Science.gov

Sample records for 3d display technology

  1. Recent developments in stereoscopic and holographic 3D display technologies

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2014-06-01

    Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.

  2. Stereoscopic display technologies for FHD 3D LCD TV

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Ko, Young-Ji; Park, Sang-Moo; Jung, Jong-Hoon; Shestak, Sergey

    2010-04-01

    Stereoscopic display technologies have been developed as one of advanced displays, and many TV industrials have been trying commercialization of 3D TV. We have been developing 3D TV based on LCD with LED BLU (backlight unit) since Samsung launched the world's first 3D TV based on PDP. However, the data scanning of panel and LC's response characteristics of LCD TV cause interference among frames (that is crosstalk), and this makes 3D video quality worse. We propose the method to reduce crosstalk by LCD driving and backlight control of FHD 3D LCD TV.

  3. Recent development of 3D display technology for new market

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Sik

    2003-11-01

    A multi-view 3D video processor was designed and implemented with several FPGAs for real-time applications and a projection-type 3D display was introduced for low-cost commercialization. One high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. It can cope with various arrangements of 3D camera systems (or pixel arrays) and resolutions of 3D displays. This system shows high 3-D image quality in terms of resolution, brightness, and contrast so it is well suited for the commercialization in the field of game and advertisement market.

  4. Benefits, limitations, and guidelines for application of stereo 3-D display technology to the cockpit environment

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Parrish, Russell V.; Busquets, Anthony M.

    1992-01-01

    A survey of research results from a program initiated by NASA Langley Research Center is presented. The program addresses stereo 3-D pictorial displays from a comprehensive standpoint. Human factors issues, display technology aspects, and flight display applications are also considered. Emphasis is placed on the benefits, limitations, and guidelines for application of stereo 3-D display technology to the cockpit environment.

  5. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  6. Spatial 3D display based on DMD and swept-volume technology

    NASA Astrophysics Data System (ADS)

    Xing, Jianfang; Gong, Huajun; Pan, Wenping; Yue, Jian; Shen, Chunlin

    2011-08-01

    Display devices play important roles in the interaction between human and digital world of computer. Building devices which can display 3-D images in true 3-D space has aroused researchers' concern for many years. In this paper, we develop a novel spatial display by projecting 2D profile slices of the 3-D models in rapid succession onto a synchronous rotating double bladed helical screen periodically. It is a high speed light-addressed system base on Texas Instruments TM(TI TM) Digital Mirror Device TM (DMD TM) technology, and high frame fresh rate is achieved by accurate control over DMD micro-mirrors. When the rotation frequency of the screen higher than critical flicker fusion frequency, the stroboscopic time-varying slices are fused into a whole flicker-free 3-D spatial imagery because of persistence of vision. The display generate volume-fill 3-D imagery consist of an array of voxels that can be seen hovering in the swept volume. The design and manufacturing of prototype is performed. It has a resolution of 1024x768x132 voxels at a volume refresh rate of 10 Hz. The 3-D imagery occupies real physical space about 203 cm3, each voxel scatter visible light from the position in which it appears. It provides full parallax, not only enable 3-D imagery to be viewed without any eye wears or headsets, but also support "look around" function. Different viewers from practically any orientation can see different sides of the imagery, as if people watch sculptures.

  7. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  8. An eliminating method of motion-induced vertical parallax for time-division 3D display technology

    NASA Astrophysics Data System (ADS)

    Lin, Liyuan; Hou, Chunping

    2015-10-01

    A time difference between the left image and right image of the time-division 3D display makes a person perceive alternating vertical parallax when an object is moving vertically on a fixed depth plane, which causes the left image and right image perceived do not match and makes people more prone to visual fatigue. This mismatch cannot eliminate simply rely on the precise synchronous control of the left image and right image. Based on the principle of time-division 3D display technology and human visual system characteristics, this paper establishes a model of the true vertical motion velocity in reality and vertical motion velocity on the screen, and calculates the amount of the vertical parallax caused by vertical motion, and then puts forward a motion compensation method to eliminate the vertical parallax. Finally, subjective experiments are carried out to analyze how the time difference affects the stereo visual comfort by comparing the comfort values of the stereo image sequences before and after compensating using the eliminating method. The theoretical analysis and experimental results show that the proposed method is reasonable and efficient.

  9. Exploring interaction with 3D volumetric displays

    NASA Astrophysics Data System (ADS)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  10. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  11. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  12. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  13. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  14. Optical characterization and measurements of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Salmimaa, Marja; Järvenpää, Toni

    2008-04-01

    3D or autostereoscopic display technologies offer attractive solutions for enriching the multimedia experience. However, both characterization and comparison of 3D displays have been challenging when the definitions for the consistent measurement methods have been lacking and displays with similar specifications may appear quite different. Earlier we have investigated how the optical properties of autostereoscopic (3D) displays can be objectively measured and what are the main characteristics defining the perceived image quality. In this paper the discussion is extended to cover the viewing freedom (VF) and the definition for the optimum viewing distance (OVD) is elaborated. VF is the volume inside which the eyes have to be to see an acceptable 3D image. Characteristics limiting the VF space are proposed to be 3D crosstalk, luminance difference and color difference. Since the 3D crosstalk can be presumed to be dominating the quality of the end user experience and in our approach is forming the basis for the calculations of the other optical parameters, the reliability of the 3D crosstalk measurements is investigated. Furthermore the effect on the derived VF definition is evaluated. We have performed comparison 3D crosstalk measurements with different measurement device apertures and the effect of different measurement geometry on the results on actual 3D displays is reported.

  15. Evaluation of viewing experiences induced by curved 3D display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-05-01

    As advanced display technology has been developed, much attention has been given to flexible panels. On top of that, with the momentum of the 3D era, stereoscopic 3D technique has been combined with the curved displays. However, despite the increased needs for 3D function in the curved displays, comparisons between curved and flat panel displays with 3D views have rarely been tested. Most of the previous studies have investigated their basic ergonomic aspects such as viewing posture and distance with only 2D views. It has generally been known that curved displays are more effective in enhancing involvement in specific content stories because field of views and distance from the eyes of viewers to both edges of the screen are more natural in curved displays than in flat panel ones. For flat panel displays, ocular torsions may occur when viewers try to move their eyes from the center to the edges of the screen to continuously capture rapidly moving 3D objects. This is due in part to differences in viewing distances from the center of the screen to eyes of viewers and from the edges of the screen to the eyes. Thus, this study compared S3D viewing experiences induced by a curved display with those of a flat panel display by evaluating significant subjective and objective measures.

  16. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  17. Panoramic, large-screen, 3-D flight display system design

    NASA Technical Reports Server (NTRS)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  18. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  19. Evaluation of the monocular depth cue in 3D displays.

    PubMed

    Kim, Sung-Kyu; Kim, Dong-Wook; Kwon, Yong Moo; Son, Jung-Young

    2008-12-22

    Binocular disparity and monocular depth information are the principal functions of ideal 3D displays. 3D display systems such as stereoscopic or multi-view, super multi-view (SMV), and multi-focus (MF) displays were considered for the testing of the satisfaction level with the monocular accommodation of three different depths of 3D object points. The numerical simulation and experimental results show that the MF 3D display gives a monocular depth cue. In addition, the experimental results of the monocular MF 3D display show clear monocular focus on four different depths. Therefore, we can apply the MF 3D display to monocular 3D displays.

  20. Development of a stereo 3-D pictorial primary flight display

    NASA Technical Reports Server (NTRS)

    Nataupsky, Mark; Turner, Timothy L.; Lane, Harold; Crittenden, Lucille

    1989-01-01

    Computer-generated displays are becoming increasingly popular in aerospace applications. The use of stereo 3-D technology provides an opportunity to present depth perceptions which otherwise might be lacking. In addition, the third dimension could also be used as an additional dimension along which information can be encoded. Historically, the stereo 3-D displays have been used in entertainment, in experimental facilities, and in the handling of hazardous waste. In the last example, the source of the stereo images generally has been remotely controlled television camera pairs. The development of a stereo 3-D pictorial primary flight display used in a flight simulation environment is described. The applicability of stereo 3-D displays for aerospace crew stations to meet the anticipated needs for 2000 to 2020 time frame is investigated. Although, the actual equipment that could be used in an aerospace vehicle is not currently available, the lab research is necessary to determine where stereo 3-D enhances the display of information and how the displays should be formatted.

  1. 3D microfabrication technology

    NASA Astrophysics Data System (ADS)

    Tang, Esheng; FuTing, Yi; Tian, Yangchao; Liang, Jingqiu; Xian, Dingchang

    1998-08-01

    In the late of this century the great success of VSIC impacts into almost every fields of our social. Following this idea people starts to integrate microsensor microprocessor and microactuators into a small space to forming a Micro Electro and Mechanical System. Such small robot parts are applied to including satellites, computer communication, medical, chemical, biological and environment and so on research fields. The development of MEMS would strongly influence industrial revolution in the next century. LIGA technology including X-ray deep etching lithography; electroplating and plastic molding developed by Karlsruhe Nuclear Research Center, Germany since the beginning of 1980. Its advantages are: it could make three-dimensional microstructures with lateral dimension in several micron range and thickness of several hundred microns with sub-micron precision. In principle all kinds of materials such as polymer, metal and ceramic could be used as microcomponents and could be mass- produced by plastic molding to a commercially available fabrication. LIGA process has become one of the most promising Microfabrication technologies for producing micromechanical, microfluid and micro-optical elements. It opens an additional field in the microstructure market.

  2. 3D display considerations for rugged airborne environments

    NASA Astrophysics Data System (ADS)

    Barnidge, Tracy J.; Tchon, Joseph L.

    2015-05-01

    The KC-46 is the next generation, multi-role, aerial refueling tanker aircraft being developed by Boeing for the United States Air Force. Rockwell Collins has developed the Remote Vision System (RVS) that supports aerial refueling operations under a variety of conditions. The system utilizes large-area, high-resolution 3D displays linked with remote sensors to enhance the operator's visual acuity for precise aerial refueling control. This paper reviews the design considerations, trade-offs, and other factors related to the selection and ruggedization of the 3D display technology for this military application.

  3. In memoriam: Fumio Okano, innovator of 3D display

    NASA Astrophysics Data System (ADS)

    Arai, Jun

    2014-06-01

    Dr. Fumio Okano, a well-known pioneer and innovator of three-dimensional (3D) displays, passed away on 26 November 2013 in Kanagawa, Japan, at the age of 61. Okano joined Japan Broadcasting Corporation (NHK) in Tokyo in 1978. In 1981, he began researching high-definition television (HDTV) cameras, HDTV systems, ultrahigh-definition television systems, and 3D televisions at NHK Science and Technology Research Laboratories. His publications have been frequently cited by other researchers. Okano served eight years as chair of the annual SPIE conference on Three- Dimensional Imaging, Visualization, and Display and another four years as co-chair. Okano's leadership in this field will be greatly missed and he will be remembered for his enduring contributions and innovations in the field of 3D displays. This paper is a summary of the career of Fumio Okano, as well as a tribute to that career and its lasting legacy.

  4. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  5. Tangible holography: adding synthetic touch to 3D display

    NASA Astrophysics Data System (ADS)

    Plesniak, Wendy J.; Klug, Michael A.

    1997-04-01

    Just as we expect holographic technology to become a more pervasive and affordable instrument of information display, so too will high fidelity force-feedback devices. We describe a testbed system which uses both of these technologies to provide simultaneous, coincident visuo- haptic spatial display of a 3D scene. The system provides the user with a stylus to probe a geometric model that is also presented visually in full parallax. The haptics apparatus is a six degree-of-freedom mechanical device with servomotors providing active force display. This device is controlled by a free-running server that simulates static geometric models with tactile and bulk material properties, all under ongoing specification by a client program. The visual display is a full parallax edge-illuminated holographic stereogram with a wide angle of view. Both simulations, haptic and visual, represent the same scene. The haptic and visual displays are carefully scaled and aligned to provide coincident display, and together they permit the user to explore the model's 3D shape, texture and compliance.

  6. SOLIDFELIX: a transportable 3D static volume display

    NASA Astrophysics Data System (ADS)

    Langhans, Knut; Kreft, Alexander; Wörden, Henrik Tom

    2009-02-01

    Flat 2D screens cannot display complex 3D structures without the usage of different slices of the 3D model. Volumetric displays like the "FELIX 3D-Displays" can solve the problem. They provide space-filling images and are characterized by "multi-viewer" and "all-round view" capabilities without requiring cumbersome goggles. In the past many scientists tried to develop similar 3D displays. Our paper includes an overview from 1912 up to today. During several years of investigations on swept volume displays within the "FELIX 3D-Projekt" we learned about some significant disadvantages of rotating screens, for example hidden zones. For this reason the FELIX-Team started investigations also in the area of static volume displays. Within three years of research on our 3D static volume display at a normal high school in Germany we were able to achieve considerable results despite minor funding resources within this non-commercial group. Core element of our setup is the display volume which consists of a cubic transparent material (crystal, glass, or polymers doped with special ions, mainly from the rare earth group or other fluorescent materials). We focused our investigations on one frequency, two step upconversion (OFTS-UC) and two frequency, two step upconversion (TFTSUC) with IR-Lasers as excitation source. Our main interest was both to find an appropriate material and an appropriate doping for the display volume. Early experiments were carried out with CaF2 and YLiF4 crystals doped with 0.5 mol% Er3+-ions which were excited in order to create a volumetric pixel (voxel). In addition to that the crystals are limited to a very small size which is the reason why we later investigated on heavy metal fluoride glasses which are easier to produce in large sizes. Currently we are using a ZBLAN glass belonging to the mentioned group and making it possible to increase both the display volume and the brightness of the images significantly. Although, our display is currently

  7. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  8. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  9. Latest development of display technologies

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Yue; Yao, Qiu-Xiang; Liu, Pan; Zheng, Zhi-Qiang; Liu, Ji-Cheng; Zheng, Hua-Dong; Zeng, Chao; Yu, Ying-Jie; Sun, Tao; Zeng, Zhen-Xiang

    2016-09-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies.

  10. Will true 3d display devices aid geologic interpretation. [Mirage

    SciTech Connect

    Nelson, H.R. Jr.

    1982-04-01

    A description is given of true 3D display devices and techniques that are being evaluated in various research laboratories around the world. These advances are closely tied to the expected application of 3D display devices as interpretational tools for explorationists. 34 refs.

  11. Optically Addressed Spatial Light Modulators for 3d Display

    NASA Astrophysics Data System (ADS)

    Collings, N.

    An optically addressed spatial light modulator (OASLM) records the image on a write beam and transfers it to a read beam. Some example application areas are: image transduction; optical correlation; adaptive optics; and optical neural networks. Current interest in OASLMs has been generated by the work of Qinetiq on 3D display. This work is based on Active tiling, where an image can be recorded in one part of the device and is memorised, whilst the remainder of the device is updated with images. This paper will explain this system and survey the technological alternatives for this application.

  12. Dual-view 3D displays based on integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Deng, Huan; Wu, Fei

    2016-03-01

    We propose three dual-view integral imaging (DVII) three-dimensional (3D) displays. In the spatial-multiplexed DVII 3D display, each elemental image (EI) is cut into a left and right sub-EIs, and they are refracted to the left and right viewing zones by the corresponding micro-lens array (MLA). Different 3D images are reconstructed in the left and right viewing zones, and the viewing angle is decreased. In the DVII 3D display using polarizer parallax barriers, a polarizer parallax barrier is used in front of both the display panel and the MLA. The polarizer parallax barrier consists of two parts with perpendicular polarization directions. The elemental image array (EIA) is cut to left and right parts. The lights emitted from the left part are modulated by the left MLA and reconstruct a 3D image in the right viewing zone, whereas the lights emitted from the right part reconstruct another 3D image in the left viewing zone. The 3D resolution is decreased. In the time-multiplexed DVII 3D display, an orthogonal polarizer array is attached onto both the display panel and the MLA. The orthogonal polarizer array consists of horizontal and vertical polarizer units and the polarization directions of the adjacent units are orthogonal. In State 1, each EI is reconstructed by its corresponding micro-lens, whereas in State 2, each EI is reconstructed by its adjacent micro-lens. 3D images 1 and 2 are reconstructed alternately with a refresh rate up to 120HZ. The viewing angle and 3D resolution are the same as the conventional II 3D display.

  13. 3D display based on parallax barrier with multiview zones.

    PubMed

    Lv, Guo-Jiao; Wang, Qiong-Hua; Zhao, Wu-Xiang; Wang, Jun

    2014-03-01

    A 3D display based on a parallax barrier with multiview zones is proposed. This display consists of a 2D display panel and a parallax barrier. The basic element of the parallax barrier has three narrow slits. They can show three columns of subpixels on the 2D display panel and form 3D pixels. The parallax barrier can provide multiview zones. In these multiview zones, the proposed 3D display can use a small number of views to achieve a high density of views. Therefore, the distance between views is the same as the conventional ones with more views. Considering the proposed display has fewer views, which bring more 3D pixels in the 3D images, the resolution and brightness will be higher than the conventional ones. A 12-view prototype of the proposed 3D display is developed, and it provides the same density of views as a conventional one with 28 views. Experimental results show the proposed display has higher resolution and brightness than the conventional one. The cross talk is also limited at a low level.

  14. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  15. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  16. Combining volumetric edge display and multiview display for expression of natural 3D images

    NASA Astrophysics Data System (ADS)

    Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki

    2006-02-01

    In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.

  17. Depth-fused 3D imagery on an immaterial display.

    PubMed

    Lee, Cha; Diverdi, Stephen; Höllerer, Tobias

    2009-01-01

    We present an immaterial display that uses a generalized form of depth-fused 3D (DFD) rendering to create unencumbered 3D visuals. To accomplish this result, we demonstrate a DFD display simulator that extends the established depth-fused 3D principle by using screens in arbitrary configurations and from arbitrary viewpoints. The feasibility of the generalized DFD effect is established with a user study using the simulator. Based on these results, we developed a prototype display using one or two immaterial screens to create an unencumbered 3D visual that users can penetrate, examining the potential for direct walk-through and reach-through manipulation of the 3D scene. We evaluate the prototype system in formative and summative user studies and report the tolerance thresholds discovered for both tracking and projector errors.

  18. Cylindrical 3D video display observable from all directions

    NASA Astrophysics Data System (ADS)

    Endo, Tomohiro; Kajiki, Yoshihiro; Honda, Toshio; Sato, Makoto

    2000-05-01

    We propose a 3D video displaying technique that multiple viewers can observe 3D images from 360 degrees of arc horizontally without 3D glasses. This technique uses a cylindrical parallax barrier and 1D light source array. We have developed an experimental display using this technique and have demonstrated 3D images observable form 360 degrees of arc horizontally without 3D glasses. Since this technique is based on the parallax panoramagram, the parallax number and resolution are limited by the diffraction at the parallax barrier. To avoid these limits, we improved the technique by revolving the parallax barrier. We have been developing a new experimental display using this improved technique. The display is capable of displaying cylindrical 3D video images within the diameter of 100 mm and the height of 128 mm. Images are described with the resolution of 1254 pixels circularly and 128 pixels vertically, and refreshed at 30Hz. Each pixel has the viewing angle of 60 degrees and that is divided into 70 views, therefore the angular parallax interval of each pixel is less than 1 degree. In such a case, observers may barely perceive parallax discretely. The pixels are arranged on a cylinder surface, therefore produced 3D images can be observed from all directions.

  19. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  20. A 3D polarizing display system base on backlight control

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Huang, Ziqiang

    2011-08-01

    In this paper a new three-dimensional (3D) liquid crystal display (LCD) display mode based on backlight control is presented to avoid the left and right eye images crosstalk in 3D display. There are two major issues in this new black frame 3D display mode. One is continuously playing every frame images twice. The other is controlling the backlight switch periodically. First, this paper explains the cause of the left and right eye images crosstalk, and presents a solution to avoid this problem. Then, we propose to play the entire frame images twice by repeating each frame image after it was played instead of playing the left images and the right images frame by frame alternately. Finally, the backlight is switched periodically instead of turned on all the time. The backlight is turned off while a frame of image is played for the first time, then turned on during the second time, after that it will be turned off again and run the next period with the next frame of image start to refresh. Controlling the backlight switch periodically like this is the key to achieve the black frame 3D display mode. This mode can not only achieve better 3D display effect by avoid the left and right image crosstalk, but also save the backlight power consumption. Theoretical analysis and experiments show that our method is reasonable and efficient.

  1. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  2. Latest developments in a multi-user 3D display

    NASA Astrophysics Data System (ADS)

    Surman, Phil; Sexton, Ian; Bates, Richard; Lee, Wing Kai; Hopf, Klaus; Koukoulas, Triantaffilos

    2005-11-01

    De Montfort University, in conjunction with the Heinrich Hertz Institute, is developing a 3D display that is targeted specifically at the television market. It is capable of supplying 3D to several viewers who do not have to wear special glasses, and who are able to move freely over a room-sized area. The display consists of a single liquid crystal display that presents the same stereo pair to every viewer by employing spatial multiplexing. This presents a stereo pair on alternate pixel rows, with the conventional backlight replaced by novel steering optics controlled by the output of a head position tracker. Illumination is achieved using arrays of coaxial optical elements in conjunction with high-density white light emitting diode arrays. The operation of the steering and multiplexing optics in the prototype display are explained. The results obtained from a prototype built under the European Union-funded ATTEST 3D television project are described. The performance of this model was not optimum, but was sufficient to prove that the principle of operation is viable for a 3D television display. A second prototype, incorporating improvements based on experience gained, is currently under construction and this is also described. The prototype is capable of being developed into a display appropriate for a production model that will enable 3D television to come to market within the next ten years. With the current widespread usage of flat panel displays it is likely that customer preference will be for a hang-on-the-wall 3D display, and this challenge will be met by reconfiguring the optics and incorporating novel optical addressing techniques.

  3. Design of a single projector multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2014-03-01

    Multiview three-dimensional (3D) display is able to provide horizontal parallax to viewers with high-resolution and fullcolor images being presented to each view. Most multiview 3D display systems are designed and implemented using multiple projectors, each generating images for one view. Although this multi-projector design strategy is conceptually straightforward, implementation of such multi-projector design often leads to a very expensive system and complicated calibration procedures. Even for a multiview system with a moderate number of projectors (e.g., 32 or 64 projectors), the cost of a multi-projector 3D display system may become prohibitive due to the cost and complexity of integrating multiple projectors. In this article, we describe an optical design technique for a class of multiview 3D display systems that use only a single projector. In this single projector multiview (SPM) system design, multiple views for the 3D display are generated in a time-multiplex fashion by the single high speed projector with specially designed optical components, a scanning mirror, and a reflective mirror array. Images of all views are generated sequentially and projected via the specially design optical system from different viewing directions towards a 3D display screen. Therefore, the single projector is able to generate equivalent number of multiview images from multiple viewing directions, thus fulfilling the tasks of multiple projectors. An obvious advantage of the proposed SPM technique is the significant reduction of cost, size, and complexity, especially when the number of views is high. The SPM strategy also alleviates the time-consuming procedures for multi-projector calibration. The design method is flexible and scalable and can accommodate systems with different number of views.

  4. Computer-aided 3D display system and its application in 3D vision test

    NASA Astrophysics Data System (ADS)

    Shen, XiaoYun; Ma, Lan; Hou, Chunping; Wang, Jiening; Tang, Da; Li, Chang

    1998-08-01

    The computer aided 3D display system, flicker-free field sequential stereoscopic image display system, is newly developed. This system is composed of personal computer, liquid crystal glasses driving card, stereoscopic display software and liquid crystal glasses. It can display field sequential stereoscopic images at refresh rate of 70 Hz to 120 Hz. A typical application of this system, 3D vision test system, is mainly discussed in this paper. This stereoscopic vision test system can test stereoscopic acuity, cross disparity, uncross disparity and dynamic stereoscopic vision quantitatively. We have taken the use of random-dot- stereograms as stereoscopic vision test charts. Through practical test experiment between Anaglyph Stereoscopic Vision Test Charts and this stereoscopic vision test system, the statistical figures and test result is given out.

  5. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  6. Super stereoscopy technique for comfortable and realistic 3D displays.

