Jian; Fu, Lianshe; Xiao, Hong-Ping; Zou, Hua-Hong; Tang, Qiuling

    2016-03-28

    A series of lanthanide fumarates [Sm2(fum)3(H2fum)(H2O)2] (1, H2fum = fumaric acid), [Ln2(fum)3-(H2O)4]·3H2O {Ln = Tb (2a), Dy (2b)} and [Ln2(fum)3(H2O)4] {Ln = Y (3a), Ho (3b), Er (3c), Tm (3d)} were prepared by the hydrothermal method and their structures were classified into three types. The 3-D framework of compound 1 contains a 1-D infinite [Sm-O-Sm]n chain built up from the connection of SmO8(H2O) polyhedra sharing edges via three -COO group bridges of fumarate ligands, which is further constructed into a 3-D network structure with three kinds of fumarate ligands. Compounds 2a-b are isostructural and consist of a 3-D porous framework with 0-D cavities for the accommodation of chair-like hexameric (H2O)6 clusters. Compounds 3a-d are isostructural and have a 3-D network structure remarkably different from those of 1 and 2a-b, due to the different coordination numbers for the Ln(3+) ions and distinct fumarate ligand bridging patterns. A systematic investigation of seven lanthanide fumarates and five reported compounds revealed that the well-known lanthanide contraction has a significant influence on the formation of lanthanide fumarates. The magnetic properties of compounds 1, 2b and 3b-3d were also investigated. PMID:26894939

  20. Using 3D Glyph Visualization to Explore Real-time Seismic Data on Immersive and High-resolution Display Systems

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Lindquist, K.; Kilb, D.; Newman, R.; Vernon, F.; Leigh, J.; Johnson, A.; Renambot, L.

    2003-12-01

    The study of time-dependent, three-dimensional natural phenomena like earthquakes can be enhanced with innovative and pertinent 3D computer graphics. Here we display seismic data as 3D glyphs (graphics primitives or symbols with various geometric and color attributes), allowing us to visualize the measured, time-dependent, 3D wave field from an earthquake recorded by a certain seismic network. In addition to providing a powerful state-of-health diagnostic of the seismic network, the graphical result presents an intuitive understanding of the real-time wave field that is hard to achieve with traditional 2D visualization methods. We have named these 3D icons `seismoglyphs' to suggest visual objects built from three components of ground motion data (north-south, east-west, vertical) recorded by a seismic sensor. A seismoglyph changes color with time, spanning the spectrum, to indicate when the seismic amplitude is largest. The spatial extent of the glyph indicates the polarization of the wave field as it arrives at the recording station. We compose seismoglyphs using the real time ANZA broadband data (http://www.eqinfo.ucsd.edu) to understand the 3D behavior of a seismic wave field in Southern California. Fifteen seismoglyphs are drawn simultaneously with a 3D topography map of Southern California, as real time data is piped into the graphics software using the Antelope system. At each station location, the seismoglyph evolves with time and this graphical display allows a scientist to observe patterns and anomalies in the data. The display also provides visual clues to indicate wave arrivals and ~real-time earthquake detection. Future work will involve adding phase detections, network triggers and near real-time 2D surface shaking estimates. The visuals can be displayed in an immersive environment using the passive stereoscopic Geowall (http://www.geowall.org). The stereographic projection allows for a better understanding of attenuation due to distance and earth

  1. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S

    2015-05-15

    While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted. PMID:25041926

  2. The influence of autostereoscopic 3D displays on subsequent task performance

    NASA Astrophysics Data System (ADS)

    Barkowsky, Marcus; Le Callet, Patrick

    2010-02-01

    Viewing 3D content on an autostereoscopic is an exciting experience. This is partly due to the fact that the 3D effect is seen without glasses. Nevertheless, it is an unnatural condition for the eyes as the depth effect is created by the disparity of the left and the right view on a flat screen instead of having a real object at the corresponding location. Thus, it may be more tiring to watch 3D than 2D. This question is investigated in this contribution by a subjective experiment. A search task experiment is conducted and the behavior of the participants is recorded with an eyetracker. Several indicators both for low level perception as well as for the task performance itself are evaluated. In addition two optometric tests are performed. A verification session with conventional 2D viewing is included. The results are discussed in detail and it can be concluded that the 3D viewing does not have a negative impact on the task performance used in the experiment.

  3. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.

    PubMed

    Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung

    2015-12-14

    We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues. PMID:26698993

  4. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  5. Space Station Displays and Controls Technology Evolution

    NASA Technical Reports Server (NTRS)

    Blackburn, Greg C.

    1990-01-01

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  6. Space Station displays and controls technology evolution

    NASA Astrophysics Data System (ADS)

    Blackburn, Greg C.

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  7. Active and Passive 3d Imaging Technologies Applied to Waterlogged Wooden Artifacts from Shipwrecks

    NASA Astrophysics Data System (ADS)

    Bandiera, A.; Alfonso, C.; Auriemma, R.

    2015-04-01

    The fragility of organic artefacts in presence of water and their volumetric variation caused by the marine life on or surrounding them dictate that their physical dimensions be measured soon after their extraction from the seabed. In an ideal context, it would be appropriate to preserve and restore all the archaeological elements, rapidly and with the latest methods. Unfortunately however, the large number of artefacts makes the cost of such an operation prohibitive for a public institution. For this reason, digital technologies for documentation, restoration, display and conservation are being considered by many institutions working with limited budgets. In this paper, we illustrate the experience of the University of Salento in 3D imaging technology for waterlogged wooden artefacts from shipwrecks. The interest originates from the need to develop a protocol for documentation and digital restoration of archaeological finds discovered along the coast of Torre S. Sabina (BR) Italy. This work has allowed us to explore recent technologies for 3D acquisitions, both underwater and in the laboratory, as well as methods for data processing. These technologies have permitted us to start defining a protocol to follow for all waterlogged wooden artefacts requiring documentation and restoration.

  8. Holographic display of real existing objects from their 3D Fourier spectrum

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko; Sando, Yusuke

    2005-02-01

    A method for synthesizing computer-generated holograms of real-existing objects is described. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD camera. According to the principle of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel computer-generated hologram(CGH) is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary for recording. The use of a color CCD in recording enables us to record and reconstruct colorful objects. Finally, we demonstrate color reconstruction of objects both numerically and optically.

  9. Display science and technology for defense and security

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.

    2004-02-01

    The defense display science and technology (S&T) program must address problems facing warfighters that the commercial world will not. These problems require the creation of revolutionary display materials and devices, and the invention of visual system technologies. Breakthroughs needed in display technology for defense and security personnel may be organized into the following technical challenge areas: ultraresolution 25 megapixel devices and 300 megapixel systems (wall display systems at monitor pixel density), flexible plastic rollup displays (ultra-compact form factor when not in use), sparse data true-3D monitors (phosphors embedded in special polymer host matrices), virtual image and head mounted systems, wireless wearable video displays with ultra low weight and volume (including batteries), and intelligent displays with embedded chips providing integrated computing and communications functionalities. Organic photonics and electronics are central to the progress in these S&T challenge areas: significant materials progress is required to enable the display device capabilities required. These challenges and the results of a Department of Defense (DoD) Special Technology Area Review (STAR) on Displays are reviewed. A top-level roadmap is provided to summarize the defense and security S&T strategy.

  10. Flight tests of advanced 3D-PFD with commercial flat-panel avionics displays and EGPWS system

    NASA Astrophysics Data System (ADS)

    He, Gang; Feyereisen, Thea; Gannon, Aaron; Wilson, Blake; Schmitt, John; Wyatt, Sandy; Engels, Jary

    2005-05-01

    This paper describes flight trials of Honeywell Advanced 3D Primary Flight Display System. The system employs a large-format flat-panel avionics display presently used in Honeywell PRIMUS EPIC flight-deck products and is coupled to an on-board EGPWS system. The heads-down primary flight display consists of dynamic primary-flight attitude information, flight-path and approach symbology similar to Honeywell HUD2020 heads-up displays, and a synthetic 3D perspective-view terrain environment generated with Honeywell"s EGPWS terrain data. Numerous flights are conducted on-board Honeywell Citation V aircraft and significant amount of pilot feedback are collected with portion of the data summarized in this paper. The system development is aimed at leveraging several well-established avionics components (HUD, EGPWS, large-format displays) in order to produce an integrated system that significantly reduces pilot workload, increases overall situation awareness, and is more beneficial to flight operations than achievable with separated systems.

  11. Vertically dispersive holographic screens and autostereoscopic displays in 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Magalhães, Daniel S. F.; Serra, Rolando L.; Vannucci, André L.; Moreno, Alfredo B.; Magalhães, Lucas V. B.; Llovera, Juan J.; Li, Li M.

    2011-05-01

    In this work we describe a setup employed for the recording of vertical dispersive holographic screens that can be used for medical applications. We show how to obtain holographic screens with areas up to 1200 cm2, focal length of 25+/-2 cm and diffraction efficiency of 7.2%. We analyze the technique employed and the holographic screens obtained. Using this screen we describe a setup for the projection of Magnetic Resonance or Tomographic Images. We also describe and present the first results of an autostereoscopic system for 3D medical imaging.

  12. Precise Animated 3-D Displays Of The Heart Constructed From X-Ray Scatter Fields

    NASA Astrophysics Data System (ADS)

    McInerney, J. J.; Herr, M. D.; Copenhaver, G. L.

    1986-01-01

    A technique, based upon the interrogation of x-ray scatter, has been used to construct precise animated displays of the three-dimensional surface of the heart throughout the cardiac cycle. With the selection of motion amplification, viewing orientation, beat rate, and repetitive playbacks of isolated segments of the cardiac cycle, these displays are used to directly visualize epicardial surface velocity and displacement patterns, to construct regional maps of old or new myocardial infarction, and to visualize diastolic stiffening of the ventricle associated with acute ischemia. The procedure is non-invasive. Cut-downs or injections are not required.

  13. Structural description and combined 3D display for superior analysis of cerebral vascularity from MRA

    NASA Astrophysics Data System (ADS)

    Szekely, Gabor; Koller, Thomas; Kikinis, Ron; Gerig, Guido

    1994-09-01

    Medical image analysis has to support the clinicians ability to identify, manipulate and quantify anatomical structures. On scalar 2D image data, a human observer is often superior to computer assisted analysis, but the interpretation of vector- valued data or data combined from different modalities, especially in 3D, can benefit from computer assistance. The problem of how to convey the complex information to the clinician is often tackled by providing colored multimodality renderings. We propose to go a step beyond by supplying a suitable modelling of anatomical and functional structures encoding important shape features and physical properties. The multiple attributes regarding geometry, topology and function are carried by the symbolic description and can be interactively queried and edited. Integrated 3D rendering of object surfaces and symbolic representation acts as a visual interface to allow interactive communication between the observer and the complex data, providing new possibilities for quantification and therapy planning. The discussion is guided by the prototypical example of investigating the cerebral vasculature in MRA volume data. Geometric, topological and flow-related information can be assessed by interactive analysis on a computer workstation, providing otherwise hidden qualitative and quantitative information. Several case studies demonstrate the potential usage for structure identification, definition of landmarks, assessment of topology for catheterization, and local simulation of blood flow.

  14. Description of a 3D display with motion parallax and direct interaction

    NASA Astrophysics Data System (ADS)

    Tu, J.; Flynn, M. F.

    2014-03-01

    We present a description of a time sequential stereoscopic display which separates the images using a segmented polarization switch and passive eyewear. Additionally, integrated tracking cameras and an SDK on the host PC allow us to implement motion parallax in real time.

  15. Parameters of the human 3D gaze while observing portable autostereoscopic display: a model and measurement results

    NASA Astrophysics Data System (ADS)

    Boev, Atanas; Hanhela, Marianne; Gotchev, Atanas; Utirainen, Timo; Jumisko-Pyykkö, Satu; Hannuksela, Miska

    2012-02-01

    We present an approach to measure and model the parameters of human point-of-gaze (PoG) in 3D space. Our model considers the following three parameters: position of the gaze in 3D space, volume encompassed by the gaze and time for the gaze to arrive on the desired target. Extracting the 3D gaze position from binocular gaze data is hindered by three problems. The first problem is the lack of convergence - due to micro saccadic movements the optical lines of both eyes rarely intersect at a point in space. The second problem is resolution - the combination of short observation distance and limited comfort disparity zone typical for a mobile 3D display does not allow the depth of the gaze position to be reliably extracted. The third problem is measurement noise - due to the limited display size, the noise range is close to the range of properly measured data. We have developed a methodology which allows us to suppress most of the measurement noise. This allows us to estimate the typical time which is needed for the point-of-gaze to travel in x, y or z direction. We identify three temporal properties of the binocular PoG. The first is reaction time, which is the minimum time that the vision reacts to a stimulus position change, and is measured as the time between the event and the time the PoG leaves the proximity of the old stimulus position. The second is the travel time of the PoG between the old and new stimulus position. The third is the time-to-arrive, which is the time combining the reaction time, travel time, and the time required for the PoG to settle in the new position. We present the method for filtering the PoG outliers, for deriving the PoG center from binocular eye-tracking data and for calculating the gaze volume as a function of the distance between PoG and the observer. As an outcome from our experiments we present binocular heat maps aggregated over all observers who participated in a viewing test. We also show the mean values for all temporal

  16. Electrowetting-based adaptive vari-focal liquid lens array for 3D display

    NASA Astrophysics Data System (ADS)

    Won, Yong Hyub

    2014-10-01

    Electrowetting is a phenomenon that can control the surface tension of liquid when a voltage is applied. This paper introduces the fabrication method of liquid lens array by the electrowetting phenomenon. The fabricated 23 by 23 lens array has 1mm diameter size with 1.6 mm interval distance between adjacent lenses. The diopter of each lens was - 24~27 operated at 0V to 50V. The lens array chamber fabricated by Deep Reactive-Ion Etching (DRIE) is deposited with IZO and parylene C and tantalum oxide. To prevent water penetration and achieve high dielectric constant, parylene C and tantalum oxide (ɛ = 23 ~ 25) are used respectively. Hydrophobic surface which enables the range of contact angle from 60 to 160 degree is coated to maximize the effect of electrowetting causing wide band of dioptric power. Liquid is injected into each lens chamber by two different ways. First way was self water-oil dosing that uses cosolvent and diffusion effect, while the second way was micro-syringe by the hydrophobic surface properties. To complete the whole process of the lens array fabrication, underwater sealing was performed using UV adhesive that does not dissolve in water. The transient time for changing from concave to convex lens was measured <33ms (at frequency of 1kHz AC voltage.). The liquid lens array was tested unprecedentedly for integral imaging to achieve more advanced depth information of 3D image.

  17. Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling.

    PubMed

    Jia, Jia; Liu, Juan; Jin, Guofan; Wang, Yongtian

    2014-09-20

    Occlusion culling is an important process that produces correct depth cues for observers in holographic displays, whereas current methods suffer from occlusion errors or high computational loads. We propose a fast and effective method for occlusion culling based on multiple light-point sampling planes and an inverse orthographic projection technique. Multiple light-point sampling planes are employed to remove the hidden surfaces for each direction of the view of the three-dimensional (3D) scene by forward orthographic projection, and the inverse orthographic projection technique is used to determine the effective sampling points of the 3D scene. A numerical simulation and an optical experiment are performed. The results show that this approach can realize accurate occlusion effects, smooth motion parallax, and continuous depth using low angular sampling without any extra computation costs. PMID:25322109

  18. The Use Of Computerized Tomographic (CT) Scans For 3-D Display And Prosthesis Construction

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Woodruff, Tracey J.; Beumer, John

    1985-06-01

    The construction of preformed cranial prostheses for large cranial bony defects is both error prone and time consuming. We discuss a method used for the creation of cranial prostheses from automatically extracted bone contours taken from Computerized Tomographic (CT) scans. Previous methods of prosthesis construction have relied on the making of a mold directly from the region of cranial defect. The use of image processing, bone contour extraction, and three-dimensional display allowed us to create a better fitting prosthesis while reducing patient surgery time. This procedure involves direct bone margin extraction from the digital CT images followed by head model construction from serial plots of the bone margin. Three-dimensional data display is used to verify the integrity of the skull data set prior to model construction. Once created, the model is used to fabricate a custom fitting prosthesis which is then surgically implanted. This procedure is being used with patients in the Maxillofacial Prosthetic Clinic at UCLA and this paper details the technique.

