Science.gov

Sample records for 3d dna crystal

  1. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal.

    PubMed

    Zheng, Jianping; Birktoft, Jens J; Chen, Yi; Wang, Tong; Sha, Ruojie; Constantinou, Pamela E; Ginell, Stephan L; Mao, Chengde; Seeman, Nadrian C

    2009-09-01

    We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4 A resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control. PMID:19727196

  2. DNA Assembly in 3D Printed Fluidics.

    PubMed

    Patrick, William G; Nielsen, Alec A K; Keating, Steven J; Levy, Taylor J; Wang, Che-Wei; Rivera, Jaime J; Mondragón-Palomino, Octavio; Carr, Peter A; Voigt, Christopher A; Oxman, Neri; Kong, David S

    2015-01-01

    The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  3. DNA Assembly in 3D Printed Fluidics

    PubMed Central

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  4. Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.

    2010-12-01

    In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.

  5. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  6. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  7. 3D reconstruction of two-dimensional crystals.

    PubMed

    Stahlberg, Henning; Biyani, Nikhil; Engel, Andreas

    2015-09-01

    Electron crystallography of two-dimensional (2D) crystals determines the structure of membrane proteins in the lipid bilayer by imaging with cryo-electron microscopy and image processing. Membrane proteins can be packed in regular 2D arrays by their reconstitution in the presence of lipids at low lipid to protein weight-to-weight ratio. The crystal quality depends on the protein purity and homogeneity, its stability, and on the crystallization conditions. A 2D crystal presents the membrane protein in a functional and fully lipidated state. Electron crystallography determines the 3D structure even of small membrane proteins up to atomic resolution, but 3D density maps have a better resolution in the membrane plane than in the vertical direction. This problem can be partly eliminated by applying an iterative algorithm that exploits additional known constraints about the 2D crystal. 2D electron crystallography is particularly attractive for the structural analysis of membrane proteins that are too small for single particle analyses and too unstable to form 3D crystals. With the recent introduction of direct electron detector cameras, the routine determination of the atomic 3D structure of membrane-embedded membrane proteins is in reach. PMID:26093179

  8. 3D Reproduction of a Snow Crystal by Stereolithography

    NASA Astrophysics Data System (ADS)

    Tamaki, Jun'ichi; Yanagi, Satoshi; Aoki, Yuya; Kubo, Akihiko; Kameda, Takao; Ullah, A. M. M. Sharif

    A new method was proposed for replicating snow crystals that uses light-curing resin containing no harmful substances, as the replicating material, and the 3D reproduction of a snow crystal by stereolithography was conducted. It was found that a UV light irradiation density of at least 0.6 mW/cm2 was required to complete the light-hardening reaction within 15 min when polyene/polythiol resin (NOA81) was used as the light-curing resin. When the atmospheric temperature was 0 °C, the maximum temperature rise due to the light-hardening reaction was 4.2 °C at an irradiation density of 1.0 mW/cm2. This suggests that the initial temperature of the light-curing resin must be approximately -5 °C to prevent the snow crystal from melting when an irradiation density of 1.0 mW/cm2 is applied at an atmospheric temperature of below 0 °C. This replication method has sufficient accuracy to reconstruct the 3D shape of a snow crystal. The 3D reproduction of a snow crystal by stereolithography was conducted by transforming the CSV-formatted 3D profile height data to STL-formatted CAD data.

  9. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    PubMed Central

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-01-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology. PMID:27151104

  10. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  11. 3D-dynamic representation of DNA sequences.

    PubMed

    Wąż, Piotr; Bielińska-Wąż, Dorota

    2014-03-01

    A new 3D graphical representation of DNA sequences is introduced. This representation is called 3D-dynamic representation. It is a generalization of the 2D-dynamic dynamic representation. The sequences are represented by sets of "material points" in the 3D space. The resulting 3D-dynamic graphs are treated as rigid bodies. The descriptors characterizing the graphs are analogous to the ones used in the classical dynamics. The classification diagrams derived from this representation are presented and discussed. Due to the third dimension, "the history of the graph" can be recognized graphically because the 3D-dynamic graph does not overlap with itself. Specific parts of the graphs correspond to specific parts of the sequence. This feature is essential for graphical comparisons of the sequences. Numerically, both 2D and 3D approaches are of high quality. In particular, a difference in a single base between two sequences can be identified and correctly described (one can identify which base) by both 2D and 3D methods. PMID:24567158

  12. 3D Framework DNA Origami with Layered Crossovers.

    PubMed

    Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao

    2016-10-01

    Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks.

  13. 3D Framework DNA Origami with Layered Crossovers.

    PubMed

    Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao

    2016-10-01

    Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks. PMID:27628457

  14. Dielectrophoresis of lambda-DNA using 3D carbon electrodes.

    PubMed

    Martinez-Duarte, Rodrigo; Camacho-Alanis, Fernanda; Renaud, Philippe; Ros, Alexandra

    2013-04-01

    Carbon electrodes have recently been introduced as an alternative to metal electrodes and insulator structures for dielectrophoretic applications. Here, an experimental and theoretical study employing an array of 3D carbon electrodes contained in a microfluidic channel for the dielectrophoretic manipulation of DNA is presented. First evidence that carbon-electrode DEP can be used for the manipulation and trapping of biomolecules such as DNA is reported. In particular, the dielectrophoretic response of λ-DNA (48.5 kbp) under various frequencies and flow conditions necessary for retention of λ-DNA are studied. Negative DEP is observed at frequencies above 75 kHz and positive DEP is present in the range below 75 kHz and down to 5 kHz. We further implement a theoretical model to capture the experimental findings in sufficient detail. Our theoretical considerations based on reported scaling laws for linear and supercoiled DNA further suggest that carbon-electrode DEP devices could be employed in future analytical applications such as DNA preconcentration and fractionation.

  15. Sculptured thin films as 3D photonic crystals

    NASA Astrophysics Data System (ADS)

    Venugopal, Vijayakumar C.

    2012-10-01

    Sculptured thin films (STFs) are columnar thin films nano-engineered to have controllable porosity, structural chirality and periodicity in one, two or three dimensions. These characteristics of STFs have been exploited in developing optical elements such as thin film filters, polarizers, sensors, and waveguides for integrated optics. They can be fabricated by a simple two-stage (lithography and deposition) process. In this paper, we develop a grating theory-based modeling approach for STFs as fully 3D periodic structures. Input for this model consists of a structural parameter set that is easily accessible experimentally. This helps establish a common parameter set for evaluating STFs from a fabrication as well as modeling perspective, thus laying the base required for developing appropriate process monitoring and control methods necessary for successful commercial production. Using the proposed model, we develop a quantitative understanding of the limits of applicability of traditional modeling methods for STFs and develop guidelines for robust design of STF-based devices. We apply this knowledge gained to explore STFs in two illustrative examples: (i) as a notch filter, and (ii) as a 3D photonic crystal. The results demonstrate the potential for success and highlight the remaining challenges that need to be overcome.

  16. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  17. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  18. Hydrogel with chains functionalized with carboxyl groups as universal 3D platform in DNA biosensors.

    PubMed

    Kowalczyk, Agata; Fau, Michal; Karbarz, Marcin; Donten, Mikolaj; Stojek, Zbigniew; Nowicka, Anna M

    2014-04-15

    Application of hydrogel based on N-isopropylacrylamide with carboxyl groups grafted to the chains enabled the immobilization of DNA at an extent exceeding that for flat surfaces by at least one order of magnitude. The probe DNA strands in the 3D platform were fully available for the hybridization process. The examination of the gels containing different amounts of grafted carboxyl groups (1-10%) was done using quartz crystal microbalance, electrochemical impedance spectroscopy, chronoamperometry and ionic coupled plasma with laser ablation. The optimal carboxyl group content was determined to be 5%. A very good agreement of the data obtained with independent techniques on content of DNA in the gel was obtained. In comparison to the other methods of immobilization of DNA the new platform enabled complete removal of DNA after the measurements and analysis and, therefore, could be used many times. After a 10-fold exchange of the DNA-sensing layer the efficiency of hybridization and analytical signal did not change by more than 5%. The sensor response increased linearly with logarithm of concentration of target DNA in the range 1×10(-13)-1×10(-6) M. The obtained detection limit was circa 8×10(-13) M of target DNA in the sample which is a substantial improvement over the planar sensing layers. PMID:24287408

  19. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    PubMed

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing.

  20. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  1. Holographically Defined Nanoparticle Placement in 3D Colloidal Crystals

    SciTech Connect

    Jun, Yoonho; Yu, Dongguk; George, Matthew C.; Braun, Paul V.

    2010-06-30

    We demonstrate an optical interference-based photochemical method for the high-resolution localization of nanoparticles inside colloidal crystals or other porous structures. The method specifically relies on photoinduced inversion of the colloidal crystal surface charge to drive the localized deposition of charged gold nanoparticles. 4-Bromomethyl-3-nitrobenzoic acid (BNBA) was used as a photocleavable linker, and dansylamide was attached to BNBA to increase the absorption at 351 nm. Two-beam interference lithography was used for high-resolution optical patterning of the colloidal crystals; the resulting pattern was then decorated with functional nanoparticles. The periodicity of the pattern was 400 nm, and the width of the gold nanoparticle decorated region was ~200 nm. Our strategy of using photoswitching in a refractive-index-matched porous medium followed by the attachment of nanoparticles to the photoswitched region should be applicable to wide classes of charged nanoparticles.

  2. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  3. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen . E-mail: aizhen@mail.hzau.edu.cn

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.

  4. 3-D Crystal Tectonics of Red Coral (Corallium Rubrum)

    NASA Astrophysics Data System (ADS)

    Vielzeuf, D.; Garrabou, J.; Baronnet, A.; Grauby, O.; Marschal, C.

    2007-12-01

    A combination of analytical techniques (petrographic microscopy, SEM, TEM, and EMP) has been used to characterize the internal physico-chemical structure of the red coral (corallium rubrum) skeleton. A section normal to the skeleton axis shows an inner medullar zone with a bulbous-tip cross shape, surrounded by a large circular domain composed of concentric rings (width of each ring ca 150 microns). Growth rings are revealed by the cyclic variation of concentration of the organic matter (OM) and oscillations of the Mg/Ca ratio. Experiments carried out in natural environment show that the detected growth rings are annual. Thus, both oscillations of concentration of OM and Mg/Ca ratio can be used to determine the age of the red coral colonies, some of which can be as old as a few tens (or even a few hundreds) of years. Concentric ring are riddled and display a succession of wavelets (wavelength ca 300 microns). The internal structure of each wavelet is complex, both physically and chemically: it is formed by the accumulation of strata with locally tortuous interfaces due to the presence of micro protuberances (ca 30 microns). This interlocked structure confers an exceptional stiffness on the red coral skeleton. Interfaces between strata sometimes display sharp discontinuities indicating interruption of the mineralizing process. This fact has important consequences on the ability of the whole structure to register external forcings with accuracy. SEM and TEM studies show that each stratum is made of submicron crystalline units (ca 200 nm) organized or not in polycrystalline fibers or blades (ca 1 to 10 microns). Porosity can be observed at all scales between the various structural units. HRTEM studies show that in spite of displaying single crystal scattering behavior, the submicron crystalline units are made of 2-5 nm nanodomains with intercalated nanopores. We interpret the nanodomains as nanograins aggregated by a mechanism of oriented attachment. The red coral

  5. Towards true 3D textural analysis; using your crystal mush wisely.

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.; Pankhurst, M. J.

    2014-12-01

    The crystal cargo that is found in volcanic and plutonic rocks contains a wealth of information about magmatic mush processes, crystallisation history, crystal entrainment and recycling. Phenocryst populations predominantly record episodes of growth/nucleation and bulk geochemical changes within an evolving crystal-melt body. Ante- and xeno-crysts provide useful clues to the nature of mush interaction with wall rock and with principal magma(s). Furthermore, crystal evolutions (core to rim) record pathways through pressure, temperature and compositional space. These can often illustrate complex recycling within systems, describing the plumbing architecture. Understanding this architecture underpins our knowledge of how igneous systems can interact with the crust, grow, freeze, re-mobilise and prime for eruption. Initially, 2D studies produced corrected 3D crystal size distributions to help provide information about nucleation and residence times. It immediately became clear that crystal shape is an important factor in determining the confidence placed upon 3D reconstructions of 2D data. Additionally studies utilised serial sections of medium- to coarse-grain-size populations which allowed 3D reconstruction using modelling software to be improved, since size and shape etc. can be directly constrained. Finally the advent of textural studies using X-ray tomography has revolutionised the way in which we can inspect the crystal cargo in mushy systems, allowing us to image in great detail crystal packing arrangements, 3D CSDs, shapes and orientations etc. The latest most innovative studies use X-ray micro-computed tomography to rapidly characterise chemical populations within the crystal cargo, adding a further dimension to this approach, and implies the ability to untangle magmatic chemical components to better understand their individual and combined evolution. In this contribution key examples of the different types of textural analysis techniques in 2D and 3D

  6. 3D-dynamic graphs as a classification tool of DNA sequences

    NASA Astrophysics Data System (ADS)

    Wa̧Ż, P.; Bielińska-Wa̧Ż, D.

    2016-10-01

    A method, called 3D-dynamic representation of DNA sequences, and its application to the classification of the DNA sequences is briefly reviewed. Some new classification diagrams obtained using this method are also shown. The method constitutes an alignment free tool of the comparison of the DNA sequences. It allows for both graphical and numerical similarity/dissimilarity analysis of the sequences.

  7. A 3D Model of Double-Helical DNA Showing Variable Chemical Details

    ERIC Educational Resources Information Center

    Cady, Susan G.

    2005-01-01

    Since the first DNA model was created approximately 50 years ago using molecular models, students and teachers have been building simplified DNA models from various practical materials. A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance…

  8. CMOS compatible fabrication of 3D photonic crystals by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Eibelhuber, M.; Uhrmann, T.; Glinsner, T.

    2015-03-01

    Nanoimprinting techniques are an attractive solution for next generation lithography methods for several areas including photonic devices. A variety of potential applications have been demonstrated using nanoimprint lithography (NIL) (e.g. SAW devices, vias and contact layers with dual damascene imprinting process, Bragg structures, patterned media) [1,2]. Nanoimprint lithography is considered for bridging the gap from R and D to high volume manufacturing. In addition, it is capable to adapt to the needs of the fragmented and less standardized photonic market easily. In this work UV-NIL has been selected for the fabrication process of 3D-photonic crystals. It has been shown that UVNIL using a multiple layer approach is well suited to fabricate a 3D woodpile photonic crystal. The necessary alignment accuracies below 100nm were achieved using a simple optical method. In order to obtain sufficient alignment of the stacks to each other, a two stage alignment process is performed: at first proximity alignment is done followed by the Moiré alignment in soft contact with the substrate. Multiple steps of imprinting, etching, Si deposition and chemical mechanical polishing were implemented to create high quality 3D photonic crystals with up to 5 layers. This work has proven the applicability of nanoimprint lithography in a CMOS compatible process on 3D photonic crystals with alignment accuracy down to 100nm. Optimizing the processes will allow scaling up these structures on full wafers while still meeting the requirements of the designated devices.

  9. A 3D-DNA Molecule Made of PlayMais

    ERIC Educational Resources Information Center

    Caine, Massimo; Horié, Ninon; Zuchuat, Sandrine; Weber, Aurélia; Ducret, Verena; Linder, Patrick; Perron, Karl

    2015-01-01

    More than 60 years have passed since the work of Rosalind Franklin, James Watson, and Francis Crick led to the discovery of the 3D-DNA double-helix structure. Nowadays, due to the simple and elegant architecture of its double helix, the structure of DNA is widely known. The biological role of the DNA molecule (e.g., genetic information), however,…

  10. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    PubMed Central

    Ploeger, Lennert S.; Beliën, Jeroen A.M.; Poulin, Neal M.; Grizzle, William; van Diest, Paul J.

    2004-01-01

    Background: Confocal Laser Scanning Microscopy (CLSM) provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV) of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable. PMID:15371645

  11. Liquid crystal materials and structures for image processing and 3D shape acquisition

    NASA Astrophysics Data System (ADS)

    Garbat, K.; Garbat, P.; Jaroszewicz, L.

    2012-03-01

    The image processing supported by liquid crystals device has been used in numerous imaging applications, including polarization imaging, digital holography and programmable imaging. Liquid crystals have been extensively studied and are massively used in display and optical processing technology. We present here the main relevant parameters of liquid crystal for image processing and 3D shape acquisition and we compare the main liquid crystal options which can be used with their respective advantages. We propose here to compare performance of several types of liquid crystal materials: nematic mixtures with high and medium optical and dielectrical anisotropies and relatively low rotational viscosities nematic materials which may operate in TN mode in mono and dual frequency addressing systems.

  12. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    PubMed

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.

  13. Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field - perturbation theory methods versus complete diagonalization methods

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw; Yeung, Yau-yuen; Yang, Zi-Yuan; Qin, Jian

    2002-06-01

    In this paper, we critically review the existing microscopic spin Hamiltonian (MSH) approaches, namely the complete diagonalization method (CDM) and the perturbation theory method (PTM), for 3d8(3d2) ions in a trigonal (C3v, D3, D3d) symmetry crystal field (CF). A new CDM is presented and a CFA/MSH computer package based on our crystal-field analysis (CFA) package for 3dN ions is developed for numerical calculations. Our method takes into account the contribution to the SH parameters (D, g∥ and g⊥) from all 45 CF states for 3d8(3d2) ions and is based on the complete diagonalization of the Hamiltonian including the electrostatic interactions, the CF terms (in the intermediate CF scheme) and the spin-orbit coupling. The CFA/MSH package enables us to study not only the CF energy levels and wavefunctions but also the SH parameters as functions of the CF parameters (B20, B40 and B43 or alternatively Dq, v and v') for 3d8(3d2) ions in trigonal symmetry. Extensive comparative studies of other MSH approaches are carried out using the CFA/MSH package. First, we check the accuracy of the approximate PTM based on the `quasi-fourth-order' perturbation formulae developed by Petrosyan and Mirzakhanyan (PM). The present investigations indicate that the PM formulae for the g-factors (g∥ and g⊥) indeed work well, especially for the cases of small v and v' and large Dq, whereas the PM formula for the zero-field splitting (ZFS) exhibits serious shortcomings. Earlier criticism of the PM approach by Zhou et al (Zhou K W, Zhao S B, Wu P F and Xie J K 1990 Phys. Status Solidi b 162 193) is then revisited. Second, we carry out an extensive comparison of the results of the present CFA/MSH package and those of other CDMs based on the strong- and weak-CF schemes. The CF energy levels and the SH parameters for 3d2 and 3d8 ions at C3v symmetry sites in several crystals are calculated and analysed. Our investigations reveal serious inconsistencies in the CDM results of Zhou et al and Li

  14. 3D equilibrium crystal shapes in the new light of STM and AFM

    NASA Astrophysics Data System (ADS)

    Bonzel, H. P.

    2003-10-01

    A systematic study of 3D equilibrium crystal shapes (ECS) can yield important surface energetic quantities, such as step, kink, surface and step-step interaction free energies. Observations of the ECS, especially of flat facets and adjacent vicinal regions, will provide primarily relative step and surface free energies. An advanced goal is to determine absolute step free energies, kink formation and step interaction energies. Absolute values of these energies are important in governing crystal growth morphologies, high temperature phase changes and kinetic processes associated with shape changes. Furthermore, absolute step and kink energies are the key to absolute surface free energies of well defined low-index orientations. We review new experiments where sections of the ECS are monitored as a function of temperature to extract characteristic morphological parameters, yielding absolute surface energetic quantities. Attention will be paid to the question of attaining true 3D equilibrium of an ensemble of crystallites. The special role of scanning tunneling and atomic force microscopies will be stressed. New ways of overcoming the problem of the activation barrier for facet growth (or shrinkage) through the study of dislocated crystallites will be demonstrated. In the general context of 3D crystallites, the study of 2D nano-crystals, in the form of adatom or vacancy islands on extended flat surfaces, will be discussed. In particular, the connection between the temperature dependent shape of 2D islands and the absolute step and kink formation energies of the bounding steps, complementary to facet shape changes of 3D crystallites, has emerged as an important topic of recent research. Finally, high temperature phase changes, such as surface roughening and surface melting, as they have been observed by scanning electron microscopy on 3D crystallites, will be briefly reviewed.

  15. Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications.

    PubMed

    Xie, Guosen; Mo, Zhongxi

    2011-01-21

    In this article, we introduce three 3D graphical representations of DNA primary sequences, which we call RY-curve, MK-curve and SW-curve, based on three classifications of the DNA bases. The advantages of our representations are that (i) these 3D curves are strictly non-degenerate and there is no loss of information when transferring a DNA sequence to its mathematical representation and (ii) the coordinates of every node on these 3D curves have clear biological implication. Two applications of these 3D curves are presented: (a) a simple formula is derived to calculate the content of the four bases (A, G, C and T) from the coordinates of nodes on the curves; and (b) a 12-component characteristic vector is constructed to compare similarity among DNA sequences from different species based on the geometrical centers of the 3D curves. As examples, we examine similarity among the coding sequences of the first exon of beta-globin gene from eleven species and validate similarity of cDNA sequences of beta-globin gene from eight species.

  16. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  17. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models

    PubMed Central

    2013-01-01

    Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161

  18. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    PubMed

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  19. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.

    PubMed

    Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A

    2016-04-27

    A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons. PMID:27045887

  20. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.

    PubMed

    Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A

    2016-04-27

    A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons.

  1. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.

  2. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges

    PubMed Central

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-01-01

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  3. Review on Chalcogenide 3D Nano-structured Crystals: Synthesis and Growth Mechanism.

    PubMed

    Qiu, Qi

    2015-01-01

    Three dimensional (3D) nano-structured crystals have received extensive attention for their superior properties over zero dimensional (0D), one dimensional (1D), or two dimensional (2D) nanomaterials in many areas. This review is generalized for the group of chalcogenide nanoflowers (NFs) by the synthetic techniques, such as solvothermal, wet chemical, sol-gel, surface oxidation, microwave, coating, electrochemical, and several other methods. The formation mechanism was also described for the purpose of opening up new food for thoughts to bring up new functionality of materials by tuning the morphology of crystals. The pH value or the template plays fundamental role in forming the nano-flowered structure. Moreover, the correlations between the surface area (SA), contact angle (CA), and the NFs are also discussed within the context. Here, we also discussed some patents relevant to the topic.

  4. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  5. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  6. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures.

    PubMed

    Liu, Shuopeng; Su, Wenqiong; Li, Zonglin; Ding, Xianting

    2015-09-15

    Recent reports have indicated that aberrant expression of microRNAs is highly correlated with occurrence of lung cancer. Therefore, highly sensitive detection of lung cancer specific microRNAs provides an attractive approach in lung cancer early diagnostics. Herein, we designed 3D DNA origami structure that enables electrochemical detection of lung cancer related microRNAs. The 3D DNA origami structure is constituted of a ferrocene-tagged DNA of stem-loop structure combined with a thiolated tetrahedron DNA nanostructure at the bottom. The top portion hybridized with the lung cancer correlated microRNA, while the bottom portion was self-assembled on gold disk electrode surface, which was modified with gold nanoparticles (Au NPs) and blocked with mercaptoethanol (MCH). The preparation process and the performance of the proposed electrochemical genosensor were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimal conditions, the developed genosensor had a detection limit of 10 pM and a good linearity with microRNA concentration ranging from 100 pM to 1 µM, which showed a great potential in highly sensitive clinical cancer diagnosis application.