    PubMed

    Akşit, Kaan; Niaki, Amir Hossein Ghanbari; Ulusoy, Erdem; Urey, Hakan

    2014-12-15

    Two well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters. The pinholes generate blur-free retinal images so as to enable correct accommodation, while the delivery of multiple parallax images per eye creates an approximate blur effect for defocused objects. Experiments performed with cameras and human viewers indicate that the technique works as desired. In case two, pinholes equipped with color filters per eye are used; the technique can be used on a regular stereoscopic display by only uploading a new content, without requiring any change in display hardware, driver, or frame rate. Apart from some tolerable loss in display brightness and decrease in natural spatial resolution limit of the eye because of pinholes, the technique is quite promising for comfortable and realistic 3D vision, especially enabling the display of close objects that are not possible to display and comfortably view on regular 3DTV and cinema. PMID:25503026

  7. Current status of stereoscopic 3D LCD TV technologies

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jin

    2011-06-01

    The year 2010 may be recorded as a first year of successful commercial 3D products. Among them, the 3D LCD TVs are expected to be the major one regarding the sales volume. In this paper, the principle of current stereoscopic 3D LCD TV techniques and the required flat panel display (FPD) technologies for the realization of them are reviewed. [Figure not available: see fulltext.

  8. Study on basic problems in real-time 3D holographic display

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Liu, Juan; Wang, Yongtian; Pan, Yijie; Li, Xin

    2013-05-01

    In recent years, real-time three-dimensional (3D) holographic display has attracted more and more attentions. Since a holographic display can entirely reconstruct the wavefront of an actual 3D scene, it can provide all the depth cues for human eye's observation and perception, and it is believed to be the most promising technology for future 3D display. However, there are several unsolved basic problems for realizing large-size real-time 3D holographic display with a wide field of view. For examples, commercial pixelated spatial light modulators (SLM) always lead to zero-order intensity distortion; 3D holographic display needs a huge number of sampling points for the actual objects or scenes, resulting in enormous computational time; The size and the viewing zone of the reconstructed 3D optical image are limited by the space bandwidth product of the SLM; Noise from the coherent light source as well as from the system severely degrades the quality of the 3D image; and so on. Our work is focused on these basic problems, and some initial results are presented, including a technique derived theoretically and verified experimentally to eliminate the zero-order beam caused by a pixelated phase-only SLM; a method to enlarge the reconstructed 3D image and shorten the reconstruction distance using a concave reflecting mirror; and several algorithms to speed up the calculation of computer generated holograms (CGH) for the display.

  9. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  10. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  11. Evaluation of passive polarized stereoscopic 3D display for visual & mental fatigues.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Mumtaz, Wajid; Badruddin, Nasreen; Kamel, Nidal

    2015-01-01

    Visual and mental fatigues induced by active shutter stereoscopic 3D (S3D) display have been reported using event-related brain potentials (ERP). An important question, that is whether such effects (visual & mental fatigues) can be found in passive polarized S3D display, is answered here. Sixty-eight healthy participants are divided into 2D and S3D groups and subjected to an oddball paradigm after being exposed to S3D videos with passive polarized display or 2D display. The age and fluid intelligence ability of the participants are controlled between the groups. ERP results do not show any significant differences between S3D and 2D groups to find the aftereffects of S3D in terms of visual and mental fatigues. Hence, we conclude that passive polarized S3D display technology may not induce visual and/or mental fatigue which may increase the cognitive load and suppress the ERP components. PMID:26738049

  12. Virtual environment display for a 3D audio room simulation

    NASA Astrophysics Data System (ADS)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  13. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  14. Format for Interchange and Display of 3D Terrain Data

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Powell, Mark; Vona, Marsette; Norris, Jeffrey; Morrison, Jack

    2004-01-01

    Visible Scalable Terrain (ViSTa) is a software format for production, interchange, and display of three-dimensional (3D) terrain data acquired by stereoscopic cameras of robotic vision systems. ViSTa is designed to support scalability of data, accuracy of displayed terrain images, and optimal utilization of computational resources. In a ViSTa file, an area of terrain is represented, at one or more levels of detail, by coordinates of isolated points and/or vertices of triangles derived from a texture map that, in turn, is derived from original terrain images. Unlike prior terrain-image software formats, ViSTa includes provisions to ensure accuracy of texture coordinates. Whereas many such formats are based on 2.5-dimensional terrain models and impose additional regularity constraints on data, ViSTa is based on a 3D model without regularity constraints. Whereas many prior formats require external data for specifying image-data coordinate systems, ViSTa provides for the inclusion of coordinate-system data within data files. ViSTa admits highspeed loading and display within a Java program. ViSTa is designed to minimize file sizes and maximize compressibility and to support straightforward reduction of resolution to reduce file size for Internet-based distribution.

  15. Perceived crosstalk assessment on patterned retarder 3D display

    NASA Astrophysics Data System (ADS)

    Zou, Bochao; Liu, Yue; Huang, Yi; Wang, Yongtian

    2014-03-01

    CONTEXT: Nowadays, almost all stereoscopic displays suffer from crosstalk, which is one of the most dominant degradation factors of image quality and visual comfort for 3D display devices. To deal with such problems, it is worthy to quantify the amount of perceived crosstalk OBJECTIVE: Crosstalk measurements are usually based on some certain test patterns, but scene content effects are ignored. To evaluate the perceived crosstalk level for various scenes, subjective test may bring a more correct evaluation. However, it is a time consuming approach and is unsuitable for real­ time applications. Therefore, an objective metric that can reliably predict the perceived crosstalk is needed. A correct objective assessment of crosstalk for different scene contents would be beneficial to the development of crosstalk minimization and cancellation algorithms which could be used to bring a good quality of experience to viewers. METHOD: A patterned retarder 3D display is used to present 3D images in our experiment. By considering the mechanism of this kind of devices, an appropriate simulation of crosstalk is realized by image processing techniques to assign different values of crosstalk to each other between image pairs. It can be seen from the literature that the structures of scenes have a significant impact on the perceived crosstalk, so we first extract the differences of the structural information between original and distorted image pairs through Structural SIMilarity (SSIM) algorithm, which could directly evaluate the structural changes between two complex-structured signals. Then the structural changes of left view and right view are computed respectively and combined to an overall distortion map. Under 3D viewing condition, because of the added value of depth, the crosstalk of pop-out objects may be more perceptible. To model this effect, the depth map of a stereo pair is generated and the depth information is filtered by the distortion map. Moreover, human attention

  16. Crosstalk in automultiscopic 3-D displays: blessing in disguise?

    NASA Astrophysics Data System (ADS)

    Jain, Ashish; Konrad, Janusz

    2007-02-01

    Most of 3-D displays suffer from interocular crosstalk, i.e., the perception of an unintended view in addition to intended one. The resulting "ghosting" at high-contrast object boundaries is objectionable and interferes with depth perception. In automultiscopic (no glasses, multiview) displays using microlenses or parallax barrier, the effect is compounded since several unintended views may be perceived at once. However, we recently discovered that crosstalk in automultiscopic displays can be also beneficial. Since spatial multiplexing of views in order to prepare a composite image for automultiscopic viewing involves sub-sampling, prior anti-alias filtering is required. To date, anti-alias filter design has ignored the presence of crosstalk in automultiscopic displays. In this paper, we propose a simple multiplexing model that takes crosstalk into account. Using this model we derive a mathematical expression for the spectrum of single view with crosstalk, and we show that it leads to reduced spectral aliasing compared to crosstalk-free case. We then propose a new criterion for the characterization of ideal anti-alias pre-filter. In the experimental part, we describe a simple method to measure optical crosstalk between views using digital camera. We use the measured crosstalk parameters to find the ideal frequency response of anti-alias filter and we design practical digital filters approximating this response. Having applied the designed filters to a number of multiview images prior to multiplexing, we conclude that, due to their increased bandwidth, the filters lead to visibly sharper 3-D images without increasing aliasing artifacts.

  17. Misalignment effects in 3-D versions of Poggendorff displays.

    PubMed

    Liu, C H; Kennedy, J M

    1995-04-01

    Strong misalignment effects are found in three-dimensional (3-D) versions of Poggendorff displays viewed binocularly. The components of the standard 2-D Poggendorff figure--the parallels and the oblique segments--were presented in 3-D depth as a flat rectangular object with occluding edges and an oblique line situated behind the object. Three experiments investigated the misalignment effects under three different observation instructions: Subjects were told to look at the oblique (Experiment 1), at the rectangle (Experiment 2), or at the background (Experiment 3). Experiments 1 and 2 examined the effects on judgments of alignment of varying the distance in depth that separates the oblique from the rectangle. Experiment 3 examined the effects of varying the distance between the fixated background and the 3-D Poggendorff figure. Both standard and reversed misalignment effects were obtained. When the viewing condition produces crossed disparity for the oblique, perceived misalignment occurs in the usual Poggendorff direction, but it is reversed with uncrossed disparity. Moreover, the amount of misalignment is related to the amount of disparity, and it can be much stronger than is usual in the 2-D versions of the Poggendorff. The misalignment effects can be explained by binocular integration to produce a single cyclopean image.

  18. Recent research results in stereo 3-D pictorial displays at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.

    1990-01-01

    Recent results from a NASA-Langley program which addressed stereo 3D pictorial displays from a comprehensive standpoint are reviewed. The program dealt with human factors issues and display technology aspects, as well as flight display applications. The human factors findings include addressing a fundamental issue challenging the application of stereoscopic displays in head-down flight applications, with the determination that stereoacuity is unaffected by the short-term use of stereo 3D displays. While stereoacuity has been a traditional measurement of depth perception abilities, it is a measure of relative depth, rather than actual depth (absolute depth). Therefore, depth perception effects based on size and distance judgments and long-term stereo exposure remain issues to be investigated. The applications of stereo 3D to pictorial flight displays within the program have repeatedly demonstrated increases in pilot situational awareness and task performance improvements. Moreover, these improvements have been obtained within the constraints of the limited viewing volume available with conventional stereo displays. A number of stereo 3D pictorial display applications are described, including recovery from flight-path offset, helicopter hover, and emulated helmet-mounted display.

  19. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  20. Display depth analyses with the wave aberration for the auto-stereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Chen, Duo; Chen, Zhidong; Zhang, Wanlu; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    Because the aberration severely affects the display performances of the auto-stereoscopic 3D display, the diffraction theory is used to analyze the diffraction field distribution and the display depth through aberration analysis. Based on the proposed method, the display depth of central and marginal reconstructed images is discussed. The experimental results agree with the theoretical analyses. Increasing the viewing distance or decreasing the lens aperture can improve the display depth. Different viewing distances and the LCD with two lens-arrays are used to verify the conclusion.

  1. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  2. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  3. Integral imaging as a modality for 3D TV and displays

    NASA Astrophysics Data System (ADS)

    McCormick, Malcolm; Davies, Neil A.; Milnthorpe, Graham; Aggoun, Amar; Forman, Matthew C.

    2002-11-01

    The development of 3D TV systems and displays for public use require that several important criteria be satisfied. The criteria are that the perceived resolution is as good as existing 2D TV, the image must be in full natural colour, compatibility with current 2D systems in terms of frame rate and transmission data must be ensured, human-factors concerns must be satisfied and seamless autostereoscopic viewing provided. There are several candidate 3D technologies, for example stereoscopic multiview, holographic and integral imaging that endeavor to satisfy the technological and other conditions. The perceived advantages of integral imaging are that the 3D data can be captured by a single aperture camera, the display is a scaled 3D optical model, and in viewing accommodation and convergence are as in normal sighting (natural) thereby preventing possible eye strain. Consequently it appears to be ideal for prolonged human use. The technological factors that inhibited the possible use of integral imaging for TV display have been shown to be less intractable than at first thought. For example compression algorithms are available such that terrestrial bandwidth is perfectly suitable for transmission purposes. Real-time computer generation of integral images is feasible and the high-resolution LCD panels currently available are sufficient to enable high contrast and high quality image display.

  4. A 3D integral imaging optical see-through head-mounted display.

    PubMed

    Hua, Hong; Javidi, Bahram

    2014-06-01

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  5. Dual-view integral imaging 3D display using polarizer parallax barriers.

    PubMed

    Wu, Fei; Wang, Qiong-Hua; Luo, Cheng-Gao; Li, Da-Hai; Deng, Huan

    2014-04-01

    We propose a dual-view integral imaging (DVII) 3D display using polarizer parallax barriers (PPBs). The DVII 3D display consists of a display panel, a microlens array, and two PPBs. The elemental images (EIs) displayed on the left and right half of the display panel are captured from two different 3D scenes, respectively. The lights emitted from two kinds of EIs are modulated by the left and right half of the microlens array to present two different 3D images, respectively. A prototype of the DVII 3D display is developed, and the experimental results agree well with the theory.

  6. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

  7. 3D technology for intelligent trackers

    NASA Astrophysics Data System (ADS)

    Lipton, Ronald

    2010-10-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  8. 3D Technology for intelligent trackers

    SciTech Connect

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  9. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  10. 3D medical collaboration technology to enhance emergency healthcare.

    PubMed

    Welch, Gregory F; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj K; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E

    2009-04-19

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare.

  11. Development and evaluation of amusement machine using autostereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Kawai, Takashi; Shibata, Takashi; Shimizu, Yoichi; Kawata, Mitsuhiro; Suto, Masahiro

    2004-05-01

    Pachinko is a pinball-like game peculiar to Japan, and is one of the most common pastimes around the country. Recently, with the videogame market contracting, various multimedia technologies have been introduced into Pachinko machines. The authors have developed a Pachinko machine incorporating an autostereoscopic 3D display, and evaluated its effect on the visual function. As of April 2003, the new Pachinko machine has been on sale in Japan. The stereoscopic 3D image is displayed using an LCD. Backlighting for the right and left images is separate, and passes through a polarizing filter before reaching the LCD, which is sandwiched with a micro polarizer. The content selected for display was ukiyoe pictures (Japanese traditional woodblocks). The authors intended to reduce visual fatigue by presenting 3D images with depth "behind" the display and switching between 3D and 2D images. For evaluation of the Pachinko machine, a 2D version with identical content was also prepared, and the effects were examined and compared by testing psycho-physiological responses.

  12. The hype cycle in 3D displays: inherent limits of autostereoscopy

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2013-06-01

    Since a couple of years, a renaissance of 3dimensional cinema can be observed. Even though the stereoscopy was quite popular within the last 150 years, the 3d cinema has disappeared and re-established itself several times. The first boom in the late 19th century stagnated and vanished after a few years of success, the same happened again in 50's and 80's of the 20th century. With the commercial success of the 3d blockbuster "Avatar" in 2009, at the latest, it is obvious that the 3d cinema is having a comeback. How long will it last this time? There are already some signs of a declining interest in 3d movies, as the discrepancy between expectations and the results delivered becomes more evident. From the former hypes it is known: After an initial phase of curiosity (high expectations and excessive fault tolerance), a phase of frustration and saturation (critical analysis and subsequent disappointment) will follow. This phenomenon is known as "Hype Cycle" The everyday experienced evolution of technology has conditioned the consumers. The expectation "any technical improvement will preserve all previous properties" cannot be fulfilled with present 3d technologies. This is an inherent problem of stereoscopy and autostereoscopy: The presentation of an additional dimension caused concessions in relevant characteristics (i.e. resolution, brightness, frequency, viewing area) or leads to undesirable physical side effects (i.e. subjective discomfort, eye strain, spatial disorientation, feeling of nausea). It will be verified that the 3d apparatus (3d glasses or 3d display) is also the source for these restrictions and a reason for decreasing fascination. The limitations of present autostereoscopic technologies will be explained.

  13. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  14. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  15. IPMC actuator array as a 3D haptic display

    NASA Astrophysics Data System (ADS)

    Nakano, Masanori; Mazzone, Andrea; Piffaretti, Filippo; Gassert, Roger; Nakao, Masayuki; Bleuler, Hannes

    2005-05-01

    Based on the concept of Mazzone et al., we have designed a novel system to be used simultaneously as an input and output device for designing, presenting, or recognizing objects in three-dimensional space. Unlike state of the art stereoscopic display technologies that generate a virtual image of a three-dimensional object, the proposed system, a "digital clay" like device, physically imitates the desired object. The object can not only be touched and explored intuitively but also deform itself physically. In order to succeed in developing such a deformable structure, self-actuating ionic polymer-metal composite (IPMC) materials are proposed. IPMC is a type of electro active polymer (EAP) and has recently been drawing much attention. It has high force to weight ratio and shape flexibility, making it ideal for robotic applications. This paper introduces the first steps and results in the attempt of developing such a structure. A strip consisting of four actuators arranged in line was fabricated and evaluated, showing promising capabilities in deforming two-dimensionally. A simple model to simulate the deformation of an IPMC actuator using finite element methods (FEM) is also proposed and compared with the experimental results. The model can easily be implemented into computer aided engineering (CAE) software. This will expand the application possibilities of IPMCs. Furthermore, a novel method for creating multiple actuators on one membrane with a laser machining tool is introduced.

  16. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  17. Integration of a 3D perspective view in the navigation display: featuring pilot's mental model

    NASA Astrophysics Data System (ADS)

    Ebrecht, L.; Schmerwitz, S.

    2015-05-01

    Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.

  18. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components. PMID:27136858

  19. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components.

  20. Future of photorefractive based holographic 3D display

    NASA Astrophysics Data System (ADS)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  1. Special subpixel arrangement-based 3D display with high horizontal resolution.

    PubMed

    Lv, Guo-Jiao; Wang, Qiong-Hua; Zhao, Wu-Xiang; Wu, Fei

    2014-11-01

    A special subpixel arrangement-based 3D display is proposed. This display consists of a 2D display panel and a parallax barrier. On the 2D display panel, subpixels have a special arrangement, so they can redefine the formation of color pixels. This subpixel arrangement can bring about triple horizontal resolution for a conventional 2D display panel. Therefore, when these pixels are modulated by the parallax barrier, the 3D images formed also have triple horizontal resolution. A prototype of this display is developed. Experimental results show that this display with triple horizontal resolution can produce a better display effect than the conventional one.

  2. High-Performance 3D Articulated Robot Display

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy

    2011-01-01

    In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle

  3. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  4. Thin client performance for remote 3-D image display.

    PubMed

    Lai, Albert; Nieh, Jason; Laine, Andrew; Starren, Justin

    2003-01-01

    Several trends in biomedical computing are converging in a way that will require new approaches to telehealth image display. Image viewing is becoming an "anytime, anywhere" activity. In addition, organizations are beginning to recognize that healthcare providers are highly mobile and optimal care requires providing information wherever the provider and patient are. Thin-client computing is one way to support image viewing this complex environment. However little is known about the behavior of thin client systems in supporting image transfer in modern heterogeneous networks. Our results show that using thin-clients can deliver acceptable performance over conditions commonly seen in wireless networks if newer protocols optimized for these conditions are used.

  5. Application of a 3D volumetric display for radiation therapy treatment planning I: quality assurance procedures.

    PubMed

    Gong, Xing; Kirk, Michael Collins; Napoli, Josh; Stutsman, Sandy; Zusag, Tom; Khelashvili, Gocha; Chu, James

    2009-07-17

    To design and implement a set of quality assurance tests for an innovative 3D volumetric display for radiation treatment planning applications. A genuine 3D display (Perspecta Spatial 3D, Actuality-Systems Inc., Bedford, MA) has been integrated with the Pinnacle TPS (Philips Medical Systems, Madison WI), for treatment planning. The Perspecta 3D display renders a 25 cm diameter volume that is viewable from any side, floating within a translucent dome. In addition to displaying all 3D data exported from Pinnacle, the system provides a 3D mouse to define beam angles and apertures and to measure distance. The focus of this work is the design and implementation of a quality assurance program for 3D displays and specific 3D planning issues as guided by AAPM Task Group Report 53. A series of acceptance and quality assurance tests have been designed to evaluate the accuracy of CT images, contours, beams, and dose distributions as displayed on Perspecta. Three-dimensional matrices, rulers and phantoms with known spatial dimensions were used to check Perspecta's absolute spatial accuracy. In addition, a system of tests was designed to confirm Perspecta's ability to import and display Pinnacle data consistently. CT scans of phantoms were used to confirm beam field size, divergence, and gantry and couch angular accuracy as displayed on Perspecta. Beam angles were verified through Cartesian coordinate system measurements and by CT scans of phantoms rotated at known angles. Beams designed on Perspecta were exported to Pinnacle and checked for accuracy. Dose at sampled points were checked for consistency with Pinnacle and agreed within 1% or 1 mm. All data exported from Pinnacle to Perspecta was displayed consistently. The 3D spatial display of images, contours, and dose distributions were consistent with Pinnacle display. When measured by the 3D ruler, the distances between any two points calculated using Perspecta agreed with Pinnacle within the measurement error.

  6. Development and Evaluation of 2-D and 3-D Exocentric Synthetic Vision Navigation Display Concepts for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  7. Development and evaluation of 2D and 3D exocentric synthetic vision navigation display concepts for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Sweeters, Jason L.

    2005-05-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  8. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images. PMID:27410090

  9. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  10. Monocular 3D see-through head-mounted display via complex amplitude modulation.

    PubMed

    Gao, Qiankun; Liu, Juan; Han, Jian; Li, Xin

    2016-07-25

    The complex amplitude modulation (CAM) technique is applied to the design of the monocular three-dimensional see-through head-mounted display (3D-STHMD) for the first time. Two amplitude holograms are obtained by analytically dividing the wavefront of the 3D object to the real and the imaginary distributions, and then double amplitude-only spatial light modulators (A-SLMs) are employed to reconstruct the 3D images in real-time. Since the CAM technique can inherently present true 3D images to the human eye, the designed CAM-STHMD system avoids the accommodation-convergence conflict of the conventional stereoscopic see-through displays. The optical experiments further demonstrated that the proposed system has continuous and wide depth cues, which enables the observer free of eye fatigue problem. The dynamic display ability is also tested in the experiments and the results showed the possibility of true 3D interactive display. PMID:27464184

  11. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  12. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  13. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-01

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  14. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher.

    PubMed

    Wang, Qiong-Hua; Ji, Chao-Chao; Li, Lei; Deng, Huan

    2016-01-11

    In this paper, a dual-view integral imaging three-dimensional (3D) display consisting of a display panel, two orthogonal polarizer arrays, a polarization switcher, and a micro-lens array is proposed. Two elemental image arrays for two different 3D images are presented by the display panel alternately, and the polarization switcher controls the polarization direction of the light rays synchronously. The two elemental image arrays are modulated by their corresponding and neighboring micro-lenses of the micro-lens array, and reconstruct two different 3D images in viewing zones 1 and 2, respectively. A prototype of the dual-view II 3D display is developed, and it has good performances.

  15. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  16. Display of real-time 3D sensor data in a DVE system

    NASA Astrophysics Data System (ADS)

    Völschow, Philipp; Münsterer, Thomas; Strobel, Michael; Kuhn, Michael

    2016-05-01

    This paper describes the implementation of displaying real-time processed LiDAR 3D data in a DVE pilot assistance system. The goal is to display to the pilot a comprehensive image of the surrounding world without misleading or cluttering information. 3D data which can be attributed, i.e. classified, to terrain or predefined obstacle classes is depicted differently from data belonging to elevated objects which could not be classified. Display techniques may be different for head-down and head-up displays to avoid cluttering of the outside view in the latter case. While terrain is shown as shaded surfaces with grid structures or as grid structures alone, respectively, classified obstacles are typically displayed with obstacle symbols only. Data from objects elevated above ground are displayed as shaded 3D points in space. In addition the displayed 3D points are accumulated over a certain time frame allowing on the one hand side a cohesive structure being displayed and on the other hand displaying moving objects correctly. In addition color coding or texturing can be applied based on known terrain features like land use.

  17. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  18. Depth-fused 3D (DFD) display with multiple viewing zones

    NASA Astrophysics Data System (ADS)

    Date, Munekazu; Sugimoto, Satoshi; Takada, Hideaki; Nakazawa, Kenji

    2007-09-01

    A new depth-fused 3-D (DFD) display for multiple users is presented. A DFD display, which consists of a stack of layered screens, is expected to be a visually comfortable 3-D display because it can satisfy not only binocular disparity, convergence, accommodation, but also motion parallax for a small observer displacement. However, the display cannot be observed from an oblique angle due to image doubling caused by the layered screen structure, so the display is applicable only for single-observer use. In this paper, we present a multi-viewing-zone DFD display using a stack of a see-through screen and a multi-viewing-zone 2-D display. We used a film, which causes polarization-selective scattering, as the front screen, and an anisotropic scattering film for the rear screen. The front screen was illuminated by one projector, and the screen displayed an image at all viewing angles. The rear screen was illuminated by multiple projectors from different directions. The displayed images on the rear screen were arranged to be well overlapped for each viewing direction to create multiple viewing zones without image doubling. This design is promising for a large-area 3-D display that does not require special glasses because the display uses projection and has a simple structure.