  19. High-power, red-emitting DBR-TPL for possible 3d holographic or volumetric displays

    NASA Astrophysics Data System (ADS)

    Feise, D.; Fiebig, C.; Blume, G.; Pohl, J.; Eppich, B.; Paschke, K.

    2013-03-01

    To create holographic or volumetric displays, it is highly desirable to move from conventional imaging projection displays, where the light is filtered from a constant source towards flying spot, where the correct amount of light is generated for every pixel. The only light sources available for such an approach, which requires visible, high output power with a spatial resolution beyond conventional lamps, are lasers. When adding the market demands for high electro-optical conversion efficiency, direct electrical modulation capability, compactness, reliability and massproduction compliance, this leaves only semiconductor diode lasers. We present red-emitting tapered diode lasers (TPL) emitting a powerful, visible, nearly diffraction limited beam (M²1/e² < 1.5) and a single longitudinal mode, which are well suited for 3d holographic and volumetric imaging. The TPLs achieved an optical output power in excess of 500 mW in the wavelength range between 633 nm and 638 nm. The simultaneous inclusion of a distributed Bragg reflector (DBR) surface grating provides wavelength selectivity and hence a spectral purity with a width Δλ < 5 pm. These properties allow dense spectral multiplexing to achieve output powers of several watts, which would be required for 3d volumetric display applications.

  20. Real-Depth imaging: a new (no glasses) 3D imaging technology with video/data projection applications

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1997-05-01

    Floating Images, Inc. has developed the software and hardware for anew, patent pending, 'floating 3D, off-the- screen-experience' display technology. This technology has the potential to become the next standard for home and arcade video games, computers, corporate presentations, Internet/Intranet viewing, and television. Current '3D Graphics' technologies are actually flat on screen. Floating Images technology actually produce images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. In addition, unlike stereoscopic 3D imaging, no glasses, headgear, or other viewing aids are used. And, unlike current autostereoscopic imaging technologies, there is virtually no restriction on where viewers can sit to view the images, with no 'bad' or 'dead' zones, flipping, or pseudoscopy. In addition to providing traditional depth cues such as perspective and background image occlusion, the new technology also provides both horizontal and vertical binocular parallax and accommodation which coincides with convergence. Since accommodation coincides with convergence, viewing these images doesn't produce headaches, fatigue, or eye-strain, regardless of how long they are viewed. The imagery must either be formatted for the Floating Images platform when written, or existing software can be reformatted without much difficult. The optical hardware system can be made to accommodate virtually any projection system to produce Floating Images for the Boardroom, video arcade, stage shows, or the classroom.

  1. Research and Technology Development for Construction of 3d Video Scenes

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Tatyana A.

    2016-06-01

    For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.

  2. Emerging large-screen display technology

    NASA Astrophysics Data System (ADS)

    Blaha, Richard J.

    1992-11-01

    Large-screen display technology is undergoing significant changes because of huge investments being expended to meet the potential high-definition television (HDTV) market. The expected result of this investment is display devices having improved quality and larger areas, which can be immediately used in military command and control operations. This report tracks recent display developments and their potential capabilities for command and control applications.

  3. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements.

    PubMed

    Hwang, Yong Seok; Bruder, Friedrich-Karl; Fäcke, Thomas; Kim, Seung-Cheol; Walze, Günther; Hagen, Rainer; Kim, Eun-Soo

    2014-04-21

    A novel directional backlight system based on volume-holographic optical elements (VHOEs) is demonstrated for time-sequential autostereoscopic three-dimensional (3-D) flat-panel displays. Here, VHOEs are employed to control the direction of light for a time-multiplexed display for each of the left and the right view. Those VHOEs are fabricated by recording interference patterns between collimated reference beams and diverging object beams for each of the left and right eyes on the volume holographic recording material. For this, self-developing photopolymer films (Bayfol® HX) were used, since those simplify the manufacturing process of VHOEs substantially. Here, the directional lights are similar to the collimated reference beams that were used to record the VHOEs and create two diffracted beams similar to the object beams used for recording the VHOEs. Then, those diffracted beams read the left and right images alternately shown on the LCD panel and form two converging viewing zones in front of the user's eyes. By this he can perceive the 3-D image. Theoretical predictions and experimental results are presented and the performance of the developed prototype is shown. PMID:24787867

  4. Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display.

    PubMed

    Wang, Kangni; Zheng, Jihong; Gao, Hui; Lu, Feiyue; Sun, Lijia; Yin, Stuart; Zhuang, Songlin

    2015-11-30

    A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display. PMID:26698768

  5. Application of 3D GPR attribute technology in archaeological investigations

    NASA Astrophysics Data System (ADS)

    Zhao, Wen-Ke; Tian, Gang; Wang, Bang-Bing; Shi, Zhan-Jie; Lin, Jin-Xin

    2012-06-01

    Ground penetrating radar (GPR) attribute technology has been applied to many aspects in recent years but there are very few examples in the field of archaeology. Especially how can we extract effective attributes from the two- or three-dimensional radar data so that we can map and describe numerous archaeological targets in a large cultural site? In this paper, we applied GPR attribute technology to investigate the ancient Nanzhao castle-site in Tengchong, Yunnan Province. In order to get better archaeological target (the ancient wall, the ancient kiln site, and the ancient tomb) analysis and description, we collated the GPR data by collected standardization and then put them to the seismic data processing and interpretation workstation. The data was processed, including a variety of GPR attribute extraction, analysis, and optimization and combined with the archaeological drilling data. We choose the RMS Amplitude, Average Peak Amplitude, Instantaneous Phase, and Maximum Peak Time to interpret three archaeological targets. By comparative analysis, we have clarified that we should use different attributes to interpret different archaeological targets and the results of attribute analysis after horizon tracking is much better than the results based on a time slice.

  6. Stereoscopic uncooled thermal imaging with autostereoscopic 3D flat-screen display in military driving enhancement systems

    NASA Astrophysics Data System (ADS)

    Haan, H.; Münzberg, M.; Schwarzkopf, U.; de la Barré, R.; Jurk, S.; Duckstein, B.

    2012-06-01

    Thermal cameras are widely used in driver vision enhancement systems. However, in pathless terrain, driving becomes challenging without having a stereoscopic perception. Stereoscopic imaging is a well-known technique already for a long time with understood physical and physiological parameters. Recently, a commercial hype has been observed, especially in display techniques. The commercial market is already flooded with systems based on goggle-aided 3D-viewing techniques. However, their use is limited for military applications since goggles are not accepted by military users for several reasons. The proposed uncooled thermal imaging stereoscopic camera with a geometrical resolution of 640x480 pixel perfectly fits to the autostereoscopic display with a 1280x768 pixels. An eye tracker detects the position of the observer's eyes and computes the pixel positions for the left and the right eye. The pixels of the flat panel are located directly behind a slanted lenticular screen and the computed thermal images are projected into the left and the right eye of the observer. This allows a stereoscopic perception of the thermal image without any viewing aids. The complete system including camera and display is ruggedized. The paper discusses the interface and performance requirements for the thermal imager as well as for the display.

  7. Colorful holographic display of 3D object based on scaled diffraction by using non-uniform fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Xia, Jun; Lei, Wei

    2015-03-01

    We proposed a new method to calculate the color computer generated hologram of three-dimensional object in holographic display. The three-dimensional object is composed of several tilted planes which are tilted from the hologram. The diffraction from each tilted plane to the hologram plane is calculated based on the coordinate rotation in Fourier spectrum domains. We used the nonuniform fast Fourier transformation (NUFFT) to calculate the nonuniform sampled Fourier spectrum on the tilted plane after coordinate rotation. By using the NUFFT, the diffraction calculation from tilted plane to the hologram plane with variable sampling rates can be achieved, which overcomes the sampling restriction of FFT in the conventional angular spectrum based method. The holograms of red, green and blue component of the polygon-based object are calculated separately by using our NUFFT based method. Then the color hologram is synthesized by placing the red, green and blue component hologram in sequence. The chromatic aberration caused by the wavelength difference can be solved effectively by restricting the sampling rate of the object in the calculation of each wavelength component. The computer simulation shows the feasibility of our method in calculating the color hologram of polygon-based object. The 3D object can be displayed in color with adjustable size and no chromatic aberration in holographic display system, which can be considered as an important application in the colorful holographic three-dimensional display.

  8. The Impact of Web3D Technologies on Medical Education and Training

    ERIC Educational Resources Information Center

    John, Nigel W.

    2007-01-01

    This paper provides a survey of medical applications that make use of Web3D technologies, covering the period from 1995 to 2005. We assess the impact that Web3D has made on medical education and training during this time and highlight current and future trends. The applications identified are categorized into: general education tools; tools for…

  9. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  10. Application to monitoring of tailings dam based on 3D laser scanning technology

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Zhang, Aiwu

    2011-06-01

    This paper presented a new method of monitoring of tailing dam based on 3D laser scanning technology and gave the method flow of acquiring and processing the tailing dam data. Taking the measured data for example, the author analyzed the dam deformation by generating the TIN, DEM and the curvature graph, and proved that it's feasible to global monitor the tailing dam using 3D laser scanning technology from the theory and method.

  11. Flexible display technology for the objective force

    NASA Astrophysics Data System (ADS)

    Pellegrino, John M.; Wood, Gary L.; Morton, David C.; Forsythe, Eric W.; Girolamo, Henry J.

    2003-09-01

    The Army has initiated a flexible display research program. This program is part of the Army's strategy to create technologies that will enable revolutionary designs and transformational weapons systems for the Objective Force. The ARL flexible display program is more general than just for the dismounted soldier-it will also have implications for air and vehicular crews, and for the other services, even though it is not a DoD tri-service program per se. "Flexible" is defined in the program as displays that operate under conditions from conformal applications, limited flexing, to rollable displays for compact storage. The Army program will include display manufacturing concepts that enable roll-to-roll processes reduce cost, to tap a strong U.S. domestic industrial strength, and, eventually, to enable fabrication of very large sizes. There is commercial interest in flexible displays for applications ranging from wearable electronics for road-warriors and gamers to large screen 71-in. 1920x1200 color pixel consumer high definition television sets for walls. Industry willingness to cost share will be a key criterion in identifying investment opportunities that are necessary and timely from among all that may be envisioned. Some anticipated military applications and a roadmap are presented that identify the technology barriers at the materials, device and manufacturing levels to the creation of flexible display technology.

  12. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  13. 3D optical see-through head-mounted display based augmented reality system and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  14. Projection display industry market and technology trends

    NASA Astrophysics Data System (ADS)

    Castellano, Joseph A.; Mentley, David E.

    1995-04-01

    The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.

  15. A Desktop Computer Based Workstation for Display and Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Erickson, Bradley J.; Robb, Richard A.

    1987-01-01

    While great advances have been made in developing new and better ways to produce medical images, the technology to efficiently display and analyze them has lagged. This paper describes design considerations and development of a workstation based on an IBM PC/AT for the analysis of three and four dimensional medical image data. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9

  16. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. PMID:27061133

  17. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  18. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact. PMID:22003612

  19. 3D Imaging for hand gesture recognition: Exploring the software-hardware interaction of current technologies

    NASA Astrophysics Data System (ADS)

    Periverzov, Frol; Ilieş, Horea T.

    2012-09-01

    Interaction with 3D information is one of the fundamental and most familiar tasks in virtually all areas of engineering and science. Several recent technological advances pave the way for developing hand gesture recognition capabilities available to all, which will lead to more intuitive and efficient 3D user interfaces (3DUI). These developments can unlock new levels of expression and productivity in all activities concerned with the creation and manipulation of virtual 3D shapes and, specifically, in engineering design. Building fully automated systems for tracking and interpreting hand gestures requires robust and efficient 3D imaging techniques as well as potent shape classifiers. We survey and explore current and emerging 3D imaging technologies, and focus, in particular, on those that can be used to build interfaces between the users' hands and the machine. The purpose of this paper is to categorize and highlight the relevant differences between these existing 3D imaging approaches in terms of the nature of the information provided, output data format, as well as the specific conditions under which these approaches yield reliable data. Furthermore we explore the impact of each of these approaches on the computational cost and reliability of the required image processing algorithms. Finally we highlight the main challenges and opportunities in developing natural user interfaces based on hand gestures, and conclude with some promising directions for future research. [Figure not available: see fulltext.

  20. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  1. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  2. Overestimation of heights in virtual reality is influenced more by perceived distal size than by the 2-D versus 3-D dimensionality of the display

    NASA Technical Reports Server (NTRS)

    Dixon, Melissa W.; Proffitt, Dennis R.; Kaiser, M. K. (Principal Investigator)

    2002-01-01

    One important aspect of the pictorial representation of a scene is the depiction of object proportions. Yang, Dixon, and Proffitt (1999 Perception 28 445-467) recently reported that the magnitude of the vertical-horizontal illusion was greater for vertical extents presented in three-dimensional (3-D) environments compared to two-dimensional (2-D) displays. However, because all of the 3-D environments were large and all of the 2-D displays were small, the question remains whether the observed magnitude differences were due solely to the dimensionality of the displays (2-D versus 3-D) or to the perceived distal size of the extents (small versus large). We investigated this question by comparing observers' judgments of vertical relative to horizontal extents on a large but 2-D display compared to the large 3-D and the small 2-D displays used by Yang et al (1999). The results confirmed that the magnitude differences for vertical overestimation between display media are influenced more by the perceived distal object size rather than by the dimensionality of the display.

  3. A new method to enlarge a range of continuously perceived depth in DFD (depth-fused 3D) display

    NASA Astrophysics Data System (ADS)

    Tsunakawa, Atsuhiro; Soumiya, Tomoki; Horikawa, Yuta; Yamamoto, Hirotsugu; Suyama, Shiro

    2013-03-01

    We can successfully solve the problem in DFD display that the maximum depth difference of front and rear planes is limited because depth fusing from front and rear images to one 3-D image becomes impossible. The range of continuously perceived depth was estimated as depth difference of front and rear planes increases. When the distance was large enough, perceived depth was near front plane at 0~40 % of rear luminance and near rear plane at 60~100 % of rear luminance. This maximum depth range can be successfully enlarged by spatial-frequency modulation of front and rear images. The change of perceived depth dependence was evaluated when high frequency component of front and rear images is cut off using Fourier Transformation at the distance between front and rear plane of 5 and 10 cm (4.9 and 9.4 minute of arc). When high frequency component does not cut off enough at the distance of 5 cm, perceived depth was separated to near front plane and near rear plane. However, when the images are blurred enough by cutting high frequency component, the perceived depth has a linear dependency on luminance ratio. When the images are not blurred at the distance of 10 cm, perceived depth is separated to near front plane at 0~30% of rear luminance, near rear plane at 80~100 % and near midpoint at 40~70 %. However, when the images are blurred enough, perceived depth successfully has a linear dependency on luminance ratio.

  4. A 3D universal structure based on molecular-QCA and CNT technologies

    NASA Astrophysics Data System (ADS)

    khosroshahy, Milad Bagherian; Daliri, Mahya Sam; Abdoli, Alireza; Navi, Keivan; Bagherzadeh, Nader

    2016-09-01

    This paper presents a novel method for design and implementation of three dimensional (3D) two-layer devices with 1/0 logic values. This method uses carbon nanotube (CNT) technology as well as the molecular quantum cellular automata (MQCA) technology on a graphene substrate. The most significant characteristic of the proposed design, which makes the design unique, is the capability of generating functions in 3D; the proposed method would allow implementation of the designs in a single layer which significantly impacts on reducing the chip area and also greatly facilitates the overall synthesis of the design including placement, routing and reducing the critical path length.