  7. Comparing Facial 3D Analysis With DNA Testing to Determine Zygosities of Twins.

    PubMed

    Vuollo, Ville; Sidlauskas, Mantas; Sidlauskas, Antanas; Harila, Virpi; Salomskiene, Loreta; Zhurov, Alexei; Holmström, Lasse; Pirttiniemi, Pertti; Heikkinen, Tuomo

    2015-06-01

    The aim of this study was to compare facial 3D analysis to DNA testing in twin zygosity determinations. Facial 3D images of 106 pairs of young adult Lithuanian twins were taken with a stereophotogrammetric device (3dMD, Atlanta, Georgia) and zygosity was determined according to similarity of facial form. Statistical pattern recognition methodology was used for classification. The results showed that in 75% to 90% of the cases, zygosity determinations were similar to DNA-based results. There were 81 different classification scenarios, including 3 groups, 3 features, 3 different scaling methods, and 3 threshold levels. It appeared that coincidence with 0.5 mm tolerance is the most suitable feature for classification. Also, leaving out scaling improves results in most cases. Scaling was expected to equalize the magnitude of differences and therefore lead to better recognition performance. Still, better classification features and a more effective scaling method or classification in different facial areas could further improve the results. In most of the cases, male pair zygosity recognition was at a higher level compared with females. Erroneously classified twin pairs appear to be obvious outliers in the sample. In particular, faces of young dizygotic (DZ) twins may be so similar that it is very hard to define a feature that would help classify the pair as DZ. Correspondingly, monozygotic (MZ) twins may have faces with quite different shapes. Such anomalous twin pairs are interesting exceptions, but they form a considerable portion in both zygosity groups.

  8. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC).

    PubMed

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-01-01

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc. PMID:27622567

  9. Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology

    NASA Astrophysics Data System (ADS)

    Ertman, Slawomir; Bednarska, Karolina; Czapla, Aleksandra; Woliński, Tomasz R.

    2015-09-01

    Photonic liquid crystal fiber has been intensively investigated in last few years. It has been proved that guiding properties of such fibers could be tuned with an electric field. In particular efficient tuning could be obtained if multi-electrode system allowing for dynamic change of not only intensity of the electric field, but also its direction. In this work we report a simple to build four electrode system, which is based on a precisely aligned four cylindrical microelectrodes. As an electrodes we use enameled copper wire with diameter adequate to the diameter of the fiber to be tuned. To ensure uniform and parallel alignment of the wires a special micro-profiles has been designed and then produced with filament 3D printer. The possibility of the dynamic change of the electric field direction in such scalable and cost effective electrode assembly has been experimentally confirmed.

  10. Development of 3D photonic crystals using sol-gel process for high power laser applications

    NASA Astrophysics Data System (ADS)

    Benoit, F.; Dieudonné, E.; Bertussi, B.; Vallé, K.; Belleville, P.; Mallejac, N.; Enoch, S.; Sanchez, C.

    2015-08-01

    Three-dimensional photonic crystals (PCs) are periodic materials with a modulated refractive index on a length scale close to the light wavelength. This optical property allows the preparation of specific optical components like highly reflective mirrors. Moreover, these structured materials are known to have a high laser-induced damage threshold (LIDT) in the sub-nanosecond range compared to multi-layered dielectric mirrors. This property is obtained because only one high LIDT material (silica) is used. The second material used in the layer stack is replaced by air. In this work, we present the development of 3D PCs with narrow-sized colloidal silica particles, prepared by sol-gel process and deposited with Langmuir-Blodgett technique. Different syntheses routes have been investigated and compared regarding the optical properties of the PCs. Finally a numerical model based on an ideal opal network including defect influence is used to explain these experimental results.

  11. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  12. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  13. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  14. Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT

    PubMed Central

    Iinuma, Ryosuke; Ke, Yonggang; Jungmann, Ralf; Schlichthaerle, Thomas; Woehrstein, Johannes B.; Yin, Peng

    2014-01-01

    DNA self-assembly has produced diverse synthetic three-dimensional polyhedra. These structures typically have a molecular weight no greater than 5 megadaltons. We report a simple, general strategy for one-step self-assembly of wireframe DNA polyhedra that are more massive than most previous structures. A stiff three-arm-junction DNA origami tile motif with precisely controlled angles and arm lengths was used for hierarchical assembly of polyhedra. We experimentally constructed a tetrahedron (20 megadaltons), a triangular prism (30 megadaltons), a cube (40 megadaltons), a pentagonal prism (50 megadaltons), and a hexagonal prism (60 megadaltons) with edge widths of 100 nanometers. The structures were visualized by means of transmission electron microscopy and three-dimensional DNA-PAINT super-resolution fluorescent microscopy of single molecules in solution. PMID:24625926

  15. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT.

    PubMed

    Iinuma, Ryosuke; Ke, Yonggang; Jungmann, Ralf; Schlichthaerle, Thomas; Woehrstein, Johannes B; Yin, Peng

    2014-04-01

    DNA self-assembly has produced diverse synthetic three-dimensional polyhedra. These structures typically have a molecular weight no greater than 5 megadaltons. We report a simple, general strategy for one-step self-assembly of wireframe DNA polyhedra that are more massive than most previous structures. A stiff three-arm-junction DNA origami tile motif with precisely controlled angles and arm lengths was used for hierarchical assembly of polyhedra. We experimentally constructed a tetrahedron (20 megadaltons), a triangular prism (30 megadaltons), a cube (40 megadaltons), a pentagonal prism (50 megadaltons), and a hexagonal prism (60 megadaltons) with edge widths of 100 nanometers. The structures were visualized by means of transmission electron microscopy and three-dimensional DNA-PAINT super-resolution fluorescent microscopy of single molecules in solution.

  16. DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes.

    PubMed

    Boer, D Roeland; Canals, Albert; Coll, Miquel

    2009-01-21

    In this paper, we review recent DNA-binding agents that are expected to influence the field of DNA-targeting. We restrict ourselves to binders for which the three-dimensional structure in complex with DNA or RNA has been determined by X-ray crystallography or NMR. Furthermore, we primarily focus on unprecedented ways of targeting peculiar DNA structures, such as junctions, quadruplexes, and duplex DNAs different from the B-form. Classical binding modes of small molecular weight compounds to DNA, i.e. groove binding, intercalation and covalent addition are discussed in those cases where the structures represent a novelty. In addition, we review 3D structures of triple-stranded DNA, of the so-called Peptide Nucleic Acids (PNAs), which are oligonucleotide bases linked by a polypeptide backbone, and of aptamers, which are DNA or RNA receptors that are designed combinatorially. A discussion on perspectives in the field of DNA-targeting and on sequence recognition is also provided.

  17. AFC3D: A 3D graphical tool to model assimilation and fractional crystallization with and without recharge in the R environment

    NASA Astrophysics Data System (ADS)

    Guzmán, Silvina; Carniel, Roberto; Caffe, Pablo J.

    2014-03-01

    AFC3D is an original graphical free software developed in the framework of the R scientific environment and dedicated to the modelling of assimilation and fractional crystallization without (AFC) and with (AFC-r) recharge, facilitating the search for the solutions of the equations originally proposed by DePaolo (1981, 1985) and first solved in a graphical way by Aitcheson and Forrest (1994). The software presented here allows a graphical 3D representation of ρ (mass of assimilated crust/mass of original magma) as a function of r (rate of crustal assimilation/rate of fractional crystallization) and β (recharge rate of magma replenishment / rate of assimilation) for each element/isotope, finding a coherent set of (r, β, ρ) parameter triples in a mostly automated way. Mathematically optimized solutions are derived, which can and should then be discussed and evaluated from a geological and petrological point of view by the end user. The presented contribution presents the software and a series of models published in the literature, which are discussed as case studies of application and whose solutions are sometimes enhanced based on the results provided by the software.

  18. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.

    PubMed

    Ferrier, L; Romeo, P Rojo; Letartre, X; Drouard, E; Viktorovitch, P

    2010-07-19

    Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

  19. Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates.

    PubMed

    Nys, I; Beeckman, J; Neyts, K

    2015-10-21

    A planar liquid crystal (LC) cell is developed in which two photo-alignment layers have been illuminated with respectively a horizontal and a vertical diffraction pattern of interfering left- and right-handed circularly polarized light. In the bulk of the cell, a complex LC configuration is obtained with periodicity in two dimensions. Remarkably, the period of the structure is larger than the period of the interference pattern, indicating that lowering of the symmetry allows a reduction in the elastic energy. The liquid crystal configuration depends on the periodicity of the alignment but also on the thickness of the cell. By applying a voltage over the electrodes, the power going into the different diffracted orders can be tuned. Finite element (FE) simulations based on Q-tensor theory are used to find the 3D equilibrium director distribution, which is used to simulate the near-field transmission profile based on the Jones calculus. A 2D Fourier transform is performed for both the x- and y-component of the transmitted wave to find the diffraction efficiency. PMID:26313442

  20. The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA

    PubMed Central

    Hellert, Jan; Weidner-Glunde, Magdalena; Krausze, Joern; Lünsdorf, Heinrich; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2015-01-01

    Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains (“LANA speckles”), a hallmark of KSHV latency. PMID:25947153

  1. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals.

    PubMed

    Wang, He; Wang, Huichao; Liu, Haiwen; Lu, Hong; Yang, Wuhao; Jia, Shuang; Liu, Xiong-Jun; Xie, X C; Wei, Jian; Wang, Jian

    2016-01-01

    Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere. Here, by using point contact spectroscopy measurements, we observe exotic superconductivity around the point contact region on the surface of Cd3As2 crystals. The zero-bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric around zero bias suggest p-wave-like unconventional superconductivity. Considering the topological properties of 3D Dirac semimetals, our findings may indicate that Cd3As2 crystals under certain conditions could be topological superconductors, which are predicted to support Majorana zero modes or gapless Majorana edge/surface modes in the boundary depending on the dimensionality of the material.

  2. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals

    NASA Astrophysics Data System (ADS)

    Wang, He; Wang, Huichao; Liu, Haiwen; Lu, Hong; Yang, Wuhao; Jia, Shuang; Liu, Xiong-Jun; Xie, X. C.; Wei, Jian; Wang, Jian

    2016-01-01

    Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere. Here, by using point contact spectroscopy measurements, we observe exotic superconductivity around the point contact region on the surface of Cd3As2 crystals. The zero-bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric around zero bias suggest p-wave-like unconventional superconductivity. Considering the topological properties of 3D Dirac semimetals, our findings may indicate that Cd3As2 crystals under certain conditions could be topological superconductors, which are predicted to support Majorana zero modes or gapless Majorana edge/surface modes in the boundary depending on the dimensionality of the material.

  3. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program.

    PubMed

    James, Tamara; Hsieh, Meng-Lun; Knipling, Leslie; Hinton, Deborah

    2015-01-01

    Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex. PMID:26404142

  4. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hsieh, Mei-Li; Bur, James A.; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-01

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on (\\hslash ω /{k}bT) than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation.

  5. 3D dependence of the dielectric dispersion in a BaTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Novik, V. K.; Lotonov, A. M.; Gavrilova, N. D.

    2013-08-01

    The 3D dependences ɛ'(log f, T) and tanδ(log f, T) of a perfect BaTiO3 single crystal grown by the Remeika method have been studied in the ranges f = 1-2 × 107 Hz and T = -80-130°C. These dependences characterize a transition from the paraelectric phase (121.5°C) as a near-antiferroelectric transition followed by the transition to the tetragonal phase at ˜79.5°C. According to a number of signs, the range 121.5-79.5°C corresponds to a metastable phase typical of first-order phase transitions. The unexpected result of this work has been discussed with invoking the hypothesis on the BaTiO3 structure in the paraelectric phase, according to which it consists of three antiferroelectric states oriented along the crystallographic axes. Using the dielectric properties of BaTiO3 as an example, the method of direct correct determination of the temperatures of the structural transformations from the anomaly of tanδ(log f, T) has also been demonstrated.

  6. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

    PubMed

    Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-14

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation. PMID:27606574

  7. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

    PubMed

    Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-14

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation.

  8. Propagation of Electromagnetic Waves in 3D Opal-based Magnetophotonic Crystals

    NASA Astrophysics Data System (ADS)

    Pardavi-Horvath, Martha; Makeeva, Galina S.; Golovanov, Oleg A.; Rinkevich, Anatolii B.

    2013-03-01

    Opals, a class of self-organized 3D nanostructures, are typical representatives of photonic bandgap structures. The voids inside of the opal structure of close packed SiO2 spheres can be infiltrated by a magnetic material, creating magnetically tunable magnetophotonic crystals with interesting and potentially useful properties at GHz and THz frequencies. The propagation of electromagnetic waves at microwave frequencies was investigated numerically in SiO2 opal based magnetic nanostructures, using rigorous mathematical models to solve Maxwell's equations complemented by the Landau-Lifshitz equation with electrodynamic boundary conditions. The numerical approach is based on Galerkin's projection method using the decomposition algorithm on autonomous blocks with Floquet channels. The opal structure consists of SiO2 nanospheres, with inter-sphere voids infiltrated with nanoparticles of Ni-Zn ferrites. Both the opal matrix and the ferrite are assumed to be lossy. A model, taking into account the real structure of the ferrite particles in the opal's voids was developed to simulate the measured FMR lineshape of the ferrite infiltrated opal. The numerical technique shows an excellent agreement when applied to model recent experimental data on similar ferrite opals.

  9. Competitive interaction of monovalent cations with DNA from 3D-RISM

    PubMed Central

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition. PMID:26304542

  10. Direct fabrication of complex 3D hierarchical nanostructures by reactive ion etching of hollow sphere colloidal crystals.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Van Cleuvenbergen, Stijn; Clays, Koen

    2016-09-21

    Direct reactive ion etching (RIE) of hollow SiO2 sphere colloidal crystals (HSCCs) is employed as a facile, low-cost method to fabricate complex three-dimensional (3D) hierarchical nanostructures. These multilayered structures are gradually transformed into nanostructures of increasing complexity by controlling the etching time, without complicated procedures (no mask needed). The resulting 3D topologies are unique, and cannot be obtained through traditional approaches. The formation mechanism of these structures is explained in detail by geometrical modeling during the different etching stages, through shadow effects of the higher layers. SEM images confirm the modeled morphological changes. The nanostructures obtained by our approach show very fine features as small as ∼30 nm. Our approach opens new avenues to directly obtain complex 3D nanostructures from colloidal crystals and can find applications in sensing, templating, and catalysis where fine tuning the specific surface might be critical. PMID:27545098

  11. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  12. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.; Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  13. A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties.

    PubMed

    Zou, Guo-Dong; Zhang, Gui-Gang; Hu, Bing; Li, Jian-Rong; Feng, Mei-Ling; Wang, Xin-Chen; Huang, Xiao-Ying

    2013-11-01

    A 3D organic-inorganic hybrid compound, (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)(4.5)({Pr4Sb12O18(OH)Cl(9.5)} Cl)]·3(2-Mepy)·28H2O (1; 2-Mepy=2-methylpyridine, 1,10-phen=1,10-phenanthroline, H2TDC=thiophene-2,5-dicarboxylic acid), was hydrothermally synthesized and structurally characterized. Unusually, two kinds of high-nuclearity clusters, namely [(Pr4Sb12O18(OH)Cl11)(COO)5](5-) and [(Pr4Sb12O18(OH)Cl9)Cl(COO)5](4-), coexist in the structure of compound 1; two of the latter clusters are doubly bridged by two μ2-Cl(-) moieties to form a new centrosymmetric dimeric cluster. An unprecedented spontaneous and reversible single-crystal-to-single-crystal transformation was observed, which simultaneously involved a notable organic-ligand movement between the metal ions and an alteration of the bridging ion in the dimeric cluster, induced by guest-release/re-adsorption, thereby giving rise to the interconversion between compound 1 and the compound (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)4({Pr4Sb12O18Cl(10.5)(TDC)(0.5)(H2O)(1.5)}O(0.5))]·25H2O (1'). The mechanism of this transformation has also been discussed in great detail. Photocatalytic H2-evolution activity was observed for compound 1' under UV light with Pt as a co-catalyst and MeOH as a sacrificial electron donor.

  14. A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties.

    PubMed

    Zou, Guo-Dong; Zhang, Gui-Gang; Hu, Bing; Li, Jian-Rong; Feng, Mei-Ling; Wang, Xin-Chen; Huang, Xiao-Ying

    2013-11-01

    A 3D organic-inorganic hybrid compound, (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)(4.5)({Pr4Sb12O18(OH)Cl(9.5)} Cl)]·3(2-Mepy)·28H2O (1; 2-Mepy=2-methylpyridine, 1,10-phen=1,10-phenanthroline, H2TDC=thiophene-2,5-dicarboxylic acid), was hydrothermally synthesized and structurally characterized. Unusually, two kinds of high-nuclearity clusters, namely [(Pr4Sb12O18(OH)Cl11)(COO)5](5-) and [(Pr4Sb12O18(OH)Cl9)Cl(COO)5](4-), coexist in the structure of compound 1; two of the latter clusters are doubly bridged by two μ2-Cl(-) moieties to form a new centrosymmetric dimeric cluster. An unprecedented spontaneous and reversible single-crystal-to-single-crystal transformation was observed, which simultaneously involved a notable organic-ligand movement between the metal ions and an alteration of the bridging ion in the dimeric cluster, induced by guest-release/re-adsorption, thereby giving rise to the interconversion between compound 1 and the compound (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)4({Pr4Sb12O18Cl(10.5)(TDC)(0.5)(H2O)(1.5)}O(0.5))]·25H2O (1'). The mechanism of this transformation has also been discussed in great detail. Photocatalytic H2-evolution activity was observed for compound 1' under UV light with Pt as a co-catalyst and MeOH as a sacrificial electron donor. PMID:24114981

  15. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  16. Light-spectrum modification of warm white-light-emitting diodes with 3D colloidal photonic crystals to approximate candlelight.

    PubMed

    Lai, Chun-Feng; Hsieh, Cheng-Liang; Wu, Chia-Jung

    2013-09-15

    This study presents the light-spectrum modification of warm white-light-emitting diodes (w-WLEDs) with 3D colloidal photonic crystals (3D CPhCs) to approximate candlelight. The study measures the angular-resolved transmission properties of the w-WLEDs with CPhCs, which exhibit photonic stop bands based on the CPhC photonic band structures. The w-WLEDs with 3D CPhCs produce a low correlated color temperature of 1963 K, a high color-rendering index of 85, and a luminous flux of 22.8 lm (four times that of a candle). This study presents the successful development of a novel low-cost technique to produce candlelight w-WLEDs for use as an indoor light source. PMID:24104827

  17. Nanostructured TTT(TCNQ)2 Organic Crystals as Promising Thermoelectric n-Type Materials: 3D Modeling

    NASA Astrophysics Data System (ADS)

    Sanduleac, Ionel; Casian, Anatolie

    2016-03-01

    The thermoelectric properties of quasi-one-dimensional TTT(TCNQ)2 organic crystals have been investigated to assess the prospect of using this type of compound as an n-type thermoelectric material. A three-dimensional (3D) physical model was elaborated. This takes into account two of the most important interactions of conduction electrons with longitudinal acoustic phonons—scattering of the electrons' by neighboring molecular chains and scattering by impurities and defects. Electrical conductivity, thermopower, power factor, electronic thermal conductivity, and thermoelectric figure of merit in the direction along the conducting molecular chains were calculated numerically for different crystal purity. It was shown that in stoichiometric compounds the thermoelectric figure of merit ZT remains small even after an increase of crystal perfection. The thermoelectric properties may be significantly enhanced by simultaneous increases of crystal perfection and electron concentration. The latter can be achieved by additional doping with donors. For less pure crystals, the interaction with impurities dominates the weak interchain interaction and the simpler one-dimensional (1D) physical model is applicable. When the impurity scattering is reduced, the interchain interaction begins to limit carrier mobility and use of the 3D physical model is required. The optimum properties enabling prediction of ZT ˜ 1 were determined.

  18. Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures.

    PubMed

    Wang, Jun; Lian, Gang; Si, Haibin; Wang, Qilong; Cui, Deliang; Wong, Ching-Ping

    2016-01-26

    Oriented attachment (OA), a nonclassical crystal growth mechanism, provides a powerful bottom-up approach to obtain ordered superstructures, which also demonstrate exciting charge transmission characteristic. However, there is little work observably pronouncing the achievement of 3D OA growth of crystallites with large size (e.g., submicrometer crystals). Here, we report that SnO2 3D ordered superstructures can be synthesized by means of a self-limited assembly assisted by OA in a designed high-pressure solvothermal system. The size of primary building blocks is 200-250 nm, which is significantly larger than that in previous results (normally <10 nm). High pressure plays the key role in the formation of 3D configuration and fusion of adjacent crystals. Furthermore, this high-pressure strategy can be readily expanded to additional materials. We anticipate that the welded structures will constitute an ideal system with relevance to applications in optical responses, lithium ion battery, solar cells, and chemical sensing.

  19. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics.

    PubMed

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  20. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  1. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM.

    PubMed

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-07-01

    Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.

  2. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.

    PubMed

    Sun, Shuhui; Zhang, Gaixia; Geng, Dongsheng; Chen, Yougui; Banis, Mohammad Norouzi; Li, Ruying; Cai, Mei; Sun, Xueliang

    2010-01-18

    A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single-crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW--Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles. PMID:20024993

  3. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    NASA Astrophysics Data System (ADS)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  4. Image forces on 3d dislocation structures in crystals of finite volume

    SciTech Connect

    El-Azab, A.

    1999-07-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  5. Image Forces on 3-D Dislocation Structures in Crystals of Finite Volume

    SciTech Connect

    El-Azab, Anter ); V.V. Bulatov

    1999-01-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  6. Effect of Bending Anisotropy on the 3D Conformation of Short DNA Loops

    NASA Astrophysics Data System (ADS)

    Norouzi, Davood; Mohammad-Rafiee, Farshid; Golestanian, Ramin

    2008-10-01

    The equilibrium three dimensional shape of relatively short loops of DNA is studied using an elastic model that takes into account anisotropy in bending rigidities. Using a reasonable estimate for the anisotropy, it is found that cyclized DNA with lengths that are not integer multiples of the pitch take on nontrivial shapes that involve bending out of planes and formation of kinks. The effect of sequence inhomogeneity on the shape of DNA is addressed, and shown to enhance the geometrical features. These findings could shed some light on the role of DNA conformation in protein DNA interactions.

  7. DNA Brick Crystals with Prescribed Depth

    PubMed Central

    Ke, Yonggang; Ong, Luvena L.; Sun, Wei; Song, Jie; Dong, Mingdong; Shih, William M.; Yin, Peng

    2014-01-01

    We describe a general framework for constructing two-dimensional crystals with prescribed depth and sophisticated three-dimensional features. These crystals may serve as scaffolds for the precise spatial arrangements of functional materials for diverse applications. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micron-size in the lateral dimensions with precisely controlled depth up to 80 nanometers. They can be designed to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels, and to pack DNA helices at parallel and perpendicular angles relative to the plane of the crystals. PMID:25343605

  8. Experimental studies of cobalt ferrite nanoparticles doped silica matrix 3D magneto-photonic crystals

    NASA Astrophysics Data System (ADS)

    Abou Diwan, E.; Royer, F.; Kekesi, R.; Jamon, D.; Blanc-Mignon, M. F.; Neveu, S.; Rousseau, J. J.

    2013-05-01

    In this paper, we present the synthesis and the optical properties of 3D magneto-photonic structures. The elaboration process consists in firstly preparing then infiltrating polystyrene direct opals with a homogeneous solution of sol-gel silica precursors doped by cobalt ferrite nanoparticles, and finally dissolving the polystyrene spheres. Scanning Electron Microscopy (SEM) images of the prepared samples clearly evidence a periodic arrangement. Using a home-made polarimetric optical bench, the transmittance as a function of the wavelength, the Faraday rotation as a function of the applied magnetic field, and the Faraday ellipticity as a function of the wavelength and as a function of the applied magnetic field were measured. The existence of deep photonic band gaps (PBG), the unambiguous magnetic character of the samples and the qualitative modification of the Faraday ellipticity in the area of the PBG are evidenced.

  9. A generalized crystal-cutting method for modeling arbitrarily oriented crystals in 3D periodic simulation cells with applications to crystal-crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan; Sewell, Thomas D.