  19. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  20. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  1. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  2. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  3. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  4. Color and brightness uniformity compensation of a multi-projection 3D display

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Juyong; Nam, Dongkyung; Park, Du-Sik

    2015-09-01

    Light-field displays are good candidates in the field of glasses-free 3D display for showing real 3D images without decreasing the image resolution. Light-field displays can create light rays using a large number of projectors in order to express the natural 3D images. However, in light-field displays using multi-projectors, the compensation is very critical due to different characteristics and arrangement positions of each projector. In this paper, we present an enhanced 55- inch, 100-Mpixel multi-projection 3D display consisting of 96 micro projectors for immersive natural 3D viewing in medical and educational applications. To achieve enhanced image quality, color and brightness uniformity compensation methods are utilized along with an improved projector configuration design and a real-time calibration process of projector alignment. For color uniformity compensation, projected images from each projector are captured by a camera arranged in front of the screen, the number of pixels based on RGB color intensities of each captured image is analyzed, and the distributions of RGB color intensities are adjusted by using the respective maximum values of RGB color intensities. For brightness uniformity compensation, each light-field ray emitted from a screen pixel is modeled by a radial basis function, and compensating weights of each screen pixel are calculated and transferred to the projection images by the mapping relationship between the screen and projector coordinates. Finally, brightness compensated images are rendered for each projector. Consequently, the display shows improved color and brightness uniformity, and consistent, exceptional 3D image quality.

  5. System crosstalk measurement of a time-sequential 3D display using ideal shutter glasses

    NASA Astrophysics Data System (ADS)

    Chen, Fu-Hao; Huang, Kuo-Chung; Lin, Lang-Chin; Chou, Yi-Heng; Lee, Kuen

    2011-03-01

    The market of stereoscopic 3D TV grows up fast recently; however, for 3D TV really taking off, the interoperability of shutter glasses (SG) to view different TV sets must be solved, so we developed a measurement method with ideal shutter glasses (ISG) to separate time-sequential stereoscopic displays and SG. For measuring the crosstalk from time-sequential stereoscopic 3D displays, the influences from SG must be eliminated. The advantages are that the sources to crosstalk are distinguished, and the interoperability of SG is broadened. Hence, this paper proposed ideal shutter glasses, whose non-ideal properties are eliminated, as a platform to evaluate the crosstalk purely from the display. In the ISG method, the illuminance of the display was measured in time domain to analyze the system crosstalk SCT of the display. In this experiment, the ISG method was used to measure SCT with a high-speed-response illuminance meter. From the time-resolved illuminance signals, the slow time response of liquid crystal leading to SCT is visualized and quantified. Furthermore, an intriguing phenomenon that SCT measured through SG increases with shortening view distance was observed, and it may arise from LC leakage of the display and shutter leakage at large view angle. Thus, we measured how LC and shutter leakage depending on view angle and verified our argument. Besides, we used the ISG method to evaluate two displays.

  6. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2005-03-01

    The purpose of this study was to consider a practical application of a newly developed stereoscopic 3-D display that solves the problem of discrepancy between accommodation and convergence. The display uses dynamic optical correction to reduce the discrepancy, and can present images as if they are actually remote objects. The authors thought the display may assist in recovery from asthenopia, which is often caused when the eyes focus on a nearby object for a long time, such as in VDT (Visual Display Terminal) work. In general, recovery from asthenopia, and especially accommodative asthenopia, is achieved by focusing on distant objects. In order to verify this hypothesis, the authors performed visual acuity tests using Landolt rings before and after presenting stereoscopic 3-D images, and evaluated the degree of recovery from asthenopia. The experiment led to three main conclusions: (1) Visual acuity rose after viewing stereoscopic 3-D images on the developed display. (2) Recovery from asthenopia was particularly effective for the dominant eye in comparison with the other eye. (3) Interviews with the subjects indicated that the Landolt rings were particularly clear after viewing the stereoscopic 3-D images.

  7. Examination of asthenopia recovery using stereoscopic 3D display with dynamic optical correction

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Ohta, Keiji; Lee, JaeLin; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2006-02-01

    A common cause of asthenopia is viewing objects from a short distance, as is the case when working at a VDT (Visual Display Terminal). In general, recovery from asthenopia, especially accommodative asthenopia, is aided by looking into the distance. The authors have developed a stereoscopic 3-D display with dynamic optical correction that may reduce asthenopia. The display does this by reducing the discrepancy between accommodation and convergence, thereby presenting images as if they were actually in the distance. The results of visual acuity tests given before and after presenting stereoscopic 3-D images with this display show a tendency towards less asthenopia. In this study, the authors developed a refraction feedback function that makes the viewer's distance vision more effective when viewing stereoscopic 3-D images on the this display. Using this function, refraction is fed back during viewing and the viewer gradually acquires distance vision. The results of the study suggest that stereoscopic 3-D images are more effective than 2-D images for recovery from asthenopia.

  8. Research on steady-state visual evoked potentials in 3D displays

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  9. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  10. 3D Printing technologies for drug delivery: a review.

    PubMed

    Prasad, Leena Kumari; Smyth, Hugh

    2016-01-01

    With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years.

  11. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  12. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  13. Principle and characteristics of 3D display based on random source constructive interference.

    PubMed

    Li, Zhiyang

    2014-07-14

    The paper discusses the principle and characteristics of 3D display based on random source constructive interference (RSCI). The voxels of discrete 3D images are formed in the air via constructive interference of spherical light waves emitted by point light sources (PLSs) that are arranged at random positions to depress high order diffraction. The PLSs might be created by two liquid crystal panels sandwiched between two micro-lens arrays. The point spread function of the system revealed that it is able to reconstruct voxels with diffraction limited resolution over a large field width and depth. The high resolution was confirmed by the experiments. Theoretical analyses also shows that the system could provide a 3D image contrast and gray levels no less than that in liquid crystal panels. Compared with 2D display, it needs only additional depth information, which brings only about 30% data increment.

  14. 3D-printing technologies for electrochemical applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  15. 3D-printing technologies for electrochemical applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool. PMID:27048921

  16. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  17. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct.

  18. 3D brain MR angiography displayed by a multi-autostereoscopic screen

    NASA Astrophysics Data System (ADS)

    Magalhães, Daniel S. F.; Ribeiro, Fádua H.; Lima, Fabrício O.; Serra, Rolando L.; Moreno, Alfredo B.; Li, Li M.

    2012-02-01

    The magnetic resonance angiography (MRA) can be used to examine blood vessels in key areas of the body, including the brain. In the MRA, a powerful magnetic field, radio waves and a computer produce the detailed images. Physicians use the procedure in brain images mainly to detect atherosclerosis disease in the carotid artery of the neck, which may limit blood flow to the brain and cause a stroke and identify a small aneurysm or arteriovenous malformation inside the brain. Multi-autostereoscopic displays provide multiple views of the same scene, rather than just two, as in autostereoscopic systems. Each view is visible from a different range of positions in front of the display. This allows the viewer to move left-right in front of the display and see the correct view from any position. The use of 3D imaging in the medical field has proven to be a benefit to doctors when diagnosing patients. For different medical domains a stereoscopic display could be advantageous in terms of a better spatial understanding of anatomical structures, better perception of ambiguous anatomical structures, better performance of tasks that require high level of dexterity, increased learning performance, and improved communication with patients or between doctors. In this work we describe a multi-autostereoscopic system and how to produce 3D MRA images to be displayed with it. We show results of brain MR angiography images discussing, how a 3D visualization can help physicians to a better diagnosis.

  19. 360 degree realistic 3D image display and image processing from real objects

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Chen, Yue; Huang, Yong; Tan, Xiaodi; Horimai, Hideyoshi

    2016-09-01

    A 360-degree realistic 3D image display system based on direct light scanning method, so-called Holo-Table has been introduced in this paper. High-density directional continuous 3D motion images can be displayed easily with only one spatial light modulator. Using the holographic screen as the beam deflector, 360-degree full horizontal viewing angle was achieved. As an accompany part of the system, CMOS camera based image acquisition platform was built to feed the display engine, which can take a full 360-degree continuous imaging of the sample at the center. Customized image processing techniques such as scaling, rotation, format transformation were also developed and embedded into the system control software platform. In the end several samples were imaged to demonstrate the capability of our system.

  20. Dynamic lens and monovision 3D displays to improve viewer comfort.

    PubMed

    Johnson, Paul V; Parnell, Jared Aq; Kim, Joohwan; Saunter, Christopher D; Love, Gordon D; Banks, Martin S

    2016-05-30

    Stereoscopic 3D (S3D) displays provide an additional sense of depth compared to non-stereoscopic displays by sending slightly different images to the two eyes. But conventional S3D displays do not reproduce all natural depth cues. In particular, focus cues are incorrect causing mismatches between accommodation and vergence: The eyes must accommodate to the display screen to create sharp retinal images even when binocular disparity drives the eyes to converge to other distances. This mismatch causes visual discomfort and reduces visual performance. We propose and assess two new techniques that are designed to reduce the vergence-accommodation conflict and thereby decrease discomfort and increase visual performance. These techniques are much simpler to implement than previous conflict-reducing techniques. The first proposed technique uses variable-focus lenses between the display and the viewer's eyes. The power of the lenses is yoked to the expected vergence distance thereby reducing the mismatch between vergence and accommodation. The second proposed technique uses a fixed lens in front of one eye and relies on the binocularly fused percept being determined by one eye and then the other, depending on simulated distance. We conducted performance tests and discomfort assessments with both techniques and compared the results to those of a conventional S3D display. The first proposed technique, but not the second, yielded clear improvements in performance and reductions in discomfort. This dynamic-lens technique therefore offers an easily implemented technique for reducing the vergence-accommodation conflict and thereby improving viewer experience. PMID:27410105

  1. Color LCoS-based full-color electro-holographic 3D display system

    NASA Astrophysics Data System (ADS)

    Moon, Jae-Woong; Lee, Dong-Whi; Kim, Seung-Cheol; Kim, Eun-Soo

    2005-05-01

    In this paper, a new color LCoS(liquid crystal on silicon)-based holographic full-color 3D display system is proposed. As the color LCoS SLM can produce a full-color image pattern using a color wheel, only one LCoS panel is required in this approach for full-color reconstruction of a 3D object. In the proposed method, each color fringe-pattern is generated and tinted with each color beam. R, G, B fringe-patterns are mixed up and displayed on the color LCoS SLM. And then, Red fringe-pattern can be diffracted at the red status of a color wheel and at the same manner Green/ Blue fringe-patterns can be diffracted at the green/ blue status of a color wheel, so that a full-color electro-holographic 3D image can be easily reconstructed by using some simple optics. From some experiments, a possibility of implementation of a new compact LCoS-based holographic full-color 3D video display system is suggested.

  2. Flight tests of a hybrid-centered integrated 3D perspective-view primary flight display

    NASA Astrophysics Data System (ADS)

    He, Gang; Feyereisen, Thea; Wilson, Blake; Wyatt, Sandy; Engels, Jary

    2006-05-01

    This paper describes flight tests of a Honeywell Synthetic Vision System (SVS) prototype operating in a hybrid-centered mode on a Primus Epic TM large format display. This novel hybrid mode effectively resolves some cognitive and perceptual human factors issues associated with traditional heading-up or track-up display modes. By integrating synthetic 3D perspective view with advanced Head-Up Display (HUD) symbology in this mode, the test results demonstrate that the hybrid display mode provides clear indications of current track and crab conditions, and is effective in overcoming flight guidance symbology collision and resultant ambiguity. The hybrid-centering SVS display concept is shown to be effective in all phases of flight and is particularly valuable during landing operations with a strong cross-wind. The recorded flight test data from Honeywell's prototype SVS concept at Reno, Nevada on board Honeywell Citation V aircraft will be discussed.

  3. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  4. Multiplexing encoding method for full-color dynamic 3D holographic display.

    PubMed

    Xue, Gaolei; Liu, Juan; Li, Xin; Jia, Jia; Zhang, Zhao; Hu, Bin; Wang, Yongtian

    2014-07-28

    The multiplexing encoding method is proposed and demonstrated for reconstructing colorful images accurately by using single phase-only spatial light modulator (SLM). It will encode the light waves at different wavelengths into one pure-phase hologram at the same time based on the analytic formulas. The three-dimensional (3D) images can be reconstructed clearly when the light waves at different wavelengths are incident into the encoding hologram. Numerical simulations and optical experiments for 2D and 3D colorful images are performed. The results show that the colorful reconstructed images with high quality are achieved successfully. The proposed multiplexing method is a simple and fast encoding approach and the size of the system is small and compact. It is expected to be used for realizing full-color 3D holographic display in future.

  5. Full-color 3D display using binary phase modulation and speckle reduction

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu; Masuda, Kazunobu; Harada, Syo; Nitta, Kouichi

    2016-06-01

    One of the 3D display systems for full-color reconstruction by using binary phase modulation is presented. The improvement of reconstructed objects is achieved by optimizing the binary phase modulation and accumulating the speckle patterns by changing the random phase distributions. The binary phase pattern is optimized by the modified Frenel ping-pong algorithm. Numerical and experimental demonstrations of full color reconstruction are presented.

  6. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  7. Computer-aided microtomography with true 3-D display in electron microscopy.

    PubMed

    Nelson, A C

    1986-01-01

    A novel research system has been designed to permit three-dimensional (3-D) viewing of high resolution image data from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The system consists of front-end primary data acquisition devices, such as TEM and SEM machines, which are equipped with computer-controlled specimen tilt stages. The output from these machines is in analogue form, where a video camera attached to the TEM provides the sequential analogue image output while the SEM direct video output is utilized. A 10 MHz digitizer transforms the video image to a digital array of 512 X 512 pixel units of 8 bits deep-stored in a frame buffer. Digital images from multiple projections are reconstructed into 3-D image boxes in a dedicated computer. Attached to the computer is a powerful true 3-D display device which has hardware for graphic manipulations including tilt and rotate on any axis and for probing the image with a 3-D cursor. Data editing and automatic contouring functions are used to enhance areas of interest, and specialized software is available for measurement of numbers, distances, areas, and volumes. With proper archiving of reconstructed image sequences, a dynamic 3-D presentation is possible. The microtomography system is highly versatile and can process image data on-line or from remote sites from which data records would typically be transported on computer tape, video tape, or floppy disk. PMID:3753610

  8. Holographic full-color 3D display system using color-LCoS spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Moon, Jaw-Woong; Lee, Dong-Hwi; Son, Kwang-Chul; Kim, Eun-Soo

    2005-04-01

    In this paper, a new color LCoS (liquid crystal on silicon)-based holographic full-color 3D display system is proposed. As the color LCoS SLM (spatial light modulator) can produce a full-color image pattern using a color wheel, only one LCoS panel is required for full-color reconstruction of a 3D object contrary to the conventional three-panel method. That is, in the proposed method, each color fringe-pattern is generated and tinted with each color beam. R, G, B fringe-patterns are mixed up and displayed on the color LCoS SLM. And then, the red, green and blue fringe patterns can be diffracted at the corresponding status of a color wheel, so that a full-color holographic image could be easily reconstructed with simple optics. From some experiments, a possibility of implementation of a new LCoS-based holographic full-color 3D video display system is suggested.

  9. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  10. 3D Printing in Technology and Engineering Education

    ERIC Educational Resources Information Center

    Martin, Robert L.; Bowden, Nicholas S.; Merrill, Chris

    2014-01-01

    In the past five years, there has been tremendous growth in the production and use of desktop 3D printers. This growth has been driven by the increasing availability of inexpensive computing and electronics technologies. The ability to rapidly share ideas and intelligence over the Internet has also played a key role in the growth. Growth is also…

  11. Coherence cube technology adds geologic insight to 3-D data

    SciTech Connect

    Morris, D.

    1997-05-01

    Three-dimensional (3-D) seismic technology is now widely applied to assess the risk associated with hydrocarbon trap definition, including faulting, stratigraphic features, and reservoir description. Critical new technologies to exploit the wealth of information contained within 3-D seismic have recently begun to emerge; most notably, coherence cube technology, developed by Amoco Production Research and licensed to Coherence Technology Co. (CTC). Coherence cube processing produces interpretable images of faults and subtle stratigraphic features, such as buried deltas, river channels, and beaches, by quantifying seismic coherence attributes. The technique has important implications for geophysical, geological, and reservoir engineering applications. The paper discusses how coherency works, applications, and an example in delineating southern North Sea faulting.

  12. Depth-of-Focus Affects 3D Perception in Stereoscopic Displays.

    PubMed

    Vienne, Cyril; Blondé, Laurent; Mamassian, Pascal

    2015-01-01

    Stereoscopic systems present binocular images on planar surface at a fixed distance. They induce cues to flatness, indicating that images are presented on a unique surface and specifying the relative depth of that surface. The center of interest of this study is on a second problem, arising when a 3D object distance differs from the display distance. As binocular disparity must be scaled using an estimate of viewing distance, object depth can thus be affected through disparity scaling. Two previous experiments revealed that stereoscopic displays can affect depth perception due to conflicting accommodation and vergence cues at near distances. In this study, depth perception is evaluated for farther accommodation and vergence distances using a commercially available 3D TV. In Experiment I, we evaluated depth perception of 3D stimuli at different vergence distances for a large pool of participants. We observed a strong effect of vergence distance that was bigger for younger than for older participants, suggesting that the effect of accommodation was reduced in participants with emerging presbyopia. In Experiment 2, we extended 3D estimations by varying both the accommodation and vergence distances. We also tested the hypothesis that setting accommodation open loop by constricting pupil size could decrease the contribution of focus cues to perceived distance. We found that the depth constancy was affected by accommodation and vergence distances and that the accommodation distance effect was reduced with a larger depth-of-focus. We discuss these results with regard to the effectiveness of focus cues as a distance signal. Overall, these results highlight the importance of appropriate focus cues in stereoscopic displays at intermediate viewing distances.

  13. Single DMD time-multiplexed 64-views autostereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Loreti, Luigi

    2013-03-01

    Based on previous prototype of the Real time 3D holographic display developed last year, we developed a new concept of auto-stereoscopic multiview display (64 views), wide angle (90°) 3D full color display. The display is based on a RGB laser light source illuminating a DMD (Discovery 4100 0,7") at 24.000 fps, an image deflection system made with an AOD (Acoustic Optic Deflector) driven by a piezo-electric transducer generating a variable standing acoustic wave on the crystal that acts as a phase grating. The DMD projects in fast sequence 64 point of view of the image on the crystal cube. Depending on the frequency of the standing wave, the input picture sent by the DMD is deflected in different angle of view. An holographic screen at a proper distance diffuse the rays in vertical direction (60°) and horizontally select (1°) only the rays directed to the observer. A telescope optical system will enlarge the image to the right dimension. A VHDL firmware to render in real-time (16 ms) 64 views (16 bit 4:2:2) of a CAD model (obj, dxf or 3Ds) and depth-map encoded video images was developed into the resident Virtex5 FPGA of the Discovery 4100 SDK, thus eliminating the needs of image transfer and high speed links

  14. Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display

    NASA Technical Reports Server (NTRS)

    Liao, Min-Ju; Johnson, Walter W.

    2004-01-01

    The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.

  15. Application of 3D printing technology in aerodynamic study

    NASA Astrophysics Data System (ADS)

    Olasek, K.; Wiklak, P.

    2014-08-01

    3D printing, as an additive process, offers much more than traditional machining techniques in terms of achievable complexity of a model shape. That fact was a motivation to adapt discussed technology as a method for creating objects purposed for aerodynamic testing. The following paper provides an overview of various 3D printing techniques. Four models of a standard NACA0018 aerofoil were manufactured in different materials and methods: MultiJet Modelling (MJM), Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). Various parameters of the models have been included in the analysis: surface roughness, strength, details quality, surface imperfections and irregularities as well as thermal properties.

  16. Overview of 3D surface digitization technologies in Europe

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2006-02-01

    This paper presents an overview of the different 3D surface digitization technologies commercially available in the European market. The solutions for 3D surface measurement offered by major European companies can be divided into different groups depending on various characteristics, such as technology (e.g. laser scanning, white light projection), system construction (e.g. fix, on CMM/robot/arm) or measurement type (e.g. surface scanning, profile scanning). Crossing between the categories is possible, however, the majority of commercial products can be divided into the following groups: (a) laser profilers mounted on CMM, (b) portable coded light projection systems, (c) desktop solutions with laser profiler or coded light projectin system and multi-axes platform, (d) laser point measurement systems where both sensor and object move, (e) hand operated laser profilers, hand held laser profiler or point measurement systems, (f) dedicated systems. This paper presents the different 3D surface digitization technologies and describes them with their advantages and disadvantages. Various examples of their use are shown for different application fields. A special interest is given to applications regarding the 3D surface measurement of the human body.

  17. Quality of 3D Models Generated by SFM Technology

    NASA Astrophysics Data System (ADS)

    Marčiš, Marián

    2013-12-01

    Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.

  18. A guide for human factors research with stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Pinkus, Alan R.

    2015-05-01

    In this work, we provide some common methods, techniques, information, concepts, and relevant citations for those conducting human factors-related research with stereoscopic 3D (S3D) displays. We give suggested methods for calculating binocular disparities, and show how to verify on-screen image separation measurements. We provide typical values for inter-pupillary distances that are useful in such calculations. We discuss the pros, cons, and suggested uses of some common stereovision clinical tests. We discuss the phenomena and prevalence rates of stereoanomalous, pseudo-stereoanomalous, stereo-deficient, and stereoblind viewers. The problems of eyestrain and fatigue-related effects from stereo viewing, and the possible causes, are enumerated. System and viewer crosstalk are defined and discussed, and the issue of stereo camera separation is explored. Typical binocular fusion limits are also provided for reference, and discussed in relation to zones of comfort. Finally, the concept of measuring disparity distributions is described. The implications of these issues for the human factors study of S3D displays are covered throughout.

  19. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  20. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  1. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  2. Possible Applications of 3D Printing Technology on Textile Substrates

    NASA Astrophysics Data System (ADS)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  3. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  4. fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media

    NASA Astrophysics Data System (ADS)

    Yoshida, Shunsuke

    2012-06-01

    A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.

  5. Integration of multiple view plus depth data for free viewpoint 3D display

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Yoshida, Yuko; Kawamoto, Tetsuya; Fujii, Toshiaki; Mase, Kenji

    2014-03-01

    This paper proposes a method for constructing a reasonable scale of end-to-end free-viewpoint video system that captures multiple view and depth data, reconstructs three-dimensional polygon models of objects, and display them on virtual 3D CG spaces. This system consists of a desktop PC and four Kinect sensors. First, multiple view plus depth data at four viewpoints are captured by Kinect sensors simultaneously. Then, the captured data are integrated to point cloud data by using camera parameters. The obtained point cloud data are sampled to volume data that consists of voxels. Since volume data that are generated from point cloud data are sparse, those data are made dense by using global optimization algorithm. Final step is to reconstruct surfaces on dense volume data by discrete marching cubes method. Since accuracy of depth maps affects to the quality of 3D polygon model, a simple inpainting method for improving depth maps is also presented.

  6. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  7. Sound localization with head movement: implications for 3-d audio displays

    PubMed Central

    McAnally, Ken I.; Martin, Russell L.

    2014-01-01

    Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants' heads had rotated through windows ranging in width of 2, 4, 8, 16, 32, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: the utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions) used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth) may be required to ensure that spatial information is conveyed with high accuracy. PMID:25161605

  8. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  9. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  10. 3D Printing In Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth; Edmunson, Jennifer; Dunn, Jason; Snyder, Michael

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station (ISS) up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up multiple drill bits that would be required to machine parts from aerospace-grade materials such as titanium 6-4 alloy and Inconel. The technology to produce parts on demand, in space, offers

  11. The effects of task difficulty on visual search strategy in virtual 3D displays.

    PubMed

    Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa

    2013-01-01

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios. PMID:23986539

  12. The effects of task difficulty on visual search strategy in virtual 3D displays.

    PubMed

    Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa

    2013-08-28

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios.