  5. PACS displays: how to select the right display technology.

    PubMed

    Hirschorn, David S; Krupinski, Elizabeth A; Flynn, Michael J

    2014-12-01

    The medical imaging display is a precision instrument with many features not found in commercial-grade displays. The more one understands what these features are and their corresponding clinical value, the better one can make a purchase decision. None of these displays maintain themselves for 5 years or more without some degree of automatic or manual performance testing. Routine calibration conformance checks are beginning to be mandated by the departments of health of many states. Most manufacturers provide mechanisms to perform these checks and keep track of their results, some more easily than others. A consistent display brightness of about 400 cd/m(2) and close conformance to the DICOM curve are the key components of a successful check. Displays are typically characterized by the number of pixels they contain, usually 2, 3, or 5 megapixels, but this is the least useful determinant of image quality. What matters most is the size of the pixels and the size of the whole display, which should be selected on the basis of the typical viewing distance. The farther one's eyes are from the display, the larger the pixels and the overall display size can be while still feeding the eye as much information as it can see. Care should be taken to use the appropriate display in a given setting for the clinical purpose at hand. PMID:25467904

  6. The application of camera calibration in range-gated 3D imaging technology

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-quan; Wang, Xian-wei; Zhou, Yan

    2013-09-01

    Range-gated laser imaging technology was proposed in 1966 by LF Gillespiethe in U.S. Army Night Vision Laboratory(NVL). Using pulse laser and intensified charge-coupled device(ICCD) as light source and detector respectively, range-gated laser imaging technology can realize space-slice imaging while restraining the atmospheric backs-catter, and in turn detect the target effectively, by controlling the delay between the laser pulse and strobe. Owing to the constraints of the development of key components such as narrow pulse laser and gated imaging devices, the research has been progressed slowly in the next few decades. Until the beginning of this century, as the hardware technology continues to mature, this technology has developed rapidly in fields such as night vision, underwater imaging, biomedical imaging, three-dimensional imaging, especially range-gated three-dimensional(3-D) laser imaging field purposing of access to target spatial information. 3-D reconstruction is the processing of restoration of 3-D objects visible surface geometric structure from three-dimensional(2-D) image. Range-gated laser imaging technology can achieve gated imaging of slice space to form a slice image, and in turn provide the distance information corresponding to the slice image. But to inverse the information of 3-D space, we need to obtain the imaging visual field of system, that is, the focal length of the system. Then based on the distance information of the space slice, the spatial information of each unit space corresponding to each pixel can be inversed. Camera calibration is an indispensable step in 3-D reconstruction, including analysis of the internal structure of camera parameters and the external parameters . In order to meet the technical requirements of the range-gated 3-D imaging, this paper intends to study the calibration of the zoom lens system. After summarizing the camera calibration technique comprehensively, a classic calibration method based on line is

  7. Attitudes of Patients Toward Adoption of 3D Technology in Pain Assessment: Qualitative Perspective

    PubMed Central

    2013-01-01

    Background Past research has revealed that insufficient pain assessment could, and often, has negative implications on the provision of quality health care. While current available clinical approaches have proven to be valid interventions, they are expensive and can often fail in providing efficient pain measurements. The increase in the prevalence of pain calls for more intuitive pain assessment solutions. Computerized alternatives have already been proposed both in the literature and in commerce, but may lack essential qualities such as accuracy of the collected clinical information and effective patient-clinician interaction. In response to this concern, 3-dimensional (3D) technology could become the innovative intervention needed to support and improve the pain assessment process. Objective The purpose of this analysis was to describe qualitative findings from a study which was designed to explore patients’ perceptions of adopting 3D technology in the assessment of their pain experience related to important themes that might positively or negatively influence the quality of the pain assessment process. Methods The perceptions of 60 individuals with some form of pain in the area of Greater London were collected through semi-structured interviews. Of the 60 respondents, 24 (43%) produced usable responses and were analyzed for content using principles of the grounded theory approach and thematic analysis, in order to gain insight into the participants’ beliefs and attitudes towards adopting 3D technology in pain assessment. Results The analysis identified 4 high-level core themes that were representative of the participants’ responses. These themes indicated that most respondents valued “the potential of 3D technology to facilitate better assessment of pain” as the most useful outcome of adopting a 3D approach. Respondents also expressed their opinions on the usability of the 3D approach, with no important concerns reported about its perceived ease of

  8. Applications of display technology in protein analysis.

    PubMed

    Li, M

    2000-12-01

    Display technology refers to a collection of methods for creating libraries of modularly coded biomolecules that can be screened for desired properties. It has become a routine tool for enriching molecular diversity and producing novel types of proteins. The combination of an ever-increasing variety of libraries of modularly coded protein complexxes with the development of innovative approaches to select a wide array of desired properties has facilitated large-scale analyses of protein-protein/protein-substrate interactions, rapid isolation of antibodies (or antibody mimetics) without immunization, and function-based protein analysis. Several practical and theoretical challenges remain to be addressed before display technology can be readily applied to proteomic studies. PMID:11101802

  9. Antibody phage display technology and its applications.

    PubMed

    Hoogenboom, H R; de Bruïne, A P; Hufton, S E; Hoet, R M; Arends, J W; Roovers, R C

    1998-06-01

    In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade. PMID:9661810

  10. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays.

    PubMed

    Yoshida, Shunsuke

    2016-06-13

    A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present. PMID:27410336

  11. Development of ceramic-reinforced photopolymers for SLA 3D printing technology

    NASA Astrophysics Data System (ADS)

    Yun, Ji Sun; Park, Tae-Wan; Jeong, Young Hun; Cho, Jeong Ho

    2016-06-01

    Al2O3 ceramic-reinforced photopolymer samples for SLA 3D printing technology were prepared using a silane coupling agent (VTES, vinyltriethoxysilane). Depending on the method used to coat the VTES onto the ceramic surface, the dispersion of ceramic particles in the photopolymer solution was remarkably improved. SEM, TEM and element mapping images showed Al2O3 particles well wrapped with VTES along with well-distributed Al2O3 particles overall on the cross-sectional surfaces of 3D-printed objects. The tensile properties (stress-strain curves) of 3D-printed objects of the ceramic-reinforced photopolymer were investigated as a function of the Al2O3 ceramic content when it ranged from 0 to 20 wt%. The results demonstrate that an Al2O3 ceramic content of 15 wt% resulted in enhanced tensile characteristics.

  12. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  13. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology.

    PubMed

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines. PMID:26406036

  14. Airport databases for 3D synthetic-vision flight-guidance displays: database design, quality assessment, and data generation

    NASA Astrophysics Data System (ADS)

    Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe

    1999-07-01

    In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite

  15. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  16. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  17. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  18. A Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays

    PubMed Central

    Bang, Jae Won; Choi, Jong-Suk; Heo, Hwan; Park, Kang Ryoung

    2015-01-01

    With the rapid increase of 3-dimensional (3D) content, considerable research related to the 3D human factor has been undertaken for quantitatively evaluating visual discomfort, including eye fatigue and dizziness, caused by viewing 3D content. Various modalities such as electroencephalograms (EEGs), biomedical signals, and eye responses have been investigated. However, the majority of the previous research has analyzed each modality separately to measure user eye fatigue. This cannot guarantee the credibility of the resulting eye fatigue evaluations. Therefore, we propose a new method for quantitatively evaluating eye fatigue related to 3D content by combining multimodal measurements. This research is novel for the following four reasons: first, for the evaluation of eye fatigue with high credibility on 3D displays, a fuzzy-based fusion method (FBFM) is proposed based on the multimodalities of EEG signals, eye blinking rate (BR), facial temperature (FT), and subjective evaluation (SE); second, to measure a more accurate variation of eye fatigue (before and after watching a 3D display), we obtain the quality scores of EEG signals, eye BR, FT and SE; third, for combining the values of the four modalities we obtain the optimal weights of the EEG signals BR, FT and SE using a fuzzy system based on quality scores; fourth, the quantitative level of the variation of eye fatigue is finally obtained using the weighted sum of the values measured by the four modalities. Experimental results confirm that the effectiveness of the proposed FBFM is greater than other conventional multimodal measurements. Moreover, the credibility of the variations of the eye fatigue using the FBFM before and after watching the 3D display is proven using a t-test and descriptive statistical analysis using effect size. PMID:25961382

  19. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  20. Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  1. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  2. Assessments for 3d Reconstructions of Cultural Heritage Using Digital Technologies

    NASA Astrophysics Data System (ADS)

    Manferdini, A. M.; Galassi, M.

    2013-02-01

    The aim of this contribution is to show the results of evaluations on 3D digitizations performed using different methodologies and technologies. In particular, for surveys conducted at the architectural and urban scale, the recent reduction of costs related to Time of Flight and phase shift laser scanners is actually enhancing the replacement of traditional topographic instruments (i.e. total stations) with range-based technologies for the acquisition of 3D data related to built heritage. If compared to surveys performed using traditional topographic technologies, range-based ones offer a wide range of advantages, but they also require different skills, procedures and times. The present contribution shows the results of a practical application of both approaches on the same case study. Another application was suggested by the recent developments in the photogrammetric field that enhance the improvement of software able to automatically orient uncalibrated cameras and derive dense and accurate 3D point clouds, with evident benefits in reduction of costs required for survey equipment. Therefore, the presented case study constituted the occasion to compare a rangebased survey with a fast 3D acquisition and modelling using a Structure from Motion solution. These survey procedures were adopted at an architectural scale, on a single building, that was surveyed both on the outside and on the inside. Assessments on the quality of the rebuilt information is reported, as far as metric accuracy and reliability is concerned, as well as on time consuming and on skills required during each step of the adopted pipelines. For all approaches, these analysis highlighted advantages and disadvantages that allow to conduct evaluations on the possible convenience of adopting range-based technologies instead of a traditional topographic approach or a photogrammetric one instead of a range based one in case of surveys conducted at an architectural/urban scale.

  3. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  4. Characterization of ABS specimens produced via the 3D printing technology for drone structural components

    NASA Astrophysics Data System (ADS)

    Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo

    2016-07-01

    The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.

  5. The impact of flattening-filter-free beam technology on 3D conformal RT

    PubMed Central

    2013-01-01

    Background The removal of the flattening filter (FF) leads to non-uniform fluence distribution with a considerable increase in dose rate. It is possible to adapt FFF beams (flattening-filter-free) in 3D conformal radiation therapy (3D CRT) by using field in field techniques (FiF). The aim of this retrospective study is to clarify whether the quality of 3D CRT plans is influenced by the use of FFF beams. Method This study includes a total of 52 CT studies of RT locations that occur frequently in clinical practice. Dose volume targets were provided for the PTV of breast (n=13), neurocranium (n=11), lung (n=7), bone metastasis (n=10) and prostate (n=11) in line with ICRU report 50/62. 3D CRT planning was carried out using FiF methods. Two clinically utilized photon energies are used for a Siemens ARTISTE linear accelerator in FFF mode at 7MVFFF and 11MVFFF as well as in FF mode at 6MVFF and 10MVFF. The plan quality in relation to the PTV coverage, OAR (organs at risk) and low dose burden as well as the 2D dosimetric verification is compared with FF plans. Results No significant differences were found between FFF and FF plans in the mean dose for the PTV of breast, lung, spine metastasis and prostate. The low dose parameters V5Gy and V10Gy display significant differences for FFF and FF plans in some subgroups. The DVH analysis of the OAR revealed some significant differences. Significantly more fields (1.9 – 4.5) were necessary in the use of FFF beams for each location (p<0.0001) in order to achieve PTV coverage. All the tested groups displayed significant increases (1.3 – 2.2 times) in the average number of necessary MU with the use of FFF beams (p<0.001). Conclusions This study has shown that the exclusive use of a linear accelerator in FFF mode is feasible in 3D CRT. It was possible to realize RT plans in comparable quality in typical cases of clinical radiotherapy. The 2D dosimetric validation of the modulated fields verified the dose calculation and thus the

  6. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  7. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    PubMed Central

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  8. A Laboratory-Based Course in Display Technology

    ERIC Educational Resources Information Center

    Sarik, J.; Akinwande, A. I.; Kymissis, I.

    2011-01-01

    A laboratory-based class in flat-panel display technology is presented. The course introduces fundamental concepts of display systems and reinforces these concepts through the fabrication of three display devices--an inorganic electroluminescent seven-segment display, a dot-matrix organic light-emitting diode (OLED) display, and a dot-matrix…

  9. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  10. Projection display technology and product trends

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  11. 220GHz wideband 3D imaging radar for concealed object detection technology development and phenomenology studies

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Bryllert, Tomas

    2016-05-01

    We present a 220 GHz 3D imaging `Pathfinder' radar developed within the EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) which has been built to address two objectives: (i) to de-risk the radar hardware development and (ii) to enable the collection of phenomenology data with ~1 cm3 volumetric resolution. The radar combines a DDS-based chirp generator and self-mixing multiplier technology to achieve a 30 GHz bandwidth chirp with such high linearity that the raw point response is close to ideal and only requires minor nonlinearity compensation. The single transceiver is focused with a 30 cm lens mounted on a gimbal to acquire 3D volumetric images of static test targets and materials.

  12. Projection display technologies for the new millennium

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  13. True-Depth: a new type of true 3D volumetric display system suitable for CAD, medical imaging, and air-traffic control

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Floating Images, Inc. is developing a new type of volumetric monitor capable of producing a high-density set of points in 3D space. Since the points of light actually exist in space, the resulting image can be viewed with continuous parallax, both vertically and horizontally, with no headache or eyestrain. These 'real' points in space are always viewed with a perfect match between accommodation and convergence. All scanned points appear to the viewer simultaneously, making this display especially suitable for CAD, medical imaging, air-traffic control, and various military applications. This system has the potential to display imagery so accurately that a ruler could be placed within the aerial image to provide precise measurement in any direction. A special virtual imaging arrangement allows the user to superimpose 3D images on a solid object, making the object look transparent. This is particularly useful for minimally invasive surgery in which the internal structure of a patient is visible to a surgeon in 3D. Surgical procedures can be carried out through the smallest possible hole while the surgeon watches the procedure from outside the body as if the patient were transparent. Unlike other attempts to produce volumetric imaging, this system uses no massive rotating screen or any screen at all, eliminating down time due to breakage and possible danger due to potential mechanical failure. Additionally, it is also capable of displaying very large images.

  14. Toner display based on particle control technologies

    NASA Astrophysics Data System (ADS)

    Kitamura, Takashi

    2011-03-01

    Toner Display is based on an electrical movement of charged particles. Two types of black toner and white particles charged in the different electric polarity are enclosed between two electrodes. The particle movement is controlled by the external electric field applied between two transparent electrodes. The toner is collected to the electrode by an electrostatic force across the insulating layer to display a black image. The toners can be put back to the counter electrode by applying a reverse electric field, and white solid image is displayed. We have studied on the movement of three color particles independently to display color image in Toner Display. Two positively charged color particles with different amount of charge to mass ratio and negatively charged white particles were enclosed in the toner display cell. Yellow, cyan and white images were displayed by an application of voltage.

  15. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation and used for quality assurance in the lab and in production. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and

  16. 3D real holographic image movies are projected into a volumetric display using dynamic digital micromirror device (DMD) holograms.

    NASA Astrophysics Data System (ADS)

    Huebschman, Michael L.; Hunt, Jeremy; Garner, Harold R.

    2006-04-01

    The Texas Instruments Digital Micromirror Device (DMD) is being used as the recording medium for display of pre-calculated digital holograms. The high intensity throughput of the reflected laser light from DMD holograms enables volumetric display of projected real images as well as virtual images. A single DMD and single laser projector system has been designed to reconstruct projected images in a 6''x 6''x 4.5'' volumetric display. The volumetric display is composed of twenty-four, 6''-square, PSCT liquid crystal plates which are each cycled on and off to reduce unnecessary scatter in the volume. The DMD is an XGA format array, 1024x768, with 13.6 micron pitch mirrors. This holographic projection system has been used in the assessment of hologram image resolution, maximum image size, optical focusing of the real image, image look-around, and physiological depth cues. Dynamic movement images are projected by transferring the appropriately sequenced holograms to the DMD at movie frame rates.