    2016-10-01

    A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-dimensionally (2D) infinite crystal-crystal homophase and heterophase interfaces, and nanostructures with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates easy definition of constraints on cut crystal geometries. The method preserves the translational symmetry of all Bravais lattices and thus can be applied to any crystal described by such a lattice including complicated, low-symmetry molecular crystals. Implementations are presented with carefully articulated combinations of loop searches and constraints that drastically reduce computational complexity compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals found using the GCCM overcome some limitations in standard distributions of popular molecular dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular dynamics and molecular statics simulations with 2D infinite crystal-crystal homophase interfaces created using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlate with the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how nanostructures can be constructed through simple constraints applied in the GCCM framework. Example GCCM constructions are shown that are relevant to some current problems in materials science, including shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.

  10. The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics.

    PubMed

    Fanfrlík, Jindřich; Přáda, Adam; Padělková, Zdeňka; Pecina, Adam; Macháček, Jan; Lepšík, Martin; Holub, Josef; Růžička, Aleš; Hnyk, Drahomír; Hobza, Pavel

    2014-09-15

    The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.

  11. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  12. Crystallization of DNA-coated colloids.

    PubMed

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  13. Dehydration induced 2D-to-3D crystal-to-crystal network re-assembly and ferromagnetism tuning within two chiral copper(II)-tartrate coordination polymers.

    PubMed

    Liu, Yen-Hsiang; Lee, Szu-Hsuan; Chiang, Jung-Chun; Chen, Po-Chen; Chien, Po-Hsiu; Yang, Chen-I

    2013-12-28

    The synthesis of two homochiral l-tartrate-copper(II) coordination polymers, [Cu2(C4H4O6)2(H2O)2·xH2O]n (1), and [Cu(C4H4O6)]n (2), under hydrothermal conditions, is reported. Compound 1 adopts a 2D layered network structure with a space group of P21, while compound 2 features a 3D network structure with a space group P21212. Interestingly, the 2D layered structure of compound 1 can undergo a crystal-to-crystal network reassembly, with the formation of the 3D network structure of compound 2 under dehydration conditions. Variable temperature and field magnetic studies reveal the existence of a distinct ferromagnetic interaction between Cu(2+) ions as the result of distinct syn-anti carboxylate bridging coordination modes.

  14. In situ 2D-extraction of DNA wheels by 3D through-solution transport.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Nakanishi, Waka; Kawamata, Ibuki; Minami, Kosuke; Komatsu, Hirokazu; Murata, Satoshi; Hill, Jonathan P; Ariga, Katsuhiko

    2015-12-28

    Controlled transfer of DNA nanowheels from a hydrophilic to a hydrophobic surface was achieved by complexation of the nanowheels with a cationic lipid (2C12N(+)). 2D surface-assisted extraction, '2D-extraction', enabled structure-persistent transfer of DNA wheels, which could not be achieved by simple drop-casting.

  15. In situ 2D-extraction of DNA wheels by 3D through-solution transport.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Nakanishi, Waka; Kawamata, Ibuki; Minami, Kosuke; Komatsu, Hirokazu; Murata, Satoshi; Hill, Jonathan P; Ariga, Katsuhiko

    2015-12-28

    Controlled transfer of DNA nanowheels from a hydrophilic to a hydrophobic surface was achieved by complexation of the nanowheels with a cationic lipid (2C12N(+)). 2D surface-assisted extraction, '2D-extraction', enabled structure-persistent transfer of DNA wheels, which could not be achieved by simple drop-casting. PMID:26583486

  16. A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature.

    PubMed

    Qin, Tao; Gong, Jun; Ma, Junhan; Wang, Xin; Wang, Yonghua; Xu, Yan; Shen, Xuan; Zhu, Dunru

    2014-12-28

    A water stable porous 3D metal-organic framework, [Cu3L2(μ3-OH)2(μ2-H2O)]·2DMA (1, mother crystal, H2L = 2,2'-dinitrobiphenyl-4,4'-dicarboxylic acid, DMA = N,N-dimethylacetamide), shows unprecedented irreversible solvent-induced substitutions of bridging aqua ligands and guest-exchanges in single-crystal-to-single-crystal (SCSC) transformations at room temperature (RT), producing quantitatively three daughter crystals, [Cu3L2(μ3-OH)2]·2S (2: 2A, S = acetone; 2B, S = 2-propanol; 2C, S = 2-butanol), which exhibit reversible interconversion by guest-exchanges at RT in SCSC transformations. MOF 1 shows excellent separation selectivity (128) of CO2/N2 at RT and is a better sorbent of micro-solid-phase extraction (μ-SPE) than currently known benchmark ZIF-8.

  17. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  18. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  19. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines. PMID:27448912

  20. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines.

  1. Clusters, molecular layers, and 3D crystals of water on Ni(111)

    SciTech Connect

    Thürmer, Konrad; Nie, Shu; Bartelt, Norman C.; Feibelman, Peter J.

    2014-11-14

    We examined the growth and stability of ice layers on Ni(111) up to ∼7 molecular layers (ML) thick using scanning tunneling microscopy. At low coverage, films were comprised of ∼1 nm wide two-dimensional (2D) clusters. Only above ∼0.5 ML did patches of continuous 2D layers emerge, coexisting with the clusters until the first ML was complete. The structure of the continuous layer is clearly different from that of the 2D clusters. Subsequently, a second molecular layer grew on top of the first. 3D crystallites started to form only after this 2nd ML was complete. 2D clusters re-appeared when thicker films were partially evaporated, implying that these clusters represent the equilibrium configuration at low coverage. Binding energies and image simulations computed with density functional theory suggest that the 2D clusters are partially dissociated and surrounded by H adatoms. The complete 2D layer contains only intact water molecules because of the lack of favorable binding sites for H atoms. We propose molecular structures for the 2D layer that are composed of the same pentagon-heptagon binding motif and water density observed on Pt(111). The similarity of the water structures on Pt and Ni suggests a general prescription for generating low-energy configurations on close-packed metal substrates.

  2. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.

    PubMed Central

    Cameron, A D; Olin, B; Ridderström, M; Mannervik, B; Jones, T A

    1997-01-01

    The zinc metalloenzyme glyoxalase I catalyses the glutathione-dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S-benzyl-glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 A resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the 'glutathione binding domain' found in other glutathione-linked proteins. 3D domain swapping of the N- and C-terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+-dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping. PMID:9218781

  3. Slow to superluminal light waves in thin 3D photonic crystals.

    PubMed

    Galisteo-López, J F; Galli, M; Balestreri, A; Patrini, M; Andreani, L C; López, C

    2007-11-12

    Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few mum size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.

  4. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  5. Inverted Yablonovite-like 3D photonic crystals fabricated by laser nanolithography

    NASA Astrophysics Data System (ADS)

    Shishkin, Ivan I.; Samusev, Kirill B.; Rybin, Mikhail V.; Limonov, Mikhail F.; Kivshar, Yuri S.; Gaidukeviciute, Arune; Kiyan, Roman V.; Chichkov, Boris N.

    2012-06-01

    We report on the fabrication of inverted Yablonovite-like three-dimensional photonic crystals by nonlinear optical nanolithography based on two-photon polymerization of a zirconium propoxide hybrid organic-inorganic material with Irgacure 369 as photo-initiator. Advantage of this material is ultra-low shrinkage that guaranty high fabrication fidelity. Images of the fabricated structure are obtained with a scanning electron microscope. The photonic crystal consists of three sets of nearly cylindrical structural elements directed along the three lattice vectors of the fcc lattice and cross each other at certain angles to produce inverted Yablonovite geometry. To investigate photonic properties of the inverted Yablonovite structures, we calculate the photonic band structure for ten lowest-frequency electromagnetic modes. In contrast to the direct Yablonovite structure that has a complete photonic band gap between the second and third bands, we find no complete photonic band gaps in the inverted Yablonovite lattice. This situation is opposite to the case of fcc lattice of close-packed dielectric spheres in air that has a complete photonic band gap only for the inverted geometry.

  6. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  7. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  8. Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.

    PubMed

    Flory, Justin D; Johnson, Trey; Simmons, Chad R; Lin, Su; Ghirlanda, Giovanna; Fromme, Petra

    2014-01-01

    PNA is hybrid molecule ideally suited for bridging the functional landscape of polypeptides with the structural diversity that can be engineered with DNA nanostructures. However, PNA can be more challenging to work with in aqueous solvents due to its hydrophobic nature. A solution phase method using strain promoted, copper free click chemistry was developed to conjugate the fluorescent dye Cy5 to 2 bifunctional PNA strands as a first step toward building cyclic PNA-polypeptides that can be arranged within 3D DNA nanoscaffolds. A 3D DNA nanocage was designed with binding sites for the 2 fluorescently labeled PNA strands in close proximity to mimic protein active sites. Denaturing polyacrylamide gel electrophoresis (PAGE) is introduced as an efficient method for purifying charged, dye-labeled PNA conjugates from large excesses of unreacted dye and unreacted, neutral PNA. Elution from the gel in water was monitored by fluorescence and found to be more efficient for the more soluble PNA strand. Native PAGE shows that both PNA strands hybridize to their intended binding sites within the DNA nanocage. Förster resonance energy transfer (FRET) with a Cy3 labeled DNA nanocage was used to determine the dissociation temperature of one PNA-Cy5 conjugate to be near 50°C. Steady-state and time resolved fluorescence was used to investigate the dye orientation and interactions within the various complexes. Bifunctional, thermostable PNA molecules are intriguing candidates for controlling the assembly and orientation of peptides within small DNA nanocages for mimicking protein catalytic sites.

  9. Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.

    PubMed

    Flory, Justin D; Johnson, Trey; Simmons, Chad R; Lin, Su; Ghirlanda, Giovanna; Fromme, Petra

    2014-01-01

    PNA is hybrid molecule ideally suited for bridging the functional landscape of polypeptides with the structural diversity that can be engineered with DNA nanostructures. However, PNA can be more challenging to work with in aqueous solvents due to its hydrophobic nature. A solution phase method using strain promoted, copper free click chemistry was developed to conjugate the fluorescent dye Cy5 to 2 bifunctional PNA strands as a first step toward building cyclic PNA-polypeptides that can be arranged within 3D DNA nanoscaffolds. A 3D DNA nanocage was designed with binding sites for the 2 fluorescently labeled PNA strands in close proximity to mimic protein active sites. Denaturing polyacrylamide gel electrophoresis (PAGE) is introduced as an efficient method for purifying charged, dye-labeled PNA conjugates from large excesses of unreacted dye and unreacted, neutral PNA. Elution from the gel in water was monitored by fluorescence and found to be more efficient for the more soluble PNA strand. Native PAGE shows that both PNA strands hybridize to their intended binding sites within the DNA nanocage. Förster resonance energy transfer (FRET) with a Cy3 labeled DNA nanocage was used to determine the dissociation temperature of one PNA-Cy5 conjugate to be near 50°C. Steady-state and time resolved fluorescence was used to investigate the dye orientation and interactions within the various complexes. Bifunctional, thermostable PNA molecules are intriguing candidates for controlling the assembly and orientation of peptides within small DNA nanocages for mimicking protein catalytic sites. PMID:25760314

  10. Construction and Structure Determination of a Three-Dimensional DNA Crystal.

    PubMed

    Simmons, Chad R; Zhang, Fei; Birktoft, Jens J; Qi, Xiaodong; Han, Dongran; Liu, Yan; Sha, Ruojie; Abdallah, Hatem O; Hernandez, Carina; Ohayon, Yoel P; Seeman, Nadrian C; Yan, Hao

    2016-08-10

    Structural DNA nanotechnology combines branched DNA junctions with sticky-ended cohesion to create self-assembling macromolecular architectures. One of the key goals of structural DNA nanotechnology is to construct three-dimensional (3D) crystalline lattices. Here we present a new DNA motif and a strategy that has led to the assembly of a 3D lattice. We have determined the X-ray crystal structures of two related constructs to 3.1 Å resolution using bromine-derivatized crystals. The motif we used employs a five-nucleotide repeating sequence that weaves through a series of two-turn DNA duplexes. The duplexes are tied into a layered structure that is organized and dictated by a concert of four-arm junctions; these in turn assemble into continuous arrays facilitated by sequence-specific sticky-ended cohesion. The 3D X-ray structure of these DNA crystals holds promise for the design of new structural motifs to create programmable 3D DNA lattices with atomic spatial resolution. The two arrays differ by the use of four or six repeats of the five-nucleotide units in the repeating but statistically disordered central strand. In addition, we report a 2D rhombuslike array formed from similar components. PMID:27447429

  11. Self-assembly of 3D prestressed tensegrity structures from DNA

    PubMed Central

    Liedl, Tim; Högberg, Björn; Tytell, Jessica; Ingber, Donald E.; Shih, William M.

    2010-01-01

    Tensegrity or tensional integrity is a property of a structure that relies on a balance between components that are either in pure compression or in pure tension for its stability [1,2]. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture [3,4]. Here we report nanoscale, prestressed, three-dimensional tensegrity structures in which rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables. Our DNA tensegrity structures can self-assemble against forces up to 14 pN, which is twice the stall force of powerful molecular motors such as kinesin or myosin [5,6]. The forces generated by this molecular prestressing mechanism can be employed to bend the DNA bundles or to actuate the entire structure through enzymatic cleavage at specific sites. In addition to being building blocks for nanostructures, tensile structural elements made of single-stranded DNA could be used to study molecular forces, cellular mechanotransduction, and other fundamental biological processes. PMID:20562873

  12. Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)

    SciTech Connect

    Ruben A. Abagyan, PhD

    2004-04-15

    OAK-B135 DNA Damage Recognition and Repair (DDR and R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. the authors have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR and R process. The significant achievements of this project include: (1) Construction of the computational pipeline for searching DDR and R genes, building and validation of 3D models of proteins involved in DDR and R; (2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; (3) Important improvement of macromolecular docking technology and its application to predict the DNA-Protein complex conformation; (4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; (5) Construction and maintenance of the DNA Damage Recognition and Repair Database; and (6) Producing 14 research papers (10 published and 4 in preparation).

  13. The Calculation of the Band Structure in 3D Phononic Crystal with Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Aryadoust, Mahrokh; Salehi, H.

    2015-12-01

    In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.

  14. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector.

    PubMed

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  15. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  16. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  17. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  18. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  19. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

    PubMed Central

    Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik

    2016-01-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  20. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components.

    PubMed

    Ketterer, Philip; Willner, Elena M; Dietz, Hendrik

    2016-02-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  1. Functionalizing designer DNA crystals with a triple-helical veneer.

    PubMed

    Rusling, David A; Chandrasekaran, Arun Richard; Ohayon, Yoel P; Brown, Tom; Fox, Keith R; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C

    2014-04-01

    DNA is a very useful molecule for the programmed self-assembly of 2D and 3D nanoscale objects.1 The design of these structures exploits Watson-Crick hybridization and strand exchange to stitch linear duplexes into finite assemblies.2-4 The dimensions of these complexes can be increased by over five orders of magnitude through self-assembly of cohesive single-stranded segments (sticky ends).5, 6 Methods that exploit the sequence addressability of DNA nanostructures will enable the programmable positioning of components in 2D and 3D space, offering applications such as the organization of nanoelectronics,7 the direction of biological cascades,8 and the structure determination of periodically positioned molecules by X-ray diffraction.9 To this end we present a macroscopic 3D crystal based on the 3-fold rotationally symmetric tensegrity triangle3, 6 that can be functionalized by a triplex-forming oligonucleotide on each of its helical edges. PMID:24615910

  2. Genome-Wide Identification and 3D Modeling of Proteins involved in DNA Damage Recognition and Repair (Final Report)

    SciTech Connect

    Abagyan, Ruben; An, Jianghong

    2005-08-12

    DNA Damage Recognition and Repair (DDR&R) proteins play a critical role in cellular responses to low-dose radiation and are associated with cancer. We have performed a systematic, genome-wide computational analysis of genomic data for human genes involved in the DDR&R process. The significant achievements of this project include: 1) Construction of the computational pipeline for searching DDR&R genes, building and validation of 3D models of proteins involved in DDR&R; 2) Functional and structural annotation of the 3D models and generation of comprehensive lists of suggested knock-out mutations; and the development of a method to predict the effects of mutations. Large scale testing of technology to identify novel small binding pockets in protein structures leading to new DDRR inhibitor strategies 3) Improvements of macromolecular docking technology (see the CAPRI 1-3 and 4-5 results) 4) Development of a new algorithm for improved analysis of high-density oligonucleotide arrays for gene expression profiling; 5) Construction and maintenance of the DNA Damage Recognition and Repair Database; 6) Producing 15 research papers (12 published and 3 in preparation).

  3. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    PubMed

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ. PMID:26419771

  4. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    NASA Astrophysics Data System (ADS)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  5. Theory of the zero-field splitting of 6S(3d5)-state ions in cubic crystals

    NASA Astrophysics Data System (ADS)

    Wan-Lun, Yu; Tao, Tan

    1994-02-01

    A study is made of the zero-field splitting (ZFS) of 6S(3d5) ions in cubic crystals, based on an extended crystal-field (CF) model which assumes two constants ζte and ζtt in the description of the spin-orbit (SO) interaction. In addition to the recognized origin for the ZFS, namely, the combined effect of the CF and the SO couplings, a second source is found to arise from the SO interaction alone through a difference between ζte and ζtt caused by covalency. To understand this second effect, we have investigated the SO coupling processes which contribute to the ZFS, using the Macfarlane-Zdansky perturbation procedure. Processes in which the couplings are all between states of different configurations tm2e5-m are found to make a positive contribution proportional to ζ4te. Other processes contribute negatively through a term in ζ2teζ2tt. The ZFS is thus determined by the relative magnitudes of these two parts, and a small difference between ζte and ζtt will cause a great change in its value. Application of this new theory is successfully made to Mn2+ ions in tetrahedral II-VI compounds and in fluoroperovskites.

  6. Immunization of DNA vaccine encoding C3d-VP1 fusion enhanced protective immune response against foot-and-mouth disease virus.

    PubMed

    Fan, Huiying; Tong, Tiezhu; Chen, Huanchun; Guo, Aizhen

    2007-10-01

    Because foot-and-mouth disease virus (FMDV) remains a great problem to many livestock of agricultural importance, safe, effective vaccines are in great need. DNA vaccine would be a promising candidate but the design remains to be optimized. VP1 gene of FMDV strain O/ES/2001 was linked to three copies of either porcine or murine C3d or four copies of a 28-aa fragment of murine C3d containing the CR2 receptor binding domain (M28). The resultant plasmids encoding C3d/M28-VP1 fusion or only VP1 as control were immunized guinea pigs. Both cellular and humoral immune responses were evaluated and protection was observed after virus challenge. As a result, although the plasmid encoding only VP1 could elicit virus-binding antibody detected by ELISA, splenocyte proliferation, IL-4 and IFN-gamma production, the levels were significantly less than C3d/M28-VP1 fusion. Furthermore, VP1 failed to induce neutralization antibody and protect animals against virus challenge, while murine C3d-VP1 fusion efficiently induced neutralization antibody response and provided 87.50% of the animals with complete protection and 12.50% with partial protection. Among murine C3d, M28, and porcine C3d, the adjuvant effect of murine C3d is strongest, followed by porcine C3d, and last murine M28. In conclusion, the fact that C3d genes, when coupled to VP1 gene, are able to greatly enhance the protective immune response of VP1 DNA in guinea pigs suggests that C3d-VP1 DNA chimera has a significant potential for use as a novel DNA vaccine against FMDV. PMID:17497212

  7. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  8. Plasmonic photonic crystals realized through DNA-programmable assembly

    PubMed Central

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; Zhou, Yu; Schatz, George C.; Mirkin, Chad A.

    2015-01-01

    Three-dimensional dielectric photonic crystals have well-established enhanced light–matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry–Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼102) over the visible and near-infrared spectrum. PMID:25548175

  9. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

    PubMed

    Gerling, Thomas; Wagenbauer, Klaus F; Neuner, Andrea M; Dietz, Hendrik

    2015-03-27

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. PMID:25814577

  10. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    SciTech Connect

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M. . E-mail: tmr15@pitt.edu

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, both sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  11. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xin, Na; Sun, Ya-Qiu; Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying

    2016-11-01

    Seven new 3d-4f heterometallic coordination polymers, [Ln(CuL)2(Hbtca)(btca)(H2O)]·2H2O (Ln = TbIII1, PrIII2, SmIII3, EuIII4, YbIII5), [Nd(NiL)(nip)(Rnip)]·0·25H2O·0.25CH3OH (R= 0.6CH3, 0.4H) 6 and [Nd2(NiL)(nip)3(H2O)]·2H2O 7(CuL or NiL, H2L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H2btca = benzotriazole-5-carboxylic acid; H2nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit a double-strand meso-helical chain structures formed by [LnIIICuII2] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip2- bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χMT versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm-1, zj' = -0.33 cm-1, gav = 1.94; for 5, Δ = 6.98 cm-1, zj' = 1.53 cm-1, gav = 1.85).

  12. Investigation the effect of lattice angle on the band structure in 3D phononic crystals with rhombohedral(II) lattice

    NASA Astrophysics Data System (ADS)

    Aryadoust, M.; Salehi, H.

    2014-12-01

    In this paper, the propagation of acoustic waves in the phononic crystals (PC) of 3D with rhombohedral(II) lattice is studied theoretically. The PC are constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of the Brillouin zone (BZ). In this study, we analyze the dependence of the band structures inside (the complete band gap width) and outside the complete band gap (negative refraction of acoustic wave) on the lattice angle in the irreducible part of the first BZ. Also the effect of lattice angle has been analyzed on the band structure of the () and (122) planes. Then, the equifrequency surface is calculated for the high symmetry point in the [111] and [100] directions. The results show that the maximum width of AEBG (0.022) in the irreducible part of the BZ of RHL2 is formed for (105∘) and no AEBG is found for γ > 150∘. Also, the maximum of the first and second AEBG width are 0.1076 and 0.0523 for γ = 133∘ in the () plane and the maximum of the first and second AEBG width are 0.1446 and 0.0998 for γ = 113∘ in the (122) plane. In addition, we have found that frequencies in which negative refraction occurs is constant for all lattice angles.

  13. Micro-wires self-assembled and 3D-connected with the help of a nematic liquid crystal.

    PubMed

    Agha, H; Fleury, J-B; Galerne, Y

    2012-09-01

    We discuss a method for producing automatic 3D connections at right places between substrates in front of one another. The idea is based on the materialization of disclination lines working as templates. The lines are first created in the nematic liquid crystal (5CB) at the very place where microwires have to be synthesized. Due to their anchoring properties, colloids dispersed into the nematic phase produce orientational distortions around them. These distortions, which may be considered as due to topological charges, result in a nematic force, able to attract the colloids towards the disclinations. Ultimately, the particles get trapped onto them, forming micro- or nano-necklaces. Before being introduced in the nematic phase, the colloids are covered with an adhering and conducting polypyrrole film directly synthesized at the surface of the particles (heterogeneous polymerization). In this manner, the particles become conductive so that we may finally perform an electropolymerization of pyrrole monomers solved in 5CB, and definitely stick the whole necklace. The electric connection thus synthesized is analyzed by AFM, and its strength is checked by means of hydrodynamic tests. This wiring method could allow Moore's law to overcome the limitations that arise when down-sizing the electronic circuits to nanometer scale.

  14. Preliminary studies of 3D magnetophotonic crystals designed from a template stuffed by sol-gel process

    NASA Astrophysics Data System (ADS)

    Kekesi, R.; Royer, F.; Blanc Mignon, M. F.; Goutaland, F.; Chatelon, J. P.; Tombacz, E.; Jamon, D.