  13. A method of quantifying moirés on 3D displays

    NASA Astrophysics Data System (ADS)

    Lee, Gwangsoon; Lee, Eung-Don; Kim, Yang-Su; Hur, Namho; Son, Jung-Young

    2016-06-01

    A method of quantifying the amount of moirés in contact-type 3-D displays is described. The color moirés in the displays are induced by the periodic blocking of a part of each pixel on the panel by the boundary lines or the barrier lines consisting of the viewing zone forming optics. The method starts calculating the intensity of an image laden with moirés and that of the image with no moirés. The moirés contrast is defined as the intensity difference of the two images. The contrast values match well with those from the simulated moirés for the crossing angle range of 0° to 20°.

  14. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  15. Independent effects of 2-D and 3-D locations of stimuli in a 3-D display on response speed in a Simon task

    PubMed Central

    Umemura, Hiroyuki

    2015-01-01

    The Simon Effect is a phenomenon in which reaction times are usually faster when the stimulus location and the response correspond, even if the stimulus location is irrelevant to the task. Recent studies have demonstrated the Simon effect in a three-dimensional (3-D) display. The present study examined whether two-dimensional (2-D) and 3-D locations simultaneously affected the Simon effect for stimuli in which a target and fixation were located on the same plane (ground or ceiling) at different 3-D depths, and the perspective effect produced a difference in the 2-D vertical location of the target stimulus relative to the fixation. The presence of the ground and ceiling plane was controlled to examine the contextual effects of background. The results showed that the 2-D vertical location and 3-D depth simultaneously affected the speed of responses, and they did not interact. The presence of the background did not affect the magnitude of either the 2-D or the 3-D Simon effect. These results suggest that 2-D vertical location and 3-D depth are coded simultaneously and independently, and both affect response selection in which 2-D and 3-D representations overlap. PMID:26388807

  16. Looking At Display Technologies

    ERIC Educational Resources Information Center

    Bull, Glen; Bull, Gina

    2005-01-01

    A projection system in a classroom with an Internet connection provides a window on the world. Until recently, projectors were expensive and difficult to maintain. Technological advances have resulted in solid-state projectors that require little maintenance and cost no more than a computer. Adding a second or third computer to a classroom…

  17. Holographic display system for dynamic synthesis of 3D light fields with increased space bandwidth product.

    PubMed

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2016-06-27

    We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593

  18. Study of a viewer tracking system with multiview 3D display

    NASA Astrophysics Data System (ADS)

    Yang, Jinn-Cherng; Wu, Chang-Shuo; Hsiao, Chuan-Heng; Yang, Ming-Chieh; Liu, Wen-Chieh; Hung, Yi-Ping

    2008-02-01

    An autostereoscopic display provides users great enjoyment of stereo visualization without uncomfortable and inconvenient drawbacks of wearing stereo glasses. However, bandwidth constraints of current multi-view 3D display severely restrict the number of views that can be simultaneously displayed without degrading resolution or increasing display cost unacceptably. An alternative to multiple view presentation is that the position of observer can be measured by using viewer-tracking sensor. It is a very important module of the viewer-tracking component for fluently rendering and accurately projecting the stereo video. In order to render stereo content with respect to user's view points and to optically project the content onto the left and right eyes of the user accurately, the real-time viewer tracking technique that allows the user to move around freely when watching the autostereoscopic display is developed in this study. It comprises the face detection by using multiple eigenspaces of various lighting conditions, fast block matching for tracking four motion parameters of the user's face region. The Edge Orientation Histogram (EOH) on Real AdaBoost to improve the performance of original AdaBoost algorithm is also applied in this study. The AdaBoost algorithm using Haar feature in OpenCV library developed by Intel to detect human face and enhance the accuracy performance with rotating image. The frame rate of viewer tracking process can achieve up to 15 Hz. Since performance of the viewer tracking autostereoscopic display is still influenced under variant environmental conditions, the accuracy, robustness and efficiency of the viewer-tracking system are evaluated in this study.

  19. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  20. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  1. High-speed 3D imaging by DMD technology

    NASA Astrophysics Data System (ADS)

    Hoefling, Roland

    2004-05-01

    The paper presents an advanced solution for capturing the height of an object in addition to the 2D image as it is frequently desired in machine vision applications. Based upon the active fringe projection methodology, the system takes advantage of a series of patterns projected onto the object surface and observed by a camera to provide reliable, accurate and highly resolved 3D data from any scattering object surface. The paper shows how the recording of a projected image series can be significantly accelerated and improved in quality to overcome current limitations. The key is ALP - a metrology dedicated hardware design using the Discovery 1100 platform for the DMD micromirror device of Texas Instruments Inc. The paper describes how this DMD technology has been combined with latest LED illumination, high-performance optics, and recent digital camera solutions. The ALP based DMD projection can be exactly synchronized with one or multiple cameras so that gray value intensities generated by pulse-width modulation (PWM) are recorded with high linearity. Based upon these components, a novel 3D measuring system with outstanding properties is described. The "z-Snapper" represents a new class of 3D imaging devices, it is fast enough for time demanding in-line testing, and it can be built completely mobile: laptop based, hand-held, and battery powered. The turnkey system provides a "3D image" as simple as an usual b/w picture is grabbed. It can be instantly implemented into future machine vision applications that will benefit from the step into the third dimension.

  2. 3D display and image processing system for metal bellows welding

    NASA Astrophysics Data System (ADS)

    Park, Min-Chul; Son, Jung-Young

    2010-04-01

    Industrial welded metal Bellows is in shape of flexible pipeline. The most common form of bellows is as pairs of washer-shaped discs of thin sheet metal stamped from strip stock. Performing arc welding operation may cause dangerous accidents and bad smells. Furthermore, in the process of welding operation, workers have to observe the object directly through microscope adjusting the vertical and horizontal positions of welding rod tip and the bellows fixed on the jig, respectively. Welding looking through microscope makes workers feel tired. To improve working environment that workers sit in an uncomfortable position and productivity we introduced 3D display and image processing. Main purpose of the system is not only to maximize the efficiency of industrial productivity with accuracy but also to keep the safety standards with the full automation of work by distant remote controlling.

  3. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  4. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  5. [3D interactive clipping technology in medical image processing].

    PubMed

    Sun, Shaoping; Yang, Kaitai; Li, Bin; Li, Yuanjun; Liang, Jing

    2013-09-01

    The aim of this paper is to study the methods of 3D visualization and the 3D interactive clipping of CT/MRI image sequence in arbitrary orientation based on the Visualization Toolkit (VTK). A new method for 3D CT/MRI reconstructed image clipping is presented, which can clip 3D object and 3D space of medical image sequence to observe the inner structure using 3D widget for manipulating an infinite plane. Experiment results show that the proposed method can implement 3D interactive clipping of medical image effectively and get satisfied results with good quality in short time.

  6. DARPA high resolution display technologies

    NASA Astrophysics Data System (ADS)

    Slusarczuk, Marko

    1990-11-01

    Much of the information of interest to pilots in flight is display-limited, and is undergoing substantial expansion due to improved sensor output and signal processing; attention is accordingly given to digitally-based instrument display imaging in the present evaluation of high-resolution cockpit display technologies. Also noted are the advantages of digitally transmitted sensor data in cases where the airborne reconnaissance user may be able to analyze telemetered airborne data in real time and respond with requests to the pilot for more detailed information of specific battlefield sites.

  7. Crosstalk minimization in autostereoscopic multiveiw 3D display by eye tracking and fusion (overlapping) of viewing zones

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Seon-Kyu; Yoon, Ki-Hyuk

    2012-06-01

    An autostereoscopic 3D display provides the binocular perception without eye glasses, but induces the low 3D effect and dizziness due to the crosstalk effect. The crosstalk related problems give the deterioration of 3D effect, clearness, and reality of 3D image. A novel method of reducing the crosstalk is designed and tested; the method is based on the fusion of viewing zones and the real time eye position. It is shown experimentally that the crosstalk is effectively reduced at any position around the optimal viewing distance.

  8. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  9. Effective declutter of complex flight displays using stereoptic 3-D cueing

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    The application of stereo technology to new, integrated pictorial display formats has been effective in situational awareness enhancements, and stereo has been postulated to be effective for the declutter of complex informational displays. This paper reports a full-factorial workstation experiment performed to verify the potential benefits of stereo cueing for the declutter function in a simulated tracking task. The experimental symbology was designed similar to that of a conventional flight director, although the format was an intentionally confused presentation that resulted in a very cluttered dynamic display. The subject's task was to use a hand controller to keep a tracking symbol, an 'X', on top of a target symbol, another X, which was being randomly driven. In the basic tracking task, both the target symbol and the tracking symbol were presented as red X's. The presence of color coding was used to provide some declutter, thus making the task more reasonable to perform. For this condition, the target symbol was coded red, and the tracking symbol was coded blue. Noise conditions, or additional clutter, were provided by the inclusion of randomly moving, differently colored X symbols. Stereo depth, which was hypothesized to declutter the display, was utilized by placing any noise in a plane in front of the display monitor, the tracking symbol at screen depth, and the target symbol behind the screen. The results from analyzing the performances of eight subjects revealed that the stereo presentation effectively offsets the cluttering effects of both the noise and the absence of color coding. The potential of stereo cueing to declutter complex informational displays has therefore been verified; this ability to declutter is an additional benefit from the application of stereoptic cueing to pictorial flight displays.

  10. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  11. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  12. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.

  13. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. PMID:27189134

  14. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  15. Micro Cu Bump Interconnection on 3D Chip Stacking Technology

    NASA Astrophysics Data System (ADS)

    Tanida, Kazumasa; Umemoto, Mitsuo; Tanaka, Naotaka; Tomita, Yoshihiro; Takahashi, Kenji

    2004-04-01

    The three-dimensional (3D) chip stacking LSI technology under development at the Association of Super-Advanced Electronic Technologies (ASET) is a new packaging technology to realize high-density and high-speed transmission, and superfine flip-chip bonding technologies in 20-μm-pitch microbumps on Cu through-via (TV) are substantial technologies. As for advanced bonding technology, Cu bump bonding (CBB) utilizing Sn alloy is a simple process to connect Cu TVs directly without the formation of bumps on the device back surface, and the influence of the intermetallic compound (IMC) on the minute interconnection focusing on the bondability and reliability was verified, and the following results were obtained. The IMC state formed at the bonding interface depended on bonding temperature, and was confirmed as multilayered Cu6Sn5 and Cu3Sn at 240°C, and single-layered Cu3Sn at 350°C. The IMC state is the governing factor of bondabilities of Cu bump interconnection in a 20-μm-pitch. The electroresistance value of the Cu bump interconnection was approximately 0.45 Ω, and no significant difference was confirmed under each condition. Young’s modulus values of IMC (Cu6Sn5:112.6 GPa and Cu3Sn:132.7 GPa) were obtained by the nano-indentation test. The Sn-Ag layer as bonding material should be reduced to Cu-Sn IMC, and a low-rigid resin was preferable in terms of interconnection reliability based on the results of finite element method (FEM) analysis. Finally, the vertical interconnections utilizing CBB were formed, and the increase in electrical resistance by stacking one TV chip was approximately 0.03 Ω. Therefore, sufficient electrical vertical interconnection of Cu TV in a 20-μm-pitch was performed.

  16. Development of a stereoscopic 3D display system to observe restored heritage

    NASA Astrophysics Data System (ADS)

    Morikawa, Hiroyuki; Kawaguchi, Mami; Kawai, Takashi; Ohya, Jun

    2004-05-01

    The authors have developed a binocular-type display system that allows digital archives of cultural assets to be viewed in their actual environment. The system is designed for installation in locations where such cultural assets were originally present. The viewer sees buildings and other heritage items as they existed historically by looking through the binoculars. Images of the cultural assets are reproduced by stereoscopic 3D CG in cyberspace, and the images are superimposed on actual images in real-time. This system consists of stereoscopic CCD cameras that capture a stereo view of the landscape and LCDs for presentation to the viewer. Virtual cameras, used to render CG images from digital archives, move in synchrony with the actual cameras, so the relative position of the CG images and the landscape on which they are superimposed is always fixed. The system has manual controls for digital zoom. Furthermore, the transparency of the CG images can be altered by the viewer. As a case study for the effectiveness of this system, the authors chose the Heijyoukyou ruins in Nara, Japan. The authors evaluate the sense of immersion, stereoscopic effect, and usability of the system.

  17. Recognition technology research based on 3D fingerprint

    NASA Astrophysics Data System (ADS)

    Tian, Qianxiao; Huang, Shujun; Zhang, Zonghua

    2014-11-01

    Fingerprint has been widely studied and applied to personal recognition in both forensics and civilian. However, the current widespread used fingerprint is identified by 2D (two-dimensional) fingerprint image and the mapping from 3D (three-dimensional) to 2D loses 1D information, which leads to low accurate and even wrong recognition. This paper presents a 3D fingerprint recognition method based on the fringe projection technique. A series of fringe patterns generated by software are projected onto a finger surface through a projecting system. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. The deformed fringe pattern images give the 3D shape data of the finger and the 3D fingerprint features. Through converting the 3D fingerprints to 2D space, traditional 2D fingerprint recognition method can be used to 3D fingerprints recognition. Experimental results on measuring and recognizing some 3D fingerprints show the accuracy and availability of the developed 3D fingerprint system.

  18. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-08-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  19. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  20. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    NASA Astrophysics Data System (ADS)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  1. Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Bove, V. Michael; Smalley, Daniel

    2016-03-01

    Waveguide holography refers to the use of holographic techniques for the control of guided-wave light in integrated optical devices (e.g., off-plane grating couplers and in-plane distributed Bragg gratings for guided-wave optical filtering). Off-plane computer-generated waveguide holography (CGWH) has also been employed in the generation of simple field distributions for image display. We have previously depicted the design and fabrication of a binary-phase CGWH operating in the Raman-Nath regime for the purposes of near-to-eye 3-D display and as a precursor to a dynamic, transparent flat-panel guided-wave holographic video display. In this paper, we describe design algorithms and fabrication techniques for multilevel phase CGWHs for near-to-eye 3-D display.

  2. Revolving lantern display using holographic 3D images with 1/f fluctuation

    NASA Astrophysics Data System (ADS)

    Uchida, Koji; Fukuda, Hiroyuki; Sakamoto, Kunio

    2007-09-01

    The authors developed the revolving lantern using images of the holographic display. Our revolving lantern playbacks the virtual images which are floating in the air. These spatial images have unexpected motions and changes. The prototype imaging unit consists of the hologram, turn table and illumination system which can change the light with 1/f fluctuation so as to reconstruct various spatial images. In this paper, we describe the spatial imaging with a holographic technology and the reconstruction system which playbacks the rotating motion and various images. A hologram playbacks images. These reconstructions are generally static images. The rotating image like a revolving lantern can be produced when a hologram is spinning on the turn table. A hologram can record and reconstruct various images using the different illumination. When the illumination system changes the illumination light, a hologram reconstructs other images.

  3. Three-dimensional (3D) GIS-based coastline change analysis and display using LIDAR series data

    NASA Astrophysics Data System (ADS)

    Zhou, G.

    This paper presents a method to visualize and analyze topography and topographic changes on coastline area. The study area, Assantage Island Nation Seashore (AINS), is located along a 37-mile stretch of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000) are created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed. The system was developed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display, and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.

  4. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989

  5. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

  6. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Lanzi, Alison M.; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989

  7. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2004-12-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  8. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2005-01-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  9. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S

    2015-05-15

    While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.

  10. JTEC panel on display technologies in Japan

    NASA Technical Reports Server (NTRS)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  11. JTEC panel on display technologies in Japan

    NASA Astrophysics Data System (ADS)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-06-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  12. The influence of autostereoscopic 3D displays on subsequent task performance

    NASA Astrophysics Data System (ADS)

    Barkowsky, Marcus; Le Callet, Patrick

    2010-02-01

    Viewing 3D content on an autostereoscopic is an exciting experience. This is partly due to the fact that the 3D effect is seen without glasses. Nevertheless, it is an unnatural condition for the eyes as the depth effect is created by the disparity of the left and the right view on a flat screen instead of having a real object at the corresponding location. Thus, it may be more tiring to watch 3D than 2D. This question is investigated in this contribution by a subjective experiment. A search task experiment is conducted and the behavior of the participants is recorded with an eyetracker. Several indicators both for low level perception as well as for the task performance itself are evaluated. In addition two optometric tests are performed. A verification session with conventional 2D viewing is included. The results are discussed in detail and it can be concluded that the 3D viewing does not have a negative impact on the task performance used in the experiment.

  13. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  14. 3D in vitro technology for drug discovery.

    PubMed

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  15. Autostereoscopic display technology for mobile 3DTV applications

    NASA Astrophysics Data System (ADS)

    Harrold, Jonathan; Woodgate, Graham J.

    2007-02-01

    Mobile TV is now a commercial reality, and an opportunity exists for the first mass market 3DTV products based on cell phone platforms with switchable 2D/3D autostereoscopic displays. Compared to conventional cell phones, TV phones need to operate for extended periods of time with the display running at full brightness, so the efficiency of the 3D optical system is key. The desire for increased viewing freedom to provide greater viewing comfort can be met by increasing the number of views presented. A four view lenticular display will have a brightness five times greater than the equivalent parallax barrier display. Therefore, lenticular displays are very strong candidates for cell phone 3DTV. Selection of Polarisation Activated Microlens TM architectures for LCD, OLED and reflective display applications is described. The technology delivers significant advantages especially for high pixel density panels and optimises device ruggedness while maintaining display brightness. A significant manufacturing breakthrough is described, enabling switchable microlenses to be fabricated using a simple coating process, which is also readily scalable to large TV panels. The 3D image performance of candidate 3DTV panels will also be compared using autostereoscopic display optical output simulations.

  16. TIPS Placement in Swine, Guided by Electromagnetic Real-Time Needle Tip Localization Displayed on Previously Acquired 3-D CT

    SciTech Connect

    Solomon, Stephen B.; Magee, Carolyn; Acker, David E.; Venbrux, Anthony C.

    1999-09-15

    Purpose: To determine the feasibility of guiding a transjugular intrahepatic portosystemic shunt (TIPS) procedure with an electromagnetic real-time needle tip position sensor coupled to previously acquired 3-dimensional (3-D) computed tomography (CT) images. Methods: An electromagnetic position sensor was placed at the tip of a Colapinto needle. The real-time position and orientation of the needle tip was then displayed on previously acquired 3-D CT images which were registered with the five swine. Portal vein puncture was then attempted in all animals. Results: The computer calculated accuracy of the position sensor was on average 3 mm. Four of five portal vein punctures were successful. In the successes, only one or two attempts were necessary and success was achieved in minutes. Conclusion: A real-time position sensor attached to the tip of a Colapinto needle and coupled to previously acquired 3-D CT images may potentially aid in entering the portal vein during the TIPS procedure.

  17. Touch Interaction with 3D Geographical Visualization on Web: Selected Technological and User Issues

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.; Stuchlík, R.; Hladík, J.; Kubíček, P.

    2016-10-01

    The use of both 3D visualization and devices with touch displays is increasing. In this paper, we focused on the Web technologies for 3D visualization of spatial data and its interaction via touch screen gestures. At the first stage, we compared the support of touch interaction in selected JavaScript libraries on different hardware (desktop PCs with touch screens, tablets, and smartphones) and software platforms. Afterward, we realized simple empiric test (within-subject design, 6 participants, 2 simple tasks, LCD touch monitor Acer and digital terrain models as stimuli) focusing on the ability of users to solve simple spatial tasks via touch screens. An in-house testing web tool was developed and used based on JavaScript, PHP, and X3DOM languages and Hammer.js libraries. The correctness of answers, speed of users' performances, used gestures, and a simple gesture metric was recorded and analysed. Preliminary results revealed that the pan gesture is most frequently used by test participants and it is also supported by the majority of 3D libraries. Possible gesture metrics and future developments including the interpersonal differences are discussed in the conclusion.

  18. Performance evaluation of medical LCD displays using 3D channelized Hotelling observers

    NASA Astrophysics Data System (ADS)

    Platiša, Ljiljana; Marchessoux, Cédric; Goossens, Bart; Philips, Wilfried

    2011-03-01

    High performance of the radiologists in the task of image lesion detection is crucial for successful medical practice. One relevant factor in clinical image reading is the quality of the medical display. With the current trends of stack-mode liquid crystal displays (LCDs), the slow temporal response of the display plays a significant role in image quality assurance. In this paper, we report on the experimental study performed to evaluate the quality of a novel LCD with advanced temporal response compensation, and compare it to an existing state-of-the-art display of the same category but with no temporal response compensation. The data in the study comprise clinical digital tomosynthesis images of the breast with added simulated mass lesions. The detectability for the two displays is estimated using the recent multi-slice channelized Hotelling observer (msCHO) model which is especially designed for multi-slice image data. Our results suggest that the novel LCD allows higher detectability than the existing one. Moreover, the msCHO results are used to advise on the parameters for the follow up image reading study with real medical doctors as observers. Finally, the main findings of the msCHO study were confirmed by a human reader study (details to be published in a separate paper).

  19. Creating effective focus cues in multi-plane 3D displays

    PubMed Central

    Ravikumar, Sowmya; Akeley, Kurt; Banks, Martin S.

    2011-01-01

    Focus cues are incorrect in conventional stereoscopic displays. This causes a dissociation of vergence and accommodation, which leads to visual fatigue and perceptual distortions. Multi-plane displays can minimize these problems by creating nearly correct focus cues. But to create the appearance of continuous depth in a multi-plane display, one needs to use depth-weighted blending: i.e., distribute light intensity between adjacent planes. Akeley et al. [ACM Trans. Graph. 23, 804 (2004)] and Liu and Hua [Opt. Express 18, 11562 (2009)] described rather different rules for depth-weighted blending. We examined the effectiveness of those and other rules using a model of a typical human eye and biologically plausible metrics for image quality. We find that the linear blending rule proposed by Akeley and colleagues [ACM Trans. Graph. 23, 804 (2004)] is the best solution for natural stimuli. PMID:21997103

  20. Spectral analysis of views interpolated by chroma subpixel downsampling for 3D autosteroscopic displays

    NASA Astrophysics Data System (ADS)

    Marson, Avishai; Stern, Adrian

    2015-05-01

    One of the main limitations of horizontal parallax autostereoscopic displays is the horizontal resolution loss due the need to repartition the pixels of the display panel among the multiple views. Recently we have shown that this problem can be alleviated by applying a color sub-pixel rendering technique1. Interpolated views are generated by down-sampling the panel pixels at sub-pixel level, thus increasing the number of views. The method takes advantage of lower acuity of the human eye to chromatic resolution. Here we supply further support of the technique by analyzing the spectra of the subsampled images.

  1. Precise Animated 3-D Displays Of The Heart Constructed From X-Ray Scatter Fields

    NASA Astrophysics Data System (ADS)

    McInerney, J. J.; Herr, M. D.; Copenhaver, G. L.

    1986-01-01

    A technique, based upon the interrogation of x-ray scatter, has been used to construct precise animated displays of the three-dimensional surface of the heart throughout the cardiac cycle. With the selection of motion amplification, viewing orientation, beat rate, and repetitive playbacks of isolated segments of the cardiac cycle, these displays are used to directly visualize epicardial surface velocity and displacement patterns, to construct regional maps of old or new myocardial infarction, and to visualize diastolic stiffening of the ventricle associated with acute ischemia. The procedure is non-invasive. Cut-downs or injections are not required.