  17. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  18. 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications.

    PubMed

    Bluemel, Christina; Matthies, Philipp; Herrmann, Ken; Povoski, Stephen P

    2016-01-01

    Freehand SPECT (fhSPECT) is a technology platform for providing 3-dimensional (3D) navigation for radioguided surgical procedures, such as sentinel lymph node (SLN) biopsy (SLNB). In addition to the information provided by conventional handheld gamma detection probes, fhSPECT allows for direct visualization of the distribution of radioactivity in any given region of interest, allowing for improved navigation to radioactive target lesions and providing accurate lesion depth measurements. Herein, we will review the currently available clinical data on the use of fhSPECT: (i) for SLNB of various malignancies, including difficult-to-detect SLNs, and (ii) for radioguided localization of solid tumors. Moreover, the combination of fhSPECT with other technologies (e.g., small field-of-view gamma cameras, and diagnostic ultrasound) is discussed. These technical advances have the potential to greatly expand the clinical application of radioguided surgery in the future. PMID:26878667

  19. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  20. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  1. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  2. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  3. Availability study of CFD-based Mask3D simulation method for next generation lithography technologies

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Kawabata, Y.; Washitani, T.; Tanaka, S.; Maeda, S.; Mimotogi, S.

    2014-03-01

    In progress of lithography technologies, the importance of Mask3D analysis has been emphasized because the influence of mask topography effects is not avoidable to be increased explosively. An electromagnetic filed simulation method, such as FDTD, RCWA and FEM, is applied to analyze those complicated phenomena. We have investigated Constrained Interpolation Profile (CIP) method, which is one of the Method of Characteristics (MoC), for Mask3D analysis in optical lithography. CIP method can reproduce the phase of propagating waves with less numerical error by using high order polynomial function. The restrictions of grid distance are relaxed with spatial grid. Therefore this method reduces the number of grid points in complex structure. In this paper, we study the feasibility of CIP scheme applying a non-uniform and spatial-interpolated grid to practical mask patterns. The number of grid points might be increased in complex layout and topological structure since these structures require a dense grid to remain the fidelity of each design. We propose a spatial interpolation method based on CIP method same as time-domain interpolation to reduce the number of grid points to be computed. The simulation results of two meshing methods with spatial interpolation are shown.

  4. Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  5. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  6. Stress management for 3D through-silicon-via stacking technologies - The next frontier -

    SciTech Connect

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2014-06-19

    The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitable models required to make real product reliability decisions.

  7. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  8. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    NASA Astrophysics Data System (ADS)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  9. Real-Depth imaging: a new 3D imaging technology with inexpensive direct-view (no glasses) video and other applications

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1997-05-01

    Floating Images, Inc. has developed the software and hardware for a new, patent pending, 'floating 3-D, off-the-screen- experience' display technology. This technology has the potential to become the next standard for home and arcade video games, computers, corporate presentations, Internet/Intranet viewing, and television. Current '3-D graphics' technologies are actually flat on screen. Floating ImagesTM technology actually produce images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. In addition, unlike stereoscopic 3-D imaging, no glasses, headgear, or other viewing aids are used. And, unlike current autostereoscopic imaging technologies, there is virtually no restriction on where viewers can sit to view the images, with no 'bad' or 'dead' zones, flipping, or pseudoscopy. In addition to providing traditional depth cues such as perspective and background image occlusion, the new technology also provides both horizontal and vertical binocular parallax (the ability to look around foreground objects to see previously hidden background objects, with each eye seeing a different view at all times) and accommodation (the need to re-focus one's eyes when shifting attention from a near object to a distant object) which coincides with convergence (the need to re-aim one's eyes when shifting attention from a near object to a distant object). Since accommodation coincides with convergence, viewing these images doesn't produce headaches, fatigue, or eye-strain, regardless of how long they are viewed (unlike stereoscopic and autostereoscopic displays). The imagery (video or computer generated) must either be formatted for the Floating ImagesTM platform when written or existing software can be re-formatted without much difficulty.

  10. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    ERIC Educational Resources Information Center

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  11. 3D vision based on PMD-technology for mobile robots

    NASA Astrophysics Data System (ADS)

    Roth, Hubert J.; Schwarte, Rudolf; Ruangpayoongsak, Niramon; Kuhle, Joerg; Albrecht, Martin; Grothof, Markus; Hess, Holger

    2003-09-01

    A series of micro-robots (MERLIN: Mobile Experimental Robots for Locomotion and Intelligent Navigation) has been designed and implemented for a broad spectrum of indoor and outdoor tasks on basis of standardized functional modules like sensors, actuators, communication by radio link. The sensors onboard on the MERLIN robot can be divided into two categories: internal sensors for low-level control and for measuring the state of the robot and external sensors for obstacle detection, modeling of the environment and position estimation and navigation of the robot in a global co-ordinate system. The special emphasis of this paper is to describe the capabilities of MERLIN for obstacle detection, targets detection and for distance measurement. Besides ultrasonic sensors a new camera based on PMD-technology is used. This Photonic Mixer Device (PMD) represents a new electro-optic device that provides a smart interface between the world of incoherent optical signals and the world of their electronic signal processing. This PMD-technology directly enables 3D-imaging by means of the time-of-flight (TOF) principle. It offers an extremely high potential for new solutions in the robotics application field. The PMD-Technology opens up amazing new perspectives for obstacle detection systems, target acquisition as well as mapping of unknown environments.

  12. Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology

    NASA Astrophysics Data System (ADS)

    Guthrie, Anne

    In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.

  13. Mobile 3D television: development of core technological elements and user-centered evaluation methods toward an optimized system

    NASA Astrophysics Data System (ADS)

    Gotchev, Atanas; Smolic, Aljoscha; Jumisko-Pyykkö, Satu; Strohmeier, Dominik; Bozdagi Akar, Gozde; Merkle, Philipp; Daskalov, Nikolai

    2009-02-01

    A European consortium of six partners has been developing core technological components of a mobile 3D television system over DVB-H channel. In this overview paper, we present our current results on developing optimal methods for stereo-video content creation, coding and transmission and emphasize their significance for the power-constrained mobile platform, equipped with auto-stereoscopic display. We address the user requirements by applying modern usercentered approaches taking into account different user groups and usage contexts in contrast to the laboratory assessment methods which, though standardized, offer limited applicability to real applications. To this end, we have been aiming at developing a methodological framework for the whole system development process. One of our goals has been to further develop the user-centered approach towards experienced quality of critical system components. In this paper, we classify different research methods and technological solutions analyzing their pros and constraints. Based on this analysis we present the user-centered methodological framework being used throughout the whole development process of the system and aimed at achieving the best performance and quality appealing to the end user.

  14. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  15. Role of 3D photo-resist simulation for advanced technology nodes

    NASA Astrophysics Data System (ADS)

    Narayana Samy, Aravind; Seltmann, Rolf; Kahlenberg, Frank; Schramm, Jessy; Küchler, Bernd; Klostermann, Ulrich

    2013-04-01

    3D Resist Models are gaining significant interest for advanced technology node development. Correct prediction of resist profiles, resist top-loss and top-rounding are acquiring higher importance in ORC hotspot verification due to impact on etch resistance and post etch results. We would like to highlight the specific calibration procedure to calibrate a rigorous 3D model. Special focus is on the importance of high quality metrology data for both a successful calibration and for allowing a reduction of the number of data points used for calibration [1]. In a productive application the calibration could be performed using a subset of 20 features measured through dose and focus and model validation was done with 500 features through dose and focus. This data reduction minimized the actual calibration effort of the 3D resist model and enabled calibration run times of less than one hour. The successful validation with the complete data set showed that the data reduction did not cause over- fitting of the model. The model is applied and verified at hotspots showing defects such as bottom bridging or top loss that would not be visible in a 2D resist model. The model performance is also evaluated with a conventional CD error metric where CD at Bottom of simulation and measurement are compared. We could achieve excellent results for both metrics using SEM CD, SEM images, AFM measurements and wafer cross sections. Additional modeling criterion is resist model portability. A prerequisite is the separability of resist model and optical model, i.e. the resist model shall characterize the resist only and should not lump characteristics from the optical model. This is a requirement to port the resist model to different optical setups such as another illumination source without the need of re-calibration. Resist model portability is shown by validation and application of the model to a second process with significantly different optical settings. The resist model can predict hot

  16. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data

  17. Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies

    NASA Astrophysics Data System (ADS)

    Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Bassetti, V.; Berardi, V.; Boccone, V.; Bozzo, M.; Brücken, E.; Buzzo, A.; Catanesi, M. G.; Cuneo, S.; Da Vià, C.; Deile, M.; Dinapoli, R.; Eggert, K.; Eremin, V.; Ferro, F.; Hasi, J.; Haug, F.; Heino, J.; Jarron, P.; Kalliopuska, J.; Kašpar, J.; Kenney, C.; Kok, A.; Kundrát, V.; Kurvinen, K.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Luntama, T.; Macina, D.; Macrí, M.; Minutoli, S.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Parker, S.; Perrot, A.-L.; Radermacher, E.; Radicioni, E.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Sette, G.; Siegrist, P.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Watts, S.; Whitmore, J.

    2013-06-01

    The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.

  18. Library-based display technologies: where do we stand?

    PubMed

    Galán, Asier; Comor, Lubos; Horvatić, Anita; Kuleš, Josipa; Guillemin, Nicolas; Mrljak, Vladimir; Bhide, Mangesh

    2016-07-19

    Over the past two decades, library-based display technologies have been staggeringly optimized since their appearance in order to mimic the process of natural molecular evolution. Display technologies are essential for the isolation of specific high-affinity binding molecules (proteins, polypeptides, nucleic acids and others) for diagnostic and therapeutic applications in cancer, infectious diseases, autoimmune, neurodegenerative, inflammatory pathologies etc. Applications extend to other fields such as antibody and enzyme engineering, cell-free protein synthesis and the discovery of protein-protein interactions. Phage display technology is the most established of these methods but more recent fully in vitro alternatives, such as ribosome display, mRNA display, cis-activity based (CIS) display and covalent antibody display (CAD), as well as aptamer display and in vitro compartmentalization, offer advantages over phage in library size, speed and the display of unnatural amino acids and nucleotides. Altogether, they have produced several molecules currently approved or in diverse stages of clinical or preclinical testing and have provided researchers with tools to address some of the disadvantages of peptides and nucleotides such as their low affinity, low stability, high immunogenicity and difficulty to cross membranes. In this review we assess the fundamental technological features and point out some recent advances and applications of display technologies. PMID:27306919

  19. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.

    PubMed

    Xing, Jin-Feng; Zheng, Mei-Ling; Duan, Xuan-Ming

    2015-08-01

    3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels. PMID:25992492

  20. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  1. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    SciTech Connect

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  2. Survey of multi-function display and control technology

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Tonkin, M. H.

    1982-01-01

    The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described.

  3. Applying 3D-printing technology in planning operations of cancer patients

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; N, A. N. Rudyk A.; Kashapov, R. N.

    2014-12-01

    The purpose of this work was creation 3D model of the front part of the skull of the patient and evaluates the effectiveness of its use in the planning of the operation. To achieve this goal was chosen an operation to remove a tumor of the right eyelid, germinate in the zygomatic bone. 3D printing was performed at different peripheral devices using the method of layering creating physical objects by a digital 3D model as well as the recovery model of the skull with the entire right malar bone for fixation on her titanium frame to maintain the eyeball in a fixed state.

  4. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  5. A Comparison of the Perceptual Benefits of Linear Perspective and Physically-Based Illumination for Display of Dense 3D Streamtubes

    SciTech Connect

    Banks, David C

    2008-01-01

    Large datasets typically contain coarse features comprised of finer sub-features. Even if the shapes of the small structures are evident in a 3D display, the aggregate shapes they suggest may not be easily inferred. From previous studies in shape perception, the evidence has not been clear whether physically-based illumination confers any advantage over local illumination for understanding scenes that arise in visualization of large data sets that contain features at two distinct scales. In this paper we show that physically- based illumination can improve the perception for some static scenes of complex 3D geometry from flow fields. We perform human- subjects experiments to quantify the effect of physically-based illumination on participant performance for two tasks: selecting the closer of two streamtubes from a field of tubes, and identifying the shape of the domain of a flow field over different densities of tubes. We find that physically-based illumination influences participant performance as strongly as perspective projection, suggesting that physically-based illumination is indeed a strong cue to the layout of complex scenes. We also find that increasing the density of tubes for the shape identification task improved participant performance under physically-based illumination but not under the traditional hardware-accelerated illumination model.

  6. Plastic substrate technologies for flexible displays

    NASA Astrophysics Data System (ADS)

    Hanada, Toru; Shiroishi, Isao; Negishi, Tuyoto; Shiro, Takashi

    2010-02-01

    A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 μm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a DC magnetron reactive sputtering method. In addition, a unique organic-inorganic hybrid material is coated on the SiOx to further improve the gas-barrier performance. The water vapor transmission rate of the film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.05 cc/m2•day•atm at 40 °C and 90% RH. Indium Zinc Oxide optimized for the plastic substrate was deposited on the other side of the SiOx film by the DC magnetron sputtering method. The transmittance was 87% and the resistivity was 3.5×10-4 ohm•cm.

  7. GammaModeler TM 3-D gamma-ray imaging technology

    SciTech Connect

    2000-09-01

    The 3-D GammaModeler{trademark} system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModeler{trademark} system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders.

  8. Enabling Technologies for Entrepreneurial Opportunities in 3D printing of SmallSats

    NASA Technical Reports Server (NTRS)

    Kwas, Andrew; MacDonald, Eric; Muse, Dan; Wicker, Ryan; Kief, Craig; Aarestad, Jim; Zemba, Mike; Marshall, Bill; Tolbert, Carol; Connor, Brett

    2014-01-01

    A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with

  9. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  10. The rendering context for stereoscopic 3D web

    NASA Astrophysics Data System (ADS)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  11. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  12. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  13. Large-screen display industry: market and technology trends for direct view and projection displays

    NASA Astrophysics Data System (ADS)

    Castellano, Joseph A.; Mentley, David E.

    1996-03-01

    Large screen information displays are defined as dynamic electronic displays that can be viewed by more than one person and are at least 2-feet wide. These large area displays for public viewing provide convenience, entertainment, security, and efficiency to the viewers. There are numerous uses for large screen information displays including those in advertising, transportation, traffic control, conference room presentations, computer aided design, banking, and military command/control. A noticeable characteristic of the large screen display market is the interchangeability of display types. For any given application, the user can usually choose from at least three alternative technologies, and sometimes from many more. Some display types have features that make them suitable for specific applications due to temperature, brightness, power consumption, or other such characteristic. The overall worldwide unit consumption of large screen information displays of all types and for all applications (excluding consumer TV) will increase from 401,109 units in 1995 to 655,797 units in 2002. On a unit consumption basis, applications in business and education represent the largest share of unit consumption over this time period; in 1995, this application represented 69.7% of the total. The market (value of shipments) will grow from DOL3.1 billion in 1995 to DOL3.9 billion in 2002. The market will be dominated by front LCD projectors and LCD overhead projector plates.

  14. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    PubMed

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-12-01

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks. PMID:26523399

  15. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  16. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  17. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  18. The fast and accurate 3D-face scanning technology based on laser triangle sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin

    2013-08-01

    A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.

  19. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  20. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    PubMed

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. PMID:24976019

  1. Coupling frontal photopolymerization and surface instabilities for a novel 3D patterning technology

    NASA Astrophysics Data System (ADS)

    Vitale, Alessandra; Hennessy, Matthew; Matar, Omar; Douglas, Jack; Cabral, João

    2015-03-01

    Patterning of soft matter provides an exceptional route for the generation of micro/nanostructured and functional surfaces. We describe a new 3D fabrication process based on coupling frontal photopolymerization (FPP) with precisely controlled, yet spontaneous, interfacial wrinkling. FPP is a complex spatio-temporal process that can lead to well-defined propagating fronts of network formation, both stable and unstable. We investigate this process focusing on the interfacial monomer-to-polymer conversion profile and its wave propagation. A simple coarse-grained model is found to describe remarkably well the planar frontal logarithmic kinetics, capturing the effects of UV light exposure time (or dose) and temperature, as well as the front position. In defined conditions, surface instabilities are introduced and interfere with wave planarity, resulting in the formation of ``minimal'' surfaces with complex 3D geometries. Building on this understanding on the propagation of wavefronts of network formation during photopolymerization, we demonstrate the design and fabrication of 3D patterned polymer materials with tunable shapes with optical and surface functionality.