    2010-05-01

    Based on the previous work of Nishijima [1], the aim of this work is to realize 3D magnetophotonic crystals (MPC) by a sol-gel approach, in order to obtain a magneto-optical material with a large merit factor. These MPC are made by immersion of an opal template of polystyrene spheres in a sol-gel TEOS preparation doped by magnetic nanoparticles. The template can be realized using centrifugation or sedimentation, and it is removed after the solidification of the doped matrix by an immersion in ethyl acetate. Calculations made on 1D structures confirm that a periodic arrangement of a magneto-optical material is a way to increase the Faraday Rotation and the merite factor. The characterization of the samples is made by SEM and UV-VIS spectrophotometry. In virtue of the SEM pictures we can establish that the template is well-structured, what is confirmed by a Photonic Band Gap (PBG) in the spectrophotometry spectral. The central wavelength of the PBG depends on the size of the polystyrene spheres. The final MPC obtained with a silica matrix doped by maghemite nanoparticles has also well-structured areas. Ongoing works concern the study of the Farady rotation as a function of the wavelength.

  15. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms. PMID:26735012

  16. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  17. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed. PMID:27218474

  18. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

  19. Holographic fabrication of 3D photonic crystal templates with 4, 5, and 6-fold rotational symmetry using a single beam and single exposure

    NASA Astrophysics Data System (ADS)

    Lowell, David; George, David; Lutkenhaus, Jeffery; Philipose, Usha; Zhang, Hualiang; Lin, Yuankun

    2016-03-01

    A method of fabricating large-volume three-dimensional (3D) photonic crystal and quasicrystal templates using holographic lithography is presented. Fabrication is accomplished using a single-beam and single exposure by a reflective optical element (ROE). The ROE is 3D printed support structure which holds reflecting surfaces composed of silicon or gallium arsenide. Large-volume 3D photonic crystal and quasicrystal templates with 4-fold, 5-fold, and 6-fold symmetry were fabricated and found to be in good agreement with simulation. Although the reflective surfaces were setup away from the Brewster's angle, the interference among the reflected s and p-polarizations still generated bicontinuous structures, demonstrating the flexibility of the ROE. The ROE, being a compact and inexpensive alternative to diffractive optical elements and top-cut prisms, facilitates the large-scale integration of holographically fabricated photonic structures into on-chip applications.

  20. Automated quantification of DNA demethylation effects in cells via 3D mapping of nuclear signatures and population homogeneity assessment.

    PubMed

    Gertych, Arkadiusz; Wawrowsky, Kolja A; Lindsley, Erik; Vishnevsky, Eugene; Farkas, Daniel L; Tajbakhsh, Jian

    2009-07-01

    Today's advanced microscopic imaging applies to the preclinical stages of drug discovery that employ high-throughput and high-content three-dimensional (3D) analysis of cells to more efficiently screen candidate compounds. Drug efficacy can be assessed by measuring response homogeneity to treatment within a cell population. In this study, topologically quantified nuclear patterns of methylated cytosine and global nuclear DNA are utilized as signatures of cellular response to the treatment of cultured cells with the demethylating anti-cancer agents: 5-azacytidine (5-AZA) and octreotide (OCT). Mouse pituitary folliculostellate TtT-GF cells treated with 5-AZA and OCT for 48 hours, and untreated populations, were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei (n = 163). Cell images were processed utilizing an automated 3D analysis software that we developed by combining seeded watershed segmentation to extract nuclear shells with measurements of Kullback-Leibler's (K-L) divergence to analyze cell population homogeneity in the relative nuclear distribution patterns of MeC versus DAPI stained sites. Each cell was assigned to one of the four classes: similar, likely similar, unlikely similar, and dissimilar. Evaluation of the different cell groups revealed a significantly higher number of cells with similar or likely similar MeC/DAPI patterns among untreated cells (approximately 100%), 5-AZA-treated cells (90%), and a lower degree of same type of cells (64%) in the OCT-treated population. The latter group contained (28%) of unlikely similar or dissimilar (7%) cells. Our approach was successful in the assessment of cellular behavior relevant to the biological impact of the applied drugs, i.e., the reorganization of MeC/DAPI distribution by demethylation. In a comparison with other metrics, K-L divergence has proven to be a more

  1. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J.; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D.; Goertzen, Andrew L.

    2013-12-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  2. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  3. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm3 crystals

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm3 cubic crystals, in contrast to our previous development using 3.0 mm3 cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm3 in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm2, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  4. Negative refraction and focusing analysis in a left-handed material slab and realization with a 3D photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Ahmadlou, Majid; Kamarei, Mahmoud; Sheikhi, Mohammad Hossein

    2006-02-01

    The increasing interest in metamaterials and structures with negative refraction index requires a formulation capable of a full analysis of wave propagation in such materials and structures. Since two-dimensional (2D) problems have been largely explored in the literature, the natural step is a three-dimensional (3D) formulation of these structures. In this paper, (3D) formulation and simulation of a left-handed metamaterial slab using the finite-difference time domain (FDTD) method in conjunction with perfectly matched layers (PMLs) is presented, and also a (3D) photonic crystal (PC) based structure is presented as a candidate for replacing the left-handed medium slab to realize the negative index of refraction on natural dielectric substrates. The results of these simulations are compared with each other, and the resulting outputs of the developed model are in good agreement. The results demonstrate numerically the focusing of the field emitted from an omnidirectional line source placed in front of the slab and crystal. Both the source and the focus pattern are away from the slab interfaces at two sides of the slab to have a real, negative perfect image. The dimensions of the simulation domain are set to have both source and image in the resulted plots. The focus pattern shows the ability of a photonic crystal structure in making a true flat lens.

  5. DNA-guided crystallization of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel; Gang, Oleg

    2008-01-01

    Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of `encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ~4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.

  6. Crystal Structure of Human DNA Methyltransferase 1.

    PubMed

    Zhang, Zhi-Min; Liu, Shuo; Lin, Krystal; Luo, Youfu; Perry, John Jefferson; Wang, Yinsheng; Song, Jikui

    2015-07-31

    DNMT1 (DNA methyltransferase 1) is responsible for propagating the DNA methylation patterns during DNA replication. DNMT1 contains, in addition to a C-terminal methyltransferase domain, a large N-terminal regulatory region that is composed of an RFTS (replication foci targeting sequence) domain, a CXXC zinc finger domain and a pair of BAH (bromo adjacent homology) domains. The regulatory domains of DNMT1 mediate a network of protein-protein and protein-DNA interactions to control the recruitment and enzymatic activity of DNMT1. Here we report the crystal structure of human DNMT1 with all the structural domains (hDNMT1, residues 351-1600) in complex with S-adenosyl-l-homocysteine at 2.62Å resolution. The RFTS domain directly associates with the methyltransferase domain, thereby inhibiting the substrate binding of hDNMT1. Through structural analysis, mutational, biochemical and enzymatic studies, we further identify that a linker sequence between the CXXC and BAH1 domains, aside from its role in the CXXC domain-mediated DNMT1 autoinhibition, serves as an important regulatory element in the RFTS domain-mediated autoinhibition. In comparison with the previously determined structure of mouse DNMT1, this study also reveals a number of distinct structural features that may underlie subtle functional diversity observed for the two orthologues. In addition, this structure provides a framework for understanding the functional consequence of disease-related hDNMT1 mutations.

  7. A new 3D nickel(II) framework composed of large rings: Ionothermal synthesis and crystal structure

    SciTech Connect

    Xu Ling; Choi, Eun-Young; Kwon, Young-Uk

    2008-11-15

    Ionothermal reaction between Ni{sup 2+} and 1,3,5-benzentricarboxylic acid (H{sub 3}BTC) with [AMI]Cl (AMI=1-amyl-3-methylimidazolium) as the reaction medium produced a novel 3D mixed-ligand metal-organic framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] (1) (MI=1-methylimidazole) with [AMI]{sup +} incorporated in the framework. The framework is formed by connecting 2D planes, made up of 32- and 48-membered rings, through 1D chains composed of 32-membered rings. The two BTC{sup 3-} ligands in 1 show the same connectivity mode with two bidentate and one {mu}{sub 2} bridging carboxylic groups. This is a new connectivity mode to the already existing 17 in the Ni-BTC system. The role of MI and [AMI]Cl in the structure formation is discussed. - Graphical Abstract: A novel 3D framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] is obtained in ionothermal system with [AMI]{sup +} incorporating in the cavities as structure directing template and BTC{sup 3-} showing a new coordination fashion. The 3D framework is constructed by 2D layers linked with 1D double chains. The title compound has the middle thermal stability at ca. 280 deg. C.

  8. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  9. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  10. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  11. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  12. Importance of the DNA "bond" in programmable nanoparticle crystallization.

    PubMed

    Macfarlane, Robert J; Thaner, Ryan V; Brown, Keith A; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T; Mirkin, Chad A

    2014-10-21

    If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling's rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner. PMID:25298535

  13. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea

  14. DNA-mediated nanoparticle crystallization into Wulff polyhedra.

    PubMed

    Auyeung, Evelyn; Li, Ting I N G; Senesi, Andrew J; Schmucker, Abrin L; Pals, Bridget C; de la Cruz, Monica Olvera; Mirkin, Chad A

    2014-01-01

    Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.

  15. Duality between the dynamics of line-like brushes of point defects in 2D and strings in 3D in liquid crystals

    NASA Astrophysics Data System (ADS)

    Digal, Sanatan; Ray, Rajarshi; Saumia, P. S.; Srivastava, Ajit M.

    2013-10-01

    We analyze the dynamics of dark brushes connecting point vortices of strength ±1 formed in the isotropic-nematic phase transition of a thin layer of nematic liquid crystals, using a crossed polarizer set up. The evolution of the brushes is seen to be remarkably similar to the evolution of line defects in a three-dimensional nematic liquid crystal system. Even phenomena like the intercommutativity of strings are routinely observed in the dynamics of brushes. We test the hypothesis of a duality between the two systems by determining exponents for the coarsening of total brush length with time as well as shrinking of the size of an isolated loop. Our results show scaling behavior for the brush length as well as the loop size with corresponding exponents in good agreement with the 3D case of string defects.

  16. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    PubMed Central

    2015-01-01

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  17. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-01

    Three new 1D to 3D complexes, namely, {[Ni(btec)(Himb)2(H2O)2]·6H2O}n (1), {[Cd(btec)0.5(imb)(H2O)]·1.5H2O}n (2), and {[Zn(btec)0.5(imb)]·H2O}n (3) (H4btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (53·62·7)(52·64). Complex 3 presents a 3D framework with a point symbol of (4·64·8)(42·62·82). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature.

  18. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    PubMed

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  19. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  20. Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions

    NASA Astrophysics Data System (ADS)

    Maletic, S.; Maletic, D.; Petronijevic, I.; Dojcilovic, J.; M. Popovic, D.

    2014-02-01

    In this study, the effects of doping by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions on dielectric and infrared properties of SrTiO3 (STO) single crystals are investigated. It is well known that doping of the SrTiO3 can change the dielectric properties of the STO from an insulator to an n-type semiconductor, and even to a metallic conductor. Dielectric and infrared (IR) properties of the undoped STO and doped STO single crystals are analyzed using dielectric spectroscopy (80 kHz-5 MHz), transmission (200 cm-1-4000 cm-1), and reflection spectroscopy (50 cm-1-2000 cm-1). It is found that doping by the 3d ions reduces the value of dielectric permittivity, but the trend of temperature dependence of the dielectric permittivity remains almost unchanged. On the other hand, dielectric spectroscopy measurements for samples doped by 4f ions show the anomalous behaviors of the dielectric permittivity at temperatures around the temperature of the structural phase transition. There are two fractures of temperature dependences of inverse dielectric permittivity ɛr-1(T). Transmittance spectroscopy measurements show that there are differences in the shape of the spectrum in the mid-IR region between the undoped STO and the one doped by 4f ions. The differences in the reflectance spectrum between the STO:Nd and STO are analyzed in detail.

  1. Six-membered metalla-coronands. synthesis and crystal packing: columns, compartments, and 3D-networks.

    PubMed

    Saalfrank, Rolf W; Deutscher, Christian; Sperner, Stefan; Nakajima, Takayuki; Ako, Ayuk M; Uller, Eveline; Hampel, Frank; Heinemann, Frank W

    2004-07-12

    Reaction of various N-substituted diethanolamines H(2)L(3) (4) with calcium hydride and iron(III) chloride leads to the self-assembly of six-membered ferric wheels [Fe(6)X(6)(L(3))(6)] (5). Principally, all the iron coronands are isostructural; however, they differ fundamentally with respect to their crystal packing. Exemplarily, this is discussed for selected members of the space groups R, P, P2(1)/c, P2(1)/n, C2/c, and P. Depending on the nature of their sidearms, the ferric wheels create various substructures. For instance, the ferric wheels 5a-i of space group R or P are piled in parallel in cylindrical columns, which are surrounded by six parallel columns alternately dislocated by (1)/(3)c and (2)/(3)c against the central one. Pronounced van der Waals interactions give rise to compartmentation and incarceration of guest molecules as seen for 5e,g. However, in 5h strong pi-pi interactions create a three-dimensional scaffold. The most significant difference of the ferric wheels 5j-p of space groups P2(1)/c, P2(1)/n, and C2/c is that these ferric wheels are arranged in parallel in two orientations. They differ mainly only by the included angle of the two groups of parallel wheels. In the case of 5l, molecular chains are formed in the crystal due to pi-pi interactions. The ferric wheels 5q-y of space group P are packed in the crystal most simply, with all the ferric wheels piled in parallel.

  2. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  3. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals--A Multifunctional Fluorescence-Based Sensor Platform.

    PubMed

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H; Gan, Zongsong; Cole, Ivan S; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-01-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructure CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing. PMID:26400503

  4. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals-A Multifunctional Fluorescence-Based Sensor Platform

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H.; Gan, Zongsong; Cole, Ivan S.; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-09-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructue CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing.

  5. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  6. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes

    PubMed Central

    Pujato, Mario; Kieken, Fabien; Skiles, Amanda A.; Tapinos, Nikos; Fiser, Andras

    2014-01-01

    Proper cell functioning depends on the precise spatio-temporal expression of its genetic material. Gene expression is controlled to a great extent by sequence-specific transcription factors (TFs). Our current knowledge on where and how TFs bind and associate to regulate gene expression is incomplete. A structure-based computational algorithm (TF2DNA) is developed to identify binding specificities of TFs. The method constructs homology models of TFs bound to DNA and assesses the relative binding affinity for all possible DNA sequences using a knowledge-based potential, after optimization in a molecular mechanics force field. TF2DNA predictions were benchmarked against experimentally determined binding motifs. Success rates range from 45% to 81% and primarily depend on the sequence identity of aligned target sequences and template structures, TF2DNA was used to predict 1321 motifs for 1825 putative human TF proteins, facilitating the reconstruction of most of the human gene regulatory network. As an illustration, the predicted DNA binding site for the poorly characterized T-cell leukemia homeobox 3 (TLX3) TF was confirmed with gel shift assay experiments. TLX3 motif searches in human promoter regions identified a group of genes enriched in functions relating to hematopoiesis, tissue morphology, endocrine system and connective tissue development and function. PMID:25428367

  7. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    NASA Astrophysics Data System (ADS)

    Khmelinskaia, Alena; Franquelim, Henri G.; Petrov, Eugene P.; Schwille, Petra

    2016-05-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding.

  8. Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Tidu, Aurélien; Portier, François; Mosser, Gervaise; Schanne-Klein, Marie-Claire

    2016-07-11

    This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules. PMID:27410876

  9. Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals.

    PubMed

    Smalyukh, I I; Pratibha, R; Madhusudana, N V; Lavrentovich, O D

    2005-02-01

    We report on the selective imaging of different director fields in a biaxial smectic A (SmAb) liquid crystal using Fluorescence Confocal Polarizing Microscopy (FCPM) and Polarizing Microscopy (PM). The patterns of two directors, namely the director n(a) perpendicular to the lamellae and the director n(b) in their planes are visualized by doping the liquid crystal with two fluorescent dyes with different orientation of the transition dipoles with respect to the lamellar matrix. The properties of defects such as disclinations and focal conic domains (FCDs) are consistent with the non-polar D2h-symmetry of the SmA(b) mesophase in the studied mixture of bent-core and rod-like molecules: (1) majority of defects in the director n(b) are half-integer "+/-1/2" disclinations; (2) the integer-strength "+/-1" defects tend to split into the "+/-1/2" disclinations. We compare the vertical cross-sections of the "+/-1" disclinations in the field in SmA(b) and uniaxial nematic samples. In SmA(b), the "+/-1" disclinations do not escape into the third dimension, while in the nematic samples with Schlieren textures they do despite the surface anchoring at the plates; the experimentally determined director field around the escaped disclination capped by a pair of surface point defects--boojums matches the one predicted recently [C. Chiccoli et al., Phys. Rev. E 66, 030701 (2002)]. The FCD structure in SmA(b) is similar to that in SmA and SmC in terms of the normal to the layers but differs significantly in terms of the director n(b) field parallel to the smectic layers. The FCDs in SmA(b) can be associated with topologically non-trivial configurations of n(b) in the surrounding matrix that are equivalent to the disclination lines.

  10. Investigation the effect of lattice angle on the band gap width in 3D phononic crystals with rhombohedral(I) lattice

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar

    2014-07-01

    In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.

  11. Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis.

    PubMed

    Aleksić, Maja; Bertoša, Branimir; Nhili, Raja; Uzelac, Lidija; Jarak, Ivana; Depauw, Sabine; David-Cordonnier, Marie-Hélène; Kralj, Marijeta; Tomić, Sanja; Karminski-Zamola, Grace

    2012-06-14

    A series of new N,N-dimethylaminopropyl- and 2-imidazolinyl-substituted derivatives of benzo[b]thienyl- and thieno[2,3-b]thienylcarboxanilides and benzo[b]thieno[2,3-c]- and thieno[3',2':4,5]thieno[2,3-c]quinolones were prepared. Quinolones were prepared by the reaction of photochemical dehydrohalogenation of corresponding anilides. Carboxanilides and quinolones were tested for the antiproliferative activity. 2-Imidazolinyl-substituted derivatives showed very prominent activity. By use of the experimentally obtained antitumor measurements, 3D-derived QSAR analysis was performed for the set of compounds. Highly predictive 3D-derived QSAR models were obtained, and molecular properties that have the highest impact on antitumor activity were identified. Carboxanilides 6a-c and quinolones 9a-c and 11a were evaluated for DNA binding propensities and topoisomerases I and II inhibition as part of their mechanism of action assessment. The evaluated differences in the mode of action nicely correlate with the results of the 3D-QSAR analysis. Taken together, the results indicate which modifications of the compounds from the series should further improve their anticancer properties.

  12. A new 3D Co(II)–organic framework with acylamide-containing tetracarboxylate ligand: Solvothermal synthesis, crystal structure, gas adsorption and magnetic property

    SciTech Connect

    Zhang, Qingfu Zhang, Haina; Geng, Aijing; Wang, Suna; Zhang, Chong

    2014-04-01

    A new cobalt(II)–organic framework, [Co{sub 2}(L)(py){sub 2}(DMSO)]{sub n}• 0.5nDMF• 2nDMSO (1) [H{sub 4}L=5,5'-((naphthalene-2,6-dicarbonyl)bis(azanediyl))diisophthalic acid, py=pyridine, DMSO=dimethyl sulfoxide, DMF=N,N-dimethylformamide], has been solvothermally synthesized and characterized by elemental analysis, IR, TGA, PXRD and single-crystal X-ray crystallography. The structural analysis reveals that complex 1 is a 3D framework built from nanosized acylamide-containing tetracarboxylate ligands (L{sup 4−}) and dinuclear [Co{sub 2}(CO{sub 2}){sub 4}] secondary building units (SBUs), exhibiting a uninodal (4,4)-connected crb topology with the Schläfli symbol of (4• 6{sup 5}). The desolvated complex (1a) displays higher adsorption capability for CO{sub 2} than N{sub 2}, which may be due to the relatively strong binding affinity between the CO{sub 2} molecules and acylamide groups in the framework. The magnetic investigation shows that the dominant antiferromagnetic interaction is observed in complex 1. - Graphical abstract: A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand was solvothermally synthesized and structurally characterized, its thermal stability, gas adsorption and magnetic property were studied. - Highlights: • A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand has been solvothermally synthesized and characterized. • Complex 1 exhibits a uninodal (4,4)-connected crb topology. • The thermal stability, gas adsorption and magnetic property were studied.

  13. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  14. 3D {ital XY} Scaling of the Irreversibility Line of YBa{sub 2}Cu{sub 3}O{sub 7} Crystals

    SciTech Connect

    Cooper, J.R.; Loram, J.W.; Johnson, J.D.; Hodby, J.W.; Changkang, C.

    1997-09-01

    We find experimentally that the irreversibility line, H{sub irr}(T) , and the reversible magnetization of twinned YBa{sub 2}Cu {sub 3}O{sub 7} crystals both show 3D XY scaling, which suggests a common origin for both quantities. Analysis of this result and of a correlation between the condensation energy and H{sub irr}(T) of oxygen deficient YBa{sub 2}Cu {sub 3}O{sub 7{minus}{delta}} for 0{lt}{delta}{lt}0.6 , implies that H{sub irr}(T) is strongly influenced by critical fluctuations. It is possible that these values of H{sub irr}(T) and the recently discovered vortex melting line, H{sub m}(T) , both correspond to an upper critical field line which has been suppressed by thermodynamic fluctuations. {copyright} {ital 1997} {ital The American Physical Society}

  15. Role of surfactant during microemulsion photopolymerization for the creation of three-dimensional (3D) liquid crystal elastomer microsphere spatial cell scaffolds

    NASA Astrophysics Data System (ADS)

    Hegmann, Elda; Bera, Tanmay; Malcuit, Christopher; Clements, Robert

    2016-06-01

    Three-dimensional (3D) cell scaffolds based on connected nematic liquid crystal elastomer microsphere architectures support the attachment and proliferation of C2C12 myoblasts, neuroblastomas (SHSY5Y) and human dermal fibroblasts (hDF). The microsphere spatial cell scaffolds were prepared by an oil-in-water microemulsion photopolymerization of reactive nematic mesogens in the presence of various surfactants, and the as-prepared scaffold constructs are composed of smooth surface microspheres with diameter ranging from 10 to 30 μm. We here investigate how the nature and type of surfactant used during the microemulsion photopolymerization impacts both the size and size distribution of the resulting microspheres as well as their surface morphology, i.e. the surface roughness.

  16. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.

    PubMed

    Wang, Aijun; Liu, Wenfang; Tang, Junjie; Chen, Sheng-Li; Dong, Peng

    2014-04-15

    A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter. PMID:24978999

  17. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.

    PubMed

    Glushko, O; Meisels, R; Kuchar, F

    2010-03-29

    The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.

  18. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.

  19. Crystal-Templated Colloidal Clusters Exhibit Directional DNA Interactions.

    PubMed

    McGinley, James T; Wang, Yifan; Jenkins, Ian C; Sinno, Talid; Crocker, John C

    2015-11-24

    Spherical colloids covered with grafted DNA have been used in the directed self-assembly of a number of distinct crystal and gel structures. Simulation suggests that the use of anisotropic building blocks greatly augments the variety of potential colloidal assemblies that can be formed. Here, we form five distinct symmetries of colloidal clusters from DNA-functionalized spheres using a single type of colloidal crystal as a template. The crystals are formed by simple sedimentation of a binary mixture containing a majority "host" species that forms close-packed crystals with the minority "impurity" species occupying substitutional or interstitial defect sites. After the DNA strands between the two species are hybridized and enzymatically ligated, the results are colloidal clusters, one for each impurity particle, with a symmetry determined by the nearest neighbors in the original crystal template. By adjusting the size ratio of the two spheres and the timing of the ligation, we are able to generate clusters having the symmetry of tetrahedra, octahedra, cuboctahedra, triangular orthobicupola, and icosahedra, which can be readily separated from defective clusters and leftover spheres by centrifugation. We further demonstrate that these clusters, which are uniformly covered in DNA strands, display directional binding with spheres bearing complementary DNA strands, acting in a manner similar to patchy particles or proteins having multiple binding sites. The scalable nature of the fabrication process, along with the reprogrammability and directional nature of their resulting DNA interactions, makes these clusters suitable building blocks for use in further rounds of directed self-assembly.