  2. Parameters of the human 3D gaze while observing portable autostereoscopic display: a model and measurement results

    NASA Astrophysics Data System (ADS)

    Boev, Atanas; Hanhela, Marianne; Gotchev, Atanas; Utirainen, Timo; Jumisko-Pyykkö, Satu; Hannuksela, Miska

    2012-02-01

    We present an approach to measure and model the parameters of human point-of-gaze (PoG) in 3D space. Our model considers the following three parameters: position of the gaze in 3D space, volume encompassed by the gaze and time for the gaze to arrive on the desired target. Extracting the 3D gaze position from binocular gaze data is hindered by three problems. The first problem is the lack of convergence - due to micro saccadic movements the optical lines of both eyes rarely intersect at a point in space. The second problem is resolution - the combination of short observation distance and limited comfort disparity zone typical for a mobile 3D display does not allow the depth of the gaze position to be reliably extracted. The third problem is measurement noise - due to the limited display size, the noise range is close to the range of properly measured data. We have developed a methodology which allows us to suppress most of the measurement noise. This allows us to estimate the typical time which is needed for the point-of-gaze to travel in x, y or z direction. We identify three temporal properties of the binocular PoG. The first is reaction time, which is the minimum time that the vision reacts to a stimulus position change, and is measured as the time between the event and the time the PoG leaves the proximity of the old stimulus position. The second is the travel time of the PoG between the old and new stimulus position. The third is the time-to-arrive, which is the time combining the reaction time, travel time, and the time required for the PoG to settle in the new position. We present the method for filtering the PoG outliers, for deriving the PoG center from binocular eye-tracking data and for calculating the gaze volume as a function of the distance between PoG and the observer. As an outcome from our experiments we present binocular heat maps aggregated over all observers who participated in a viewing test. We also show the mean values for all temporal

  3. Introduction of 3D Printing Technology in the Classroom for Visually Impaired Students

    ERIC Educational Resources Information Center

    Jo, Wonjin; I, Jang Hee; Harianto, Rachel Ananda; So, Ji Hyun; Lee, Hyebin; Lee, Heon Ju; Moon, Myoung-Woon

    2016-01-01

    The authors investigate how 3D printing technology could be utilized for instructional materials that allow visually impaired students to have full access to high-quality instruction in history class. Researchers from the 3D Printing Group of the Korea Institute of Science and Technology (KIST) provided the Seoul National School for the Blind with…

  4. Display science and technology for defense and security

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.

    2004-02-01

    The defense display science and technology (S&T) program must address problems facing warfighters that the commercial world will not. These problems require the creation of revolutionary display materials and devices, and the invention of visual system technologies. Breakthroughs needed in display technology for defense and security personnel may be organized into the following technical challenge areas: ultraresolution 25 megapixel devices and 300 megapixel systems (wall display systems at monitor pixel density), flexible plastic rollup displays (ultra-compact form factor when not in use), sparse data true-3D monitors (phosphors embedded in special polymer host matrices), virtual image and head mounted systems, wireless wearable video displays with ultra low weight and volume (including batteries), and intelligent displays with embedded chips providing integrated computing and communications functionalities. Organic photonics and electronics are central to the progress in these S&T challenge areas: significant materials progress is required to enable the display device capabilities required. These challenges and the results of a Department of Defense (DoD) Special Technology Area Review (STAR) on Displays are reviewed. A top-level roadmap is provided to summarize the defense and security S&T strategy.

  5. 3-D technology used to accurately understand equine ileocolonic aganglionosis.

    PubMed

    Muniz, Eliane; Lobo Ladd, Aliny A B; Lobo Ladd, Fernando V; da Silva, Andrea A P; Kmit, Fernanda V; Borges, Alexandre S; Teixeira, Raffaella; da Mota, Lígia S L S; Belli, Carla B; de Zoppa, André L V; da Silva, Luis C L C; de Melo, Mariana P; Coppi, Antonio A

    2013-01-01

    Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally.

  6. Research and Technology Development for Construction of 3d Video Scenes

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Tatyana A.

    2016-06-01

    For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.

  7. Real-Depth imaging: a new (no glasses) 3D imaging technology with video/data projection applications

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1997-05-01

    Floating Images, Inc. has developed the software and hardware for anew, patent pending, 'floating 3D, off-the- screen-experience' display technology. This technology has the potential to become the next standard for home and arcade video games, computers, corporate presentations, Internet/Intranet viewing, and television. Current '3D Graphics' technologies are actually flat on screen. Floating Images technology actually produce images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. In addition, unlike stereoscopic 3D imaging, no glasses, headgear, or other viewing aids are used. And, unlike current autostereoscopic imaging technologies, there is virtually no restriction on where viewers can sit to view the images, with no 'bad' or 'dead' zones, flipping, or pseudoscopy. In addition to providing traditional depth cues such as perspective and background image occlusion, the new technology also provides both horizontal and vertical binocular parallax and accommodation which coincides with convergence. Since accommodation coincides with convergence, viewing these images doesn't produce headaches, fatigue, or eye-strain, regardless of how long they are viewed. The imagery must either be formatted for the Floating Images platform when written, or existing software can be reformatted without much difficult. The optical hardware system can be made to accommodate virtually any projection system to produce Floating Images for the Boardroom, video arcade, stage shows, or the classroom.

  8. Photodeposition Recording And Display Technology

    NASA Astrophysics Data System (ADS)

    Peled, A.

    1985-02-01

    The Photodeposition Effect (PDE) of Selenium hydrosols was investigated for transient photoactivation properties. It was found that the Volume Photoprecipitation (VP) has a faster response time as compared to Surface Photodeposition (SP). SP can be used for permanent recording of plane images. The faster VP process may be used in large volume display applications in near real time.

  9. Photodeposition Recording And Display Technology

    NASA Astrophysics Data System (ADS)

    Peled, A.

    1985-08-01

    The photodeposition effect of selenium hydrosols was investigated for transient photoactivation properties. It was found that volume photoprecipitation (VP) has a faster response time compared to surface photodeposition (SP). SP can be used for permanent recording of plane images. The faster VP process may be used in large volume display applications in near real time.

  10. The Impact of Web3D Technologies on Medical Education and Training

    ERIC Educational Resources Information Center

    John, Nigel W.

    2007-01-01

    This paper provides a survey of medical applications that make use of Web3D technologies, covering the period from 1995 to 2005. We assess the impact that Web3D has made on medical education and training during this time and highlight current and future trends. The applications identified are categorized into: general education tools; tools for…

  11. Wide-field-of-view image pickup system for multiview volumetric 3D displays using multiple RGB-D cameras

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Kakeya, Hideki

    2014-03-01

    A real-time and wide-field-of-view image pickup system for coarse integral volumetric imaging (CIVI) is realized. This system is to apply CIVI display for live action videos generated by the real-time 3D reconstruction. By using multiple RGB-D cameras from different directions, a complete surface of the objects and a wide field of views can be shown in our CIVI displays. A prototype system is constructed and it works as follows. Firstly, image features and depth data are used for a fast and accurate calibration. Secondly, 3D point cloud data are obtained by each RGB-D camera and they are all converted into the same coordinate system. Thirdly, multiview images are constructed by perspective transformation from different viewpoints. Finally, the image for each viewpoint is divided depending on the depth of each pixel for a volumetric view. The experiments show a better result than using only one RGB-D camera and the whole system works on the real-time basis.

  12. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display.

    PubMed

    Zhou, Xiongtu; Peng, Yuyan; Peng, Rong; Zeng, Xiangyao; Zhang, Yong-Ai; Guo, Tailiang

    2016-09-14

    The low-cost large-scale fabrication of microlens arrays (MLAs) with precise alignment, great uniformity of focusing, and good converging performance are of great importance for integral imaging 3D display. In this work, a simple and effective method for large-scale polymer microlens arrays using screen printing has been successfully presented. The results show that the MLAs possess high-quality surface morphology and excellent optical performances. Furthermore, the microlens' shape and size, i.e., the diameter, the height, and the distance between two adjacent microlenses of the MLAs can be easily controlled by modifying the reflowing time and the size of open apertures of the screen. MLAs with the neighboring microlenses almost tangent can be achieved under suitable size of open apertures of the screen and reflowing time, which can remarkably reduce the color moiré patterns caused by the stray light between the blank areas of the MLAs in the integral imaging 3D display system, exhibiting much better reconstruction performance. PMID:27540754

  13. Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display.

    PubMed

    Wang, Kangni; Zheng, Jihong; Gao, Hui; Lu, Feiyue; Sun, Lijia; Yin, Stuart; Zhuang, Songlin

    2015-11-30

    A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display. PMID:26698768

  14. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    PubMed

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  15. Colorful holographic display of 3D object based on scaled diffraction by using non-uniform fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Xia, Jun; Lei, Wei

    2015-03-01

    We proposed a new method to calculate the color computer generated hologram of three-dimensional object in holographic display. The three-dimensional object is composed of several tilted planes which are tilted from the hologram. The diffraction from each tilted plane to the hologram plane is calculated based on the coordinate rotation in Fourier spectrum domains. We used the nonuniform fast Fourier transformation (NUFFT) to calculate the nonuniform sampled Fourier spectrum on the tilted plane after coordinate rotation. By using the NUFFT, the diffraction calculation from tilted plane to the hologram plane with variable sampling rates can be achieved, which overcomes the sampling restriction of FFT in the conventional angular spectrum based method. The holograms of red, green and blue component of the polygon-based object are calculated separately by using our NUFFT based method. Then the color hologram is synthesized by placing the red, green and blue component hologram in sequence. The chromatic aberration caused by the wavelength difference can be solved effectively by restricting the sampling rate of the object in the calculation of each wavelength component. The computer simulation shows the feasibility of our method in calculating the color hologram of polygon-based object. The 3D object can be displayed in color with adjustable size and no chromatic aberration in holographic display system, which can be considered as an important application in the colorful holographic three-dimensional display.

  16. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  17. 3D Printing technology over a drug delivery for tissue engineering.

    PubMed

    Lee, Jin Woo; Cho, Dong-Woo

    2015-01-01

    Many researchers have attempted to use computer-aided design (CAD) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (DDS) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and DDSs have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future.

  18. 3D Printing technology over a drug delivery for tissue engineering.

    PubMed

    Lee, Jin Woo; Cho, Dong-Woo

    2015-01-01

    Many researchers have attempted to use computer-aided design (CAD) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (DDS) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and DDSs have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. PMID:25594413

  19. New ultraportable display technology and applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  20. 3D optical see-through head-mounted display based augmented reality system and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  1. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  2. Display technologies in Russia, Ukraine, and Belarus

    NASA Astrophysics Data System (ADS)

    Doane, William J.; Cladis, Patricia E.; Curtin, Christopher; Larimer, James; Slusarczuk, Marko; Talbot, Jan B.; Yaniv, Ziv

    1994-12-01

    This report is a review of advanced display research, development, and manufacturing activity in Belarus, Russia, and Ukraine. Topics covered include: liquid crystal display materials and related technologies; liquid crystal and other non-emissive displays; vacuum fluorescent, electroluminescent, field emission, and other emissive displays; and phosphors and other emissive materials. Also included is a review of infrastructure and business issues related to the display industry in the former Soviet Union. The panel found promising technologies in projection systems (e.g., the 'quantoscope' - utilizing an e-beam pumped laser), Supertwisted Nematic (STN) Liquid Cristal Displays (LCD) manufacturing at several locations in Russia and Belarus, developing capabilities and plans for future Active Matrix Liquid Cristal Display (AMLCD) production in all three countries, and a strong vacuum-fluorescent production capability in Saratov, Russia. Most significantly, the panel found many advanced concepts under development at basic research laboratories throughout the three countries visited; these research efforts are now in jeopardy due to insufficient funding, an uncertain business climate and deteriorating infrastructure. Nevertheless, there are many promising opportunities for foreign investment in display technology and manufacturing in Russia, Ukraine, and Belarus.

  3. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  4. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  5. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  6. A 3D universal structure based on molecular-QCA and CNT technologies

    NASA Astrophysics Data System (ADS)

    khosroshahy, Milad Bagherian; Daliri, Mahya Sam; Abdoli, Alireza; Navi, Keivan; Bagherzadeh, Nader

    2016-09-01

    This paper presents a novel method for design and implementation of three dimensional (3D) two-layer devices with 1/0 logic values. This method uses carbon nanotube (CNT) technology as well as the molecular quantum cellular automata (MQCA) technology on a graphene substrate. The most significant characteristic of the proposed design, which makes the design unique, is the capability of generating functions in 3D; the proposed method would allow implementation of the designs in a single layer which significantly impacts on reducing the chip area and also greatly facilitates the overall synthesis of the design including placement, routing and reducing the critical path length.

  7. Overestimation of heights in virtual reality is influenced more by perceived distal size than by the 2-D versus 3-D dimensionality of the display

    NASA Technical Reports Server (NTRS)

    Dixon, Melissa W.; Proffitt, Dennis R.; Kaiser, M. K. (Principal Investigator)

    2002-01-01

    One important aspect of the pictorial representation of a scene is the depiction of object proportions. Yang, Dixon, and Proffitt (1999 Perception 28 445-467) recently reported that the magnitude of the vertical-horizontal illusion was greater for vertical extents presented in three-dimensional (3-D) environments compared to two-dimensional (2-D) displays. However, because all of the 3-D environments were large and all of the 2-D displays were small, the question remains whether the observed magnitude differences were due solely to the dimensionality of the displays (2-D versus 3-D) or to the perceived distal size of the extents (small versus large). We investigated this question by comparing observers' judgments of vertical relative to horizontal extents on a large but 2-D display compared to the large 3-D and the small 2-D displays used by Yang et al (1999). The results confirmed that the magnitude differences for vertical overestimation between display media are influenced more by the perceived distal object size rather than by the dimensionality of the display.

  8. Plasma display technology for scene projector application

    NASA Astrophysics Data System (ADS)

    Solomon, Steve; Hawkins, Mikhel; Mastronardi, Nick

    2005-05-01

    Plasma display technology was investigated to determine its suitability for scene projection, particularly in the ultraviolet portion of the electromagnetic spectrum. This technology, in several guises, was found to hold considerable promise for projecting very high radiance, broadband or narrowband scenes across the spectrum, from the ultraviolet to the infrared. Performance metrics such as temporal response and dynamic range were also found to be promising for this technology. High manufacturing yields at relatively low display cost (e.g. cost/pixel) are expected due to the simplicity of the devices, the ability to leverage modern microelectronics-based deposition, pattern and etching techniques as well as the commercial plasma display community that continues to improve performance and drive manufacturing costs down.

  9. 3D Optical Measuring Systems and Laser Technologies for Scientific and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu.; Verkhoglyad, A.; Poleshchuk, A.; Korolkov, V.; Sysoev, E.; Zavyalov, P.

    2013-12-01

    Modern industry and science require novel 3D optical measuring systems and laser technologies with micro/nanometer resolution for solving actual problems. Such systems, including the 3D dimensional inspection of ceramic parts for electrotechnical industry, laser inspection of wheel pair diagnostic for running trains and 3D superresolution low-coherent micro- /nanoprofilometers are presented. The newest results in the field of laser technologies for high-precision synthesis of microstructures by updated image generator using the semiconductor laser are given. The measuring systems and the laser image generator developed and produced by TDI SIE and IAE SB RAS have been tested by customers and used in different branches of industry and science.

  10. A novel method for fabricating curved frequency selective surface via 3D printing technology

    NASA Astrophysics Data System (ADS)

    Liang, Fengchao; Gao, Jinsong

    2014-12-01

    A novel method for fabricating curved frequency selective surfaces with undevelopable curved shape using 3D printing technology was proposed in this paper. First, FSS composed of Y slotted elements that adapt to 0° ~ 70 ° incidences was designed. Then, the 3D model of the curved FSS was created in a 3D modeling software. Next, the 3D model was digitalized into stl format file and then the stl file was inputted into a stereo lithography 3D printer. Next, the prototype of the curved FSS was fabricated by the 3D printer layer by layer. Finally, a 10 μm thick aluminum film was coated on the outer surface of the prototype of the curved FSS by a vacuum coater. The transmission performance of the metallised curved FSS was tested using free space method. It was shown that frequency selection characteristic of the metallised curved FSS reached the requirements of simulation design. The pass-band was in the Ku-band and the transmission rate on center frequency was 63% for nose cone incident direction. This method provides a new way to apply the FSS to arbitrary curved electromagnetic window.

  11. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  12. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma.

    PubMed

    Fukuda, Hiroyuki; Ito, Ryu; Ohto, Masao; Sakamoto, Akio; Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru; Yamagata, Hitoshi

    2012-09-01

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  13. Electronic control/display interface technology

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Busquets, A. M.; Murray, R. F.; Hatfield, J. J.

    1985-01-01

    An effort to produce a representative workstation for the Space Station Data Management Test Bed that provides man/machine interface design options for consolidating, automating, and integrating the space station work station, and hardware/software technology demonstrations of space station applications is discussed. The workstation will emphasize the technologies of advanced graphics engines, advanced display/control medias, image management techniques, multifunction controls, and video disk utilizations.

  14. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  15. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect

    Hanes, L. F.; Naser, J.

    2006-07-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  16. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology.

    PubMed

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.

  17. Increased sensitivity of 3D-Well enzyme-linked immunosorbent assay (ELISA) for infectious disease detection using 3D-printing fabrication technology.

    PubMed

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines. PMID:26406036

  18. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays.

    PubMed

    Yoshida, Shunsuke

    2016-06-13

    A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present.

  19. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays.

    PubMed

    Yoshida, Shunsuke

    2016-06-13

    A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present. PMID:27410336

  20. Development of ceramic-reinforced photopolymers for SLA 3D printing technology

    NASA Astrophysics Data System (ADS)

    Yun, Ji Sun; Park, Tae-Wan; Jeong, Young Hun; Cho, Jeong Ho

    2016-06-01

    Al2O3 ceramic-reinforced photopolymer samples for SLA 3D printing technology were prepared using a silane coupling agent (VTES, vinyltriethoxysilane). Depending on the method used to coat the VTES onto the ceramic surface, the dispersion of ceramic particles in the photopolymer solution was remarkably improved. SEM, TEM and element mapping images showed Al2O3 particles well wrapped with VTES along with well-distributed Al2O3 particles overall on the cross-sectional surfaces of 3D-printed objects. The tensile properties (stress-strain curves) of 3D-printed objects of the ceramic-reinforced photopolymer were investigated as a function of the Al2O3 ceramic content when it ranged from 0 to 20 wt%. The results demonstrate that an Al2O3 ceramic content of 15 wt% resulted in enhanced tensile characteristics.

  1. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  2. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.

  3. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  4. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  5. Automated simulation and evaluation of autostereoscopic multiview 3D display designs by time-sequential and wavelength-selective filter barrier

    NASA Astrophysics Data System (ADS)

    Kuhlmey, Mathias; Jurk, Silvio; Duckstein, Bernd; de la Barré, René

    2015-09-01

    A novel simulation tool has been developed for spatial multiplexed 3D displays. Main purpose of our software is the 3D display design with optical image splitter in particular lenticular grids or wavelength-selective barriers. As a result of interaction of image splitter with ray emitting displays a spatial light-modulator generating the autostereoscopic image representation was modeled. Based on the simulation model the interaction of optoelectronic devices with the defined spatial planes is described. Time-sequential multiplexing enables increasing the resolution of such 3D displays. On that reason the program was extended with an intermediate data cumulating component. The simulation program represents a stepwise quasi-static functionality and control of the arrangement. It calculates and renders the whole display ray emission and luminance distribution on viewing distance. The degree of result complexity will increase by using wavelength-selective barriers. Visible images at the viewer's eye positon were determined by simulation after every switching operation of optical image splitter. The summation and evaluation of the resulting data is processed in correspondence to the equivalent time sequence. Hereby the simulation was expanded by a complex algorithm for automated search and validation of possible solutions in the multi-dimensional parameter space. For the multiview 3D display design a combination of ray-tracing and 3D rendering was used. Therefore the emitted light intensity distribution of each subpixel will be evaluated by researching in terms of color, luminance and visible area by using different content distribution on subpixel plane. The analysis of the accumulated data will deliver different solutions distinguished by standards of evaluation.

  6. Research on animation design of growing plant based on 3D MAX technology

    NASA Astrophysics Data System (ADS)

    Chen, Yineng; Fang, Kui; Bu, Weiqiong; Zhang, Xiaoling; Lei, Menglong

    In view of virtual plant has practical demands on quality, image and degree of realism animation in growing process of plant, this thesis design the animation based on mechanism and regularity of plant growth, and propose the design method based on 3D MAX technology. After repeated analysis and testing, it is concluded that there are modeling, rendering, animation fabrication and other key technologies in the animation design process. Based on this, designers can subdivid the animation into seed germination animation, plant growth prophase animation, catagen animation, later animation and blossom animation. This paper compounds the animation of these five stages by VP window to realize the completed 3D animation. Experimental result shows that the animation can realized rapid, visual and realistic simulatation the plant growth process.

  7. A Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays

    PubMed Central

    Bang, Jae Won; Choi, Jong-Suk; Heo, Hwan; Park, Kang Ryoung

    2015-01-01

    With the rapid increase of 3-dimensional (3D) content, considerable research related to the 3D human factor has been undertaken for quantitatively evaluating visual discomfort, including eye fatigue and dizziness, caused by viewing 3D content. Various modalities such as electroencephalograms (EEGs), biomedical signals, and eye responses have been investigated. However, the majority of the previous research has analyzed each modality separately to measure user eye fatigue. This cannot guarantee the credibility of the resulting eye fatigue evaluations. Therefore, we propose a new method for quantitatively evaluating eye fatigue related to 3D content by combining multimodal measurements. This research is novel for the following four reasons: first, for the evaluation of eye fatigue with high credibility on 3D displays, a fuzzy-based fusion method (FBFM) is proposed based on the multimodalities of EEG signals, eye blinking rate (BR), facial temperature (FT), and subjective evaluation (SE); second, to measure a more accurate variation of eye fatigue (before and after watching a 3D display), we obtain the quality scores of EEG signals, eye BR, FT and SE; third, for combining the values of the four modalities we obtain the optimal weights of the EEG signals BR, FT and SE using a fuzzy system based on quality scores; fourth, the quantitative level of the variation of eye fatigue is finally obtained using the weighted sum of the values measured by the four modalities. Experimental results confirm that the effectiveness of the proposed FBFM is greater than other conventional multimodal measurements. Moreover, the credibility of the variations of the eye fatigue using the FBFM before and after watching the 3D display is proven using a t-test and descriptive statistical analysis using effect size. PMID:25961382

  8. TechTuning: Stress Management For 3D Through-Silicon-Via Stacking Technologies

    NASA Astrophysics Data System (ADS)

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2011-09-01

    The concerns with managing mechanical stress distributions and the consequent effects on device performance and material integrity, for advanced TSV based technologies 3D are outlined. A model and simulation based Design For Manufacturability (DFM) type of a flow for managing the mechanical stresses throughout Si die, stack and package design is proposed. The key attributes of the models and simulators required to fuel the proposed flow are summarized. Finally, some of the essential infrastructure and the Supply Chain support items are described.

  9. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  10. Characterization of ABS specimens produced via the 3D printing technology for drone structural components

    NASA Astrophysics Data System (ADS)

    Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo

    2016-07-01

    The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.

  11. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  12. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model.

  13. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    PubMed Central

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  14. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  15. Silicon microstrip detectors in 3D technology for the sLHC

    NASA Astrophysics Data System (ADS)

    Parzefall, Ulrich; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kühn, Susanne; Pahn, Gregor; Parkes, Chris; Pennicard, David; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 1015 Neq/cm2, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 1015 Neq/cm2. The tests were performed with three systems: a highly focused IR-laser with 5 μm spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr90β-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  16. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators.

    PubMed

    Zou, Wei; Fisher, Ted; Zhang, Miao; Kim, Leonard; Chen, Ting; Narra, Venkat; Swann, Beth; Singh, Rachana; Siderit, Richard; Yin, Lingshu; Teo, Boon-Keng Kevin; McKenna, Michael; McDonough, James; Ning, Yue J

    2015-05-08

    In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.

  17. Technological advances cut collection costs for offshore 3-D seismic exploration

    SciTech Connect

    Lyle, D.

    1995-07-01

    New work in data collection and processing promises to lower costs drastically for offshore 3-D seismic work. Cost for offshore 3-D work was always a bargain. Since offshore is government property, operators don`t have to pay access fees to landowners. Collection crews don`t have to work around barns, houses and mountains. In spite of that bargain cost, the operator still has to foot the bill for boats, crews, and a tremendous application of computer power. The boats, crews and computer power still are there, but the costs are dropping. The major players in this business in the Gulf of Mexico are Western Geophysical Co., Geco Prakla, Petroleum Geo-Services (PGS) and Digicon Geophysical Corp., and they all know that technology allows them to raise their profit margins while lowering costs to clients.