  2. Novel grinding stone used for polishing 3D plastic replica with rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Niikura, Yoshihiro; Sato, Toshio; Kawashima, Norimichi

    2006-01-01

    Rapid prototyping (RP) apparatus accepts a specific format translated from CAD data (patient's CT) and "slices" it into two-dimensional cross sections for laser photo curing. Surgeon can conduct safer surgery by reappearing on an actual model using 3D plastic replica in the preoperative. Polishing has to be used to eliminate the marks after removal of supports and the build layer pitches. Complicated and narrow areas of the 3D replica are difficult to be polished with the conventional grinding stone. This study proposes a novel grinding stone and introduces its producing process and characteristics. The novel grinding stone has many advantages as follows; (1) Preparation is possible of grinding stone that follows the complicated shape. (2) Grinding stone with uniformly dispersed abrasive grains can be prepared using magnetic particles and magnetic field. (3) Reshaping of grinding stone by heating is possible since the binder is made of a thermoplastic resin. (4) Every process can easily be carried out. We could polish to eliminate the marks after removal of supports and the build layer pitches on 3D plastic replica surface with the grinding stone.

  3. Development of exosome surface display technology in living human cells.

    PubMed

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy. PMID:26902116

  4. Consideration of technologies for head-down displays

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.

    1998-09-01

    The market for military avionics head down displays for which Active Matrix Liquid Crystal Displays (AMLCD) has been specified is both well established and substantial. Typical major programs such as F-22, V-22 and Joint Strike Fighter (JSF) amount to over 15,000 displays. Nevertheless there is an insecurity about the situation because of the dependency upon Japanese and Korean manufacturers and the vagaries of the commercial market. The U.S. has only 7% of the world's manufacturing capability in AMLCD and is seeking alternative technologies to regain a hold in this lucrative business. The U.S. military manufacturers of AMLCD are capable, but can never achieve the benefits of scale that Commercial Off The Shelf (COTS) equipment can offer. In addition to the commercial and political concerns, there are still performance issues related to AMLCD and there is a view that emissive displays in particular can offer advantages over AMLCD. However, it is beneficial to be able to tailor display sizes and there are doubts about the ability of current flat panel technologies to achieve custom, or indeed large area panels either economically, or reliably. It is in this arena that projection displays may be the optimum solution.

  5. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. Large-screen display technology assessment for military applications

    NASA Astrophysics Data System (ADS)

    Blaha, Richard J.

    1990-08-01

    Full-color, large screen display systems can enhance military applications that require group presentation, coordinated decisions, or interaction between decision makers. The technology already plays an important role in operations centers, simulation facilities, conference rooms, and training centers. Some applications display situational, status, or briefing information, while others portray instructional material for procedural training or depict realistic panoramic scenes that are used in simulators. While each specific application requires unique values of luminance, resolution, response time, reliability, and the video interface, suitable performance can be achieved with available commercial large screen displays. Advances in the technology of large screen displays are driven by the commercial applications because the military applications do not provide the significant market share enjoyed by high definition television (HDTV), entertainment, advertisement, training, and industrial applications. This paper reviews the status of full-color, large screen display technologies and includes the performance and cost metrics of available systems. For this discussion, performance data is based upon either measurements made by our personnel or extractions from vendors' data sheets.

  7. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  8. Time multiplexed optical shutter (TMOS) display technology for avionics platforms

    NASA Astrophysics Data System (ADS)

    Selbrede, M.; Yost, B.

    2006-05-01

    Time Multiplexed Optical Shutter (TMOS) is a new approach to flat panel light valve display technology that addresses display requirements in avionics applications, particularly head-down cockpit deployments. TMOS modulates the local transmission of light from a waveguide coextensive with the screen. The architecture requires fewer, larger on-screen features (e.g., TFTs) than prevailing technologies because it exploits field sequential color techniques. Methods to mitigate color break up are presented. TMOS exhibits lower power consumption, lower weight, a simplified architecture, and better visual quality than incumbent display technologies while overcoming their limitations (e.g., poor light efficiency, and size/weight constraints due to yield and backlighting). TMOS should meet avionics needs without additional ruggedization enhancements, offers high immunity to EMP, and can be constructed from transparent materials (allowing z-axis redundancy to improve cockpit ergonomics). Respecting the avionics market, TMOS has advantages over incumbent display technologies, including lower sensitivity to temperature variation, greater immunity to vibration, higher system efficacy (power in to light out), and larger dimming ratios. The status of TMOS development and its fit within avionics applications is addressed.

  9. Subglacial Landforms and Processes: new Information From 3D Seismic Technology

    NASA Astrophysics Data System (ADS)

    Andreassen, K.

    2007-12-01

    Three-dimensional (3D) seismic interpretation and imaging techniques provide a unique means of investigating submarine geomorphic features produced by former ice sheets. An extensive two-dimensional (2D) and 3D seismic data base is here used to image the imprints left behind by glaciers that flowed out a major cross-shelf trough (Bjornoyrenna) of the north-Norwegian continental shelf during repeated glacial episodes. Mega-scale glacial lineations characterize the seafloor geomorphology of Bjornoyrenna and smaller, contributing cross-shelf troughs, where they are inferred to represent flow-lines of former ice streams that where active during the most recent (Weichselian) glacial period. Similar features are commonly observed on buried horizons. Large- scale seafloor imprints from an early readvance after the last glacial maximum are especially well preserved. Streamlined landforms and associated lobe-shaped ridges indicate that this major cross-shelf trough hosted six separate ice stream lobes that diverged fan-like at their margins, but were not all active simultaneously. A 300 km wide grounding-zone wedge results from high sediment flux within sub-ice stream deformable beds. A 2 to 3 km thick Pleistocene record is preserved at the mouth of Bjornoyrenna, in the Bjornoya Trough Mouth Fan. The preservation of up to several hundred meters of glacigenic sediments between the buried, glacially eroded surfaces, provides here the opportunity to study the internal structure of till units. 3D seismic attribute maps reveal that megablocks and rafts commonly occur within the till units. The sediments blocks are often aligned in chains that may be up to 2 km wide and over 50 km long. The largest individual megablocks have an areal extent of over 2 km2. The sediment chains are interpreted to have been eroded, transported and deposited by grounded ice, most probably fast-flowing ice streams. This is based on the relationship between the sediment chains and the horizons revealing

  10. Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology

    NASA Astrophysics Data System (ADS)

    Ertman, Slawomir; Bednarska, Karolina; Czapla, Aleksandra; Woliński, Tomasz R.

    2015-09-01

    Photonic liquid crystal fiber has been intensively investigated in last few years. It has been proved that guiding properties of such fibers could be tuned with an electric field. In particular efficient tuning could be obtained if multi-electrode system allowing for dynamic change of not only intensity of the electric field, but also its direction. In this work we report a simple to build four electrode system, which is based on a precisely aligned four cylindrical microelectrodes. As an electrodes we use enameled copper wire with diameter adequate to the diameter of the fiber to be tuned. To ensure uniform and parallel alignment of the wires a special micro-profiles has been designed and then produced with filament 3D printer. The possibility of the dynamic change of the electric field direction in such scalable and cost effective electrode assembly has been experimentally confirmed.

  11. Use of display technologies for augmented reality enhancement

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2016-06-01

    Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.

  12. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology

    NASA Astrophysics Data System (ADS)

    Cesaretti, Giovanni; Dini, Enrico; De Kestelier, Xavier; Colla, Valentina; Pambaguian, Laurent

    2014-01-01

    3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology - D-shape - has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.

  13. Application of 3D laser scanning technology in historical building preservation: a case study of a Chinese temple

    NASA Astrophysics Data System (ADS)

    Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang

    2005-06-01

    This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.

  14. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  15. Application of multi-function display and control technology

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included.

  16. 3D integration technology for sensor application using less than 5μm-pitch gold cone-bump connpdfection

    NASA Astrophysics Data System (ADS)

    Motoyoshi, M.; Miyoshi, T.; Ikebec, M.; Arai, Y.

    2015-03-01

    Three-dimensional (3D) integrated circuit (IC) technology is an effective solution to reduce the manufacturing costs of advanced two-dimensional (2D) large-scale integration (LSI) while ensuring equivalent device performance and functionalities. This technology allows a new device architecture using stacked detector/sensor devices with a small dead sensor area and high-speed operation that facilitates hyper-parallel data processing. In pixel detectors or focal-plane sensor devices, each pixel area must accommodate many transistors without increasing the pixel size. Consequently, many methods to realize 3D-LSI devices have been developed to meet this requirement by focusing on the unit processes of 3D-IC technology, such as through-silicon via formation and electrical and mechanical bonding between tiers of the stack. The bonding process consists of several unit processes such as bump or metal contact formation, chip/wafer alignment, chip/wafer bonding, and underfill formation; many process combinations have been reported. Our research focuses on a versatile bonding technology for silicon LSI, compound semiconductor, and microelectromechanical system devices at temperatures of less than 200oC for heterogeneous integration. A gold (Au) cone bump formed by nanoparticle deposition is one of the promising candidates for this purpose. This paper presents the experimental result of a fabricated prototype with 3-μm-diameter Au cone-bump connections with adhesive injection, and compares it with that of an indium microbump (μ-bump). The resistance of the 3-μm-diameter Au cone bump is approximately 6 Ω. We also investigated the influence of stress caused by the bump junction on the MOS characteristics.

  17. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.

    PubMed

    Kim, Jin-Young; Fluri, David A; Marchan, Rosemarie; Boonen, Kurt; Mohanty, Soumyaranjan; Singh, Prateek; Hammad, Seddik; Landuyt, Bart; Hengstler, Jan G; Kelm, Jens M; Hierlemann, Andreas; Frey, Olivier

    2015-07-10

    Rational development of more physiologic in vitro models includes the design of robust and flexible 3D-microtissue-based multi-tissue devices, which allow for tissue-tissue interactions. The developed device consists of multiple microchambers interconnected by microchannels. Pre-formed spherical microtissues are loaded into the microchambers and cultured under continuous perfusion. Gravity-driven flow is generated from on-chip reservoirs through automated chip-tilting without any need for additional tubing and external pumps. This tilting concept allows for operating up to 48 devices in parallel in order to test various drug concentrations with a sufficient number of replicates. For a proof of concept, rat liver and colorectal tumor microtissues were interconnected on the chip and cultured during 8 days in the presence of the pro-drug cyclophosphamide. Cyclophosphamide has a significant impact on tumor growth but only after bio-activation by the liver. This effect was only observed in the perfused and interconnected co-cultures of different microtissue types on-chip, whereas the discontinuous transfer of supernatant via pipetting from static liver microtissues that have been treated with cyclophosphamide did not significantly affect tumor growth. The results indicate the utility and multi-tissue functionality of this platform. The importance of continuous medium circulation and tissue interaction is highlighted. PMID:25592049

  18. Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

    NASA Technical Reports Server (NTRS)

    Wilson, Brad; Galatzer, Yishai

    2008-01-01

    The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.

  19. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-03-01

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation. PMID:26844711

  20. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  1. DLP technology application: 3D head tracking and motion correction in medical brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Wilm, Jakob; Paulsen, Rasmus R.; Højgaard, Liselotte; Larsen, Rasmus

    2014-03-01

    In this paper we present a novel sensing system, robust Near-infrared Structured Light Scanning (NIRSL) for three-dimensional human model scanning application. Human model scanning due to its nature of various hair and dress appearance and body motion has long been a challenging task. Previous structured light scanning methods typically emitted visible coded light patterns onto static and opaque objects to establish correspondence between a projector and a camera for triangulation. In the success of these methods rely on scanning objects with proper reflective surface for visible light, such as plaster, light colored cloth. Whereas for human model scanning application, conventional methods suffer from low signal to noise ratio caused by low contrast of visible light over the human body. The proposed robust NIRSL, as implemented with the near infrared light, is capable of recovering those dark surfaces, such as hair, dark jeans and black shoes under visible illumination. Moreover, successful structured light scan relies on the assumption that the subject is static during scanning. Due to the nature of body motion, it is very time sensitive to keep this assumption in the case of human model scan. The proposed sensing system, by utilizing the new near-infrared capable high speed LightCrafter DLP projector, is robust to motion, provides accurate and high resolution three-dimensional point cloud, making our system more efficient and robust for human model reconstruction. Experimental results demonstrate that our system is effective and efficient to scan real human models with various dark hair, jeans and shoes, robust to human body motion and produces accurate and high resolution 3D point cloud.

  2. Applications of advanced display technology for dismounted combatants (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Huffman, David C.

    2005-05-01

    Current military activity has made great use of small Special Tactics / Special Forces teams operating on the ground in forward areas of battle, directing Battlefield Air Operations (BAO), which include close air support, air traffic control management, and target identification and designation. A recent National Priority has been identified to improve the BAO Kit used by these Special Tactics Groups to reduce errors that may lead to unintended ground casualties. The primary objectives of the upgraded BAO Kit are to 1) improve the range and accuracy of target information; 2) eliminate opportunities for error in weapon delivery; 3) link target coordinate information directly into the weapons computer; and 4) reduce the weight carried by the warfighter by 50%. For these warfighters, L-3 Communications Display Systems and its technology partner, Universal Display Corporation, are utilizing advanced OLED display technology to create a powerful flexible display-based communication device. This will reduce the weight carried by the fighter by combining functions of the present computer, GPS equipment, and radio gear carried into the forward areas of battle. This will give the soldier a larger, higher resolution, increased battery life, and much lighter capability for the viewing of tactical information such as battlefield maps, GIS imaging data, command/control plots, and GPS-assisted navigational maps. Further integration of the device with voice and video messaging options will be explored. Both hand-held roll-up devices and wrist-worn devices are envisioned for the final product.