  20. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  1. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase. PMID:26394866

  2. 3-D supramolecular architectures in the three new complexes constructed from mixed ligands: Syntheses, crystal structures, spectroscopic properties, XRPD and thermal study

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Ping; Wang, Yao-Yu; Wang, Hong; Wang, Cui-Juan; Wen, Gui-Lin; Shi, Qi-Zhen; Peng, Shie-Ming

    2008-10-01

    Three new coordination polymers [Cu 2(bptc) (bpdap) 2]·4H 2O ( 1), {Zn 2(bptc)(bpe)(H 2O) 6} n ( 2) and {Co 2(bptc)(bpe)(H 2O) 8} n ( 3) [H 4bptc = 3,3',4,4'-biphenyltetracarboxylate acid, bpdap = N, N'-bis(2-pyridyl)-2,6-diaminopyridine, bpe = trans-1,2-bis(4-pyridyl)ethene] have been hydrothermally synthesized in different pH values and structurally characterized by single-crystal X-ray diffraction. The non-covalent interactions of hydrogen bond extend complexes 1, 2 and 3 into supramolecular architectures, where 1 exhibits a 3-D framework with 1-D open channels where the guest water molecules are located. Importantly, two kinds of chiral helical H-bonded chains appear in 1, and some types of H-bonded patterns exist in 1, 2 and 3. It is more remarkable that the building block bptc anion adopts versatile coordination modes in these complexes. The elemental analysis, IR spectra, XRPD and TG analysis are discussed for 1, 2 and 3. In addition, the fluorescence is also studied for 2 here.

  3. DNA induced chirality and helical twist in achiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Garvey, Alfred; Basu, Rajratan; Kinnamon, Daniel

    A small quantity of DNA sample (Deoxyribonucleic acid -cellulose double-stranded from calf thymus DNA in lyophilized powder form) was doped in an achiral liquid crystal (LC), and the mixture was found to exhibit a weak degree of chirality. The induced chirality in the LC was probed by means of the electroclinic effect in the LC's smectic-A phase, which showed significant pretransitional behavior on approaching the smectic- A-smectic- C transition temperature from above. The same DNA was doped in an achiral nematic LC and the mixture was found to exhibit an average mechanical twist over macroscopic dimensions. The double-stranded DNA-induced chiral pitch length P was determined by measuring the radius of curvature of reverse twist disclination lines in 90o nematic twist cells. In the LC +DNA mixture, the LC's benzene rings interact with the nucleobases of the DNA through π - π stacking, which induces a molecular conformational deracemization in the LC.

  4. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  5. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    SciTech Connect

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  6. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  7. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs.

  8. 3D cone-sheet and crystal-settling models reveal magma-reservoir structure of the Carlingford central complex, Ireland

    NASA Astrophysics Data System (ADS)

    Schauroth, Jenny; Burchardt, Steffi; Meade, Fiona; Troll, Valentin R.

    2014-05-01

    The Palaeogene Carlingford central complex, northeast Ireland, hosts a swarm of mostly basaltic cone-sheets with several lithological subsets (Halsall, 1974). The two most abundant sets are aphyric and highly porphyritic cone-sheets with up to 80% of cm-sized plagioclase phenocrysts. The abundance of highly porphyritic cone-sheets seems to systematically increase with altitude compared to the aphyric type (Meade, 2008). We hypothesised that this observation might be explained by the zonation of the source magma reservoir. In order to test this hypothesis, we modelled the 3D cone-sheet structure at depth and the settling of plagioclase phenocrysts. The 3D model of the Carlingford cone-sheet swarm reveals that lithological types of Carlingford cone-sheets are not systematically distributed in space. Using the method proposed by Burchardt et al. (2013), we constructed the likely source reservoir of the cone-sheets, which is saucer-shaped, elongated in NW direction, 7 km long and 3 km wide, and located at a depth of 1 km below the present-day land surface. Our calculation of the terminal velocity of the plagioclase phenocrysts shows that the large phenocrysts in the porphyritic cone-sheets were too big to float at the conditions present in the Carlingford magma reservoir. We can therefore exclude vertical magma-chamber stratification as an explanation for the formation and distribution of porphyritic and aphyric cone-sheets. Instead, we envisage the formation of a crystal mush at the base and sides of the Carlingford magma reservoir. Cone-sheet injection and magma-cha,ber replenishments have remobilised plagioclase cumulates, which may explain the occurrence and distribution of aphyric and highly porphyritic cone-sheets. REFERENCES Burchardt, S., Troll, V. R., Mathieu, L., Emeleus, H. C., Donaldson, C., 2013, Scientific Reports 3, 2891. Halsall, T.J., 1974, The minor intrusions and structure of the Carlingford complex, Eire (PhD thesis): University of Leicester. Meade

  9. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  10. Solvent-free Liquid Crystals and Liquids from DNA.

    PubMed

    Liu, Kai; Shuai, Min; Chen, Dong; Tuchband, Michael; Gerasimov, Jennifer Y; Su, Juanjuan; Liu, Qing; Zajaczkowski, Wojciech; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A; Herrmann, Andreas

    2015-03-23

    As DNA exhibits persistent structures with dimensions that exceed the range of their intermolecular forces, solid-state DNA undergoes thermal degradation at elevated temperatures. Therefore, the realization of solvent-free DNA fluids, including liquid crystals and liquids, still remains a significant challenge. To address this intriguing issue, we demonstrate that combining DNA with suitable cationic surfactants, followed by dehydration, can be a simple generic scheme for producing these solvent-free DNA fluid systems. In the anhydrous smectic liquid crystalline phase, DNA sublayers are intercalated between aliphatic hydrocarbon sublayers. The lengths of the DNA and surfactant are found to be extremely important in tuning the physical properties of the fluids. Stable liquid-crystalline and liquid phases are obtained in the -20 °C to 200 °C temperature range without thermal degradation of the DNA. Thus, a new type of DNA-based soft biomaterial has been achieved, which will promote the study and application of DNA in a much broader context.

  11. Synthetic Strategies Toward DNA-Coated Colloids that Crystallize.

    PubMed

    Wang, Yufeng; Wang, Yu; Zheng, Xiaolong; Ducrot, Étienne; Lee, Myung-Goo; Yi, Gi-Ra; Weck, Marcus; Pine, David J

    2015-08-26

    We report on synthetic strategies to fabricate DNA-coated micrometer-sized colloids that, upon thermal annealing, self-assemble into various crystal structures. Colloids of a wide range of chemical compositions, including poly(styrene), poly(methyl methacrylate), titania, silica, and a silica-methacrylate hybrid material, are fabricated with smooth particle surfaces and a dense layer of surface functional anchors. Single-stranded oligonucleotides with a short sticky end are covalently grafted onto particle surfaces employing a strain-promoted alkyne-azide cycloaddition reaction resulting in DNA coatings with areal densities an order of magnitude higher than previously reported. Our approach allows the DNA-coated colloids not only to aggregate upon cooling but also to anneal and rearrange while still bound together, leading to the formation of colloidal crystal compounds when particles of different sizes or different materials are combined. PMID:26192470

  12. Synthetic Strategies Toward DNA-Coated Colloids that Crystallize.

    PubMed

    Wang, Yufeng; Wang, Yu; Zheng, Xiaolong; Ducrot, Étienne; Lee, Myung-Goo; Yi, Gi-Ra; Weck, Marcus; Pine, David J

    2015-08-26

    We report on synthetic strategies to fabricate DNA-coated micrometer-sized colloids that, upon thermal annealing, self-assemble into various crystal structures. Colloids of a wide range of chemical compositions, including poly(styrene), poly(methyl methacrylate), titania, silica, and a silica-methacrylate hybrid material, are fabricated with smooth particle surfaces and a dense layer of surface functional anchors. Single-stranded oligonucleotides with a short sticky end are covalently grafted onto particle surfaces employing a strain-promoted alkyne-azide cycloaddition reaction resulting in DNA coatings with areal densities an order of magnitude higher than previously reported. Our approach allows the DNA-coated colloids not only to aggregate upon cooling but also to anneal and rearrange while still bound together, leading to the formation of colloidal crystal compounds when particles of different sizes or different materials are combined.

  13. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  14. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  15. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  16. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  17. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Establishing the design rules for DNA-mediated programmable colloidal crystallization

    SciTech Connect

    Macfarlane, R.J.; Jones, M.R.; Senesi, A.J.; Young, K.L.; Lee, B.; Wu, J.; Mirkin, C.A.

    2010-08-27

    DNA-programmable colloidal crystals are assembled with 5-80 nm nanoparticles, and the lattice parameters of the resulting crystals vary from 25 to 225 nm. A predictable and mathematically definable relationship between particle size and DNA length dictates the assembly and crystallization processes, creating a set of design rules for DNA-based nanoscale assembly.

  19. Mobility of Electron in DNA Crystals by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhang, Ping; Dong, Lifang

    1996-01-01

    The mobility of electrons in laser radiated DNA is closed to the energy transfer and energy migration of a biological molecule. Arrhenius has studied the conductivity of the electrons in a biological molecule. But his result is far from the experimental result and meanwhile the relation between some parameters in his theory and the micro-quantities in DNA is not very clear. In this paper, we propose a new phonon model of electron mobility in DNA and use Lippman-Schwinger equation and S-matrix theory to study the mobility of electrons in DNA crystal. The result is relatively close to the experiment result and some parameters in Arrhenius theory are explained in our work.

  20. Crystal structure determination of anti-DNA Fab A52.

    PubMed

    Stanfield, Robyn L; Eilat, Dan

    2014-08-01

    A52 is a murine monoclonal antibody isolated from autoimmune New Zealand Black/New Zealand White F1 mice that recognizes single and double stranded DNA. This mouse strain spontaneously develops systemic lupus erythematosus-like symptoms and has served as a model for that disease for many years. The 1.62 Å crystal structure of the A52 Fab fragment reveals an H3 complementarity determining region with four closely spaced arginine residues, creating a positively charged surface to accommodate bound DNA.

  1. Helical coherence of DNA in crystals and solution.

    PubMed

    Wynveen, Aaron; Lee, Dominic J; Kornyshev, Alexei A; Leikin, Sergey

    2008-10-01

    The twist, rise, slide, shift, tilt and roll between adjoining base pairs in DNA depend on the identity of the bases. The resulting dependence of the double helix conformation on the nucleotide sequence is important for DNA recognition by proteins, packaging and maintenance of genetic material, and other interactions involving DNA. This dependence, however, is obscured by poorly understood variations in the stacking geometry of the same adjoining base pairs within different sequence contexts. In this article, we approach the problem of sequence-dependent DNA conformation by statistical analysis of X-ray and NMR structures of DNA oligomers. We evaluate the corresponding helical coherence length--a cumulative parameter quantifying sequence-dependent deviations from the ideal double helix geometry. We find, e.g. that the solution structure of synthetic oligomers is characterized by 100-200 A coherence length, which is similar to approximately 150 A coherence length of natural, salmon-sperm DNA. Packing of oligomers in crystals dramatically alters their helical coherence. The coherence length increases to 800-1200 A, consistent with its theoretically predicted role in interactions between DNA at close separations. PMID:18755709

  2. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  4. Stabilization of DNA liquid crystals on doping with gold nanorods.

    PubMed

    Brach, Katarzyna; Matczyszyn, Katarzyna; Olesiak-Banska, Joanna; Gordel, Marta; Samoc, Marek

    2016-03-14

    We report on the impact of doping with gold nanorods (NRs) on the formation and stability of DNA liquid crystals (LCs). Cetyl trimethylammonium (CTAB)-stabilized gold NRs were synthesized using the wet chemistry method. Different textures of cholesteric and columnar mesophases, as well as phase transitions, were observed using a polarized light microscope. It was found that liquid crystalline phases formed in the samples were qualitatively the same and the phase appearance sequence was preserved in the samples regardless of the doping. We show that depending on the concentration of gold NRs present in the phase, nanoparticle-doped cholesteric and columnar hexagonal phases existed in wider temperature ranges compared to pure DNA LCs. The potential applications of these liquid crystal-nanoparticle hybrid systems may include the fabrication of new optoelectronic devices and sensors.

  5. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  6. Structural Code for DNA Recognition Revealed in Crystal Structures of Papillomavirus E2-DNA Targets

    NASA Astrophysics Data System (ADS)

    Rozenberg, Haim; Rabinovich, Dov; Frolow, Felix; Hegde, Rashmi S.; Shakked, Zippora

    1998-12-01

    Transcriptional regulation in papillomaviruses depends on sequence-specific binding of the regulatory protein E2 to several sites in the viral genome. Crystal structures of bovine papillomavirus E2 DNA targets reveal a conformational variant of B-DNA characterized by a roll-induced writhe and helical repeat of 10.5 bp per turn. A comparison between the free and the protein-bound DNA demonstrates that the intrinsic structure of the DNA regions contacted directly by the protein and the deformability of the DNA region that is not contacted by the protein are critical for sequence-specific protein/DNA recognition and hence for gene-regulatory signals in the viral system. We show that the selection of dinucleotide or longer segments with appropriate conformational characteristics, when positioned at correct intervals along the DNA helix, can constitute a structural code for DNA recognition by regulatory proteins. This structural code facilitates the formation of a complementary protein-DNA interface that can be further specified by hydrogen bonds and nonpolar interactions between the protein amino acids and the DNA bases.

  7. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. Self-assembled DNA crystals: the impact on resolution of 5'-phosphates and the DNA source.

    PubMed

    Sha, Ruojie; Birktoft, Jens J; Nguyen, Nam; Chandrasekaran, Arun Richard; Zheng, Jianping; Zhao, Xinshuai; Mao, Chengde; Seeman, Nadrian C

    2013-02-13

    Designed self-assembled DNA crystals consist of rigid DNA motifs that are held together by cohesive sticky-ended interactions. A prominent application of such systems is that they might be able to act as macromolecular hosts for macromolecular guests, thereby alleviating the crystallization problem of structural biology. We have recently demonstrated that it is indeed possible to design and construct such crystals and to determine their structures by X-ray diffraction procedures. To act as useful hosts that organize biological macromolecules for crystallographic purposes, maximizing the resolution of the crystals will maximize the utility of the approach. The structures reported so far have diffracted only to about 4 Å, so we have examined two factors that might have impact on the resolution. We find no difference in the resolution whether the DNA is synthetic or PCR-generated. However, we find that the presence of a phosphate on the 5'-end of the strands improves the resolution of the crystals markedly.

  9. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA.

    PubMed

    Burmeister, Wim P; Tarbouriech, Nicolas; Fender, Pascal; Contesto-Richefeu, Céline; Peyrefitte, Christophe N; Iseni, Frédéric

    2015-07-17

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.

  10. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  11. DNA-mediated engineering of multicomponent enzyme crystals.

    PubMed

    Brodin, Jeffrey D; Auyeung, Evelyn; Mirkin, Chad A

    2015-04-14

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein-protein interactions for DNA-DNA interactions to direct the assembly of two nucleic-acid-functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA-DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.

  12. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.

    PubMed

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Takeuchi, Miyuki; Karahara, Ichirou; Sato, Mayuko; Toyooka, Kiminori; Nishioka, Hiroshi; Terada, Yasuko; Uesugi, Kentaro; Takano, Hidekazu; Kagoshima, Yasushi; Mineyuki, Yoshinobu

    2013-06-01

    The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.

  13. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  14. Construction and 3-D computer modeling of connector arrays with tetragonal to decagonal transition induced by pRNA of phi29 DNA-packaging motor.

    PubMed

    Guo, Yin Yin; Blocker, Forrest; Xiao, Feng; Guo, Peixuan

    2005-06-01

    The bottom-up assembly of patterned arrays is an exciting and important area in current nanotechnology. Arrays can be engineered to serve as components in chips for a virtually inexhaustible list of applications ranging from disease diagnosis to ultrahigh-density data storage. In attempting to achieve this goal, a number of methods to facilitate array design and production have been developed. Cloning and expression of the gene coding for the connector of the bacterial virus phi29 DNA-packaging motor, overproduction of the gene products, and the in vitro construction of large-scale carpet-like arrays composed of connector are described in this report. The stability of the arrays under various conditions, including varied pH, temperature and ionic strength, was tested. The addition of packaging RNA (pRNA) into the array caused a dramatic shift in array structure, and resulted in the conversion of tetragonal arrays into larger decagonal structures comprised of both protein and RNA. RNase digestion confirmed that the conformational shift was caused by pRNA, and that RNA was present in the decagons. As has been demonstrated in biomotors, conformational shift of motor components can generate force for motor motion. The conformational shift reported here can be utilized as a potential force-generating mechanism for the construction of nanomachines. Three-dimensional computer models of the constructed arrays were also produced using a variety of connector building blocks with or without the N- or C-terminal sequence, which is absent from the current published crystal structures. Both the connector array and the decagon are ideal candidates to be used as templates to build patterned suprastructures in nanotechnology.

  15. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    SciTech Connect

    T Wang; R Sha; J Birktoft; J Zheng; C Mao; N Seeman

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  16. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  17. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  18. DNA-mediated engineering of multicomponent enzyme crystals

    PubMed Central

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-01-01

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials. PMID:25831510

  19. Crystal structure of (E)-9-(4-nitro-benzyl-idene)-8,9-di-hydro-pyrido[2,3-d]pyrrolo-[1,2-a]pyrimidin-5(7H)-one.

    PubMed

    Khodjaniyazov, Khamid U; Ashurov, Jamshid M

    2016-04-01

    The title compound, C17H12N4O3, a pyrido-pyrrolo-pyrimidine derivative, is almost planar. The nitro-benzene ring is inclined to the mean plane of the 8,9-di-hydro-pyrido[2,3-d]pyrrolo-[1,2-a]pyrimidin-5(7H)-one moiety (r.m.s. deviation = 0.023 Å) by 6.8 (1)°. In the crystal, mol-ecules are linked via C-H⋯O and C-H⋯N hydrogen bonds, forming layers parallel to (101). PMID:27375862

  20. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    SciTech Connect

    Ma, Xue; Tian, Jing; Yang, Hong-Y.; Zhao, Kai; Li, Xia

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  1. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  2. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  3. Metal-organic frameworks: 3D frameworks from 3D printers

    NASA Astrophysics Data System (ADS)

    Williams, Ian D.

    2014-11-01

    High-throughput screening of solvothermal crystallization conditions for MOFs and other solids may receive a boost from the application of 3D printing techniques to low-cost, disposable pressure vessels.

  4. Low Concentrations of Anti-Aβ Antibodies Generated in Tg2576 Mice by DNA Epitope Vaccine Fused with 3C3d Molecular Adjuvant Do Not Affect AD Pathology

    PubMed Central

    Movsesyan, Nina; Davtyan, Hayk; Mkrtichyan, Mikayel; Petrushina, Irina; Tiraturyan, Tigran; Ross, Ted; Agadjanyan, Michael G.

    2010-01-01

    Abstract It has been demonstrated that an active vaccination strategy with protein- or DNA-based epitope vaccines composed of the immunodominant self B cell epitope of amyloid-β42 (Aβ42) and a non-self T helper (Th) cell epitope is an immunotherapeutic approach to preventing or treating Alzheimer's disease (AD). As a DNA-based epitope vaccine, we used a plasmid encoding three copies of Aβ1–11 and Th cell epitope, PADRE (p3Aβ1–11-PADRE). We have previously reported that three copies of component of complement C3d (3C3d) acts as a molecular adjuvant significantly enhancing immune responses in wild-type mice of the H2b haplotype immunized with p3Aβ1–11-PADRE. Here, we tested the efficacy of p3Aβ1–11-PADRE and the same vaccine fused with 3C3d (p3Aβ1–11-PADRE-3C3d) in a transgenic (Tg) mouse model of AD (Tg2576) of the H2bxs immune haplotype. The overall responses to both vaccines were very weak in Tg2576 mice despite the fact that the 3C3d molecular adjuvant significantly enhanced the anti-Aβ response to 3Aβ1–11-PADRE. Importantly, generation of low antibody responses was associated with the strain of amyloid precursor protein Tg mice rather than with a molecular adjuvant, as a p3Aβ1–11-PADRE-3C3d vaccine induced significantly higher antibody production in another AD mouse model, 3xTg-AD of the H2b haplotype. Finally, this study demonstrated that low concentrations of antibodies generated by both DNA vaccines were not sufficient for the reduction of Aβ pathology in the brains of vaccinated Tg2576 animals, confirming previous reports from preclinical studies and the AN-1792 clinical trials, which concluded that the concentration of anti-Aβ antibodies may be essential for the reduction of AD pathology. PMID:20528468

  5. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  6. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors

    PubMed Central

    Zhang, Xin; Zhou, Xilin; L.Kisliuk, Roy; Piraino, Jennifer; Cody, Vivian

    2011-01-01

    Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH3 substituents inhibited human (h) TS (IC50 = 0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH3 with a 2-NH2 increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC50 = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate. PMID:21550809

  7. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule

    SciTech Connect

    Changela, A.; Digate, R.J.; Mondragon, A.

    2010-03-05

    A variety of cellular processes, including DNA replication, transcription, and chromosome condensation, require enzymes that can regulate the ensuing topological changes occurring in DNA. Such enzymes - DNA topoisomerases - alter DNA topology by catalysing the cleavage of single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), the passage of DNA through the resulting break, and the rejoining of the broken phosphodiester backbone. DNA topoisomerase III from Escherichia coli belongs to the type IA family of DNA topoisomerases, which transiently cleave ssDNA via formation of a covalent 5' phosphotyrosine intermediate. Here we report the crystal structure, at 2.05 {angstrom} resolution, of an inactive mutant of E. coli DNA topoisomerase III in a non-covalent complex with an 8-base ssDNA molecule. The enzyme undergoes a conformational change that allows the oligonucleotide to bind within a groove leading to the active site. We note that the ssDNA molecule adopts a conformation like that of B-DNA while bound to the enzyme. The position of the DNA within the realigned active site provides insight into the role of several highly conserved residues during catalysis. These findings confirm various aspects of the type IA topoisomerase mechanism while suggesting functional implications for other topoisomerases and proteins that perform DNA rearrangements.

  8. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study.

    PubMed

    Ho, Si-Han Sherman; Sim, Mei-Yi; Yee, Wei-Loong Sherman; Yang, Tianming; Yuen, Shyi-Peng John; Go, Mei-Lin

    2015-11-01

    The anticancer agent YM155 is widely investigated as a specific survivin suppressant. More recently, YM155 was found to induce DNA damage and this has raised doubts as to whether survivin is its primary target. In an effort to assess the contribution of DNA damage to the anticancer activity of YM155, several analogs were prepared and evaluated for antiproliferative activity on malignant cells, participation in DNA intercalation and free radical generation by redox cycling. The intact positively charged scaffold was found to be essential for antiproliferative activity and intercalation but was less critical for redox cycling where the minimal requirement was a pared down bicyclic quinone. Side chain requirements at the N(1) and N(3) positions of the scaffold were more alike for redox cycling and intercalation than antiproliferative activity, underscoring yet again, the limited structural overlaps for these activities. Furthermore, antiproliferative activities were poorly correlated to DNA intercalation and redox cycling. Potent antiproliferative activity (IC50 9-23 nM), exceeding that of YM155, was found for a minimally substituted methyl analog AB7. Like YM155 and other dioxonaphthoimidazoliums, AB7 was a modest DNA intercalator but with weak redox cycling activity. Thus, the capacity of this scaffold to inflict direct DNA damage leading to cell death may not be significant and YM155 should not be routinely classified as a DNA damaging agent.

  9. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  10. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  11. Importance of the DNA “bond” in programmable nanoparticle crystallization

    SciTech Connect

    Macfarlane, Robert J.; Thaner, Ryan V.; Brown, Keith A.; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2014-10-21

    If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling's rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner.