  18. 220GHz wideband 3D imaging radar for concealed object detection technology development and phenomenology studies

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Bryllert, Tomas

    2016-05-01

    We present a 220 GHz 3D imaging `Pathfinder' radar developed within the EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) which has been built to address two objectives: (i) to de-risk the radar hardware development and (ii) to enable the collection of phenomenology data with ~1 cm3 volumetric resolution. The radar combines a DDS-based chirp generator and self-mixing multiplier technology to achieve a 30 GHz bandwidth chirp with such high linearity that the raw point response is close to ideal and only requires minor nonlinearity compensation. The single transceiver is focused with a 30 cm lens mounted on a gimbal to acquire 3D volumetric images of static test targets and materials.

  19. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  20. Polymer waveguide technology for flexible display applications

    NASA Astrophysics Data System (ADS)

    Okuda, Yuuto; Fujieda, Ichiro

    2012-03-01

    We consider applications of wave-guiding technologies for flexible displays. First, a flexible backlight can be constructed by guiding laser light through an optical fiber arranged in a spiral manner. The light leaks out via the grooves fabricated on the optical fiber. For uniform illumination, the probability of light extraction at each groove and the pitch of the grooves are adjusted. Second, a polymer waveguide with successive branches distributes the optical power from a laser to two-dimensional emission points on a plane. The division ratio at each branch is an important design parameter for uniform light output. At each branch and emission point, a mirror is placed for 90-degree optical path redirection. This constitutes a flexible backlight. Third, in a more technically demanding design, a mirror based on the micro-electro-mechanical systems technology scans a laser beam on the entrance surface of the waveguide and each emission point is addressed sequentially. An image can be displayed by intensity modulation of the laser light synchronized to this scanning action. The precision of the waveguide fabrication and the beam scanning accuracy would determine the display resolution. Finally, such a waveguide may be applied for concentrated photovoltaic applications. An array of lenses is stacked on the waveguide so that the optical power is focused on each mirror. The direction of the light propagation is reversed. Now the exit surface of the waveguide is coupled to solar cells. In all these cases, the polymer waveguide technology offers a cost advantage due to its feasibility for the roll-to-roll process.

  1. TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters.

    PubMed

    Taguchi, Yuichi; Koike, Takafumi; Takahashi, Keita; Naemura, Takeshi

    2009-01-01

    The system described in this paper provides a real-time 3D visual experience by using an array of 64 video cameras and an integral photography display with 60 viewing directions. The live 3D scene in front of the camera array is reproduced by the full-color, full-parallax autostereoscopic display with interactive control of viewing parameters. The main technical challenge is fast and flexible conversion of the data from the 64 multicamera images to the integral photography format. Based on image-based rendering techniques, our conversion method first renders 60 novel images corresponding to the viewing directions of the display, and then arranges the rendered pixels to produce an integral photography image. For real-time processing on a single PC, all the conversion processes are implemented on a GPU with GPGPU techniques. The conversion method also allows a user to interactively control viewing parameters of the displayed image for reproducing the dynamic 3D scene with desirable parameters. This control is performed as a software process, without reconfiguring the hardware system, by changing the rendering parameters such as the convergence point of the rendering cameras and the interval between the viewpoints of the rendering cameras.

  2. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation and used for quality assurance in the lab and in production. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and

  3. True-Depth: a new type of true 3D volumetric display system suitable for CAD, medical imaging, and air-traffic control

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Floating Images, Inc. is developing a new type of volumetric monitor capable of producing a high-density set of points in 3D space. Since the points of light actually exist in space, the resulting image can be viewed with continuous parallax, both vertically and horizontally, with no headache or eyestrain. These 'real' points in space are always viewed with a perfect match between accommodation and convergence. All scanned points appear to the viewer simultaneously, making this display especially suitable for CAD, medical imaging, air-traffic control, and various military applications. This system has the potential to display imagery so accurately that a ruler could be placed within the aerial image to provide precise measurement in any direction. A special virtual imaging arrangement allows the user to superimpose 3D images on a solid object, making the object look transparent. This is particularly useful for minimally invasive surgery in which the internal structure of a patient is visible to a surgeon in 3D. Surgical procedures can be carried out through the smallest possible hole while the surgeon watches the procedure from outside the body as if the patient were transparent. Unlike other attempts to produce volumetric imaging, this system uses no massive rotating screen or any screen at all, eliminating down time due to breakage and possible danger due to potential mechanical failure. Additionally, it is also capable of displaying very large images.

  4. A Laboratory-Based Course in Display Technology

    ERIC Educational Resources Information Center

    Sarik, J.; Akinwande, A. I.; Kymissis, I.

    2011-01-01

    A laboratory-based class in flat-panel display technology is presented. The course introduces fundamental concepts of display systems and reinforces these concepts through the fabrication of three display devices--an inorganic electroluminescent seven-segment display, a dot-matrix organic light-emitting diode (OLED) display, and a dot-matrix…

  5. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  6. [Initial research of one-beam pumping up-conversion 3D volumetric display based on Er:ZBLAN glass].

    PubMed

    Chen, Xiao-bo; Li, Mei-xian; Wen, Ou; Zhang, Fu-chu; Song, Zeng-fu

    2003-06-01

    This paper investigates one-beam pumping up-conversion three-dimensional volumetric display, which is based on a Er:ZBLAN fluoride glass. The light-length of the facula of one-beam up-conversion luminescence was studied by a 966 nm semiconductor laser. The up-conversion luminescence spectrum was also obtained. It was found that the property of one-beam pumping three-dimensional volumetric display can be improved significantly by 1.52 microns LD laser multi-photon up-conversion, this finding has not been reported.

  7. ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert

    2013-07-01

    Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.

  8. 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications.

    PubMed

    Bluemel, Christina; Matthies, Philipp; Herrmann, Ken; Povoski, Stephen P

    2016-01-01

    Freehand SPECT (fhSPECT) is a technology platform for providing 3-dimensional (3D) navigation for radioguided surgical procedures, such as sentinel lymph node (SLN) biopsy (SLNB). In addition to the information provided by conventional handheld gamma detection probes, fhSPECT allows for direct visualization of the distribution of radioactivity in any given region of interest, allowing for improved navigation to radioactive target lesions and providing accurate lesion depth measurements. Herein, we will review the currently available clinical data on the use of fhSPECT: (i) for SLNB of various malignancies, including difficult-to-detect SLNs, and (ii) for radioguided localization of solid tumors. Moreover, the combination of fhSPECT with other technologies (e.g., small field-of-view gamma cameras, and diagnostic ultrasound) is discussed. These technical advances have the potential to greatly expand the clinical application of radioguided surgery in the future. PMID:26878667

  9. Projection display technology and product trends

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  10. In vitro display technologies - new tools for drug discovery.

    PubMed

    FitzGerald

    2000-06-01

    Over the past decade, several ligand discovery techniques have been developed that mimic the process of natural evolution. Phage display technology is the most established of these methods and has been applied to numerous technological problems including the discovery of novel drugs. More recently, some new display technologies have emerged which, unlike phage display, operate entirely in vitro and have concomitant advantages. This review describes this new generation of display technologies and indicates how they might fit into the modern drug discovery process.

  11. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  12. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  13. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  14. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  15. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data

  16. Projection display technologies for the new millennium

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  17. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  18. Stress management for 3D through-silicon-via stacking technologies - The next frontier -

    SciTech Connect

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2014-06-19

    The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitable models required to make real product reliability decisions.

  19. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    PubMed

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao

    2006-04-01

    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  20. Optical display of magnified, real and orthoscopic 3-D object images by moving-direct-pixel-mapping in the scalable integral-imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Piao, Yongri; Kim, Eun-Soo

    2011-10-01

    In this paper, we proposed a novel approach for reconstruction of the magnified, real and orthoscopic three-dimensional (3-D) object images by using the moving-direct-pixel-mapping (MDPM) method in the MALT(moving-array-lenslet-technique)-based scalable integral-imaging system. In the proposed system, multiple sets of elemental image arrays (EIAs) are captured with the MALT, and these picked-up EIAs are computationally transformed into the depth-converted ones by using the proposed MDPM method. Then, these depth-converted EIAs are combined and interlaced together to form an enlarged EIA, from which a magnified, real and orthoscopic 3-D object images can be optically displayed without any degradation of resolution. Good experimental results finally confirmed the feasibility of the proposed method.

  1. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  2. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    NASA Astrophysics Data System (ADS)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  3. SplitCore: An exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure

    PubMed Central

    Walker, Andreas; Skamel, Claudia; Nassal, Michael

    2011-01-01

    Nanoparticles displaying native proteins are attractive for many applications, including vaccinology. Virus-based nanoparticles are easily tailored by genetic means, commonly by inserting heterologous sequences into surface-exposed loops. The strategy works well with short peptides but is incompatible with the structures of most native proteins, except those with closely juxtaposed termini. Here we overcome this constraint by splitting the capsid protein of hepatitis B virus, one of the most advanced and most immunogenic display platforms, inside the insertion loop (SplitCore). The split parts, coreN and coreC, efficiently form capsid-like particles (CLPs) in E. coli and so do numerous fusions to coreN and/or coreC of differently structured proteins, including human disease related antigens of >300 amino acids in length. These CLPs induced high-titer antibodies, including neutralizing ones, in mice. The concept was easily expanded to triple-layer CLPs carrying reporter plus targeting domains, and should be applicable to protein-based nanoparticle design in general. PMID:22355524

  4. 3D vision based on PMD-technology for mobile robots

    NASA Astrophysics Data System (ADS)

    Roth, Hubert J.; Schwarte, Rudolf; Ruangpayoongsak, Niramon; Kuhle, Joerg; Albrecht, Martin; Grothof, Markus; Hess, Holger

    2003-09-01

    A series of micro-robots (MERLIN: Mobile Experimental Robots for Locomotion and Intelligent Navigation) has been designed and implemented for a broad spectrum of indoor and outdoor tasks on basis of standardized functional modules like sensors, actuators, communication by radio link. The sensors onboard on the MERLIN robot can be divided into two categories: internal sensors for low-level control and for measuring the state of the robot and external sensors for obstacle detection, modeling of the environment and position estimation and navigation of the robot in a global co-ordinate system. The special emphasis of this paper is to describe the capabilities of MERLIN for obstacle detection, targets detection and for distance measurement. Besides ultrasonic sensors a new camera based on PMD-technology is used. This Photonic Mixer Device (PMD) represents a new electro-optic device that provides a smart interface between the world of incoherent optical signals and the world of their electronic signal processing. This PMD-technology directly enables 3D-imaging by means of the time-of-flight (TOF) principle. It offers an extremely high potential for new solutions in the robotics application field. The PMD-Technology opens up amazing new perspectives for obstacle detection systems, target acquisition as well as mapping of unknown environments.

  5. Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology

    NASA Astrophysics Data System (ADS)

    Guthrie, Anne

    In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.

  6. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    ERIC Educational Resources Information Center

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  7. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  8. Photoaligning and photopatterning technology: applications in displays and photonics

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2016-03-01

    The advantages of LC photoalignment technology in comparison with common "rubbing" alignment methods tend to the continuation of the research in this field. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. Nowadays azo-dye alignment materials can be already used in LCD manufacturing, e.g. for the alignment of monomers in LCP films for new generations of photonics and optics devices. Recently the new application of photoaligned technology for the tunable LC lenses with a variable focal distance was proposed. New optically rewritable (ORW) liquid crystal display and photonics devices with a light controllable structure may include LC E-paper screens, LC lenses with a variable focal distance etc. Fast ferroelectric liquid crystal devices (FLCD) are achieved through the application of nano-scale photo aligning (PA) layers in FLC cells. The novel photoaligned FLC devices may include field sequential color (FSC) FLC with a high resolution, high brightness, low power consumption and extended color gamut to be used for PCs, PDAs, switchable goggles, and new generation of switchable 2D/3D LCD TVs, as well as photonics elements.

  9. Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies

    NASA Astrophysics Data System (ADS)

    Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Bassetti, V.; Berardi, V.; Boccone, V.; Bozzo, M.; Brücken, E.; Buzzo, A.; Catanesi, M. G.; Cuneo, S.; Da Vià, C.; Deile, M.; Dinapoli, R.; Eggert, K.; Eremin, V.; Ferro, F.; Hasi, J.; Haug, F.; Heino, J.; Jarron, P.; Kalliopuska, J.; Kašpar, J.; Kenney, C.; Kok, A.; Kundrát, V.; Kurvinen, K.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Luntama, T.; Macina, D.; Macrí, M.; Minutoli, S.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Parker, S.; Perrot, A.-L.; Radermacher, E.; Radicioni, E.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Sette, G.; Siegrist, P.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Watts, S.; Whitmore, J.

    2013-06-01

    The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.

  10. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.

    PubMed

    Xing, Jin-Feng; Zheng, Mei-Ling; Duan, Xuan-Ming

    2015-08-01

    3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels.

  11. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  12. Three-dimensional (3D) stereoscopic X windows

    NASA Astrophysics Data System (ADS)

    Safier, Scott A.; Siegel, Mel

    1995-03-01

    All known technologies for displaying 3D-stereoscopic images are more or less incompatible with the X Window System. Applications that seek to be portable must support the 3D-display paradigms of multiple hardware implementations of 3D-stereoscopy. We have succeeded in modifying the functionality of X to construct generic tools for displaying 3D-stereoscopic imagery. Our approach allows for experimentation with visualization techniques and techniques for interacting with these synthetic worlds. Our methodology inherits the extensibility and portability of X. We have demonstrated its applicability in two display hardware paradigms that are specifically discussed.

  13. Design and fabrication of an RF GRIN lens using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Allen, J. W.; Wu, B.-I.

    2013-03-01

    Electromagnetic media and metamaterials have been explored in frequency regimes ranging from the acoustic to the visible domain over the past decade. A large part of the design, fabrication and prototyping of such materials has focused on planar structures and devices have been demonstrated primarily for certain propagation directions and/or defined polarization. Here, we present the design of a focusing GRadient INdex (GRIN) lens that operates at RF frequencies and is not polarization constrained. We compare the theoretical and experimental results from this lens designed to operate at X-band and fabricated using 3D printing technology to implement the effective medium. The lens with radially varying refractive index gradient was designed, optimized and analyzed by conducting full-wave simulations finite-element method based software. The permittivity was estimated by effective medium theory and calculated using HFSS®. The optimized design was used to fabricate the GRIN lens with isotropic, inhomogenous dielectric material. The refractive index was designed to match the theoretical results using mixing ratio of air/voids and a polymer. Further, we used the refractive index profile to predict the rays' trajectories and focus length to compare them to those predicted by the FEM simulations. The field distributions were also analyzed to compare performance of the theoretical design to the fabricated lens and were found to be in good agreement with each other.

  14. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    SciTech Connect

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  15. Applying 3D-printing technology in planning operations of cancer patients

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; N, A. N. Rudyk A.; Kashapov, R. N.

    2014-12-01

    The purpose of this work was creation 3D model of the front part of the skull of the patient and evaluates the effectiveness of its use in the planning of the operation. To achieve this goal was chosen an operation to remove a tumor of the right eyelid, germinate in the zygomatic bone. 3D printing was performed at different peripheral devices using the method of layering creating physical objects by a digital 3D model as well as the recovery model of the skull with the entire right malar bone for fixation on her titanium frame to maintain the eyeball in a fixed state.

  16. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  17. Fruit bruise detection based on 3D meshes and machine learning technologies

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Zhang, Ping

    2016-05-01

    This paper studies bruise detection in apples using 3-D imaging. Bruise detection based on 3-D imaging overcomes many limitations of bruise detection based on 2-D imaging, such as low accuracy, sensitive to light condition, and so on. In this paper, apple bruise detection is divided into two parts: feature extraction and classification. For feature extraction, we use a framework that can directly extract local binary patterns from mesh data. For classification, we studies support vector machine. Bruise detection using 3-D imaging is compared with bruise detection using 2-D imaging. 10-fold cross validation is used to evaluate the performance of the two systems. Experimental results show that bruise detection using 3-D imaging can achieve better classification accuracy than bruise detection based on 2-D imaging.

  18. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  19. Enabling Technologies for Entrepreneurial Opportunities in 3D printing of SmallSats

    NASA Technical Reports Server (NTRS)

    Kwas, Andrew; MacDonald, Eric; Muse, Dan; Wicker, Ryan; Kief, Craig; Aarestad, Jim; Zemba, Mike; Marshall, Bill; Tolbert, Carol; Connor, Brett

    2014-01-01

    A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with

  20. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  1. Library-based display technologies: where do we stand?

    PubMed

    Galán, Asier; Comor, Lubos; Horvatić, Anita; Kuleš, Josipa; Guillemin, Nicolas; Mrljak, Vladimir; Bhide, Mangesh

    2016-07-19

    Over the past two decades, library-based display technologies have been staggeringly optimized since their appearance in order to mimic the process of natural molecular evolution. Display technologies are essential for the isolation of specific high-affinity binding molecules (proteins, polypeptides, nucleic acids and others) for diagnostic and therapeutic applications in cancer, infectious diseases, autoimmune, neurodegenerative, inflammatory pathologies etc. Applications extend to other fields such as antibody and enzyme engineering, cell-free protein synthesis and the discovery of protein-protein interactions. Phage display technology is the most established of these methods but more recent fully in vitro alternatives, such as ribosome display, mRNA display, cis-activity based (CIS) display and covalent antibody display (CAD), as well as aptamer display and in vitro compartmentalization, offer advantages over phage in library size, speed and the display of unnatural amino acids and nucleotides. Altogether, they have produced several molecules currently approved or in diverse stages of clinical or preclinical testing and have provided researchers with tools to address some of the disadvantages of peptides and nucleotides such as their low affinity, low stability, high immunogenicity and difficulty to cross membranes. In this review we assess the fundamental technological features and point out some recent advances and applications of display technologies.

  2. The rendering context for stereoscopic 3D web

    NASA Astrophysics Data System (ADS)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  3. A diffuser-based three-dimensional measurement of polarization-dependent scattering characteristics of optical films for 3D-display applications.

    PubMed

    Kim, Dae-Yeon; Seo, Jong-Wook

    2015-01-26

    We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications. PMID:25835866

  4. A Comparison of the Perceptual Benefits of Linear Perspective and Physically-Based Illumination for Display of Dense 3D Streamtubes

    SciTech Connect

    Banks, David C

    2008-01-01

    Large datasets typically contain coarse features comprised of finer sub-features. Even if the shapes of the small structures are evident in a 3D display, the aggregate shapes they suggest may not be easily inferred. From previous studies in shape perception, the evidence has not been clear whether physically-based illumination confers any advantage over local illumination for understanding scenes that arise in visualization of large data sets that contain features at two distinct scales. In this paper we show that physically- based illumination can improve the perception for some static scenes of complex 3D geometry from flow fields. We perform human- subjects experiments to quantify the effect of physically-based illumination on participant performance for two tasks: selecting the closer of two streamtubes from a field of tubes, and identifying the shape of the domain of a flow field over different densities of tubes. We find that physically-based illumination influences participant performance as strongly as perspective projection, suggesting that physically-based illumination is indeed a strong cue to the layout of complex scenes. We also find that increasing the density of tubes for the shape identification task improved participant performance under physically-based illumination but not under the traditional hardware-accelerated illumination model.

  5. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    PubMed

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  6. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  7. Microscale technologies for imaging endogenous gene expression in individual cells within 3D tissues

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Luo, Zhen; Ma, Yunzhe; Gill, Harvinder Singh; Nitin, N.

    2013-05-01

    The goal of this study was to develop an innovative approach to image gene expression in intact 3D tissues. Imaging gene expression of individual cells in 3D tissues is expected to have a significant impact on both clinical diagnostic applications and fundamental biological science and engineering applications in a laboratory setting. To achieve this goal, we have developed an integrated approach that combines: 1) microneedle-based minimally invasive intra-tissue delivery of oligonucleotide probes and Streptolysin O (SLO) or CPP; 2) SLO as a pore forming permeation enhancer to enable intracellular delivery of oligonucleotide probes and CPP peptides can also transport conjugated cargo in cells; and 3) fluorescence resonance energy transfer (FRET) pair of ON probes to improve specificity and sensitivity of RNA detection in tissue models. The results of this study demonstrate uniform coating and rapid release of ON probes from microneedles in a tissue environment. Microneedle assisted delivery of ON probes in 3D tissue does not result in cell damage and the ON probes are uniformly delivered in the tissue. The results also demonstrate the feasibility of FRET imaging of ON probes in 3D tissue and highlight the potential for imaging 28-s rRNA in individual living cells.

  8. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  9. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  10. Survey of multi-function display and control technology

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Tonkin, M. H.

    1982-01-01

    The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described.

  11. Plastic substrate technologies for flexible displays

    NASA Astrophysics Data System (ADS)

    Hanada, Toru; Shiroishi, Isao; Negishi, Tuyoto; Shiro, Takashi

    2010-02-01

    A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 μm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a DC magnetron reactive sputtering method. In addition, a unique organic-inorganic hybrid material is coated on the SiOx to further improve the gas-barrier performance. The water vapor transmission rate of the film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.05 cc/m2•day•atm at 40 °C and 90% RH. Indium Zinc Oxide optimized for the plastic substrate was deposited on the other side of the SiOx film by the DC magnetron sputtering method. The transmittance was 87% and the resistivity was 3.5×10-4 ohm•cm.

  12. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  13. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  14. Novel grinding stone used for polishing 3D plastic replica with rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Niikura, Yoshihiro; Sato, Toshio; Kawashima, Norimichi

    2006-01-01

    Rapid prototyping (RP) apparatus accepts a specific format translated from CAD data (patient's CT) and "slices" it into two-dimensional cross sections for laser photo curing. Surgeon can conduct safer surgery by reappearing on an actual model using 3D plastic replica in the preoperative. Polishing has to be used to eliminate the marks after removal of supports and the build layer pitches. Complicated and narrow areas of the 3D replica are difficult to be polished with the conventional grinding stone. This study proposes a novel grinding stone and introduces its producing process and characteristics. The novel grinding stone has many advantages as follows; (1) Preparation is possible of grinding stone that follows the complicated shape. (2) Grinding stone with uniformly dispersed abrasive grains can be prepared using magnetic particles and magnetic field. (3) Reshaping of grinding stone by heating is possible since the binder is made of a thermoplastic resin. (4) Every process can easily be carried out. We could polish to eliminate the marks after removal of supports and the build layer pitches on 3D plastic replica surface with the grinding stone.

  15. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    PubMed

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form.

  16. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  17. Large-screen display industry: market and technology trends for direct view and projection displays

    NASA Astrophysics Data System (ADS)

    Castellano, Joseph A.; Mentley, David E.

    1996-03-01

    Large screen information displays are defined as dynamic electronic displays that can be viewed by more than one person and are at least 2-feet wide. These large area displays for public viewing provide convenience, entertainment, security, and efficiency to the viewers. There are numerous uses for large screen information displays including those in advertising, transportation, traffic control, conference room presentations, computer aided design, banking, and military command/control. A noticeable characteristic of the large screen display market is the interchangeability of display types. For any given application, the user can usually choose from at least three alternative technologies, and sometimes from many more. Some display types have features that make them suitable for specific applications due to temperature, brightness, power consumption, or other such characteristic. The overall worldwide unit consumption of large screen information displays of all types and for all applications (excluding consumer TV) will increase from 401,109 units in 1995 to 655,797 units in 2002. On a unit consumption basis, applications in business and education represent the largest share of unit consumption over this time period; in 1995, this application represented 69.7% of the total. The market (value of shipments) will grow from DOL3.1 billion in 1995 to DOL3.9 billion in 2002. The market will be dominated by front LCD projectors and LCD overhead projector plates.

  18. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  19. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  20. Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology

    NASA Astrophysics Data System (ADS)

    Ertman, Slawomir; Bednarska, Karolina; Czapla, Aleksandra; Woliński, Tomasz R.