  3. Los Alamos Quantum Dots for Solar, Display Technology

    SciTech Connect

    Klimov, Victor

    2015-04-13

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  4. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    NASA Astrophysics Data System (ADS)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  5. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  6. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range

    NASA Astrophysics Data System (ADS)

    Huber, O.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for e.g. calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and roughness measurements. The

  7. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    PubMed

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science. PMID:25411113

  8. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  9. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  10. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  11. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  12. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  13. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-04-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  14. FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/internal tandem duplication (ITD) mice

    PubMed Central

    Bailey, Emily; Li, Li; Duffield, Amy S.; Ma, Hayley S.; Huso, David L.; Small, Don

    2013-01-01

    FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately one third of acute myeloid leukemia cases. The most common FLT3 mutations in acute myeloid leukemia are internal tandem duplication (ITD) mutations in the juxtamembrane domain (23%) and point mutations in the tyrosine kinase domain (10%). The mutation substituting the aspartic acid at position 838 (equivalent to the human aspartic acid residue at position 835) with a tyrosine (referred to as FLT3/D835Y hereafter) is the most frequent kinase domain mutation, converting aspartic acid to tyrosine. Although both of these mutations constitutively activate FLT3, patients with an ITD mutation have a significantly poorer prognosis. To elucidate the mechanisms behind this prognostic difference, we have generated a knock-in mouse model with a D838Y point mutation in FLT3 that corresponds to the FLT3/D835Y mutation described in humans. Compared with FLT3/ITD knock-in mice, the FLT3/D835Y knock-in mice survive significantly longer. The majority of these mice develop myeloproliferative neoplasms with a less-aggressive phenotype. In addition, FLT3/D835Y mice have distinct hematopoietic development patterns. Unlike the tremendous depletion of the hematopoietic stem cell compartment we have observed in FLT3/ITD mice, FLT3/D835Y mutant mice are not depleted in hematopoietic stem cells. Further comparisons of these FLT3/D835Y knock-in mice with FLT3/ITD mice should provide an ideal platform for dissecting the molecular mechanisms that underlie the prognostic differences between the two different types of FLT3 mutations. PMID:24255108

  15. A reconfigurable tactile display based on polymer MEMS technology

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong

    A tactile display provides information such as shape, texture, temperature, and hardness to a user. Ultimately, a tactile display could be used to recreate a virtual object that may be stored in a computer. However, such advanced displays are not yet widely available, primarily due to the lack of low cost, large area, compact actuator arrays that can stimulate the large numbers of receptors of the user and that can also meet the high requirements for user safety and comfort. This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. In this work, the concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator ("endoskeletal microbubble actuator") is presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A mass-manufacturable actuator has been fabricated using the approaches of lithography and micromolding. A prototype of a single endoskeletal bubble actuator with a diameter of 2.6mm has been fabricated and characterized. In addition, in order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator has been demonstrated

  16. Evaluation of occlusal rest seats with 3D technology in dental education.

    PubMed

    Sampaio-Fernandes, Manuel António Ferreira; Sampaio-Fernandes, Maria M; Fonseca, Patrícia A; Almeida, Paulo R; Reis-Campos, José C; Figueiral, Maria H

    2015-02-01

    The preparation of rest seats must comply with specific sizes and shapes. Various technological systems such as Kavo PrepAssistant have been used as an auxiliary method to evaluate preclinical preparations more objectively. The aims of this study were to establish an alternative system for evaluating occlusal rest seats and to compare different types of assessment. Seventy-six undergraduate students at Oporto University Faculty of Dental Medicine in Portugal were selected as a convenience sample to prepare two occlusal rest seats in Kavo teeth #45 and #46 (FDI World Dental Federation ISO-3950) and were randomly assigned to two groups. Bearing in mind the ideal characteristics of rest seats, the investigators defined ten assessment parameters, and their evaluation weights were independently estimated by three evaluators. Four of these parameters were measured in Kavo PrepAssistant. The results of the different evaluation methods and evaluators varied considerably. The classical evaluation presented final results worse than those of the evaluations using parameters. In this study, carrying out the assessment with Kavo PrepAssistant helped to achieve a more objective and less evaluator-dependent final evaluation. PMID:25640621

  17. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions. PMID:26683583

  18. User experience while viewing stereoscopic 3D television

    PubMed Central

    Read, Jenny C.A.; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the ‘nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. Practitioner Summary: Stereoscopic 3D (S3D) has been linked to visual discomfort and fatigue. Viewers watched the same movie in either 2D or stereo 3D (between-subjects design). Around 14% reported effects such as headache and eyestrain linked to S3D itself, while 8% report adverse effects attributable to 3D glasses or negative expectations. PMID:24874550

  19. Liquid crystal light valve technologies for display applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroshi; Takizawa, Kuniharu

    2001-11-01

    The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.

  20. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  1. Helicopter flight test of 3D imaging flash LIDAR technology for safe, autonomous, and precise planetary landing

    NASA Astrophysics Data System (ADS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-05-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).

  2. Shifting Sands and Turning Tides: Using 3D Visualization Technology to Shape the Environment for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Gant, R.; Hopkins, D.

    2014-12-01

    Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology

  3. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  4. Comparison of 3D Reconstructive Technologies Used for Morphometric Research and the Translation of Knowledge Using a Decision Matrix

    ERIC Educational Resources Information Center

    Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…

  5. Three D displays in military applications

    NASA Astrophysics Data System (ADS)

    Trakalo, M.

    2009-05-01

    The evolution to 3D content is considered to be the next quantum leap in the movie industry, and is currently taking place. The prospect of the home entertainment industry adopting 3D is causing display manufacturers to develop 3D compatible products. In the past, 3D displays have often been limited by poor image quality. The current generation of 3D displays can have image quality that approaches that of their 2D counterparts. 3D content has found its way to the cinema and is seeking a way into the home, but will it have a place in the military environment? This paper discusses the current status of 3D display technology and its suitability to the military ground mobile environment. It includes an introduction to 3D visualization and examines issues such as implementation, image quality, and human factors.

  6. Multi-scale simulation flow and multi-scale materials characterization for stress management in 3D through-silicon-via integration technologies - Effect of stress on 3D IC interconnect reliability

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-01

    The paper addresses the growing need in a simulation-based design verification flow capable to analyze any design of 3D IC stacks and to determine across-layers implications in 3D IC reliability caused by through-silicon-via (TSV) and chip-package interaction (CPI) induced mechanical stresses. The limited characterization/measurement capabilities of 3D IC stacks and a strict "good die" requirement make this type of analysis really critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the dies stacked and packaged with the 3D TSV technology, is proposed. As an example the effect of CPI/TSV induced stresses on stress migration (SM) and electromigration (EM) in the back-end-of-line (BEoL) and backside-redistribution-layer (BRDL) interconnect lines is considered. A strategy for a simulation feeding data generation and a respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. A calibration technique based on fitting the simulation results to measured stress components and electrical characteristics of the test-chip devices is discussed.

  7. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    NASA Astrophysics Data System (ADS)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  8. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  9. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  10. Multipurpose Panel Display Device Investigation. [technology assessment and product development

    NASA Technical Reports Server (NTRS)

    Sliwa, R.

    1977-01-01

    A multipurpose panel was developed to provide a flexible control and a LED display panel with easily changeable nomenclature for use in applications where panel space is limited, but where a number of similar subsystems must be controlled, or where basic panel nomenclature and functions must be changed rapidly, as in the case of between mission changes of space shuttle payloads. In the first application, panel area limitations are overcome by time sharing a central control panel among several subsystems. In the latter case, entire control panel changes are effected by simply replacing a memory module, thereby reducing the extent of installation and checkout procedures between missions. Several types of control technologies (other than LED's) which show potential in meeting criteria for overcoming limitations of the panel are assessed.

  11. New Technologies for Acquisition and 3-D Visualization of Geophysical and Other Data Types Combined for Enhanced Understandings and Efficiencies of Oil and Gas Operations, Deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thomson, J. A.; Gee, L. J.; George, T.

    2002-12-01

    This presentation shows results of a visualization method used to display and analyze multiple data types in a geospatially referenced three-dimensional (3-D) space. The integrated data types include sonar and seismic geophysical data, pipeline and geotechnical engineering data, and 3-D facilities models. Visualization of these data collectively in proper 3-D orientation yields insights and synergistic understandings not previously obtainable. Key technological components of the method are: 1) high-resolution geophysical data obtained using a newly developed autonomous underwater vehicle (AUV), 2) 3-D visualization software that delivers correctly positioned display of multiple data types and full 3-D flight navigation within the data space and 3) a highly immersive visualization environment (HIVE) where multidisciplinary teams can work collaboratively to develop enhanced understandings of geospatially complex data relationships. The initial study focused on an active deepwater development area in the Green Canyon protraction area, Gulf of Mexico. Here several planned production facilities required detailed, integrated data analysis for design and installation purposes. To meet the challenges of tight budgets and short timelines, an innovative new method was developed based on the combination of newly developed technologies. Key benefits of the method include enhanced understanding of geologically complex seabed topography and marine soils yielding safer and more efficient pipeline and facilities siting. Environmental benefits include rapid and precise identification of potential locations of protected deepwater biological communities for avoidance and protection during exploration and production operations. In addition, the method allows data presentation and transfer of learnings to an audience outside the scientific and engineering team. This includes regulatory personnel, marine archaeologists, industry partners and others.

  12. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  13. Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices

    NASA Astrophysics Data System (ADS)

    Shatford, R.; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.

  14. Advances in display technology III; Proceedings of the Meeting, Los Angeles, CA, January 18, 19, 1983

    NASA Astrophysics Data System (ADS)

    Schlam, E.

    1983-01-01

    Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.

  15. Displays: Entering a New Dimension

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…

  16. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    ERIC Educational Resources Information Center

    Hackett, Matthew; Proctor, Michael

    2016-01-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…

  17. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  18. Three-dimensional image technology in forensic anthropology: Assessing the validity of biological profiles derived from CT-3D images of the skeleton

    NASA Astrophysics Data System (ADS)

    Garcia de Leon Valenzuela, Maria Julia

    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility

  19. Tutorial on the Psychophysics and Technology of Virtual Acoustic Displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1998-01-01

    Virtual acoustics, also known as 3-D sound and auralization, is the simulation of the complex acoustic field experienced by a listener within an environment. Going beyond the simple intensity panning of normal stereo techniques, the goal is to process sounds so that they appear to come from particular locations in three-dimensional space. Although loudspeaker systems are being developed, most of the recent work focuses on using headphones for playback and is the outgrowth of earlier analog techniques. For example, in binaural recording, the sound of an orchestra playing classical music is recorded through small mics in the two "ear canals" of an anthropomorphic artificial or "dummy" head placed in the audience of a concert hall. When the recorded piece is played back over headphones, the listener passively experiences the illusion of hearing the violins on the left and the cellos on the right, along with all the associated echoes, resonances, and ambience of the original environment. Current techniques use digital signal processing to synthesize the acoustical properties that people use to localize a sound source in space. Thus, they provide the flexibility of a kind of digital dummy head, allowing a more active experience in which a listener can both design and move around or interact with a simulated acoustic environment in real time. Such simulations are being developed for a variety of application areas including architectural acoustics, advanced human-computer interfaces, telepresence and virtual reality, navigation aids for the visually-impaired, and as a test bed for psychoacoustical investigations of complex spatial cues. The tutorial will review the basic psychoacoustical cues that determine human sound localization and the techniques used to measure these cues as Head-Related Transfer Functions (HRTFs) for the purpose of synthesizing virtual acoustic environments. The only conclusive test of the adequacy of such simulations is an operational one in which

  20. Stereoscopic 3D video games and their effects on engagement

    NASA Astrophysics Data System (ADS)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  1. Comparison of 3D reconstructive technologies used for morphometric research and the translation of knowledge using a decision matrix.

    PubMed

    Martin, Charys M; Roach, Victoria A; Nguyen, Ngan; Rice, Charles L; Wilson, Timothy D

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in reconstruction concepts, operating system requirements, user features, cost, and no one program has emerged as the standard. The purpose of this study was to conduct a systematic comparison of three widely available 3D reconstructive software programs, Amira(®), OsiriX, and Mimics(®) , with respect to the software's ability to be used in two broad themes: morphometric research and education to translate morphological knowledge. Cost, system requirements, and inherent features of each program were compared. A novel concept selection tool, a decision matrix, was used to objectify comparisons of usability of the interface, quality of the output, and efficiency of the tools. Findings indicate that Mimics was the best-suited program for construction of 3D anatomical models and morphometric analysis, but for creating a learning tool the results were less clear. OsiriX was very user-friendly; however, it had limited capabilities. Conversely, although Amira had endless potential and could create complex dynamic videos, it had a challenging interface. These results provide a resource for morphometric researchers and educators to assist the selection of appropriate reconstruction programs when starting a new 3D modeling project. PMID:23633266

  2. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases

    PubMed Central

    Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194

  3. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  4. A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure.

    PubMed

    Almeida, Greyciele R; Goulart, Luiz Ricardo; Cunha-Junior, Jair P; Bataus, Luiz A M; Japolla, Greice; Brito, Wilia M E D; Campos, Ivan T N; Ribeiro, Cristina; Souza, Guilherme R L

    2015-08-01

    The selected dodecapeptide (1)DRALYGPTVIDH(12) from a phage-displayed peptide library and the crystal structure of the envelope glycoprotein B (Env gB) from Herpes Simplex Virus type 1 (HSV-1) led us to the identification of a new discontinuous epitope on the Bovine herpesvirus type 1 (BoHV-1) Env gB. In silico analysis revealed a short BoHV-1 gB motif ((338)YKRD(341)) within a epitope region, with a high similarity to the motifs shared by the dodecapeptide N-terminal region ((5)YxARD(1)) and HSV-1 Env gB ((326)YARD(329)), in which the (328)Arg residue is described to be a neutralizing antibody target. Besides the characterization of an antibody-binding site of the BoHV-1 Env gB, we have demonstrated that the phage-fused peptide has the potential to be used as a reagent for virus diagnosis by phage-ELISA assay, which discriminated BoHV-1 infected serum samples from negative ones. PMID:26267086

  5. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    NASA Technical Reports Server (NTRS)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a

  6. 3D scanning modeling method application in ancient city reconstruction

    NASA Astrophysics Data System (ADS)

    Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo

    2015-07-01

    With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.

  7. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  8. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  9. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  10. Super long viewing distance light homogeneous emitting three-dimensional display.

    PubMed

    Liao, Hongen

    2015-01-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update. PMID:25828029

  11. The impact of active versus passive use of 3D technology: a study of dental students at Wuhan University, China.

    PubMed

    Qi, Shengcai; Yan, Yanhong; Li, Rong; Hu, Jian

    2013-11-01

    A variety of computer-based 3D applications are becoming regular tools for dental students for self-learning. This study investigated the learning effectiveness of junior dental students in passively versus actively controlling the 3D virtual scenes of implant dentistry. Participants were randomized into three groups and were exposed to three designs of educational materials: traditional 2D webpages (2D); active-controlling 3D webpages (A3); and passive-controlling 3D webpages (P3). After reviewing the webpages, the participants were asked to complete a posttest to assess the relative quality of information acquisition. Their responses were compared and analyzed. The results indicated that the P3 group received the highest score of 26.4±3.1 on the post-test, significantly better than the A3 group, which had the worst performance with a score of 20.3±4.0. The 2D group received a score of 24.2±4.6. There was a significant correlation between the scores on a mental rotations test and the subjects' performance on the posttest (p<0.001). A serious disadvantage of active control was indicated for individuals with low spatial ability. In 3D virtual reality assisted self-learning, passive control produces higher learning effects compared to active control. Too much active control may generate significantly negative impacts on students, especially for individuals with low spatial ability. PMID:24192420

  12. A Learner-Centered Approach for Training Science Teachers through Virtual Reality and 3D Visualization Technologies: Practical Experience for Sharing

    ERIC Educational Resources Information Center

    Yeung, Yau-Yuen

    2004-01-01

    This paper presentation will report on how some science educators at the Science Department of The Hong Kong Institute of Education have successfully employed an array of innovative learning media such as three-dimensional (3D) and virtual reality (VR) technologies to create seven sets of resource kits, most of which are being placed on the…

  13. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  14. [3D virtual endoscopy of heart].

    PubMed

    Du, Aan; Yang, Xin; Xue, Haihong; Yao, Liping; Sun, Kun

    2012-10-01

    In this paper, we present a virtual endoscopy (VE) for diagnosis of heart diseases, which is proved efficient and affordable, easy to popularize for viewing the interior of the heart. The dual source CT (DSCT) data were used as primary data in our system. The 3D structure of virtual heart was reconstructed with 3D texture mapping technology based on graphics processing unit (GPU), and could be displayed dynamically in real time. When we displayed it in real time, we could not only observe the inside of the chambers of heart but also examine from the new angle of view by the 3D data which were already clipped according to doctor's desire. In the pattern of observation, we used both mutual interactive mode and auto mode. In the auto mode, we used Dijkstra Algorithm which treated the 3D Euler distance as weighting factor to find out the view path quickly, and, used view path to calculate the four chamber plane. PMID:23198444

  15. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  16. Evolutionary approach to introduce 3D into the cockpit

    NASA Astrophysics Data System (ADS)

    Theunissen, Eric; Sachs, Gottfried; Dobler, Klaus

    1998-07-01

    Perspective flightpath displays and the depiction of 3-D terrain are regarded as a potential means to increase safety. Although the technology to generate such presentations in real-time is available, other issues which are required for a safe introduction must still be resolved. This paper focuses on some of the major obstacles which are still present. It discusses several objections against perspective flightpath displays and shows why most of them are no longer justified. The potential for an increase in safety is related to navigation, guidance, and control task requirements, and potential implementations, ranging in complexity, to satisfy these requirements are discussed. This classification allows a gradual transition from today's 2-D symbolic displays to future spatial displays. The paper proposes an approach which supports an evolutionary introduction of 3-D navigation displays into the cockpit.