  12. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    PubMed

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  13. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    PubMed Central

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  14. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    PubMed

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  15. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures.

    PubMed

    Jalili, Rouhollah; Aboutalebi, Seyed Hamed; Esrafilzadeh, Dorna; Konstantinov, Konstantin; Moulton, Simon E; Razal, Joselito M; Wallace, Gordon G

    2013-05-28

    We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt %) without compromise in LC properties. The as-prepared LC GO-SWNT dispersions were employed to achieve self-assembled layer-by-layer multifunctional 3D hybrid architectures comprising SWNTs and GO with unrivalled superior mechanical properties (Young's modulus in excess of 50 GPa and tensile strength of more than 500 MPa).

  16. Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals.

    PubMed

    Lai, Siok Lian; Tan, Wei Ling; Yang, Kun-Lin

    2011-09-01

    In this paper, we report a method of detecting DNA targets hybridized to a solid surface by using liquid crystals (LC). The detection principle is based on different interference colors of LC supported on surfaces decorated with single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA). However, the contrast between the ssDNA and dsDNA is not obvious, unless DNA-streptavidin complexes are introduced to the dsDNA to increase the surface mass density. Two different approaches of introducing streptavidin to the system are studied and compared. We find that by premixing the biotin-labeled DNA targets with streptavidin prior to the DNA hybridization, branched-streptavidin complexes are formed and clear LC signal can be observed. This LC-based DNA detection principle represents an important step toward the development of a simple, instrument- and fluorophore-free DNA detection method.

  17. Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Hwang, Taehyun; Kim, Jang Ah; Gnapareddy, Bramaramba; Kim, Taesung; Park, Sung Ha

    2016-03-01

    We fabricated lanthanide ion (Ln3+, e.g. Dy3+, Er3+, Eu3+, and Gd3+)-doped self-assembled double-crossover (DX) DNA crystals grown on the surface of field effect transistors (FETs) containing either a Cr, Au, or Ni electrode. Here we demonstrate the metal electrode dependent FET characteristics as a function of various Ln3+. The drain-source current (I ds), controlled by the drain-source voltage (V ds) of Ln3+-doped DX DNA crystals with a Cr electrode on an FET, changed significantly under various gate voltages (V g) due to the relative closeness of the work function of Cr to the energy band gap of Ln3+-DNA crystals compared to those of Au and Ni. For Ln3+-DNA crystals on an FET with either a Cr or Ni electrode at a fixed V ds, I ds decreased with increasing V g ranging from  -2 to 0 V and from 0 to  +3 V in the positive and negative regions, respectively. By contrast, I ds for Ln3+-DNA crystals on an FET with Au decreased with increasing V g in only the positive region due to the greater electronegativity of Au. Furthermore, Ln3+-DNA crystals on an FET exhibited behaviour sensitive to V g due to the appreciable charge carriers generated from Ln3+. Finally, we address the resistivity and the mobility of Ln3+-DNA crystals on an FET with different metal electrodes obtained from I ds-V ds and I ds-V g curves. The resistivities of Ln3+-DNA crystals on FETs with Cr and Au electrodes were smaller than those of pristine DNA crystals on an FET, and the mobility of Ln3+-DNA crystals on an FET with Cr was relatively higher than that associated with other electrodes.

  18. Synthesis, crystal structure and properties of a new 3D supramolecular unsymmetrical tetradentate Schiff bases copper (II) framework with stable tunnels

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.

    2016-12-01

    Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.

  19. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  20. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges. PMID:24901707

  1. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  2. Specific features of insulator-metal transitions under high pressure in crystals with spin crossovers of 3d ions in tetrahedral environment

    SciTech Connect

    Lobach, K. A. Ovchinnikov, S. G.; Ovchinnikova, T. M.

    2015-01-15

    For Mott insulators with tetrahedral environment, the effective Hubbard parameter U{sub eff} is obtained as a function of pressure. This function is not universal. For crystals with d{sup 5} configuration, the spin crossover suppresses electron correlations, while for d{sup 4} configurations, the parameter U{sub eff} increases after a spin crossover. For d{sup 2} and d{sup 7} configurations, U{sub eff} increases with pressure in the high-spin (HS) state and is saturated after the spin crossover. Characteristic features of the insulator-metal transition are considered as pressure increases; it is shown that there may exist cascades of several transitions for various configurations.

  3. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g-1 at 100 mA g-1 after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g-1 at 1 Ag-1). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.

  4. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  5. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  6. Self-assembly of cholesterol DNA at liquid crystal/aqueous interface and its application for DNA detection

    NASA Astrophysics Data System (ADS)

    Lai, Siok Lian; Hartono, Deny; Yang, Kun-Lin

    2009-10-01

    In this letter, we report a strategy of detecting the DNA targets by using a thin layer of self-assembled cholesterol-labeled DNA probes at the liquid crystal (LC)/aqueous interface. When the system is exposed to 51 μg/ml of complementary DNA targets, the optical appearance of LC shows a continuous change from dark to bright under the crossed polars within 15 min. No obvious change can be observed when the system is exposed to one or two base-pair mismatch DNA targets. This system provides a principle for label-free and real-time detection of DNA targets without any fluorescent labeling.

  7. Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays.

    PubMed

    Yang, Shengyuan; Liu, Yanmei; Tan, Hui; Wu, Chao; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-03-18

    A novel signal enhanced liquid crystal biosensor based on using AuNPs for highly sensitive DNA detection has been developed. This biosensor not only significantly decreases the detection limit, but also offers a simple detection process and shows a good selectivity to distinguish perfectly matched target DNA from two-base mismatched DNA. PMID:22302154

  8. A DNA crystal designed to contain two molecules per asymmetric unit.

    PubMed

    Wang, Tong; Sha, Ruojie; Birktoft, Jens; Zheng, Jianping; Mao, Chengde; Seeman, Nadrian C

    2010-11-10

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal. PMID:20958065

  9. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.

    PubMed

    Aramesh, M; Shimoni, O; Fox, K; Karle, T J; Lohrmann, A; Ostrikov, K; Prawer, S; Cervenka, J

    2015-04-14

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 10(15) molecules per cm(2) down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. PMID:25744416

  10. Holographic Interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models

    NASA Astrophysics Data System (ADS)

    Thizy, C.; Eliot, F.; Ballhause, D.; Olympio, K. R.; Kluge, R.; Shannon, A.; Laduree, G.; Logut, D.; Georges, M. P.

    2013-04-01

    Thermo-elastic distortions of composite structures have been measured by a holographic camera using a BSO photorefractive crystal as the recording medium. The first test campaign (Phase 1) was performed on CFRP struts with titanium end-fittings glued to the tips of the strut. The samples were placed in a vacuum chamber. The holographic camera was located outside the chamber and configured with two illuminations to measure the relative out-of-plane and in-plane (in one direction) displacements. The second test campaign (Phase 2) was performed on a structure composed of a large Silicon Carbide base plate supported by 3 GFRP struts with glued Titanium end-fittings. Thermo-elastic distortions have been measured with the same holographic camera used in phase 1, but four illuminations, instead of two, have been used to provide the three components of displacement. This technique was specially developed and validated during the phase 2 in CSL laboratory. The system has been designed to measure an object size of typically 250x250 mm2; the measurement range is such that the sum of the largest relative displacements in the three measurement directions is maximum 20 μm. The validation of the four-illuminations technique led to measurement uncertainties of 120 nm for the relative in-plane and out-of-plane displacements, 230 nm for the absolute in-plane displacement and 400 nm for the absolute out-of-plane displacement. For both campaigns, the test results have been compared to the predictions obtained by finite element analyses and the correlation of these results was good.

  11. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  12. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  13. Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system

    SciTech Connect

    Egli, Martin; Pallan, Pradeep S.; Pattanayek, Rekha; Wilds, Christopher J.; Lubini, Paolo; Minasov, George; Dobler, Max; Leumann, Christian J.; Eschenmoser, Albert

    2010-03-05

    An experimental rationalization of the structure type encountered in DNA and RNA by systematically investigating the chemical and physical properties of alternative nucleic acids has identified systems with a variety of sugar-phosphate backbones that are capable of Watson-Crick base pairing and in some cases cross-pairing with the natural nucleic acids. The earliest among the model systems tested to date, (4{prime} {yields} 6{prime})-linked oligo(2{prime},3{prime}-dideoxy-{beta}-d-glucopyranosyl)nucleotides or homo-DNA, shows stable self-pairing, but the pairing rules for the four natural bases are not the same as those in DNA. However, a complete interpretation and understanding of the properties of the hexapyranosyl (4{prime} {yields} 6{prime}) family of nucleic acids has been impeded until now by the lack of detailed 3D-structural data. We have determined the crystal structure of a homo-DNA octamer. It reveals a weakly twisted right-handed duplex with a strong inclination between the hexose-phosphate backbones and base-pair axes, and highly irregular values for helical rise and twist at individual base steps. The structure allows a rationalization of the inability of allo-, altro-, and glucopyranosyl-based oligonucleotides to form stable pairing systems.

  14. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  15. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers.

    PubMed

    Hill, Haley D; Macfarlane, Robert J; Senesi, Andrew J; Lee, Byeongdu; Park, Sung Yong; Mirkin, Chad A

    2008-08-01

    DNA-functionalized gold nanoparticles can be used to induce the formation and control the unit cell parameters of highly ordered face-centered cubic crystal lattices. Nanoparticle spacing increases linearly with longer DNA interconnect length, yielding maximum unit cell parameters of 77 nm and 0.52% inorganic-filled space for the DNA constructs studied. In general, we show that longer DNA connections result in a decrease in the overall crystallinity and order of the lattice due to greater conformational flexibility.

  16. Quantitative 3-D colocalization analysis as a tool to study the intracellular trafficking and dissociation of pDNA-chitosan polyplexes

    NASA Astrophysics Data System (ADS)

    Reitan, Nina Kristine; Sporsheim, Bjørnar; Bjørkøy, Astrid; Strand, Sabina; Davies, Catharina de Lange

    2012-02-01

    Multichannel microscopy is frequently used to study intermolecular interactions and spatial relationships between biomolecules and organelles or vesicles in cells. Based on multichannel images, quantitative colocalization analysis can provide valuable information about cellular internalization, vesicular transport, and the intracellular kinetics and location of biomolecules. However, such analyses should be performed carefully, because quantitative colocalization parameters have different interpretations and can be highly affected by image quality. We use quantitative three-dimensional colocalization analysis of deconvolved and chromatic-registered confocal images to study the dissociation of double-labeled pDNA-chitosan polyplexes in HeLa cells and their colocalization with early endosomes. Two chitosans that form polyplexes with highly different transfection efficacies are compared. Pearson's correlation coefficient, Manders' colocalization coefficients, and the intensity correlation quotient are estimated to determine the intracellular localization of polyplexes, free pDNA, and free chitosans. Differences are observed in the amount of uptake, and in the intracellular pathways and rates of dissociation for the two chitosans. The results support previous findings that polyplexes formed by self-branched, glycosylated chitosan oligomers are more favorable for cellular uptake and intracellular trafficking to the nucleus compared with polyplexes formed by linear chitosans.

  17. Dynamic Heterogeneity of DNA Methylation and Hydroxymethylation in Embryonic Stem Cell Populations Captured by Single-Cell 3D High-Content Analysis

    PubMed Central

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-01-01

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a ten-day differentiation course in vitro: by means of confocal and super-resolution imaging together with high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU per day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17:0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, DNA global methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC+/5mC−, 5hmC+/5mC+, and 5hmC−/5mC+ cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC+/5mC+ cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably delineating chromatin domains in remodeling. We

  18. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA

    SciTech Connect

    Sharma A.; Heroux A.; Jenkins K. R.; Bowman G. D.

    2011-12-09

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.

  19. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  20. 3D Printing with Nucleic Acid Adhesives

    PubMed Central

    2015-01-01

    By relying on specific DNA:DNA interactions as a “smart glue”, we have assembled microparticles into a colloidal gel that can hold its shape. This gel can be extruded with a 3D printer to generate centimeter size objects. We show four aspects of this material: (1) The colloidal gel material holds its shape after extrusion. (2) The connectivity among the particles is controlled by the binding behavior between the surface DNA and this mediates some control over the microscale structure. (3) The use of DNA-coated microparticles dramatically reduces the cost of DNA-mediated assembly relative to conventional DNA nanotechnologies and makes this material accessible for macroscale applications. (4) This material can be assembled under biofriendly conditions and can host growing cells within its matrix. The DNA-based control over organization should provide a new means of engineering bioprinted tissues. PMID:25984570

  1. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2008-07-01

    Interactions between DNA and an adsorbed cationic surfactant at the nematic liquid crystal (LC)/aqueous interface were investigated using polarized and fluorescence microscopy. The adsorption of octadecyltrimethylammonium bromide (OTAB) surfactant to the LC/aqueous interface resulted in homeotropic (untilted) LC alignment. Subsequent adsorption of single-stranded DNA (ssDNA) to the surfactant-laden interface modified the interfacial structure, resulting in a reorientation of the LC from homeotropic alignment to an intermediate tilt angle. Exposure of the ssDNA/OTAB interfacial complex to its ssDNA complement induced a second change in the interfacial structure characterized by the nucleation, growth, and coalescence of lateral regions that induced homeotropic LC alignment. Fluorescence microscopy showed explicitly that the complement was colocalized in the same regions as the homeotropic domains. Exposure to noncomplementary ssDNA caused no such response, suggesting that the homeotropic regions were due to DNA hybridization. This hybridization occurred in the vicinity of the interface despite the fact that the conditions in bulk solution were such that hybridization did not occur (high stringency), suggesting that the presence of the cationic surfactant neutralized electrostatic repulsion and allowed for hydrogen bonding between DNA complements. This system has potential for label-less and portable DNA detection. Indeed, LC response to ssDNA target was detected with a lower limit of approximately 50 fmol of complement and was sufficiently selective to differentiate a one-base-pair mismatch in a 16-mer target.

  2. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2008-07-01

    Interactions between DNA and an adsorbed cationic surfactant at the nematic liquid crystal (LC)/aqueous interface were investigated using polarized and fluorescence microscopy. The adsorption of octadecyltrimethylammonium bromide (OTAB) surfactant to the LC/aqueous interface resulted in homeotropic (untilted) LC alignment. Subsequent adsorption of single-stranded DNA (ssDNA) to the surfactant-laden interface modified the interfacial structure, resulting in a reorientation of the LC from homeotropic alignment to an intermediate tilt angle. Exposure of the ssDNA/OTAB interfacial complex to its ssDNA complement induced a second change in the interfacial structure characterized by the nucleation, growth, and coalescence of lateral regions that induced homeotropic LC alignment. Fluorescence microscopy showed explicitly that the complement was colocalized in the same regions as the homeotropic domains. Exposure to noncomplementary ssDNA caused no such response, suggesting that the homeotropic regions were due to DNA hybridization. This hybridization occurred in the vicinity of the interface despite the fact that the conditions in bulk solution were such that hybridization did not occur (high stringency), suggesting that the presence of the cationic surfactant neutralized electrostatic repulsion and allowed for hydrogen bonding between DNA complements. This system has potential for label-less and portable DNA detection. Indeed, LC response to ssDNA target was detected with a lower limit of approximately 50 fmol of complement and was sufficiently selective to differentiate a one-base-pair mismatch in a 16-mer target. PMID:18528984

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  5. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals.

    PubMed

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y; Polyakov, Alexey O; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T M; Clark, Noel A; Herrmann, Andreas

    2016-05-09

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  7. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  8. Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking.

    PubMed

    Abdallah, Hatem O; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Sha, Ruojie; Fox, Keith R; Brown, Tom; Rusling, David A; Mao, Chengde; Seeman, Nadrian C

    2016-06-28

    The tensegrity triangle is a robust DNA motif that can self-assemble to generate macroscopic three-dimensional crystals. However, the stability of these crystals is dependent on the high ionic conditions used for crystal growth. Here we demonstrate that a triplex-forming oligonucleotide can be used to direct the specific intercalation, and subsequent photo-cross-linking, of 4,5',8-trimethylpsoralen to single or multiple loci within or between the tiles of the crystal. Cross-linking between the tiles of the crystal improves their thermal stability. Such an approach is likely to facilitate the removal of crystals from their mother liquor and may prove useful for applications that require greater crystal stability. PMID:27265774

  9. Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N‧-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Mishra, Monika; Tiwari, Karishma; Shukla, Sachin; Mishra, R.; Singh, Vinod P.

    2014-11-01

    The ligand, N‧-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide (Hpmtc) derived from thiophene-2-carboxylic acid hydrazide and 2-benzoyl pyridine, and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized. These compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, NMR and UV-Vis spectral studies. The molecular structures of Hpmtc and its Co(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4) complexes are finally determined by X-ray crystallography. Various spectral and single-crystal X-ray diffraction studies suggest that Hpmtc coordinates with metal ions as a monobasic tridentate ligand forming mononuclear distorted octahedral complexes of the type [M(pmtc)2]. The molecular structures of the complexes are stabilized by Csbnd H⋯N, Csbnd H⋯O intermolecular H-bonding, and Csbnd H⋯π and π⋯π interactions. The DNA binding experiment of the complexes 1, 3 and 4 by UV-Vis absorption, and EB-DNA displacement by fluorescence spectroscopy, reveal an intercalative mode of binding between CT-DNA (calf-thymus DNA) and the metal complexes. These complexes exhibit a moderate ability to cleave pBR322 plasmid DNA. A comparative bovine serum albumin (BSA) protein binding activity of the complexes 1, 3 and 4 has also been determined by UV-Vis absorption and fluorescence spectroscopy. The DNA binding and protein binding studies suggest that the complex 3 exhibits more effective binding activity (Kb = 5.54 × 105 and Kq = 1.26 × 106 M-1, respectively) than complexes 1 and 4. However, the complex 1 shows better hydrolytic DNA cleavage activity compared to 3 and 4 complexes.

  10. Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N'-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide.

    PubMed

    Mishra, Monika; Tiwari, Karishma; Shukla, Sachin; Mishra, R; Singh, Vinod P

    2014-11-11

    The ligand, N'-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide (Hpmtc) derived from thiophene-2-carboxylic acid hydrazide and 2-benzoyl pyridine, and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized. These compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, NMR and UV-Vis spectral studies. The molecular structures of Hpmtc and its Co(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4) complexes are finally determined by X-ray crystallography. Various spectral and single-crystal X-ray diffraction studies suggest that Hpmtc coordinates with metal ions as a monobasic tridentate ligand forming mononuclear distorted octahedral complexes of the type [M(pmtc)2]. The molecular structures of the complexes are stabilized by CH⋯N, CH⋯O intermolecular H-bonding, and CH⋯π and π⋯π interactions. The DNA binding experiment of the complexes 1, 3 and 4 by UV-Vis absorption, and EB-DNA displacement by fluorescence spectroscopy, reveal an intercalative mode of binding between CT-DNA (calf-thymus DNA) and the metal complexes. These complexes exhibit a moderate ability to cleave pBR322 plasmid DNA. A comparative bovine serum albumin (BSA) protein binding activity of the complexes 1, 3 and 4 has also been determined by UV-Vis absorption and fluorescence spectroscopy. The DNA binding and protein binding studies suggest that the complex 3 exhibits more effective binding activity (Kb=5.54×10(5) and Kq=1.26×10(6) M(-1), respectively) than complexes 1 and 4. However, the complex 1 shows better hydrolytic DNA cleavage activity compared to 3 and 4 complexes.

  11. Crystallization, dehydration and preliminary X-ray analysis of excisionase (Xis) proteins cooperatively bound to DNA

    SciTech Connect

    Sam, My D.; Abbani, Mohamad A.; Cascio, Duilio; Johnson, Reid C.; Clubb, Robert T.

    2006-08-01

    This paper describes the crystallization, dehydration and preliminary X-ray data analysis of a complex containing several bacteriophage lambda excisionase (Xis) proteins cooperatively bound to a 33-mer DNA duplex (Xis–DNA{sup X1-X2}). This paper describes the crystallization, dehydration and preliminary X-ray data analysis of a complex containing several bacteriophage lambda excisionase (Xis) [Bushman et al. (1984 ▶). Cell, 39, 699–706] proteins cooperatively bound to a 33-mer DNA duplex (Xis–DNA{sup X1-X2}). Xis is expected to recognize this regulatory element in a novel manner by cooperatively binding and distorting multiple head-to-tail orientated DNA-binding sites. Crystals of this complex belonged to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 107.7, c = 73.5 Å, α = β = 90, γ = 120°. Based on the unit-cell parameters for the asymmetric unit, V{sub M} is 3.0 Å{sup 3} Da{sup −1}, which corresponds to a solvent content of ∼59%. The approaches used to crystallize the unusually long DNA fragment in the complex and the dehydration technique applied that dramatically improved the diffraction of the crystals from 10 to 2.6 Å are discussed.

  12. Crystal structure of a p53 core tetramer bound to DNA

    SciTech Connect

    Malecka, K.A.; Ho, W.C.; Marmorstein, R.

    2009-09-02

    The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a tetrameric p53 DNA-binding domain (p53DBD) bound to DNA and the X-ray crystal structure of the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA with no relative twist and that a p53 tetramer can bind to DNA without introducing significant DNA bending. The numerous dimer-dimer interactions involve several strictly conserved residues, thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 domain or p53 cofactor interactions.

  13. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  14. Reconfigurable 3D plasmonic metamolecules

    NASA Astrophysics Data System (ADS)

    Kuzyk, Anton; Schreiber, Robert; Zhang, Hui; Govorov, Alexander O.; Liedl, Tim; Liu, Na

    2014-09-01

    A reconfigurable plasmonic nanosystem combines an active plasmonic structure with a regulated physical or chemical control input. There have been considerable efforts on integration of plasmonic nanostructures with active platforms using top-down techniques. The active media include phase-transition materials, graphene, liquid crystals and carrier-modulated semiconductors, which can respond to thermal, electrical and optical stimuli. However, these plasmonic nanostructures are often restricted to two-dimensional substrates, showing desired optical response only along specific excitation directions. Alternatively, bottom-up techniques offer a new pathway to impart reconfigurability and functionality to passive systems. In particular, DNA has proven to be one of the most versatile and robust building blocks for construction of complex three-dimensional architectures with high fidelity. Here we show the creation of reconfigurable three-dimensional plasmonic metamolecules, which execute DNA-regulated conformational changes at the nanoscale. DNA serves as both a construction material to organize plasmonic nanoparticles in three dimensions, as well as fuel for driving the metamolecules to distinct conformational states. Simultaneously, the three-dimensional plasmonic metamolecules can work as optical reporters, which transduce their conformational changes in situ into circular dichroism changes in the visible wavelength range.

  15. Reconfigurable 3D plasmonic metamolecules.

    PubMed

    Kuzyk, Anton; Schreiber, Robert; Zhang, Hui; Govorov, Alexander O; Liedl, Tim; Liu, Na

    2014-09-01

    A reconfigurable plasmonic nanosystem combines an active plasmonic structure with a regulated physical or chemical control input. There have been considerable efforts on integration of plasmonic nanostructures with active platforms using top-down techniques. The active media include phase-transition materials, graphene, liquid crystals and carrier-modulated semiconductors, which can respond to thermal, electrical and optical stimuli. However, these plasmonic nanostructures are often restricted to two-dimensional substrates, showing desired optical response only along specific excitation directions. Alternatively, bottom-up techniques offer a new pathway to impart reconfigurability and functionality to passive systems. In particular, DNA has proven to be one of the most versatile and robust building blocks for construction of complex three-dimensional architectures with high fidelity. Here we show the creation of reconfigurable three-dimensional plasmonic metamolecules, which execute DNA-regulated conformational changes at the nanoscale. DNA serves as both a construction material to organize plasmonic nanoparticles in three dimensions, as well as fuel for driving the metamolecules to distinct conformational states. Simultaneously, the three-dimensional plasmonic metamolecules can work as optical reporters, which transduce their conformational changes in situ into circular dichroism changes in the visible wavelength range.