    2015-09-01

    Photonic liquid crystal fiber has been intensively investigated in last few years. It has been proved that guiding properties of such fibers could be tuned with an electric field. In particular efficient tuning could be obtained if multi-electrode system allowing for dynamic change of not only intensity of the electric field, but also its direction. In this work we report a simple to build four electrode system, which is based on a precisely aligned four cylindrical microelectrodes. As an electrodes we use enameled copper wire with diameter adequate to the diameter of the fiber to be tuned. To ensure uniform and parallel alignment of the wires a special micro-profiles has been designed and then produced with filament 3D printer. The possibility of the dynamic change of the electric field direction in such scalable and cost effective electrode assembly has been experimentally confirmed.

  1. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology

    NASA Astrophysics Data System (ADS)

    Cesaretti, Giovanni; Dini, Enrico; De Kestelier, Xavier; Colla, Valentina; Pambaguian, Laurent

    2014-01-01

    3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology - D-shape - has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.

  2. 3D integration technology for sensor application using less than 5μm-pitch gold cone-bump connpdfection

    NASA Astrophysics Data System (ADS)

    Motoyoshi, M.; Miyoshi, T.; Ikebec, M.; Arai, Y.

    2015-03-01

    Three-dimensional (3D) integrated circuit (IC) technology is an effective solution to reduce the manufacturing costs of advanced two-dimensional (2D) large-scale integration (LSI) while ensuring equivalent device performance and functionalities. This technology allows a new device architecture using stacked detector/sensor devices with a small dead sensor area and high-speed operation that facilitates hyper-parallel data processing. In pixel detectors or focal-plane sensor devices, each pixel area must accommodate many transistors without increasing the pixel size. Consequently, many methods to realize 3D-LSI devices have been developed to meet this requirement by focusing on the unit processes of 3D-IC technology, such as through-silicon via formation and electrical and mechanical bonding between tiers of the stack. The bonding process consists of several unit processes such as bump or metal contact formation, chip/wafer alignment, chip/wafer bonding, and underfill formation; many process combinations have been reported. Our research focuses on a versatile bonding technology for silicon LSI, compound semiconductor, and microelectromechanical system devices at temperatures of less than 200oC for heterogeneous integration. A gold (Au) cone bump formed by nanoparticle deposition is one of the promising candidates for this purpose. This paper presents the experimental result of a fabricated prototype with 3-μm-diameter Au cone-bump connections with adhesive injection, and compares it with that of an indium microbump (μ-bump). The resistance of the 3-μm-diameter Au cone bump is approximately 6 Ω. We also investigated the influence of stress caused by the bump junction on the MOS characteristics.

  3. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-02-04

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation.

  4. Validity of a dichotomous expert response in bitemark analysis using 3-D technology.

    PubMed

    Martin-de-Las-Heras, Stella; Tafur, Daniel

    2011-03-01

    Despite efforts to quantify bitemark evidence, comparison procedures remain subjective and yield different degrees of certainty. Our aim was to study the effectiveness of a comparison procedure requiring a dichotomous response by the expert. We compared overlays from 3-D images of dental casts and bite impressions, obtained using DentalPrint(©) software. Receiver operating characteristic (ROC) analysis was performed on the results of 104 comparisons, finding an area under the ROC curve of 0.955 (standard error=0.029; 95% CI, 0.896-0.986), sensitivity of 92.3% (95% CI, 74.8-98.8) and specificity of 98.7% (95% CI, 93.0-99.8). According to these findings, this bitemark analysis procedure is highly accurate, although study limitations are discussed, placing these results in context. The main advantage of the dichotomous decision model is that it can be more easily understood, facilitating course of justice. Further research is warranted to explore the potential of this approach as an alternative to diagnostic decisions based on certainty levels. PMID:21334578

  5. Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

    NASA Technical Reports Server (NTRS)

    Wilson, Brad; Galatzer, Yishai

    2008-01-01

    The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.

  6. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-03-01

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation. PMID:26844711

  7. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  8. Consideration of technologies for head-down displays

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.

    1998-09-01

    The market for military avionics head down displays for which Active Matrix Liquid Crystal Displays (AMLCD) has been specified is both well established and substantial. Typical major programs such as F-22, V-22 and Joint Strike Fighter (JSF) amount to over 15,000 displays. Nevertheless there is an insecurity about the situation because of the dependency upon Japanese and Korean manufacturers and the vagaries of the commercial market. The U.S. has only 7% of the world's manufacturing capability in AMLCD and is seeking alternative technologies to regain a hold in this lucrative business. The U.S. military manufacturers of AMLCD are capable, but can never achieve the benefits of scale that Commercial Off The Shelf (COTS) equipment can offer. In addition to the commercial and political concerns, there are still performance issues related to AMLCD and there is a view that emissive displays in particular can offer advantages over AMLCD. However, it is beneficial to be able to tailor display sizes and there are doubts about the ability of current flat panel technologies to achieve custom, or indeed large area panels either economically, or reliably. It is in this arena that projection displays may be the optimum solution.

  9. Large-screen display technology assessment for military applications

    NASA Astrophysics Data System (ADS)

    Blaha, Richard J.

    1990-08-01

    Full-color, large screen display systems can enhance military applications that require group presentation, coordinated decisions, or interaction between decision makers. The technology already plays an important role in operations centers, simulation facilities, conference rooms, and training centers. Some applications display situational, status, or briefing information, while others portray instructional material for procedural training or depict realistic panoramic scenes that are used in simulators. While each specific application requires unique values of luminance, resolution, response time, reliability, and the video interface, suitable performance can be achieved with available commercial large screen displays. Advances in the technology of large screen displays are driven by the commercial applications because the military applications do not provide the significant market share enjoyed by high definition television (HDTV), entertainment, advertisement, training, and industrial applications. This paper reviews the status of full-color, large screen display technologies and includes the performance and cost metrics of available systems. For this discussion, performance data is based upon either measurements made by our personnel or extractions from vendors' data sheets.

  10. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  11. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    NASA Astrophysics Data System (ADS)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  12. Technology Significance in Conservation of the Built Heritage 3d Visualization Impact

    NASA Astrophysics Data System (ADS)

    Nada, Mohamed Shoukr

    2010-04-01

    Conserving the built heritage, including architectural and urban monumental sites, has its various methods and tools for restoration. Restoration can be considered as a tool used by archaeologists for preserving monuments. Then, engineers have to play their role in developing different methods and techniques for conservation, and rehabilitation if needed, of the architectural and urban heritages. Accordingly, technological advancements may result in providing a futuristic vision of the project, without conducting experiments on the monument itself exposing it or its elements to distortion or deterioration. This research aims to show up the role and significance of technology and new tools in the conservation of historical built heritage, which may be considered via: • Addressing the concept of conservation and restoration and its evolution over time. • Revealing new methods and techniques for conservation. Hence, the research may result in highlighting the role and uses of technology in conservation, comprising: • Documentation of the built heritage. • Computers programs capabilities that can assist in conservation and rehabilitation.

  13. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range

    NASA Astrophysics Data System (ADS)

    Huber, O.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for e.g. calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and roughness measurements. The

  14. Use of display technologies for augmented reality enhancement

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2016-06-01

    Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.

  15. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  16. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  17. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  18. User experience while viewing stereoscopic 3D television

    PubMed Central

    Read, Jenny C.A.; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the ‘nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. Practitioner Summary: Stereoscopic 3D (S3D) has been linked to visual discomfort and fatigue. Viewers watched the same movie in either 2D or stereo 3D (between-subjects design). Around 14% reported effects such as headache and eyestrain linked to S3D itself, while 8% report adverse effects attributable to 3D glasses or negative expectations. PMID:24874550

  19. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  20. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions. PMID:26683583

  1. Evaluation of occlusal rest seats with 3D technology in dental education.

    PubMed

    Sampaio-Fernandes, Manuel António Ferreira; Sampaio-Fernandes, Maria M; Fonseca, Patrícia A; Almeida, Paulo R; Reis-Campos, José C; Figueiral, Maria H

    2015-02-01

    The preparation of rest seats must comply with specific sizes and shapes. Various technological systems such as Kavo PrepAssistant have been used as an auxiliary method to evaluate preclinical preparations more objectively. The aims of this study were to establish an alternative system for evaluating occlusal rest seats and to compare different types of assessment. Seventy-six undergraduate students at Oporto University Faculty of Dental Medicine in Portugal were selected as a convenience sample to prepare two occlusal rest seats in Kavo teeth #45 and #46 (FDI World Dental Federation ISO-3950) and were randomly assigned to two groups. Bearing in mind the ideal characteristics of rest seats, the investigators defined ten assessment parameters, and their evaluation weights were independently estimated by three evaluators. Four of these parameters were measured in Kavo PrepAssistant. The results of the different evaluation methods and evaluators varied considerably. The classical evaluation presented final results worse than those of the evaluations using parameters. In this study, carrying out the assessment with Kavo PrepAssistant helped to achieve a more objective and less evaluator-dependent final evaluation.

  2. Development of 3D in vitro platform technology to engineer mesenchymal stem cells.

    PubMed

    Hosseinkhani, Hossein; Hong, Po-Da; Yu, Dah-Shyong; Chen, Yi-Ru; Ickowicz, Diana; Farber, Ira-Yudovin; Domb, Abraham J

    2012-01-01

    This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC) to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.

  3. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    NASA Technical Reports Server (NTRS)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  4. Applications of advanced display technology for dismounted combatants (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Huffman, David C.

    2005-05-01

    Current military activity has made great use of small Special Tactics / Special Forces teams operating on the ground in forward areas of battle, directing Battlefield Air Operations (BAO), which include close air support, air traffic control management, and target identification and designation. A recent National Priority has been identified to improve the BAO Kit used by these Special Tactics Groups to reduce errors that may lead to unintended ground casualties. The primary objectives of the upgraded BAO Kit are to 1) improve the range and accuracy of target information; 2) eliminate opportunities for error in weapon delivery; 3) link target coordinate information directly into the weapons computer; and 4) reduce the weight carried by the warfighter by 50%. For these warfighters, L-3 Communications Display Systems and its technology partner, Universal Display Corporation, are utilizing advanced OLED display technology to create a powerful flexible display-based communication device. This will reduce the weight carried by the fighter by combining functions of the present computer, GPS equipment, and radio gear carried into the forward areas of battle. This will give the soldier a larger, higher resolution, increased battery life, and much lighter capability for the viewing of tactical information such as battlefield maps, GIS imaging data, command/control plots, and GPS-assisted navigational maps. Further integration of the device with voice and video messaging options will be explored. Both hand-held roll-up devices and wrist-worn devices are envisioned for the final product.

  5. Shifting Sands and Turning Tides: Using 3D Visualization Technology to Shape the Environment for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Gant, R.; Hopkins, D.

    2014-12-01

    Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology

  6. Los Alamos Quantum Dots for Solar, Display Technology

    SciTech Connect

    Klimov, Victor

    2015-04-13

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  7. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  8. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients.

    PubMed

    Yang, Mingyuan; Li, Chao; Li, Yanming; Zhao, Yingchuan; Wei, Xianzhao; Zhang, Guoyou; Fan, Jianping; Ni, Haijian; Chen, Ziqiang; Bai, Yushu; Li, Ming

    2015-02-01

    A retrospective study to evaluate the effectiveness of 3-dimensional rapid prototyping (3DRP) technology in corrective surgery for Lenke 1 adolescent idiopathic scoliosis (AIS) patients. 3DRP technology has been widely used in medical field; however, no study has been performed on the effectiveness of 3DRP technology in corrective surgery for Lenke 1 AIS patients. Lenke 1 AIS patients who were preparing to undergo posterior corrective surgery from a single center between January 2010 and January 2012 were included in this analysis. Patients were divided into 2 groups. In group A, 3-dimensional (3D) printing technology was used to create subject-specific spine models in the preoperative planning process. Group B underwent posterior corrective surgery as usual (by free hand without image guidance). Perioperative and postoperative clinical outcomes were compared between 2 groups, including operation time, perioperative blood loss, transfusion volume, postoperative hemoglobin (Hb), postoperative complications, and length of hospital stay. Radiological outcomes were also compared, including the assessment of screw placement, postoperative Cobb angle, coronal balance, sagittal vertical axis, thoracic kyphosis, and lumbar lordosis. Subgroup was also performed according to the preoperative Cobb angle: mean Cobb angle <50° and mean Cobb angle >50°. Besides, economic evaluation was also compared between 2 groups. A total of 126 patients were included in this study (group A, 50 and group B, 76). Group A had significantly shorter operation time, significantly less blood loss and transfusion volume, and higher postoperative Hb (all, P < 0.001). However, no significant differences were observed in complication rate, length of hospital stay, and postoperative radiological outcomes between 2 groups (all, P>0.05). There was also no significant difference in misplacement of screws in total populations (16.90% vs 18.82%, P = 0.305), whereas a low misplacement rate of

  9. Application of 3D Rapid Prototyping Technology in Posterior Corrective Surgery for Lenke 1 Adolescent Idiopathic Scoliosis Patients

    PubMed Central

    Yang, Mingyuan; Li, Chao; Li, Yanming; Zhao, Yingchuan; Wei, Xianzhao; Zhang, Guoyou; Fan, Jianping; Ni, Haijian; Chen, Ziqiang; Bai, Yushu; Li, Ming

    2015-01-01

    Abstract A retrospective study to evaluate the effectiveness of 3-dimensional rapid prototyping (3DRP) technology in corrective surgery for Lenke 1 adolescent idiopathic scoliosis (AIS) patients. 3DRP technology has been widely used in medical field; however, no study has been performed on the effectiveness of 3DRP technology in corrective surgery for Lenke 1 AIS patients. Lenke 1 AIS patients who were preparing to undergo posterior corrective surgery from a single center between January 2010 and January 2012 were included in this analysis. Patients were divided into 2 groups. In group A, 3-dimensional (3D) printing technology was used to create subject-specific spine models in the preoperative planning process. Group B underwent posterior corrective surgery as usual (by free hand without image guidance). Perioperative and postoperative clinical outcomes were compared between 2 groups, including operation time, perioperative blood loss, transfusion volume, postoperative hemoglobin (Hb), postoperative complications, and length of hospital stay. Radiological outcomes were also compared, including the assessment of screw placement, postoperative Cobb angle, coronal balance, sagittal vertical axis, thoracic kyphosis, and lumbar lordosis. Subgroup was also performed according to the preoperative Cobb angle: mean Cobb angle <50° and mean Cobb angle >50°. Besides, economic evaluation was also compared between 2 groups. A total of 126 patients were included in this study (group A, 50 and group B, 76). Group A had significantly shorter operation time, significantly less blood loss and transfusion volume, and higher postoperative Hb (all, P < 0.001). However, no significant differences were observed in complication rate, length of hospital stay, and postoperative radiological outcomes between 2 groups (all, P>0.05). There was also no significant difference in misplacement of screws in total populations (16.90% vs 18.82%, P = 0.305), whereas a low misplacement rate

  10. Comparison of 3D Reconstructive Technologies Used for Morphometric Research and the Translation of Knowledge Using a Decision Matrix

    ERIC Educational Resources Information Center

    Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…

  11. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  12. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  13. Multi-scale simulation flow and multi-scale materials characterization for stress management in 3D through-silicon-via integration technologies - Effect of stress on 3D IC interconnect reliability

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-01

    The paper addresses the growing need in a simulation-based design verification flow capable to analyze any design of 3D IC stacks and to determine across-layers implications in 3D IC reliability caused by through-silicon-via (TSV) and chip-package interaction (CPI) induced mechanical stresses. The limited characterization/measurement capabilities of 3D IC stacks and a strict "good die" requirement make this type of analysis really critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the dies stacked and packaged with the 3D TSV technology, is proposed. As an example the effect of CPI/TSV induced stresses on stress migration (SM) and electromigration (EM) in the back-end-of-line (BEoL) and backside-redistribution-layer (BRDL) interconnect lines is considered. A strategy for a simulation feeding data generation and a respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. A calibration technique based on fitting the simulation results to measured stress components and electrical characteristics of the test-chip devices is discussed.

  14. A reconfigurable tactile display based on polymer MEMS technology

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong

    A tactile display provides information such as shape, texture, temperature, and hardness to a user. Ultimately, a tactile display could be used to recreate a virtual object that may be stored in a computer. However, such advanced displays are not yet widely available, primarily due to the lack of low cost, large area, compact actuator arrays that can stimulate the large numbers of receptors of the user and that can also meet the high requirements for user safety and comfort. This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. In this work, the concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator ("endoskeletal microbubble actuator") is presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A mass-manufacturable actuator has been fabricated using the approaches of lithography and micromolding. A prototype of a single endoskeletal bubble actuator with a diameter of 2.6mm has been fabricated and characterized. In addition, in order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator has been demonstrated

  15. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  16. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  17. Liquid crystal light valve technologies for display applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroshi; Takizawa, Kuniharu

    2001-11-01

    The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.

  18. Cleaning of Painted Surfaces and Examination of Cleaning by 3D-Measurement Technology at the August Deusser Museum, Zurzach

    NASA Astrophysics Data System (ADS)

    Eipper, P.-B.; Frankowski, G.

    Grime and dirt are hazards to oil paint surfaces. To remove these impurities, paintings are usually cleaned dry, or wet with surfactants in aqueous medium. Historic paint material (oil-wax colors produced by Schoenfeld Lukas, Düsseldorf) used by the Rhenish painter August Deusser (1870-1942) were obtained and studied. To examine the effects of different cleaning methods, paint surfaces were treated dry and wet. The surfaces of the treated paints were examined by 3D-measuring technology. This new, transportable technology provides measurements in seconds during the cleaning process and produces measurable images that show changes on the surface and craquelure. Some aqueous cleaning systems can increase craquelure up to five times as much as dry cleaning methods on oil paint surfaces. However, dry methods are not sufficient to completely clean the surfaces. Therefore, modification of aqueous cleaning methods are necessary and include using mild nonionic surfactants, thickening of the solutions used, reduction of contact humidity, and increasing temperature and, pH.

  19. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  20. Three-dimensional image technology in forensic anthropology: Assessing the validity of biological profiles derived from CT-3D images of the skeleton

    NASA Astrophysics Data System (ADS)

    Garcia de Leon Valenzuela, Maria Julia

    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility

  1. Multipurpose Panel Display Device Investigation. [technology assessment and product development

    NASA Technical Reports Server (NTRS)

    Sliwa, R.

    1977-01-01

    A multipurpose panel was developed to provide a flexible control and a LED display panel with easily changeable nomenclature for use in applications where panel space is limited, but where a number of similar subsystems must be controlled, or where basic panel nomenclature and functions must be changed rapidly, as in the case of between mission changes of space shuttle payloads. In the first application, panel area limitations are overcome by time sharing a central control panel among several subsystems. In the latter case, entire control panel changes are effected by simply replacing a memory module, thereby reducing the extent of installation and checkout procedures between missions. Several types of control technologies (other than LED's) which show potential in meeting criteria for overcoming limitations of the panel are assessed.

  2. Stereoscopic 3D video games and their effects on engagement

    NASA Astrophysics Data System (ADS)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  3. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  4. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases

    PubMed Central

    Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194

  6. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases.

    PubMed

    Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming

    2015-07-08

    Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a '3D well' was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.

  7. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  8. Displays: Entering a New Dimension

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…

  9. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    ERIC Educational Resources Information Center

    Hackett, Matthew; Proctor, Michael

    2016-01-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…

  10. Advances in display technology III; Proceedings of the Meeting, Los Angeles, CA, January 18, 19, 1983

    NASA Astrophysics Data System (ADS)

    Schlam, E.

    1983-01-01

    Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.

  11. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    NASA Technical Reports Server (NTRS)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a

  12. A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure.

    PubMed

    Almeida, Greyciele R; Goulart, Luiz Ricardo; Cunha-Junior, Jair P; Bataus, Luiz A M; Japolla, Greice; Brito, Wilia M E D; Campos, Ivan T N; Ribeiro, Cristina; Souza, Guilherme R L

    2015-08-01

    The selected dodecapeptide (1)DRALYGPTVIDH(12) from a phage-displayed peptide library and the crystal structure of the envelope glycoprotein B (Env gB) from Herpes Simplex Virus type 1 (HSV-1) led us to the identification of a new discontinuous epitope on the Bovine herpesvirus type 1 (BoHV-1) Env gB. In silico analysis revealed a short BoHV-1 gB motif ((338)YKRD(341)) within a epitope region, with a high similarity to the motifs shared by the dodecapeptide N-terminal region ((5)YxARD(1)) and HSV-1 Env gB ((326)YARD(329)), in which the (328)Arg residue is described to be a neutralizing antibody target. Besides the characterization of an antibody-binding site of the BoHV-1 Env gB, we have demonstrated that the phage-fused peptide has the potential to be used as a reagent for virus diagnosis by phage-ELISA assay, which discriminated BoHV-1 infected serum samples from negative ones. PMID:26267086

  13. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  14. A Learner-Centered Approach for Training Science Teachers through Virtual Reality and 3D Visualization Technologies: Practical Experience for Sharing

    ERIC Educational Resources Information Center

    Yeung, Yau-Yuen

    2004-01-01

    This paper presentation will report on how some science educators at the Science Department of The Hong Kong Institute of Education have successfully employed an array of innovative learning media such as three-dimensional (3D) and virtual reality (VR) technologies to create seven sets of resource kits, most of which are being placed on the…

  15. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  16. [3D virtual endoscopy of heart].

    PubMed

    Du, Aan; Yang, Xin; Xue, Haihong; Yao, Liping; Sun, Kun

    2012-10-01

    In this paper, we present a virtual endoscopy (VE) for diagnosis of heart diseases, which is proved efficient and affordable, easy to popularize for viewing the interior of the heart. The dual source CT (DSCT) data were used as primary data in our system. The 3D structure of virtual heart was reconstructed with 3D texture mapping technology based on graphics processing unit (GPU), and could be displayed dynamically in real time. When we displayed it in real time, we could not only observe the inside of the chambers of heart but also examine from the new angle of view by the 3D data which were already clipped according to doctor's desire. In the pattern of observation, we used both mutual interactive mode and auto mode. In the auto mode, we used Dijkstra Algorithm which treated the 3D Euler distance as weighting factor to find out the view path quickly, and, used view path to calculate the four chamber plane. PMID:23198444

  17. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  18. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  19. Tutorial on the Psychophysics and Technology of Virtual Acoustic Displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1998-01-01

    Virtual acoustics, also known as 3-D sound and auralization, is the simulation of the complex acoustic field experienced by a listener within an environment. Going beyond the simple intensity panning of normal stereo techniques, the goal is to process sounds so that they appear to come from particular locations in three-dimensional space. Although loudspeaker systems are being developed, most of the recent work focuses on using headphones for playback and is the outgrowth of earlier analog techniques. For example, in binaural recording, the sound of an orchestra playing classical music is recorded through small mics in the two "ear canals" of an anthropomorphic artificial or "dummy" head placed in the audience of a concert hall. When the recorded piece is played back over headphones, the listener passively experiences the illusion of hearing the violins on the left and the cellos on the right, along with all the associated echoes, resonances, and ambience of the original environment. Current techniques use digital signal processing to synthesize the acoustical properties that people use to localize a sound source in space. Thus, they provide the flexibility of a kind of digital dummy head, allowing a more active experience in which a listener can both design and move around or interact with a simulated acoustic environment in real time. Such simulations are being developed for a variety of application areas including architectural acoustics, advanced human-computer interfaces, telepresence and virtual reality, navigation aids for the visually-impaired, and as a test bed for psychoacoustical investigations of complex spatial cues. The tutorial will review the basic psychoacoustical cues that determine human sound localization and the techniques used to measure these cues as Head-Related Transfer Functions (HRTFs) for the purpose of synthesizing virtual acoustic environments. The only conclusive test of the adequacy of such simulations is an operational one in which

  20. [Documentation of course and results of crime scene reconstruction and virtual crime scene reconstruction possibility by means of 3D laser scanning technology].