  17. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  18. A Survey on Large High-Resolution Display Technologies, Techniques, and Applications

    SciTech Connect

    Ni, Tao; Schmidt, Greg S.; Staadt, Oliver G.; Livingston, Mark A.; Ball, Robert; May, Richard A.

    2006-03-27

    Continued advances in display hardware, computing power, networking, and rendering algorithms have all converged to dramatically improve large high-resolution display capabilities. We present a survey on prior research with large high-resolution displays. In the hardware configurations section we examine systems including multi-monitor workstations, recon*gurable projector arrays, and others. Rendering and the data pipeline are addressed with an overview of current technologies. We discuss many applications for large high-resolution displays such as automotive design, scientific visualization, control centers, and others. Quantifying the effect of large high-resolution displays on human performance and other aspects is important as we look toward future advances in display technology and how it is applied in different situations. Interacting with these displays brings a different set of challenges for HCI professionals, so an overview of some of this work is provided. Finally, we present our view of the top ten greatest challenges in large high-resolution displays.

  19. Mii School: New 3D Technologies Applied in Education to Detect Drug Abuses and Bullying in Adolescents

    NASA Astrophysics Data System (ADS)

    Carmona, José Alberto; Espínola, Moisés; Cangas, Adolfo J.; Iribarne, Luis

    Mii School is a 3D school simulator developed with Blender and used by psychology researchers for the detection of drugs abuses, bullying and mental disorders in adolescents. The school simulator created is an interactive video game where the players, in this case the students, have to choose, along 17 scenes simulated, the options that better define their personalities. In this paper we present a technical characteristics description and the first results obtained in a real school.

  20. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  1. User experience while viewing stereoscopic 3D television.

    PubMed

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. PMID:24874550

  2. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  3. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  4. Feasibility of contactless 3D optical measurement for the analysis of bone and soft tissue lesions: new technologies and perspectives in forensic sciences.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Porta, Davide; Picozzi, Massimo

    2009-05-01

    In forensic pathology and anthropology, a correct analysis of lesions on soft tissues and bones is of the utmost importance, in order to verify the cause and manner of death. Photographs, videos, and photogrammetry may be an optimal manner of immortalizing a lesion, both on cadavers and skeletal remains; however, none of these can supply a detailed three-dimensional (3D) modeling of the lesion. Up to now, only the use of casts has given us the possibility of studying deep lesions such as saw marks with an accurate and complete 3D reconstruction of bone structure. The present study aims at verifying the applicability of 3D optical contactless measurement for the accurate recording of soft tissue and bone lesions, in order to develop a unique and precise method of registering and analyzing lesions, both in forensic pathology and anthropology. Three cases were analyzed: the first, a car accident with blunt force skin injuries; the second, a murder with blunt force injury to the head applied with a metal rod; the third, a series of sharp force knife and saw lesions on bone. Results confirm that 3D optical digitizing technology is a crucial tool in the immortalization of wound morphology in the medico-legal context even on "difficult" substrates such as cut marks and saw marks on bone. PMID:19368623

  5. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  6. Formal tests for LLM approaches using refined cockpit display technology

    NASA Astrophysics Data System (ADS)

    Davis, Randall C.; Wilt, Dennis W.; Henion, James; Alter, Keith; Snow, Paul; Deaton, John E.

    2005-05-01

    Results are presented from formal flight and simulation experiments to test a new primary flight display (PFD)/refined multifunction display (MFD) system, with a computer generated dynamic pathway, as a viable means for a pilot to accurately and efficiently control and navigate an aircraft. For flight control, the PFD uses a computer generated highway-in-the-sky (HITS) pathway and a synthetic vision terrain image of the view outside the aircraft, with an overlay of all the essential flight technical data. For navigation, the MFD provides a moving map with a dynamic pathway to aid the pilot. The total PFD/MFD system provides a predictive method for flying an aircraft, as opposed to the reactive method associated with conventional needle and dial instruments. Fifteen low-to-average-experience subject pilots were selected to compare the PFD instrumentation system to a conventional instrumentation system. A non-precision global positioning system (GPS) area navigation (RNAV) approach to runway 20 at Wakefield Municipal Airport, VA, (AKQ) was used. The hypothesis was that the intuitive nature of the PFD instrumentation system will provide greater situational awareness, improved accuracy, and less pilot workload during flight in instrument meteorological conditions (IMC) compared to using conventional round dial instrumentation.

  7. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  8. Advanced crew station concepts, displays, and input/output technology for civil aircraft of the future

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Robertson, J. B.; Batson, V. M.

    1979-01-01

    Current efforts on a new Cockpit Avionics Research program are described. The major thrusts of the program presented include: a comparative analysis of advanced display media and development of promising selected media, development of flight display generation techniques, and identification and development of promising I/O technology. In addition, the advanced integrated display concepts described include a 'tunnel in the sky' display and a traffic situation display with associated keyboard. Finally, the Cockpit Avionics Research program is summarized, future research plans are presented, and the need for an expanded program is discussed.

  9. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  10. Research on construction of Web 3D-GIS based on Skyline

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    This paper further studies the construction, publishing and display of three-dimensional (3D) scenes and their implementation based on Skyline family of software, combining remote sensing images and DEM data. Among them, the SketchUp software is used to build landscape models and the JavaScript programming language is adopted to achieve web browsing of 3D scenes. The study provides a useful exploration for the establishment of Web 3D-GIS combining Web GIS technology and 3D visualization technology.

  11. Display technologies: application for the discovery of drug and gene delivery agents

    PubMed Central

    Sergeeva, Anna; Kolonin, Mikhail G.; Molldrem, Jeffrey J.; Pasqualini, Renata; Arap, Wadih

    2007-01-01

    Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed. PMID:17123658

  12. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324

  13. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  14. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  15. Sunlight-readable display technology: a dual-use case study

    NASA Astrophysics Data System (ADS)

    Blanchard, Randall D.

    1996-05-01

    This paper describes our vision of sunlight readable color display requirements, an alternate technology that offers a high level of performance, and how we implemented it for the military avionics display market. This knowledge base and product development experience was then applied with a comparable level of performance to commercial applications. The successful dual use of this technology for these two diverse markets is presented. Details of the technical commonality and a comparison of the design and performance differences are presented. A basis for specifying the required level of performance for a sunlight readable full color display is discussed. With the objective of providing a high level of image brightness and high ambient light rejection, a display architecture using collimated light is used. The resulting designs of two military cockpit display products, with contrast ratios above 20:1 in sunlight are shown. The performance of a commercial display providing several thousand foot- Lamberts of image brightness is presented.

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    PubMed

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients. PMID:27181037

  19. Development of Polymer Cholesteric Liquid Crystal Flake Technology for Electro-Optic Devices and Particle Displays

    SciTech Connect

    Kosc, T.Z.; Marshall, K.L.; Trajkovska-Petkoska, A.; Coon, C.J.; Hasman, K.; Babcock, G.V.; Howe, R.; Leitch, M.; Jacobs, S.J.

    2007-04-05

    Liquid crystals have had a large presence in the display industry for several decades, and they continue to remain at the forefront of development as the industry delves into flexible displays and electronic paper. Among the emerging technologies trying to answer this call are polymer cholesteric liquid crystal (PCLC) flakes.

  20. 3D integration approaches for MEMS and CMOS sensors based on a Cu through-silicon-via technology and wafer level bonding

    NASA Astrophysics Data System (ADS)

    Hofmann, L.; Dempwolf, S.; Reuter, D.; Ecke, R.; Gottfried, K.; Schulz, S. E.; Knechtel, R.; Geßner, T.

    2015-05-01

    Technologies for the 3D integration are described within this paper with respect to devices that have to retain a specific minimum wafer thickness for handling purposes (CMOS) and integrity of mechanical elements (MEMS). This implies Through-Silicon Vias (TSVs) with large dimensions and high aspect ratios (HAR). Moreover, as a main objective, the aspired TSV technology had to be universal and scalable with the designated utilization in a MEMS/CMOS foundry. Two TSV approaches are investigated and discussed, in which the TSVs were fabricated either before or after wafer thinning. One distinctive feature is an incomplete TSV Cu-filling, which avoids long processing and complex process control, while minimizing the thermomechanical stress between Cu and Si and related adverse effects in the device. However, the incomplete filling also includes various challenges regarding process integration. A method based on pattern plating is described, in which TSVs are metalized at the same time as the redistribution layer and which eliminates the need for additional planarization and patterning steps. For MEMS, the realization of a protective hermetically sealed capping is crucial, which is addressed in this paper by glass frit wafer level bonding and is discussed for hermetic sealing of MEMS inertial sensors. The TSV based 3D integration technologies are demonstrated on CMOS like test vehicle and on a MEMS device fabricated in Air Gap Insulated Microstructure (AIM) technology.

  1. Geowall: Investigations into Low-Cost Stereo Display Technologies

    USGS Publications Warehouse

    Steinwand, Daniel R.; Davis, Brian; Weeks, Nathan

    2003-01-01

    Recently, the combination of new projection technology, fast, low-cost graphics cards, and Linux-powered personal computers has made it possible to provide a stereoprojection and stereoviewing system that is much more affordable than previous commercial solutions. These Geowall systems are low-cost visualization systems built with commodity off-the-shelf components, run on open-source (and other) operating systems, and using open-source applications software. In short, they are ?Beowulf-class? visualization systems that provide a cost-effective way for the U. S. Geological Survey to broaden participation in the visualization community and view stereoimagery and three-dimensional models2.

  2. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... From the Federal Register Online via the Government Publishing Office ] SECURITIES AND EXCHANGE COMMISSION American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda... lack of current and accurate information concerning the securities of American Unity Investments,...

  3. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  4. Flat panel displays for ubiquitous product applications and related impurity doping technologies

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiharu

    2006-06-01

    Various kinds of flat panel displays such as liquid crystal displays (LCDs), plasma display panels and organic light emitting diode (OLED) displays are briefly evaluated from the perspective of applicability to ubiquitous products. It is clarified that the LCDs and OLED displays are suitable for realizing mobile electronic products with a high quality display, since these displays can use active devices on the backplanes to form active matrix displays and can integrate peripheral circuits of the displays and functional circuits of mobile electronics for a ubiquitous era. It is clarified further that the low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) is the most promising active device for the backplane of such active matrix displays because the LTPS TFT has the possibility to enhance its performance without raising the cost. The low temperature poly-Si TFT fabrication process is introduced, and its key technologies such as crystallization, gate oxide formation, and impurity doping are surveyed. As the property of polycrystalline silicon (poly-Si) influences not only the TFT performance itself but also the efficiency of impurity doping and the integrity of the gate oxide, the crystallinity of the poly-Si is reviewed. After that, the history of the development and the state of the art in impurity doping technology and its issues are addressed in detail. Finally, foreseeing the application of LTPS TFT, the realization of OLED displays, and the progress of LTPS TFT for integrating higher functional circuits for ubiquitous applications, the requirements for impurity doping in such progress are addressed. In particular, the single grain silicon technology and the scaling down of the TFT size, which are thought to be highly effective to enhance the performance of TFTs, and issues of impurity doping technology relating to them are discussed.

  5. Electrophoretic display technologies for e-book readers: system integration aspects

    NASA Astrophysics Data System (ADS)

    Gentric, Philippe

    2011-03-01

    Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.

  6. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. Top-Down and Bottom-Up Approaches in 3D Printing Technologies for Drug Delivery Challenges.

    PubMed

    Katakam, Prakash; Dey, Baishakhi; Assaleh, Fathi H; Hwisa, Nagiat Tayeb; Adiki, Shanta Kumari; Chandu, Babu Rao; Mitra, Analava

    2015-01-01

    3-Dimensional printing (3DP) constitutes a raft of technologies, based on different physical mechanisms, that generate a 3-dimensional physical object from a digital model. Because of its rapid fabrication and precise geometry, 3DP has gained a prominent focus in biomedical and nanobiomaterials research. Despite advancements in targeted, controlled, and pulsatile drug delivery, the achievement of site-specific and disease-responsive drug release and stringent control over in vivo biodistribution, are still some of the important, challenging areas for pharmaceutical research and development and existing drug delivery techniques. Microelectronic industries are capable of generating nano-/microdrug delivery devices at high throughputs with a highly precise control over design. Successful miniaturizations of micro-pumps with multireservoir architectures for delivery of pharmaceuticals developed by micro-electromechanical systems technology were more acceptable than implantable devices. Inkjet printing technologies, which dispense a precise amount of polymer ink solutions, find applications in controlled drug delivery. Bioelectronic products have revolutionized drug delivery technologies. Designing nanoparticles by nanoimprint lithography showed a controlled drug release pattern, biodistribution, and in vivo transport. This review highlights the "top-down" and "bottom-up" approaches of the most promising 3DP technologies and their broader applications in biomedical and therapeutic drug delivery, with critical assessment of its merits, demerits, and intellectual property rights challenges. PMID:25746205

  8. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  9. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  10. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines. PMID:27148455

  11. Three-dimensional display: stereo and beyond

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Allen, Daniel J.

    2008-03-01

    With the advent of large, high-quality stereo display monitors and high-volume 3-D image acquisition sources, it is time to revisit the use of 3-D display for diagnostic radiology. Stereo displays may be goggled, or goggleless. Goggleless displays are called autostereographic displays. We concentrate on autostereographic technologies. Commercial LCD flat-screen 3-D autostereographic monitors typically rely on one of two techniques: blocked perspective and integral display. On the acquisition modality side: MRI, CT and 3-D ultrasound provide 3-D data sets. However, helical/spiral CT with multi-row detectors and multiple x-ray sources provides a monsoon of data. Presenting and analyzing this large amount of potentially dynamic data will require advanced presentation techniques. We begin with a very brief review the two stereo-display technologies. These displays are evolving beyond presentation of the traditional pair of views directed to fixed positions of the eyes to multi-perspective displays; at differing head positions, the eyes are presented with the proper perspective pairs corresponding to viewing a 3-D object from that position. In addition, we will look at some of the recent developments in computer-generated holograms or CGH's. CGH technology differs from the other two technologies in that it provides a wave-optically correct reproduction of the object. We then move to examples of stereo-displayed medical images and examine some of the potential strengths and weaknesses of the displays. We have installed a commercial stereo-display in our laboratory and are in the process of generating stereo-pairs of CT data. We are examining, in particular, preprocessing of the perspective data.

  12. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  13. Sockeye: a 3D environment for comparative genomics.

    PubMed

    Montgomery, Stephen B; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A Gordon; Sleumer, Monica; Siddiqui, Asim S; Jones, Steven J M

    2004-05-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  14. Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites with Tailored Internal Structure

    NASA Astrophysics Data System (ADS)

    Holmes, Larry R.; Riddick, Jaret C.

    2014-01-01

    A novel additive manufacturing technology is used to create micro-composites, which can be tailored for specific end-use applications. The Field-Aided Laminar Composite (FALCom) process uses specifically focused electric fields to align nano- to micro-sized particles into chain-like structures, which are referred to as pseudo-fibers. These pseudo-fibers are then immediately frozen into place by incident ultraviolet radiation on the photopolymer matrix. The pseudo-fibers are arranged by design, and they are used to create three-dimensional composite structures. Multiple filler materials have been evaluated for use in the FALCom system; however, this report describes aluminum micro-particles that are aligned and oriented in an acrylic photopolymer matrix. A description of the technology and a review of experimental processing are shown, and conclusions, as well as, future work are discussed.

  15. Approach of organic light-emitting displays (OLED) to technology status

    NASA Astrophysics Data System (ADS)

    Saini, Gurdial S.; Hopper, Darrel G.