  16. Collaborative annotation of 3D crystallographic models.

    PubMed

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  17. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    SciTech Connect

    Barends, Thomas R. M.; Brosi, Richard W. W.; Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten; Seidel, Ralf; Shoeman, Robert L.; Zimmermann, Sabine; Bittl, Robert; Schlichting, Ilme; Reinstein, Jochen

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.

  18. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  19. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  20. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  1. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  2. Exploring DNA Structure with Cn3D

    ERIC Educational Resources Information Center

    Porter, Sandra G.; Day, Joseph; McCarty, Richard E.; Shearn, Allen; Shingles, Richard; Fletcher, Linnea; Murphy, Stephanie; Pearlman, Rebecca

    2007-01-01

    Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology…

  3. Modeling 3D facial shape from DNA.

    PubMed

    Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D

    2014-03-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  4. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  5. Timescales of quartz crystallization estimated from glass inclusion faceting using 3D propagation phase-contrast x-ray tomography: examples from the Bishop (California, USA) and Oruanui (Taupo Volcanic Zone, New Zealand) Tuffs

    NASA Astrophysics Data System (ADS)

    Pamukcu, A.; Gualda, G. A.; Anderson, A. T.

    2012-12-01

    Compositions of glass inclusions have long been studied for the information they provide on the evolution of magma bodies. Textures - sizes, shapes, positions - of glass inclusions have received less attention, but they can also provide important insight into magmatic processes, including the timescales over which magma bodies develop and erupt. At magmatic temperatures, initially round glass inclusions will become faceted (attain a negative crystal shape) through the process of dissolution and re-precipitation, such that the extent to which glass inclusions are faceted can be used to estimate timescales. The size and position of the inclusion within a crystal will influence how much faceting occurs: a larger inclusion will facet more slowly; an inclusion closer to the rim will have less time to facet. As a result, it is critical to properly document the size, shape, and position of glass inclusions to assess faceting timescales. Quartz is an ideal mineral to study glass inclusion faceting, as Si is the only diffusing species of concern, and Si diffusion rates are relatively well-constrained. Faceting time calculations to date (Gualda et al., 2012) relied on optical microscopy to document glass inclusions. Here we use 3D propagation phase-contrast x-ray tomography to image glass inclusions in quartz. This technique enhances inclusion edges such that images can be processed more successfully than with conventional tomography. We have developed a set of image processing tools to isolate inclusions and more accurately obtain information on the size, shape, and position of glass inclusions than with optical microscopy. We are studying glass inclusions from two giant tuffs. The Bishop Tuff is ~1000 km3 of high-silica rhyolite ash fall, ignimbrite, and intracaldera deposits erupted ~760 ka in eastern California (USA). Glass inclusions in early-erupted Bishop Tuff range from non-faceted to faceted, and faceting times determined using both optical microscopy and x

  6. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures

    PubMed Central

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-01-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144

  7. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  8. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. Protein Crystal Eco R1 Endonulease-DNA Complex

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  10. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  11. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  12. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  13. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  14. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  15. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    SciTech Connect

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  16. Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties.

    PubMed

    Aleksić, Maja; Bertoša, Branimir; Nhili, Raja; Depauw, Sabine; Martin-Kleiner, Irena; David-Cordonnier, Marie-Hélène; Tomić, Sanja; Kralj, Marijeta; Karminski-Zamola, Grace

    2014-01-01

    A series of new anilides (2a-c, 4-7, 17a-c, 18) and quinolones (3a-b, 8a-b, 9a-b, 10-15, 19) with nitrogen-bearing substituents from benzo[b]thiophene and thieno[2,3-c]thiophene series are prepared. Benzo[b]thieno[2,3-c]- and thieno[3',2':4,5]thieno[2,3-c]quinolones (3a-b, 8a-b) are synthesized by the reaction of photochemical dehydrohalogenation from corresponding anilides. Anilides and quinolones were tested for the antiproliferative activity. Fused quinolones bearing protonated aminium group, quaternary ammonium group, N-methylated and protonated aminium group, amino and protonated amino group (8a, 9b, 10-12) showed very prominent anticancer activity, whereby the hydrochloride salt of N',N'-dimethylaminopropyl-substituted quinolone (14) was the most active one, having the IC50 concentration at submicromolar range in accordance with previous QSAR predictions. On the other hand, flexible anilides were among the less active. Chemometric analysis of investigated compounds was performed. 3D-derived QSAR analysis identified solubility, metabolitic stability and the possibility of the compound to be ionized at pH 4-8 as molecular properties that are positively correlated with anticancer activity of investigated compounds, while molecular flexibility, polarizability and sum of hydrophobic surface areas were found to be negatively correlated. Anilides 2a-b, 4-7 and quinolones 3a-b, 8a-b, 9b and 10-14 were evaluated for DNA binding propensities and topoisomerases I/II inhibition as part of their mechanism of action. Among the anilides, only compound 7 presented some DNA binding propensity whereas the quinolones 8b, 9b and 10-14 intercalate in the DNA base pairs, compounds 8b, 9b and 14 being the most efficient ones. The strongest DNA intercalators, compounds 8b, 9b and 14, were clearly distinguished from the other compounds according to their molecular descriptors by the PCA and PLS analysis.

  17. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  18. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  19. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  20. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  1. Crystal Structure of the Human NKX2.5 Homeodomain in Complex with DNA Target

    SciTech Connect

    Pradhan, Lagnajeet; Genis, Caroli; Scone, Peyton; Weinberg, Ellen O.; Kasahara, Hideko; Nam, Hyun-Joo

    2012-10-16

    NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter -242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 {angstrom} resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.

  2. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  3. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  4. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  5. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  6. Crystal Structure, Cytotoxicity and Interaction with DNA of Zinc (II) Complexes with o-Vanillin Schiff Base Ligands

    PubMed Central

    Niu, Mei-Ju; Li, Zhen; Chang, Guo-Liang; Kong, Xiang-Jin; Hong, Min; Zhang, Qing-fu

    2015-01-01

    Two new zinc complexes, Zn(HL1)2 (1) and [Zn2(H2L2)(OAc)2]2 (2) [H2L1 = Schiff base derived from o-vanillin and (R)-(+)-2-amino-3-phenyl-1-propanol, H3L2 = Schiff base derived from o-vanillin and 2-amino-2-ethyl-1,3-propanediol], have been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, TG analyses, solid fluorescence, IR, UV-Vis and circular dichroism spectra. The structural analysis shows that complex 1 has a right-handed double helical chain along the crystallographic b axis. A homochiral 3D supramolecular architecture has been further constructed by intermolecular C-H··· π, O-H···O and C-H···O interactions. Complex 2 includes two crystallographically independent binuclear zinc molecules. The two binuclear zinc molecules are isostructural. The 2-D sheet supramolecular structure was formed by intermolecular hydrogen bonding interaction. The fluorescence of ligands and complexes in DMF at room temperature are studied. The interactions of two complexes with calf thymus DNA (CT-DNA) are investigated using UV-Vis, CD and fluorescence spectroscopy. The results show that complex 1 exhibits higher interaction with CT-DNA than complex 2. In addition, in vitro cytotoxicity of the complexes towards four kinds of cancerous cell lines (A549, HeLa, HL-60 and K562) were assayed by the MTT method. Investigations on the structures indicated that the chirality and nuclearity of zinc complexes play an important role on cytotoxic activity. PMID:26114437

  7. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  8. DNA polymorphism in crystals: three stable conformations for the decadeoxynucleotide d(GCATGCATGC).

    PubMed

    Thirugnanasambandam, Arunachalam; Karthik, Selvam; Artheswari, Gunanithi; Gautham, Namasivayam

    2016-06-01

    High-resolution structures of DNA fragments determined using X-ray crystallography or NMR have provided descriptions of a veritable alphabet of conformations. They have also shown that DNA is a flexible molecule, with some sequences capable of adopting two different structures. Here, the first example is presented of a DNA fragment that can assume three different and distinct conformations in crystals. The decanucleotide d(GCATGCATGC) was previously reported to assume a single-stranded double-fold structure. In one of the two crystal structures described here the decamer assumes both the double-fold conformation and, simultaneously, the more conventional B-type double-helical structure. In the other crystal the sequence assumes the A-type double-helical conformation. These results, taken together with CD spectra, which were recorded as the decamer was titrated against four metal ions and spermine, indicate that the molecule may exist as a mixed population of structures in solution. Small differences in the environmental conditions, such as the concentration of metal ion, may decide which of these crystallizes out. The results also support the idea that it may be possible for DNA to change its structure to suit the binding requirements of proteins or drugs. PMID:27303798

  9. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.

    PubMed

    Senesi, Andrew J; Eichelsdoerfer, Daniel J; Brown, Keith A; Lee, Byeongdu; Auyeung, Evelyn; Choi, Chung Hang J; Macfarlane, Robert J; Young, Kaylie L; Mirkin, Chad A

    2014-11-12

    The evolution of crystallite size and microstrain in DNA-mediated nanoparticle superlattices is dictated by annealing temperature and the flexibility of the interparticle bonds. This work addresses a major challenge in synthesizing optical metamaterials based upon noble metal nanoparticles by enabling the crystallization of large nanoparticles (100 nm diameter) at high volume fractions (34% metal).

  10. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  11. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    SciTech Connect

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-12-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes.

  12. The Inherent Properties of DNA Four-way Junctions: Comparing the Crystal Structures of Holliday Junctions

    PubMed Central

    Eichman, Brandt F.; Ortiz-Lombardía, Miguel; Aymamí, Joan; Coll, Miquel; Ho, Pui Shing

    2015-01-01

    Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG). A detailed comparison of the two structures helps to distinguish distortions of the DNA conformation that are inherent to the cross-overs of the junctions in this crystal system from those that are consequences of the mismatched dG·dA base-pair in the d(CCGGGACCGG) structure. This analysis shows that the junction itself perturbs the sequence-dependent conformational features of the B-DNA duplexes and the associated patterns of hydration in the major and minor grooves only minimally. This supports the idea that a DNA four-way junction can be assembled at relatively low energetic cost. Both structures show a concerted rotation of the adjacent duplex arms relative to B-DNA, and this is discussed in terms of the conserved interactions between the duplexes at the junctions and further down the helical arms. The interactions distant from the strand cross-overs of the junction appear to be significant in defining its macroscopic properties, including the angle relating the stacked duplexes across the junction. PMID:12126623

  13. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.

    PubMed

    Eichman, Brandt F; O'Rourke, Eyleen J; Radicella, J Pablo; Ellenberger, Tom

    2003-10-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  14. Crystal structure of four-stranded Oxytricha telomeric DNA

    NASA Technical Reports Server (NTRS)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  15. Alignment and Graphene-Assisted Decoration of Lyotropic Chromonic Liquid Crystals Containing DNA Origami Nanostructures.

    PubMed

    Martens, Kevin; Funck, Timon; Kempter, Susanne; Roller, Eva-Maria; Liedl, Tim; Blaschke, Benno M; Knecht, Peter; Garrido, José Antonio; Zhang, Bingru; Kitzerow, Heinz

    2016-03-23

    Composites of DNA origami nanostructures dispersed in a lyotropic chromonic liquid crystal are studied by polarizing optical microscopy. The homogeneous aqueous dispersions can be uniformly aligned by confinement between two glass substrates, either parallel to the substrates owing to uniaxial rubbing or perpendicular to the substrates using ozonized graphene layers. These opportunities of uniform alignment may pave the way for tailored anisometric plasmonic DNA nanostructures to photonic materials. In addition, a decorated texture with nonuniform orientation is observed on substrates coated with pristine graphene. When the water is allowed to evaporate slowly, microscopic crystal needles appear, which are aligned along the local orientation of the director. This decoration method can be used for studying the local orientational order and the defects in chromonic liquid crystals.

  16. Abiotic ligation of DNA oligomers templated by their liquid crystal ordering

    NASA Astrophysics Data System (ADS)

    Fraccia, Tommaso P.; Smith, Gregory P.; Zanchetta, Giuliano; Paraboschi, Elvezia; Yi, Yougwooo; Walba, David M.; Dieci, Giorgio; Clark, Noel A.; Bellini, Tommaso

    2015-03-01

    It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.

  17. The absence of tertiary interactions in a self-assembled DNA crystal structure.

    PubMed

    Nguyen, Nam; Birktoft, Jens J; Sha, Ruojie; Wang, Tong; Zheng, Jianping; Constantinou, Pamela E; Ginell, Stephan L; Chen, Yi; Mao, Chengde; Seeman, Nadrian C

    2012-04-01

    DNA is a highly effective molecule for controlling nanometer-scale structure. The convenience of using DNA lies in the programmability of Watson-Crick base-paired secondary interactions, useful both to design branched molecular motifs and to connect them through sticky-ended cohesion. Recently, the tensegrity triangle motif has been used to self-assemble three-dimensional crystals whose structures have been determined; sticky ends were reported to be the only intermolecular cohesive elements in those crystals. A recent communication in this journal suggested that tertiary interactions between phosphates and cytosine N(4) groups are responsible for intermolecular cohesion in these crystals, in addition to the secondary and covalent interactions programmed into the motif. To resolve this issue, we report experiments challenging this contention. Gel electrophoresis demonstrates that the tensegrity triangle exists in conditions where cytosine-PO(4) tertiary interactions seem ineffective. Furthermore, we have crystallized a tensegrity triangle using a junction lacking the cytosine suggested for involvement in tertiary interactions. The unit cell is isomorphous with that of a tensegrity triangle crystal reported earlier. This structure has been solved by molecular replacement and refined. The data presented here leave no doubt that the tensegrity triangle crystal structures reported earlier depend only on base pairing and covalent interactions for their formation. PMID:22434713

  18. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  19. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  20. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  1. Liquid sensor based bio-chip for DNA analysis of cancer using photonic crystal

    NASA Astrophysics Data System (ADS)

    Patil, Harshada; Nischitha, R.; Indumathi, T. S.; Sharan, Preeta

    2015-07-01

    Silicon photonics is poised to revolutionize bio-sensing applications, specifically in medical diagnostics. The need for cost effective and reliable bio-sensors in medical applications is an ever growing and everlasting one. In this synopsis we have designed a 2-D hexagonal photonic crystal ring resonator based bio-sensor that is able to detect lung cancer from blood. Simulation and analysis has been done for normal DNA and the cancer affected DNA in blood. The intensity level of transmission spectrum has been observed. Finite Difference Time Domain (FDTD) method is used for analysis. MEEP (MIT Electromagnetic Equation Propagation) tool and RSOFT Photonic Suite CAD tool are used designing the photonic crystal sensor. The results show that for small changes in the refractive index of the input samples there is a significant shift in wavelength and amplitude. Thus the sensor is highly sensitive for change in refractive index and hence differentiating normal and cancer affected DNA.

  2. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  3. The Crystal Structure of the Thermus Aquaticus DnaB Helicase Monomer

    SciTech Connect

    Bailey,S.; Eliason, W.; Steitz, T.

    2007-01-01

    The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9 {angstrom} resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.

  4. Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly.

    PubMed

    Thaner, Ryan V; Kim, Youngeun; Li, Ting I N G; Macfarlane, Robert J; Nguyen, SonBinh T; Olvera de la Cruz, Monica; Mirkin, Chad A

    2015-08-12

    Herein, we report an example of entropy-driven crystallization behavior in DNA-nanoparticle superlattice assembly, marking a divergence from the well-established enthalpic driving force of maximizing nearest-neighbor hybridization connections. Such behavior is manifested in the observation of a non-close-packed, body-centered cubic (bcc) superlattice when using a system with self-complementary DNA linkers that would be predicted to form a close-packed, face-centered cubic (fcc) structure based solely on enthalpic considerations and previous design rules for DNA-linked particle assembly. Notably, this unexpected phase behavior is only observed when employing long DNA linkers with unpaired "flexor" bases positioned along the length of the DNA linker that increase the number of microstates available to the DNA ligands. A range of design conditions are tested showing sudden onsets of this behavior, and these experiments are coupled with coarse-grained molecular dynamics simulations to show that this entropy-driven crystallization behavior is due to the accessibility of additional microstates afforded by using long and flexible linkers.

  5. Computer-aided 3D display system and its application in 3D vision test

    NASA Astrophysics Data System (ADS)

    Shen, XiaoYun; Ma, Lan; Hou, Chunping; Wang, Jiening; Tang, Da; Li, Chang

    1998-08-01

    The computer aided 3D display system, flicker-free field sequential stereoscopic image display system, is newly developed. This system is composed of personal computer, liquid crystal glasses driving card, stereoscopic display software and liquid crystal glasses. It can display field sequential stereoscopic images at refresh rate of 70 Hz to 120 Hz. A typical application of this system, 3D vision test system, is mainly discussed in this paper. This stereoscopic vision test system can test stereoscopic acuity, cross disparity, uncross disparity and dynamic stereoscopic vision quantitatively. We have taken the use of random-dot- stereograms as stereoscopic vision test charts. Through practical test experiment between Anaglyph Stereoscopic Vision Test Charts and this stereoscopic vision test system, the statistical figures and test result is given out.

  6. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA

    PubMed Central

    Kiontke, Stephan; Geisselbrecht, Yann; Pokorny, Richard; Carell, Thomas; Batschauer, Alfred; Essen, Lars-Oliver

    2011-01-01

    Class II photolyases ubiquitously occur in plants, animals, prokaryotes and some viruses. Like the distantly related microbial class I photolyases, these enzymes repair UV-induced cyclobutane pyrimidine dimer (CPD) lesions within duplex DNA using blue/near-UV light. Methanosarcina mazei Mm0852 is a class II photolyase of the archaeal order of Methanosarcinales, and is closely related to plant and metazoan counterparts. Mm0852 catalyses light-driven DNA repair and photoreduction, but in contrast to class I enzymes lacks a high degree of binding discrimination between UV-damaged and intact duplex DNA. We solved crystal structures of Mm0852, the first one for a class II photolyase, alone and in complex with CPD lesion-containing duplex DNA. The lesion-binding mode differs from other photolyases by a larger DNA-binding site, and an unrepaired CPD lesion is found flipped into the active site and recognized by a cluster of five water molecules next to the bound 3′-thymine base. Different from other members of the photolyase-cryptochrome family, class II photolyases appear to utilize an unusual, conserved tryptophane dyad as electron transfer pathway to the catalytic FAD cofactor. PMID:21892138

  7. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA.

    PubMed

    Kiontke, Stephan; Geisselbrecht, Yann; Pokorny, Richard; Carell, Thomas; Batschauer, Alfred; Essen, Lars-Oliver

    2011-11-01

    Class II photolyases ubiquitously occur in plants, animals, prokaryotes and some viruses. Like the distantly related microbial class I photolyases, these enzymes repair UV-induced cyclobutane pyrimidine dimer (CPD) lesions within duplex DNA using blue/near-UV light. Methanosarcina mazei Mm0852 is a class II photolyase of the archaeal order of Methanosarcinales, and is closely related to plant and metazoan counterparts. Mm0852 catalyses light-driven DNA repair and photoreduction, but in contrast to class I enzymes lacks a high degree of binding discrimination between UV-damaged and intact duplex DNA. We solved crystal structures of Mm0852, the first one for a class II photolyase, alone and in complex with CPD lesion-containing duplex DNA. The lesion-binding mode differs from other photolyases by a larger DNA-binding site, and an unrepaired CPD lesion is found flipped into the active site and recognized by a cluster of five water molecules next to the bound 3'-thymine base. Different from other members of the photolyase-cryptochrome family, class II photolyases appear to utilize an unusual, conserved tryptophane dyad as electron transfer pathway to the catalytic FAD cofactor. PMID:21892138

  8. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  9. Solution and Solid-State Studies of DNA-Programmable Nanoparticle Single Crystals

    NASA Astrophysics Data System (ADS)

    Auyeung, Evelyn

    This thesis lays the foundation for three main areas that have significantly advanced the field of DNA-programmable nanoparticle assembly: (1) the synthesis of nanoparticle superlattices with novel lattice symmetries (2) post-assembly characterization and applications of superlattices that have been transferred from solution to the solid state and (3) the realization of a slow-cooling strategy for synthesizing faceted nanoparticle single crystals. Together, these advances mark a turning point in the evolution of DNA-programmable assembly from a simple proof-of-concept demonstrated in 1996 to a powerful materials development strategy that has inspired many ongoing investigations in fields including catalysis, plasmonics, and electronics. Chapter 1 begins with an overview of controlled crystallization and its importance across fields including chemistry and materials science. This followed by a description of DNA-programmable assembly and a discussion on its advantages as an assembly strategy. Chapter 2 describes a powerful strategy for synthesizing nanoparticle superlattices using a coreless nanoparticle consisting purely of spherically-oriented oligonucleotides. This "three dimensional spacer approach" allows for the synthesis of nanoparticle superlattices with exotic structures, including one with no mineral equivalent. While DNA is a versatile ligand for nanoparticle assembly, the resulting superlattices are only stable in solution. Chapter 3 addresses these limitations and presents a method for transitioning these materials from solution to the solid state through silica encapsulation. This encapsulation process has transformed the ability to interrogate these materials using electron microscopy, and it has enabled all the studies in subsequent chapters of this thesis. In Chapter 4, a slow-cooling crystallization technique is described that allows for the synthesis of single crystalline microcrystals with well-defined facets from DNA-nanoparticle building blocks

  10. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  11. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  12. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals.

    PubMed

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y; Polyakov, Alexey O; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T M; Clark, Noel A; Herrmann, Andreas

    2016-01-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices. PMID:27157494

  13. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  14. Applications of metal ions and liquid crystals for multiplex detection of DNA.

    PubMed

    Liu, Yanyang; Yang, Kun-Lin

    2015-02-01

    Many cations such as sodium ions have strong influence on anchoring behaviors of liquid crystals (LC). Since DNA is negatively charged and forms complex with metal ions, it is possible to form DNA/metal ions complex on surfaces to disrupt orientations of LC. This phenomenon is used to establish a principle for detecting surface immobilized DNA by using LC. In contrast, peptide nucleic acid (PNA) is electroneutral. It does not complex with metal ions or affect the orientations of LC. Therefore, PNA can be used as a probe to hybridize with specific DNA with a unique sequence, and the principle mentioned above can be used to detect the DNA target by using metal ions and LC. Based on this method, a 600bp DNA target in buffer can be detected with a limit of detection at 10fM. Unlike other fluorescence-based DNA assays, this LC-based detection method does not require labeling of DNA, and the test result can be viewed with the naked eye under a polarized microscope.

  15. Crystal Structure of the Human Hsmar1-Derived Transposase Domain in the DNA Repair Enzyme Metnase

    SciTech Connect

    Goodwin, Kristie D.; He, Hongzhen; Imasaki, Tsuyoshi; Lee, Suk-Hee; Georgiadis, Millie M.

    2010-08-12

    Although the human genome is littered with sequences derived from the Hsmar1 transposon, the only intact Hsmar1 transposase gene exists within a chimeric SET-transposase fusion protein referred to as Metnase or SETMAR. Metnase retains many of the transposase activities including terminal inverted repeat (TIR) specific DNA-binding activity, DNA cleavage activity, albeit uncoupled from TIR-specific binding, and the ability to form a synaptic complex. However, Metnase has evolved as a DNA repair protein that is specifically involved in nonhomologous end joining. Here, we present two crystal structures of the transposase catalytic domain of Metnase revealing a dimeric enzyme with unusual active site plasticity that may be involved in modulating metal binding. We show through characterization of a dimerization mutant, F460K, that the dimeric form of the enzyme is required for its DNA cleavage, DNA-binding, and nonhomologous end joining activities. Of significance is the conservation of F460 along with residues that we propose may be involved in the modulation of metal binding in both the predicted ancestral Hsmar1 transposase sequence as well as in the modern enzyme. The Metnase transposase has been remarkably conserved through evolution; however, there is a clustering of substitutions located in alpha helices 4 and 5 within the putative DNA-binding site, consistent with loss of transposition specific DNA cleavage activity and acquisition of DNA repair specific cleavage activity.