    PubMed

    Maksymowicz, Krzysztof; Zołna, Małgorzata M; Kościuk, Jacek; Dawidowicz, Bartosz

    2010-01-01

    The objective of the study was to present both the possibilities of documenting the course and results of crime scene reconstruction using 3D laser scanning technology and the legal basis for application of this technology in evidence collection. The authors present the advantages of the aforementioned method, such as precision, objectivity, resistance of the measurement parameters to manipulation (comparing to other methods), high imaging resolution, touchless data recording, nondestructive testing, etc. Moreover, trough the analysis of the current legal regulations concerning image recording in criminal proceedings, the authors show 3D laser scanning technology to have a full complete ability to be applied in practice in documentation of the course and results of crime scene reconstruction. PMID:21863738

  1. The combined use of Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies for the 3D illustration of the progress of works in infrastructure construction projects

    NASA Astrophysics Data System (ADS)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2016-08-01

    Building Information Modelling (BIM) technology is already part of the construction industry and is considered by professionals as a very useful tool for all phases of a construction project. BIM technology, with the particularly useful 3D illustrations which it provides, can be used to illustrate and monitor the progress of works effectively through the entire lifetime of the project. Unmanned Aerial Vehicles (UAVs) have undergone significant advances in equipment capabilities and now have the capacity to acquire high resolution imagery from different angles in a cost effective and efficient manner. By using photogrammetry, characteristics such as distances, areas, volumes, elevations, object sizes, and object shape can be determined within overlapping areas. This paper explores the combined use of BIM and UAV technologies in order to achieve efficient and accurate as-built data collection and 3D illustrations of the works progress during an infrastructure construction project.

  2. Mii School: New 3D Technologies Applied in Education to Detect Drug Abuses and Bullying in Adolescents

    NASA Astrophysics Data System (ADS)

    Carmona, José Alberto; Espínola, Moisés; Cangas, Adolfo J.; Iribarne, Luis

    Mii School is a 3D school simulator developed with Blender and used by psychology researchers for the detection of drugs abuses, bullying and mental disorders in adolescents. The school simulator created is an interactive video game where the players, in this case the students, have to choose, along 17 scenes simulated, the options that better define their personalities. In this paper we present a technical characteristics description and the first results obtained in a real school.

  3. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  4. User experience while viewing stereoscopic 3D television.

    PubMed

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. PMID:24874550

  5. User experience while viewing stereoscopic 3D television.

    PubMed

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D.

  6. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    SciTech Connect

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-09-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D&D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D&D process provides substantial dose reduction for the workers.

  7. The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite scaffolds.

    PubMed

    Russo, Laura; Zanini, Stefano; Giannoni, Paolo; Landi, Elena; Villa, Anna; Sandri, Monica; Riccardi, Claudia; Quarto, Rodolfo; Doglia, Silvia M; Nicotra, Francesco; Cipolla, Laura

    2012-11-01

    The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.

  8. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  9. Research on construction of Web 3D-GIS based on Skyline

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    This paper further studies the construction, publishing and display of three-dimensional (3D) scenes and their implementation based on Skyline family of software, combining remote sensing images and DEM data. Among them, the SketchUp software is used to build landscape models and the JavaScript programming language is adopted to achieve web browsing of 3D scenes. The study provides a useful exploration for the establishment of Web 3D-GIS combining Web GIS technology and 3D visualization technology.

  10. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  11. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  12. Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo

    PubMed Central

    Wang, Ruikang K

    2009-01-01

    Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3D images of dynamic blood perfusion within microcirculatory tissue beds in vivo. The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus it is a label free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids. PMID:20657761

  13. Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo.

    PubMed

    Wang, Ruikang K

    2010-05-01

    Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3D images of dynamic blood perfusion within microcirculatory tissue beds in vivo. The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus it is a label free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids.

  14. A Survey on Large High-Resolution Display Technologies, Techniques, and Applications

    SciTech Connect

    Ni, Tao; Schmidt, Greg S.; Staadt, Oliver G.; Livingston, Mark A.; Ball, Robert; May, Richard A.

    2006-03-27

    Continued advances in display hardware, computing power, networking, and rendering algorithms have all converged to dramatically improve large high-resolution display capabilities. We present a survey on prior research with large high-resolution displays. In the hardware configurations section we examine systems including multi-monitor workstations, recon*gurable projector arrays, and others. Rendering and the data pipeline are addressed with an overview of current technologies. We discuss many applications for large high-resolution displays such as automotive design, scientific visualization, control centers, and others. Quantifying the effect of large high-resolution displays on human performance and other aspects is important as we look toward future advances in display technology and how it is applied in different situations. Interacting with these displays brings a different set of challenges for HCI professionals, so an overview of some of this work is provided. Finally, we present our view of the top ten greatest challenges in large high-resolution displays.

  15. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  16. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324

  17. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience.

  18. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  19. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  20. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  1. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    PubMed Central

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  2. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    PubMed

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients.

  3. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  4. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  5. 3D integration approaches for MEMS and CMOS sensors based on a Cu through-silicon-via technology and wafer level bonding

    NASA Astrophysics Data System (ADS)

    Hofmann, L.; Dempwolf, S.; Reuter, D.; Ecke, R.; Gottfried, K.; Schulz, S. E.; Knechtel, R.; Geßner, T.

    2015-05-01

    Technologies for the 3D integration are described within this paper with respect to devices that have to retain a specific minimum wafer thickness for handling purposes (CMOS) and integrity of mechanical elements (MEMS). This implies Through-Silicon Vias (TSVs) with large dimensions and high aspect ratios (HAR). Moreover, as a main objective, the aspired TSV technology had to be universal and scalable with the designated utilization in a MEMS/CMOS foundry. Two TSV approaches are investigated and discussed, in which the TSVs were fabricated either before or after wafer thinning. One distinctive feature is an incomplete TSV Cu-filling, which avoids long processing and complex process control, while minimizing the thermomechanical stress between Cu and Si and related adverse effects in the device. However, the incomplete filling also includes various challenges regarding process integration. A method based on pattern plating is described, in which TSVs are metalized at the same time as the redistribution layer and which eliminates the need for additional planarization and patterning steps. For MEMS, the realization of a protective hermetically sealed capping is crucial, which is addressed in this paper by glass frit wafer level bonding and is discussed for hermetic sealing of MEMS inertial sensors. The TSV based 3D integration technologies are demonstrated on CMOS like test vehicle and on a MEMS device fabricated in Air Gap Insulated Microstructure (AIM) technology.

  6. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  7. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  8. MoldaNet: a network distributed molecular graphics and modelling program that integrates secure signed applet and Java 3D technologies.

    PubMed

    Yoshida, H; Rzepa, H S; Tonge, A P

    1998-06-01

    MoldaNet is a molecular graphics and modelling program that integrates several new Java technologies, including authentication as a Secure Signed Applet, and implementation of Java 3D classes to enable access to hardware graphics acceleration. It is the first example of a novel class of Internet-based distributed computational chemistry tool designed to eliminate the need for user pre-installation of software on their client computer other than a standard Internet browser. The creation of a properly authenticated tool using a signed digital X.509 certificate permits the user to employ MoldaNet to read and write the files to a local file store; actions that are normally disallowed in Java applets. The modularity of the Java language also allows straightforward inclusion of Java3D and Chemical Markup Language classes in MoldaNet to permit the user to filter their model into 3D model descriptors such as VRML97 or CML for saving on local disk. The implications for both distance-based training environments and chemical commerce are noted.

  9. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  10. Formal tests for LLM approaches using refined cockpit display technology

    NASA Astrophysics Data System (ADS)

    Davis, Randall C.; Wilt, Dennis W.; Henion, James; Alter, Keith; Snow, Paul; Deaton, John E.

    2005-05-01

    Results are presented from formal flight and simulation experiments to test a new primary flight display (PFD)/refined multifunction display (MFD) system, with a computer generated dynamic pathway, as a viable means for a pilot to accurately and efficiently control and navigate an aircraft. For flight control, the PFD uses a computer generated highway-in-the-sky (HITS) pathway and a synthetic vision terrain image of the view outside the aircraft, with an overlay of all the essential flight technical data. For navigation, the MFD provides a moving map with a dynamic pathway to aid the pilot. The total PFD/MFD system provides a predictive method for flying an aircraft, as opposed to the reactive method associated with conventional needle and dial instruments. Fifteen low-to-average-experience subject pilots were selected to compare the PFD instrumentation system to a conventional instrumentation system. A non-precision global positioning system (GPS) area navigation (RNAV) approach to runway 20 at Wakefield Municipal Airport, VA, (AKQ) was used. The hypothesis was that the intuitive nature of the PFD instrumentation system will provide greater situational awareness, improved accuracy, and less pilot workload during flight in instrument meteorological conditions (IMC) compared to using conventional round dial instrumentation.

  11. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  12. Advanced crew station concepts, displays, and input/output technology for civil aircraft of the future

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Robertson, J. B.; Batson, V. M.

    1979-01-01

    Current efforts on a new Cockpit Avionics Research program are described. The major thrusts of the program presented include: a comparative analysis of advanced display media and development of promising selected media, development of flight display generation techniques, and identification and development of promising I/O technology. In addition, the advanced integrated display concepts described include a 'tunnel in the sky' display and a traffic situation display with associated keyboard. Finally, the Cockpit Avionics Research program is summarized, future research plans are presented, and the need for an expanded program is discussed.

  13. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines. PMID:27148455

  14. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  15. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  16. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  17. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites

    NASA Astrophysics Data System (ADS)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.

    2016-07-01

    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  19. Advancement and applications of peptide phage display technology in biomedical science.

    PubMed

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  20. A decade of yeast surface display technology: where are we now?

    PubMed

    Pepper, Lauren R; Cho, Yong Ku; Boder, Eric T; Shusta, Eric V

    2008-02-01

    Yeast surface display has become an increasingly popular tool for protein engineering and library screening applications. Recent advances have greatly expanded the capability of yeast surface display, and are highlighted by cell-based selections, epitope mapping, cDNA library screening, and cell adhesion engineering. In this review, we discuss the state-of-the-art yeast display methodologies and the rapidly expanding set of applications afforded by this technology.

  1. Versatile plasma display technology for UV-visible scene projector

    NASA Astrophysics Data System (ADS)

    Ginn, Robert; Solomon, Steven; Park, Sung-Jin; Eden, J. G.; Guy, Jeff; Peters, Ed

    2007-04-01

    The results of testing two technologies based on gas microplasmas for the generation of UV-visible light is detailed. A microcavity device from the University of Illinois at Champaign-Urbana have been delivered with an Ar/D II gas mixture. Emission from the Ar/Ne as well as an Ar/D II eximer in the 250-400nm range, as well as argon lines in the visible and near infrared, are measured. Development of addressing arrays is discussed as is the potential of emission in other wavebands with other gas species. A 100x40 array of plasmaspheres combined with electronics capable of projecting images at 1000 Hz with 10 bits of grayscale resolution has been built and tested. This system, built by Imaging Systems Technology (IST), is capable of accepting DVI output from a HWIL system and projecting UV from a gas captured in the spheres. This array uses an argon neon gas mixture to produce UV, visible and near infrared light. Performance data discussed for both arrays include: maximum and minimum brightness, uniformity, spectral content, speed, linearity, crosstalk, resolution, and frame rate. Extensions of these technologies to larger arrays with wider spectral bandwidth for use in multispectral projectors are discussed.

  2. Expanding Geometry Understanding with 3D Printing

    ERIC Educational Resources Information Center

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  3. Real-time depth map manipulation for 3D visualization

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid

    2009-02-01

    One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).

  4. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology.

  5. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  6. 64.1: Display Technologies for Therapeutic Applications of Virtual Reality

    PubMed Central

    Hoffman, Hunter G.; Schowengerdt, Brian T.; Lee, Cameron M.; Magula, Jeff; Seibel, Eric J.

    2015-01-01

    A paradigm shift in image source technology for VR helmets is needed. Using scanning fiber displays to replace LCD displays creates lightweight, safe, low cost, wide field of view, portable VR goggles ideal for reducing pain during severe burn wound care in hospitals and possibly in austere combat-transport environments. PMID:26146424

  7. Geowall: Investigations into Low-Cost Stereo Display Technologies

    USGS Publications Warehouse

    Steinwand, Daniel R.; Davis, Brian; Weeks, Nathan

    2003-01-01

    Recently, the combination of new projection technology, fast, low-cost graphics cards, and Linux-powered personal computers has made it possible to provide a stereoprojection and stereoviewing system that is much more affordable than previous commercial solutions. These Geowall systems are low-cost visualization systems built with commodity off-the-shelf components, run on open-source (and other) operating systems, and using open-source applications software. In short, they are ?Beowulf-class? visualization systems that provide a cost-effective way for the U. S. Geological Survey to broaden participation in the visualization community and view stereoimagery and three-dimensional models2.

  8. Realization of an aerial 3D image that occludes the background scenery.

    PubMed

    Kakeya, Hideki; Ishizuka, Shuta; Sato, Yuya

    2014-10-01

    In this paper we describe an aerial 3D image that occludes far background scenery based on coarse integral volumetric imaging (CIVI) technology. There have been many volumetric display devices that present floating 3D images, most of which have not reproduced the visual occlusion. CIVI is a kind of multilayered integral imaging and realizes an aerial volumetric image with visual occlusion by combining multiview and volumetric display technologies. The conventional CIVI, however, cannot show a deep space, for the number of layered panels is limited because of the low transmittance of each panel. To overcome this problem, we propose a novel optical design to attain an aerial 3D image that occludes far background scenery. In the proposed system, a translucent display panel with 120 Hz refresh rate is located between the CIVI system and the aerial 3D image. The system modulates between the aerial image mode and the background image mode. In the aerial image mode, the elemental images are shown on the CIVI display and the inserted translucent display is uniformly translucent. In the background image mode, the black shadows of the elemental images in a white background are shown on the CIVI display and the background scenery is displayed on the inserted translucent panel. By alternation of these two modes at 120 Hz, an aerial 3D image that visually occludes the far background scenery is perceived by the viewer.

  9. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  10. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  11. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  12. Electrophoretic display technologies for e-book readers: system integration aspects

    NASA Astrophysics Data System (ADS)

    Gentric, Philippe

    2011-03-01

    Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.

  13. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  14. Display MTF measurements based on scanning and imaging technologies and its importance in the application space

    NASA Astrophysics Data System (ADS)

    Kaur, Balvinder; Olson, Jeff; Flug, Eric A.

    2016-05-01

    Measuring the Modulation Transfer Function (MTF) of a display monitor is necessary for many applications such as: modeling end-to-end systems, conducting perception experiments, and performing targeting tasks in real-word scenarios. The MTF of a display defines the resolution properties and quantifies how well the spatial frequencies are displayed on a monitor. Many researchers have developed methods to measure display MTFs using either scanning or imaging devices. In this paper, we first present methods to measure display MTFs using two separate technologies and then discuss the impact of a display MTF on a system's performance. The two measurement technologies were scanning with a photometer and imaging with a CMOS based camera. To estimate a true display MTF, measurements made with the photometer were backed out for the scanning optics aperture. The developed methods were applied to measure MTFs of the two types of monitors, Cathode Ray Tube (CRT) and Liquid Crystal Display (LCD). The accuracy of the measured MTFs was validated by comparing MTFs measured with the two systems. The methods presented here are simple and can be easily implemented employing either a Prichard photometer or an imaging device. In addition, the impact of a display MTF on the end-to-end performance of a system was modeled using NV-IPM.

  15. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  16. 2D and 3D documentation of St. Nicolas baroque church for the general reconstruction using laser scanning and photogrammetry technologies combination

    NASA Astrophysics Data System (ADS)

    Křemen, Tomáš; Koska, Bronislav

    2013-04-01

    Total reconstruction of a historical object is a complicated process consisting of several partial steps. One of these steps is acquiring high-quality data for preparation of the project documentation. If these data are not available from the previous periods, it is necessary to proceed to a detailed measurement of the object and to create a required drawing documentation. New measurement of the object brings besides its costs also several advantages as complex content and form of drawings exactly according to the requirements together with their high accuracy. The paper describes measurement of the Baroque church by the laser scanning method extended by the terrestrial and air photogrammetry. It deals with processing the measured data and creating the final outputs, which is a 2D drawing documentation, orthophotos and a 3D model. Attention is focused on their problematic parts like interconnection of the measurement data acquired by various technologies, creation of orthophotos and creation of the detailed combined 3D model of the church exterior. Results of this work were used for preparation of the planned reconstruction of the object.

  17. Diagnosis and Endodontic Management of Fused Mandibular Second Molar and Paramolar with Concrescent Supernumerary Tooth Using Cone-beam CT and 3-D Printing Technology: A Case Report.

    PubMed

    Kato, Hiroshi; Kamio, Takashi

    2015-01-01

    Supernumerary teeth in the molar area are classified as paramolars or distomolars based on location. They occur frequently in the maxilla, but only rarely in the mandible. These teeth are frequently fused with adjacent teeth. When this occurs, the pulp cavities may also be connected. This makes diagnosis and planning of endodontic treatment extremely difficult. Here we report a case of a mandibular second molar fused with a paramolar, necessitating dental pulp treatment. Intraoral and panoramic radiographs were obtained for an evaluation and diagnosis. Although the images revealed a supernumerary tooth-like structure between the posterior area of the mandibular second molar and mandibular third molar, it was difficult to confirm the morphology of the tooth root apical area. Subsequent cone-beam computed tomography (CBCT) revealed that the supernumerary tooth-like structure was concrescent with the root apical area of the mandibular second molar. Based on these findings, the diagnosis was a fused mandibular second molar and paramolar with a concrescent supernumerary tooth. A 3-dimensional (3-D) printer was used to produce models based on the CBCT data to aid in treatment planning and explanation of the proposed procedures to the patient. These models allowed the complicated morphology involved to be clearly viewed, which facilitated a more precise diagnosis and better treatment planning than would otherwise have been possible. These technologies were useful in obtaining informed consent from the patient, promoting 3-D morphological understanding, and facilitating simulation of endodontic treatment. PMID:26370578

  18. Where Creativity Meets Technology: A Library-Led, Multi-Disciplinary Online Showcase for Artworks, Creative Writings, and Movies Displayed with 3D and HTML5 Technology

    ERIC Educational Resources Information Center

    Wong, Shun Han Rebekah

    2015-01-01

    This article introduces the Hong Kong Baptist University's Heritage project (http://heritage.lib.hkbu.edu.hk/), a multi-disciplinary online showcase for curriculum-related creative outputs that were produced by faculty and students of the university. Initiated and led by the University Library, this project was a collaborative effort with six…

  19. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  20. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  1. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  2. The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures.

    PubMed

    Yang, Hao; Xu, Xiangyang; Neumann, Ingo

    2014-01-01

    Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model. PMID:25414968

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  6. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  7. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  8. Driving technology for improving motion quality of active-matrix organic light-emitting diode display

    NASA Astrophysics Data System (ADS)

    Kim, Jongbin; Kim, Minkoo; Kim, Jong-Man; Kim, Seung-Ryeol; Lee, Seung-Woo

    2014-09-01

    This paper reports transient response characteristics of active-matrix organic light emitting diode (AMOLED) displays for mobile applications. This work reports that the rising responses look like saw-tooth waveform and are not always faster than those of liquid crystal displays. Thus, a driving technology is proposed to improve the rising transient responses of AMOLED based on the overdrive (OD) technology. We modified the OD technology by combining it with a dithering method because the conventional OD method cannot successfully enhance all the rising responses. Our method can improve all the transitions of AMOLED without modifying the conventional gamma architecture of drivers. A new artifact is found when OD is applied to certain transitions. We propose an optimum OD selection method to mitigate the artifact. The implementation results show the proposed technology can successfully improve motion quality of scrolling texts as well as moving pictures in AMOLED displays.

  9. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  10. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  11. Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.

  12. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  13. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China.

    PubMed

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces.

  14. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China

    PubMed Central

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  15. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China.

    PubMed

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  16. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  17. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  18. 3D whiteboard: collaborative sketching with 3D-tracked smart phones

    NASA Astrophysics Data System (ADS)

    Lue, James; Schulze, Jürgen P.

    2014-02-01

    We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D, based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area where they can be seen by the smart phones' cameras, in order to estimate the pose of each phone in the room. Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in 3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their smart phones' displays, as if the display was a window into this space. Besides lines, our prototype application also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other user's phone.

  19. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  20. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  1. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  2. Human factors guidelines for applications of 3D perspectives: a literature review

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon; Fitzhugh, Elisabeth; Aleva, Denise

    2009-05-01

    Once considered too processing-intense for general utility, application of the third dimension to convey complex information is facilitated by the recent proliferation of technological advancements in computer processing, 3D displays, and 3D perspective (2.5D) renderings within a 2D medium. The profusion of complex and rapidly-changing dynamic information being conveyed in operational environments has elevated interest in possible military applications of 3D technologies. 3D can be a powerful mechanism for clearer information portrayal, facilitating rapid and accurate identification of key elements essential to mission performance and operator safety. However, implementation of 3D within legacy systems can be costly, making integration prohibitive. Therefore, identifying which tasks may benefit from 3D or 2.5D versus simple 2D visualizations is critical. Unfortunately, there is no "bible" of human factors guidelines for usability optimization of 2D, 2.5D, or 3D visualizations nor for determining which display best serves a particular application. Establishing such guidelines would provide an invaluable tool for designers and operators. Defining issues common to each will enhance design effectiveness. This paper presents the results of an extensive review of open source literature addressing 3D information displays, with particular emphasis on comparison of true 3D with 2D and 2.5D representations and their utility for military tasks. Seventy-five papers are summarized, highlighting militarily relevant applications of 3D visualizations and 2.5D perspective renderings. Based on these findings, human factors guidelines for when and how to use these visualizations, along with recommendations for further research are discussed.

  3. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  4. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  5. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  6. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  7. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  8. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  9. Immersive 3D Visualization of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.

    2015-09-01

    The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.

  10. The Application of GIS 3D Modeling and Analysis Technology in Real Estate Mass Appraisal - Taking landscape and sunlight factors as the example

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Li, Y.; Liu, B.; Liu, C.

    2014-04-01

    Based on procedural modeling approach and buildings 2D GIS data of Shenzhen, 3D external models of buildings are generated by CityEngine in a quick and batch mode. And 3D internal model is generated by vectorization of houses distribution within the target building. Following that, the landscape analysis and the sunlight analysis based on GIS visibility analysis method are applied on 3D model of the target building to get the concrete quantization indexes, such as landscape visual range and sunshine duration which could significantly influence real estate value. Finally, the drawing with 3D visualization effect for landscape information and sunshine information is produced. Compared with traditional manual modeling method, the results showed that rule-based 3D modeling method in CityEngine platform could take full advantage of existing GIS data. It could improve the efficiency of 3D modeling by rapidly and automatically generate refined building 3D models in batch mode. Meanwhile, compared with man-made subjective judgment, the building landscape and sunlight analysis model built by visibility analysis could quantify landscape and sunshine indexes more accurately. Furthermore, the application in real estate mass appraisal model for calculation and analysis will reduce the index errors caused by man-made subjective judgment. In addition, precise 3D visualization effect can provide appraisers with more intuitive and efficient view for real estate expression. It greatly improves the efficiency and accuracy in real estate appraisal.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  13. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  14. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... From the Federal Register Online via the Government Publishing Office ] SECURITIES AND EXCHANGE COMMISSION American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda... current and accurate information concerning the securities of China Wind Energy, Inc. because it has...

  15. Efficiency enhancement of liquid crystal projection displays using light recycle technology

    NASA Technical Reports Server (NTRS)

    Wang, Y.

    2002-01-01

    A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.

  16. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  17. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  18. The design and implementation of stereoscopic 3D scalable vector graphics based on WebKit

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxin; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    Scalable Vector Graphics (SVG), which is a language designed based on eXtensible Markup Language (XML), is used to describe basic shapes embedded in webpages, such as circles and rectangles. However, it can only depict 2D shapes. As a consequence, web pages using classical SVG can only display 2D shapes on a screen. With the increasing development of stereoscopic 3D (S3D) technology, binocular 3D devices have been widely used. Under this circumstance, we intend to extend the widely used web rendering engine WebKit to support the description and display of S3D webpages. Therefore, the extension of SVG is of necessity. In this paper, we will describe how to design and implement SVG shapes with stereoscopic 3D mode. Two attributes representing the depth and thickness are added to support S3D shapes. The elimination of hidden lines and hidden surfaces, which is an important process in this project, is described as well. The modification of WebKit is also discussed, which is made to support the generation of both left view and right view at the same time. As is shown in the result, in contrast to the 2D shapes generated by the Google Chrome web browser, the shapes got from our modified browser are in S3D mode. With the feeling of depth and thickness, the shapes seem to be real 3D objects away from the screen, rather than simple curves and lines as before.

  19. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  20. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  1. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  2. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  3. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  4. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display