    1998-09-01

    A display is an electronic component or subsystem used to convert electrical signals into visual imagery in real time suitable for direct interpretation by a human observer. Until recently, the cathode ray tube (CRT) has been the main source of displays. During the last twenty years, it has been determined that alternatives to CRT displays need to found. One of the alternatives was the introduction of flat-panel displays. The term 'flat-panel display' is more of a concept than a specific entity. It is a display which is flat and light and may not require a great deal of power. A flat-panel display is often defined in terms of the ideal display, that being: thin form, low volume, even surface, having high resolution, high contrast, sunlight readable, color, low power, and being solid-state, light weight, and low cost. This is easy to conceive but difficult to deliver. The objective is to develop displays with as many desirable characteristics as possible. Flat-panel displays are basically of two types: the light valve type (that needs an external source of light such as a backlight or arc-lamp) and the emissive type (that generate light at the display surface). The light emitting diode (LED) display is of the emissive type. Inorganic LED and electroluminescent (EL) displays have been in use for more than 25 years in one form or the other because of their 'inherent' ruggedness and operation over extremely wide temperature ranges. Because of certain limitations of inorganic materials (such as cost, power, and color), LED displays do not dominate the high information content flat- panel display market. A recent discovery of polymer and other organic materials has changed LED prospects. It may now be possible to make organic LED displays that are inexpensive, low-power, and at the same time provide high resolution and full color. If present research objectives are met, organic LEDs may revolutionize the flat-panel display market. This paper addresses the various aspects

  16. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites

    NASA Astrophysics Data System (ADS)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.

    2016-07-01

    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  18. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  1. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  2. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology. PMID:26832611

  3. Priority depth fusion for the 2D to 3D conversion system

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Yin; Chang, Jing-Ying; Tsai, Yi-Min; Lee, Chia-Lin; Chen, Liang-Gee

    2008-02-01

    For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods are integrated into one depth map by the proposed priority depth fusion algorithm. Then the depth map and the original 2D image are converted to stereo images for showing on the 3D display devices. In this paper, a 2D-to-3D conversion algorithm set is combined with the proposed depth fusion algorithm to show the improved results. With the converted 3D contents, the needs for 3D display devices will also increase. As long as the two technologies evolve, the 3D-TV era will come as soon as possible.

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  5. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  6. Development and verification of a novel device for dental intra-oral 3D scanning using chromatic confocal technology

    NASA Astrophysics Data System (ADS)

    Zint, M.; Stock, K.; Graser, R.; Ertl, T.; Brauer, E.; Heyninck, J.; Vanbiervliet, J.; Dhondt, S.; De Ceuninck, P.; Hibst, R.

    2015-03-01

    The presented work describes the development and verification of a novel optical, powder-free intra-oral scanner based on chromatic confocal technology combined with a multifocal approach. The proof of concept for a chromatic confocal area scanner for intra-oral scanning is given. Several prototype scanners passed a verification process showing an average accuracy (distance deviation on flat surfaces) of less than 31μm +/- 21μm and a reproducibility of less than 4μm +/- 3μm. Compared to a tactile measurement on a full jaw model fitted with 4mm ceramic spheres the measured average distance deviation between the spheres was 49μm +/- 12μm for scans of up to 8 teeth (3- unit bridge, single Quadrant) and 104μm +/- 82μm for larger scans and full jaws. The average deviation of the measured sphere diameter compared to the tactile measurement was 27μm +/- 14μm. Compared to μCT scans of plaster models equipped with human teeth the average standard deviation on up to 3 units was less than 55μm +/- 49μm whereas the reproducibility of the scans was better than 22μm +/- 10μm.

  7. Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.

  8. Where Creativity Meets Technology: A Library-Led, Multi-Disciplinary Online Showcase for Artworks, Creative Writings, and Movies Displayed with 3D and HTML5 Technology

    ERIC Educational Resources Information Center

    Wong, Shun Han Rebekah

    2015-01-01

    This article introduces the Hong Kong Baptist University's Heritage project (http://heritage.lib.hkbu.edu.hk/), a multi-disciplinary online showcase for curriculum-related creative outputs that were produced by faculty and students of the university. Initiated and led by the University Library, this project was a collaborative effort with six…

  9. Diagnosis and Endodontic Management of Fused Mandibular Second Molar and Paramolar with Concrescent Supernumerary Tooth Using Cone-beam CT and 3-D Printing Technology: A Case Report.

    PubMed

    Kato, Hiroshi; Kamio, Takashi

    2015-01-01

    Supernumerary teeth in the molar area are classified as paramolars or distomolars based on location. They occur frequently in the maxilla, but only rarely in the mandible. These teeth are frequently fused with adjacent teeth. When this occurs, the pulp cavities may also be connected. This makes diagnosis and planning of endodontic treatment extremely difficult. Here we report a case of a mandibular second molar fused with a paramolar, necessitating dental pulp treatment. Intraoral and panoramic radiographs were obtained for an evaluation and diagnosis. Although the images revealed a supernumerary tooth-like structure between the posterior area of the mandibular second molar and mandibular third molar, it was difficult to confirm the morphology of the tooth root apical area. Subsequent cone-beam computed tomography (CBCT) revealed that the supernumerary tooth-like structure was concrescent with the root apical area of the mandibular second molar. Based on these findings, the diagnosis was a fused mandibular second molar and paramolar with a concrescent supernumerary tooth. A 3-dimensional (3-D) printer was used to produce models based on the CBCT data to aid in treatment planning and explanation of the proposed procedures to the patient. These models allowed the complicated morphology involved to be clearly viewed, which facilitated a more precise diagnosis and better treatment planning than would otherwise have been possible. These technologies were useful in obtaining informed consent from the patient, promoting 3-D morphological understanding, and facilitating simulation of endodontic treatment. PMID:26370578

  10. Steerable patterned OLED backlight for autostereoscopic display application

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Fehse, Karsten; Wartenberg, Philipp; Knobbe, Jens; Scholles, Michael; Richter, Bernd; Hild, Olaf

    2015-09-01

    OLED can be applied as highly efficient and high-resolution patternable illumination source for controllable and steerable backlights, e.g., for use in autostereoscopic displays. To evaluate technology and approach a 3.5" 3D QVGA display prototype has been developed and combines several achievements: large-area OLED backlight, highly-efficient and fast-response OLED top-emitter, striped patterned backlight, individual electronic driving for adaptive backlight control and 3D mobile display application.

  11. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  12. 3D-Holoscopic Imaging: A New Dimension to Enhance Imaging in Minimally Invasive Therapy in Urologic Oncology

    PubMed Central

    Aggoun, Amar; Swash, Mohammad; Grange, Philippe C.R.; Challacombe, Benjamin; Dasgupta, Prokar

    2013-01-01

    Abstract Background and Purpose Existing imaging modalities of urologic pathology are limited by three-dimensional (3D) representation on a two-dimensional screen. We present 3D-holoscopic imaging as a novel method of representing Digital Imaging and Communications in Medicine data images taken from CT and MRI to produce 3D-holographic representations of anatomy without special eyewear in natural light. 3D-holoscopic technology produces images that are true optical models. This technology is based on physical principles with duplication of light fields. The 3D content is captured in real time with the content viewed by multiple viewers independently of their position, without 3D eyewear. Methods We display 3D-holoscopic anatomy relevant to minimally invasive urologic surgery without the need for 3D eyewear. Results The results have demonstrated that medical 3D-holoscopic content can be displayed on commercially available multiview auto-stereoscopic display. Conclusion The next step is validation studies comparing 3D-Holoscopic imaging with conventional imaging. PMID:23216303

  13. The Benefit of 3D Laser Scanning Technology in the Generation and Calibration of FEM Models for Health Assessment of Concrete Structures

    PubMed Central

    Yang, Hao; Xu, Xiangyang; Neumann, Ingo

    2014-01-01

    Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model. PMID:25414968

  14. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  15. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  16. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  17. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  18. A timely reminder about stimulus display times and other presentation parameters on CRTs and newer technologies.

    PubMed

    Bauer, Ben

    2015-09-01

    Scientific experimentation requires specification and control of independent variables with accurate measurement of dependent variables. In Vision Sciences (here broadly including experimental psychology, cognitive neuroscience, psychophysics, and clinical vision), proper specification and control of stimulus rendering (already a thorny issue) may become more problematic as several newer display technologies replace cathode ray tubes (CRTs) in the lab. The present paper alerts researchers to spatiotemporal differences in display technologies and how these might affect various types of experiments. Parallels are drawn to similar challenges and solutions that arose during the change from cabinet-style tachistoscopes to computer driven CRT tachistoscopes. Technical papers outlining various strengths and limitations of several classes of display devices are introduced as a resource for the reader wanting to select appropriate displays for different presentation requirements. These papers emphasise the need to measure rather than assume display characteristics because manufacturers' specifications and software reports/settings may not correspond with actual performance. This is consistent with the call by several Vision Science and Psychological Science bodies to increase replications and increase detail in Method sections. Finally, several recent tachistoscope-based experiments, which focused on the same question but were implemented with different technologies, are compared for illustrative purposes. PMID:25774997

  19. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  20. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  1. Performance requirements for electronic displays of color moving images using flat panel technology

    NASA Astrophysics Data System (ADS)

    Glenn, William E.

    1994-04-01

    The initial market for flat panel displays has been dominated by the laptop computer. This is a very attractive entry market for the newer technologies. The technical requirements for computer displays are much easier to satisfy then for high definition entertainment displays. While the resolutions are similar, the other requirements of contrast ratio, cost, light output, response time, uniformity, gray scale, size and color purity are all much less demanding than those for the display of real-time moving images for entertainment. However, if the panels being developed for computers could meet the requirements of entertainment television, they could be used as light valves in large screen projectors. In this way the investment in development and in manufacturing facilities can be amortized over a much larger market. This paper will review a comparison of the requirements for both applications.

  2. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  4. 3D vision upgrade kit for the TALON robot system

    NASA Astrophysics Data System (ADS)

    Bodenhamer, Andrew; Pettijohn, Bradley; Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott

    2010-02-01

    In September 2009 the Fort Leonard Wood Field Element of the US Army Research Laboratory - Human Research and Engineering Directorate, in conjunction with Polaris Sensor Technologies and Concurrent Technologies Corporation, evaluated the objective performance benefits of Polaris' 3D vision upgrade kit for the TALON small unmanned ground vehicle (SUGV). This upgrade kit is a field-upgradable set of two stereo-cameras and a flat panel display, using only standard hardware, data and electrical connections existing on the TALON robot. Using both the 3D vision system and a standard 2D camera and display, ten active-duty Army Soldiers completed seven scenarios designed to be representative of missions performed by military SUGV operators. Mission time savings (6.5% to 32%) were found for six of the seven scenarios when using the 3D vision system. Operators were not only able to complete tasks quicker but, for six of seven scenarios, made fewer mistakes in their task execution. Subjective Soldier feedback was overwhelmingly in support of pursuing 3D vision systems, such as the one evaluated, for fielding to combat units.

  5. Student Evaluation of Teaching Effectiveness of a Nationwide Innovative Education Program on Image Display Technology

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Chiu, Li-An; Lee, San-Liang; Wang, An-Bang

    2012-01-01

    The study presented here explored a student evaluation of the teaching effectiveness of a nationwide innovative education program on image display technology in Taiwan. Using survey data collected through an online questionnaire system, covering 165 classes across 30 colleges and universities in Taiwan, the study aimed to understand the teaching…

  6. Efficiency enhancement of liquid crystal projection displays using light recycle technology

    NASA Technical Reports Server (NTRS)

    Wang, Y.

    2002-01-01

    A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.

  7. 3D reconstruction based on CT image and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxun; Zhang, Mingmin

    2004-03-01

    Reconstitute the 3-D model of the liver and its internal piping system and simulation of the liver surgical operation can increase the accurate and security of the liver surgical operation, attain a purpose for the biggest limit decrease surgical operation wound, shortening surgical operation time, increasing surgical operation succeeding rate, reducing medical treatment expenses and promoting patient recovering from illness. This text expatiated technology and method that the author constitutes 3-D the model of the liver and its internal piping system and simulation of the liver surgical operation according to the images of CT. The direct volume rendering method establishes 3D the model of the liver. Under the environment of OPENGL adopt method of space point rendering to display liver's internal piping system and simulation of the liver surgical operation. Finally, we adopt the wavelet transform method compressed the medical image data.

  8. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  9. Subjective evaluation of user experience in interactive 3D visualization in a medical context

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Sjöström, Mårten; Olsson, Roger; Persson, Anders; Ericson, Thomas; Rudling, Johan; Norén, Bengt

    2012-02-01

    New display technologies enable the usage of 3D-visualization in a medical context. Even though user performance seems to be enhanced with respect to 2D thanks to the addition of recreated depth cues, human factors, and more particularly visual comfort and visual fatigue can still be a bridle to the widespread use of these systems. This study aimed at evaluating and comparing two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of quality of experience (QoE), in the context of interactive medical visualization. An adapted methodology was designed in order to subjectively evaluate the experience of users. 14 medical doctors and 15 medical students took part in the experiment. After solving different tasks using the 3D reconstruction of a phantom object, they were asked to judge their quality of the experience, according to specific features. They were also asked to give their opinion about the influence of 3D-systems on their work conditions. Results suggest that medical doctors are opened to 3D-visualization techniques and are confident concerning their beneficial influence on their work. However, visual comfort and visual fatigue are still an issue of 3D-displays. Results obtained with the multi-view display suggest that the use of continuous horizontal parallax might be the future response to these current limitations.

  10. Development of 3D mobile receiver for stereoscopic video and data service in T-DMB

    NASA Astrophysics Data System (ADS)

    Lee, Gwangsoon; Lee, Hyun; Yun, Kugjin; Hur, Namho; Lee, Soo In

    2011-02-01

    In this paper, we present a development of 3D-T DMB (three-dimensional digital multimedia broadcasting) receiver for providing 3D video and data service. First, for a 3D video service, the developed receiver is capable of decoding and playing 3D AV contents that is encoded by simulcast encoding method and that is transmitted via T-DMB network. Second, the developed receiver can render stereoscopic multimedia objects delivered using MPEG-4 BIFS technology that is also employed in T-DMB. Specially, this paper introduces hardware and software architecture and its implementation of 3D T-DMB receiver. The developed 3D T-DMB receiver has capabilities of generating stereoscopic viewing on the glasses-free 3D mobile display, therefore we propose parameters for designing the 3D display, together with evaluating the viewing angle and distance through both computer simulation and actual measurement. Finally, the availability of 3D video and data service is verified using the experimental system including the implemented receiver and a variety of service examples.

  11. Synthesis multi-projector content for multi-projector three dimension display using a layered representation

    NASA Astrophysics Data System (ADS)

    Qin, Chen; Ren, Bin; Guo, Longfei; Dou, Wenhua

    2014-11-01

    Multi-projector three dimension display is a promising multi-view glass-free three dimension (3D) display technology, can produce full colour high definition 3D images on its screen. One key problem of multi-projector 3D display is how to acquire the source images of projector array while avoiding pseudoscopic problem. This paper analysis the displaying characteristics of multi-projector 3D display first and then propose a projector content synthetic method using tetrahedral transform. A 3D video format that based on stereo image pair and associated disparity map is presented, it is well suit for any type of multi-projector 3D display and has advantage in saving storage usage. Experiment results show that our method solved the pseudoscopic problem.

  12. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China

    PubMed Central

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  13. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China.

    PubMed

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  14. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  15. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  16. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  17. Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2013-09-01

    Holoscopic imaging, also known as integral imaging, has been recently attracting the attention of the research community, as a promising glassless 3D technology due to its ability to create a more realistic depth illusion than the current stereoscopic or multiview solutions. However, in order to gradually introduce this technology into the consumer market and to efficiently deliver 3D holoscopic content to end-users, backward compatibility with legacy displays is essential. Consequently, to enable 3D holoscopic content to be delivered and presented on legacy displays, a display scalable 3D holoscopic coding approach is required. Hence, this paper presents a display scalable architecture for 3D holoscopic video coding with a three-layer approach, where each layer represents a different level of display scalability: Layer 0 - a single 2D view; Layer 1 - 3D stereo or multiview; and Layer 2 - the full