  16. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    PubMed Central

    Liu, Yijin; Freeman, Alasdair D.J.; Déclais, Anne-Cécile; Wilson, Timothy J.; Gartner, Anton; Lilley, David M.J.

    2015-01-01

    Summary We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction. PMID:26686639

  17. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  18. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  19. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  20. Two-Dimensional Crystal Structure Formed by Two Components of DNA Nanoparticles on a Substrate

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Maegawa, Yuya; Sato, Masahide

    2016-07-01

    We study the two-dimensional crystal structure of two components of DNA nanoparticles on a substrate by Brownian dynamics simulation. We use the Lennard-Jones potential as the interaction potential between particles and assume that the interaction length between different types of particles, σAB, is smaller than that between the same types of particles, σ. Two types of particles form an alloy structure. With decreasing σAB/σ, the crystal structure changes from a triangular lattice, to a square lattice, a honeycomb lattice, a rectangular lattice, and a triangular lattice.

  1. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  2. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  3. Detection of anthrax lef with DNA-based photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  4. Kinetic characterization of small DNA-binding molecules interacting with a DNA strand on a quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Nakayama, Hajime; Funasaki, Mariko; Okahata, Yoshio

    2016-01-01

    Quantitative studies of the binding of various DNA-binding antibiotics with dsDNA are useful for drug design, not only for effective antibiotics, but also for antitumor drugs. We studied the binding kinetics, association and dissociation rate constants, and association constants (kon, koff, and Ka, respectively) of intercalators and groove binders, including various antibiotics, to double-stranded DNA (dA30·dT30 and dG30·dC30) immobilized on a highly sensitive 27 MHz quartz-crystal microbalance (QCM) in aqueous solution. Although a simple ethidium bromide intercalator bound to both dA30·dT30 and dG30·dC30, antibiotics that are side-binding intercalators, such as daunomycin, aclacinomycin A, and actinomycin D, with sugar or peptide moieties on the intercalator parts selectively bound to dG30·dC30 with high Ka and small koff values. Nogalamycin, a dumbbell-shaped penetrating intercalator, showed low kon and koff values owing to slow duplex unwinding during the penetration process. Groove binders (Hoechst 33258, distamycin A, and mithramycin) had high Ka values owing to the high kon values. Kinetic parameters depended largely on molecular shapes and DNA-binding molecule binding modes.

  5. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  6. Crystallization of Pseudomonas aeruginosa AmrZ protein: development of a comprehensive method for obtaining and optimization of protein–DNA crystals

    PubMed Central

    Pryor, Edward E.; Wozniak, Daniel J.; Hollis, Thomas

    2012-01-01

    The AmrZ protein from the pathogenic bacterium Pseudomonas aeruginosa is a transcription factor that activates and represses the genes for several potent virulence factors, which gives the bacteria a selective advantage in infection. AmrZ was crystallized in complex with DNA containing the amrZ1 repressor binding site. Obtaining crystals of the complex required the integration of a number of well known techniques along with the development of new methods. Here, these processes are organized and combined into a comprehensive method which yielded diffraction-quality crystals. Part of this method included thorough data mining of the crystallization conditions of protein–DNA complexes to create a new directed crystallization screen. An optimized technique for the verification of protein–DNA complexes in crystals is also presented. Taken together, the methods described in this article attempt to streamline the difficult process of obtaining diffraction-quality crystals of protein–DNA complexes through the organization of older methods combined with the introduction of new techniques. PMID:22869139

  7. The Significance of Multivalent Bonding Motifs and "Bond Order" in DNA-Directed Nanoparticle Crystallization.

    PubMed

    Thaner, Ryan V; Eryazici, Ibrahim; Macfarlane, Robert J; Brown, Keith A; Lee, Byeongdu; Nguyen, SonBinh T; Mirkin, Chad A

    2016-05-18

    Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of "bond strength" between particles and therefore modulate the effective "bond order." In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice. PMID:27148838

  8. Time domain topology optimization of 3D nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.

    2014-02-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.

  9. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  10. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  11. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  12. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  13. Crystallization and preliminary X-ray analysis of a complex of the FOXO1 and Ets1 DNA-binding domains and DNA

    SciTech Connect

    Choy, Wing W.; Datta, Drishadwatti; Geiger, Catherine A.; Birrane, Gabriel; Grant, Marianne A.

    2013-12-24

    The DNA-binding domains of Ets1 and FOXO1 were expressed, purified, and crystallized in complex with DNA containing a composite sequence for a noncanonical forkhead binding site and an ETS site. Diffraction data were collected to a resolution of 2.2 Å.

  14. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  15. Crystal structures of APOBEC3G N-domain alone and its complex with DNA.

    PubMed

    Xiao, Xiao; Li, Shu-Xing; Yang, Hanjing; Chen, Xiaojiang S

    2016-01-01

    APOBEC3G (A3G) is a potent restriction factor of HIV-1. The N-terminal domain of A3G (A3G-CD1) is responsible for oligomerization and nucleic acid binding, both of which are essential for anti-HIV activity. As a countermeasure, HIV-1 viral infectivity factor (Vif) binds A3G-CD1 to mediate A3G degradation. The structural basis for the functions of A3G-CD1 remains elusive. Here, we report the crystal structures of a primate A3G-CD1 (rA3G-CD1) alone and in complex with single-stranded DNA (ssDNA). rA3G-CD1 shares a conserved core structure with the previously determined catalytic APOBECs, but displays unique features for surface charge, dimerization and nucleic acid binding. Its co-crystal structure with ssDNA reveals how the conformations of loops and residues surrounding the Zn-coordinated centre (Zn-centre) change upon DNA binding. The dimerization interface of rA3G-CD1 is important for oligomerization, nucleic acid binding and Vif-mediated degradation. These findings elucidate the molecular basis of antiviral mechanism and HIV-Vif targeting of A3G. PMID:27480941

  16. Crystal structures of APOBEC3G N-domain alone and its complex with DNA

    PubMed Central

    Xiao, Xiao; Li, Shu-Xing; Yang, Hanjing; Chen, Xiaojiang S.

    2016-01-01

    APOBEC3G (A3G) is a potent restriction factor of HIV-1. The N-terminal domain of A3G (A3G-CD1) is responsible for oligomerization and nucleic acid binding, both of which are essential for anti-HIV activity. As a countermeasure, HIV-1 viral infectivity factor (Vif) binds A3G-CD1 to mediate A3G degradation. The structural basis for the functions of A3G-CD1 remains elusive. Here, we report the crystal structures of a primate A3G-CD1 (rA3G-CD1) alone and in complex with single-stranded DNA (ssDNA). rA3G-CD1 shares a conserved core structure with the previously determined catalytic APOBECs, but displays unique features for surface charge, dimerization and nucleic acid binding. Its co-crystal structure with ssDNA reveals how the conformations of loops and residues surrounding the Zn-coordinated centre (Zn-centre) change upon DNA binding. The dimerization interface of rA3G-CD1 is important for oligomerization, nucleic acid binding and Vif-mediated degradation. These findings elucidate the molecular basis of antiviral mechanism and HIV-Vif targeting of A3G. PMID:27480941

  17. Crystallization of and selenomethionine phasing strategy for a SETMAR-DNA complex.

    PubMed

    Chen, Qiujia; Georgiadis, Millie

    2016-09-01

    Transposable elements have played a critical role in the creation of new genes in all higher eukaryotes, including humans. Although the chimeric fusion protein SETMAR is no longer active as a transposase, it contains both the DNA-binding domain (DBD) and catalytic domain of the Hsmar1 transposase. The amino-acid sequence of the DBD has been virtually unchanged in 50 million years and, as a consequence, SETMAR retains its sequence-specific binding to the ancestral Hsmar1 terminal inverted repeat (TIR) sequence. Thus, the DNA-binding activity of SETMAR is likely to have an important biological function. To determine the structural basis for the recognition of TIR DNA by SETMAR, the design of TIR-containing oligonucleotides and SETMAR DBD variants, crystallization of DBD-DNA complexes, phasing strategies and initial phasing experiments are reported here. An unexpected finding was that oligonucleotides containing two BrdUs in place of thymidines produced better quality crystals in complex with SETMAR than their natural counterparts. PMID:27599863

  18. Modeling of DNA-Directed Colloidal Self-Assembly and Crystallization

    NASA Astrophysics Data System (ADS)

    Li, Ting; Sknepnek, Rastko; Macfarlane, Robert J.; Mirkin, Chad A.; Olvera de La Cruz, Monica

    2012-02-01

    A series of design rules have recently been developed for using gold nanoparticles conjugated with a dense layer of double stranded DNA chains to assemble a wide variety of nanoparticle superlattice structures [1]. Key design parameters for obtaining different structures in a binary system were shown to be the ratio of the hydrodynamic radii of the DNA-conjugated particles, the ratio of the number of DNA strands per particle, and the self- or non-self-complementary nature of the DNA sequences guiding the assembly process. Guided by those experiments, we have built a coarse grained model that faithfully mimics relative design parameters in the experimental system. Working with nanoparticles in the size range from 8nm to 15nm, overall DNA-nanoparticle hydrodynamic radii of 10nm to 30nm, and the number of DNA strands per particle between 30 and 100, we have developed a simulation method that confirms that these design rules can be used to assemble a variety of different crystal structures. In particular, we have identified FCC, BCC, CsCl, AlB2 and Cr3Si structures. With these data, we have constructed a detailed phase diagram that closely corresponds to the experimentally obtained phase diagram developed in ref. [1]. [1] R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G.

  19. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    PubMed Central

    Barends, Thomas R. M.; Brosi, Richard W. W.; Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten; Seidel, Ralf; Shoeman, Robert L.; Zimmermann, Sabine; Bittl, Robert; Schlichting, Ilme; Reinstein, Jochen

    2013-01-01

    Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ. PMID:23897477

  20. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation.

    PubMed

    Tan, Hui; Li, Xia; Liao, Shuzhen; Yu, Ruqin; Wu, Zhaoyang

    2014-12-15

    A novel highly-sensitive liquid crystal (LC) biosensing approach based on target-triggering DNA dendrimers was developed for the detection of p53 mutation gene segment at the LC-aqueous interface. In this study, the mutant-type p53 gene segment was the target to trigger the formation of DNA dendrimers from hairpin DNA probes by hybridization chain reaction, and the latter as a 'signal enhancement element' further induced the LC reorientation from tilted to homeotropic alignment, resulting in a corresponding optical changes of LC biosensors from birefringent to honeycombed textures or dark framework. The distinct optical reorientational appearances can serve as a characteristic signal to distinguish target concentrations ranging from 0.08 nM to 8 nM. Moreover, these optical phenomena suggest that the LC reorientation is related to the electric-dipole coupling between the adsorbed DNA and LC molecules, the conformational constraints of DNA and the internal electric field induction upon hybridization. This label-free LC biosensing strategy can open up a new platform for the sensitive detection of specific DNA sequences and enrich the application scope of an LC biosensing technique. PMID:24984288

  1. Bio-functionalized hollow core photonic crystal fibers for label-free DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Salloom, Hussein T.; Coscelli, E.; Sozzi, M.; Manicardi, A.; Ahmad, Ahmad K.; Al-Janabi, A. Hadi; Corradini, R.; Picchi, G.; Cucinotta, A.; Selleri, S.

    2014-02-01

    Bio-functionalization of inner surfaces of all silica Hollow Core-Photonic Crystal Fibers (HC-PCF) has been investigated. The approach is based on layer-by-layer self-assembly Peptide Nucleic Acid (PNA) probes, which is an oligonucleotide mimic that is well suited for specific DNA target recognition. Two kinds of HC-PCFs have been considered: a photonic Bragg fiber and a hollow core (HC-1060) fiber. After spectral characterization and internal surface functionalization by using PNA probes, genomic DNA solutions from soy flour were infiltrated into the fibers. The experimental results indicate that hybridization of the complementary strand of target DNA increases the thickness of the silica layer and leads up to the generation of surface modes, resulting in a significant modulation of the transmission spectra. Numerical analysis confirms such behavior, suggesting the possibility to realize biological sensing.

  2. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  3. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  4. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  5. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  6. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  7. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  8. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  9. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  10. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  11. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  12. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  13. High-resolution crystal structure of Z-DNA in complex with Cr(3+) cations.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2015-04-01

    This work is part of our project aimed at characterizing metal-binding properties of left-handed Z-DNA helices. The three Cr(3+) cations found in the asymmetric unit of the d(CGCGCG)2-Cr(3+) crystal structure do not form direct coordination bonds with atoms of the Z-DNA molecule. Instead, the hydrated Cr(3+) ions are engaged in outer-sphere interactions with phosphate groups and O6 and N7 guanine atoms of the DNA. The Cr(3+)(1) and Cr(3+)(2) ions have disordered coordination spheres occupied by six water molecules each. These partial-occupancy chromium cations are 2.354(15) Å apart and are bridged by three water molecules from their hydration spheres. The Cr(3+)(3) cation has distorted square pyramidal geometry. In addition to the high degree of disorder of the DNA backbone, alternate conformations are also observed for the deoxyribose and base moieties of the G2 nucleotide. Our work illuminates the question of conformational flexibility of Z-DNA and its interaction mode with transition-metal cations.

  14. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans.

    PubMed

    Leiros, Ingar; Timmins, Joanna; Hall, David R; McSweeney, Sean

    2005-03-01

    The RecFOR pathway has been shown to be essential for DNA repair through the process of homologous recombination in bacteria and, recently, to be important in the recovery of stalled replication forks following UV irradiation. RecO, along with RecR, RecF, RecQ and RecJ, is a principal actor in this fundamental DNA repair pathway. Here we present the three-dimensional structure of a member of the RecO family. The crystal structure of Deinococcus radiodurans RecO (drRecO) reveals possible binding sites for DNA and for the RecO-binding proteins within its three discrete structural regions: an N-terminal oligonucleotide/oligosaccharide-binding domain, a helical bundle and a zinc-finger motif. Furthermore, drRecO was found to form a stable complex with RecR and to bind both single- and double-stranded DNA. Mutational analysis confirmed the existence of multiple DNA-binding sites within the protein. PMID:15719017

  15. Construction and characterization of Cu2+, Ni2+, Zn2+, and Co2+ modified-DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Kim, Myoungsoon; Lee, In-yeal; Kim, Jang Ah; Gnapareddy, Bramaramba; Lee, Keun Woo; Kim, Taesung; Huh, Nam; Kim, Gil-Ho; Park, Sang Chul; Park, Sung Ha

    2015-07-01

    We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu2+, Ni2+, Zn2+, and Co2+. Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu2+], 1.5 mM of [Ni2+], 1 mM of [Zn2+], and 1 mM of [Co2+]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future.

  16. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  17. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  18. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  19. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  20. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  1. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  2. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    PubMed Central

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-01-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA–surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA–surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices. PMID:27157494

  3. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  4. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  5. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  6. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  7. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  8. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  9. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  10. Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles

    PubMed Central

    Meade, Shawn O.; Chen, Michelle Y.

    2009-01-01

    A particle-based multiplexed DNA assay based on encoded porous SiO2 photonic crystal disks is demonstrated. A “spectral barcode” is generated by electrochemical etch of a single-crystal silicon wafer using a programmed current-time waveform. A lithographic procedure is used to isolate cylindrical microparticles 25 microns in diameter and 10 microns thick, which are then oxidized, modified with a silane linker, and conjugated to various amino functionalized oligonucleotide probes via cyanuric chloride. It is shown that the particles can be decoded based on their reflectivity spectra, and that a multiple analyte assay can be performed in a single sample with a modified fluorescence microscope. The homogeneity of the reflectivity and fluorescence spectra, both within and across the microparticles is also reported. PMID:19271746

  11. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  12. Crystal structure of a four-stranded intercalated DNA: d(C4)

    NASA Technical Reports Server (NTRS)

    Chen, L.; Cai, L.; Zhang, X.; Rich, A.

    1994-01-01

    The crystal structure of d(C4) solved at 2.3-A resolution reveals a four-stranded molecule composed of two interdigitated or intercalated duplexes. The duplexes are held together by hemiprotonated cytosine-cytosine base pairs and are parallel stranded, but the two duplexes point in opposite directions. The molecule has a slow right-handed twist of 12.4 degrees between covalently linked cytosine base pairs, and the base stacking distance is 3.1 A. This is in general agreement with the NMR studies. A biological role for DNA in this conformation is suggested.

  13. Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1

    PubMed Central

    Fonfría-Subirós, Elsa; Acosta-Reyes, Francisco; Saperas, Núria; Pous, Joan; Subirana, Juan A.; Campos, J. Lourdes

    2012-01-01

    We present here for the first time the crystal structure of an AT-hook domain. We show the structure of an AT-hook of the ubiquitous nuclear protein HMGA1, combined with the oligonucleotide d(CGAATTAATTCG)2, which has two potential AATT interacting groups. Interaction with only one of them is found. The structure presents analogies and significant differences with previous NMR studies: the AT-hook forms hydrogen bonds between main-chain NH groups and thymines in the minor groove, DNA is bent and the minor groove is widened. PMID:22615915

  14. Study of the analyzer crystals for use in the near-backscattering spectrometer DNA at J-PARC

    NASA Astrophysics Data System (ADS)

    Takahashi, Nobuaki; Shibata, Kaoru; Sato, Taku J.; Kawakita, Yukinobu; Tsukushi, Itaru; Metoki, Naoto; Nakajima, Kenji; Arai, Masatoshi

    2009-02-01

    The DNA is a near-backscattering instrument that will be installed at the J-PARC neutron facility. Several kinds of analyzer crystals are planned to be installed in it and include PG(0 0 2), Ge(3 1 1), Si(1 1 1) and Si(3 1 1). The Si analyzers will use perfect crystals. Conversely, with the PG and the Ge analyzers, the plan is to utilize mosaic crystals. We have examined the reflecting intensities and mosaic spreads of hot-pressed and as-cut Ge and PG crystals of several qualities using neutron scattering measurements.

  15. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  16. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  17. Crystal structure of Arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding.

    PubMed

    Kumar, Sanjeev; Mazumder, Mohit; Gupta, Nisha; Chattopadhyay, Sudip; Gourinath, Samudrala

    2016-09-01

    Calmodulin (CaM) is a Ca(2+) sensor that participates in several cellular signaling cascades by interacting with various targets, including DNA. It has been shown that Arabidopsis thaliana CaM7 (AtCaM7) interacts with Z-box DNA and functions as a transcription factor [Kushwaha R et al. (2008) Plant Cell 20, 1747-1759; Abbas N et al. (2014) Plant Cell 26, 1036-1052]. The crystal structure of AtCaM7, and a model of the AtCAM7-Z-box complex suggest that Arg-127 determines the DNA-binding ability by forming crucial interactions with the guanine base. We validated the model using biolayer interferometry, which confirmed that AtCaM7 interacts with Z-box DNA with high affinity. In contrast, the AtCaM2/3/5 isoform does not show any binding, although it differs from AtCaM7 by only a single residue. PMID:27500568

  18. Crystal structure of Cpf1 in complex with guide RNA and target DNA

    PubMed Central

    Yamano, Takashi; Nishimasu, Hiroshi; Zetsche, Bernd; Hirano, Hisato; Slaymaker, Ian M.; Li, Yinqing; Fedorova, Iana; Nakane, Takanori; Makarova, Kira S.; Koonin, Eugene V.; Ishitani, Ryuichiro; Zhang, Feng; Nureki, Osamu

    2016-01-01

    Cpf1 is an RNA-guided endonuclease of a type V CRISPR-Cas system that has been recently harnessed for genome editing. Here, we report the crystal structure of Acidaminococcus sp. Cpf1 (AsCpf1) in complex with the guide RNA and its target DNA, at 2.8 Å resolution. AsCpf1 adopts a bilobed architecture, with the RNA–DNA heteroduplex bound inside the central channel. The structural comparison of AsCpf1 with Cas9, a type II CRISPR-Cas nuclease, reveals both striking similarity and major differences, thereby explaining their distinct functionalities. AsCpf1 contains the RuvC domain and a putative novel nuclease domain, which are responsible for the cleavage of the non-target and target strands, respectively, and jointly generate staggered DNA double-strand breaks. AsCpf1 recognizes the 5′-TTTN-3′ protospacer adjacent motif by base and shape readout mechanisms. Our findings provide mechanistic insights into RNA-guided DNA cleavage by Cpf1, and establish a framework for rational engineering of the CRISPR-Cpf1 toolbox. PMID:27114038

  19. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  20. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  1. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  2. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  3. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  4. Segmentation and detection of fluorescent 3D spots.

    PubMed

    Ram, Sundaresh; Rodríguez, Jeffrey J; Bosco, Giovanni

    2012-03-01

    The 3D spatial organization of genes and other genetic elements within the nucleus is important for regulating gene expression. Understanding how this spatial organization is established and maintained throughout the life of a cell is key to elucidating the many layers of gene regulation. Quantitative methods for studying nuclear organization will lead to insights into the molecular mechanisms that maintain gene organization as well as serve as diagnostic tools for pathologies caused by loss of nuclear structure. However, biologists currently lack automated and high throughput methods for quantitative and qualitative global analysis of 3D gene organization. In this study, we use confocal microscopy and fluorescence in-situ hybridization (FISH) as a cytogenetic technique to detect and localize the presence of specific DNA sequences in 3D. FISH uses probes that bind to specific targeted locations on the chromosomes, appearing as fluorescent spots in 3D images obtained using fluorescence microscopy. In this article, we propose an automated algorithm for segmentation and detection of 3D FISH spots. The algorithm is divided into two stages: spot segmentation and spot detection. Spot segmentation consists of 3D anisotropic smoothing to reduce the effect of noise, top-hat filtering, and intensity thresholding, followed by 3D region-growing. Spot detection uses a Bayesian classifier with spot features such as volume, average intensity, texture, and contrast to detect and classify the segmented spots as either true or false spots. Quantitative assessment of the proposed algorithm demonstrates improved segmentation and detection accuracy compared to other techniques.

  5. Filling gaps in cultural heritage documentation by 3D photography

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    geometry" and to multistage concepts of 3D photographs in Cultural Heritage just started. Furthermore a revised list of the 3D visualization principles, claiming completeness, has been carried out. Beside others in an outlook *It is highly recommended, to list every historical and current stereo view with relevance to Cultural Heritage in a global Monument Information System (MIS), like in google earth. *3D photographs seem to be very suited, to complete and/or at least partly to replace manual archaeological sketches. In this concern the still underestimated 3D effect will be demonstrated, which even allows, e.g., the spatial perception of extremely small scratches etc... *A consequent dealing with 3D Technology even seems to indicate, currently we experience the beginning of a new age of "real 3DPC- screens", which at least could add or even partly replace the conventional 2D screens. Here the spatial visualization is verified without glasses in an all-around vitreous body. In this respect nowadays widespread lasered crystals showing monuments are identified as "Early Bird" 3D products, which, due to low resolution and contrast and due to lack of color, currently might even remember to the status of the invention of photography by Niepce (1827), but seem to promise a great future also in 3D Cultural Heritage documentation. *Last not least 3D printers more and more seem to conquer the IT-market, obviously showing an international competition.

  6. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  7. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  8. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  9. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  10. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  11. Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex

    SciTech Connect

    Pallan, Pradeep S.; Egli, Martin

    2009-06-17

    Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme's interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg{sup 2+} at the active site. A subset of amino acids engaged in contacts to RNA 2{prime}-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme's interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.

  12. The crystal structure of Neisseria gonorrhoeae PriB reveals mechanistic differences among bacterial DNA replication restart pathways

    SciTech Connect

    Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.; DeBeer, Madeleine A.P.; Lopper, Matthew E.

    2010-05-25

    Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.

  13. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    SciTech Connect

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  14. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  15. Locomotive wheel 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Luo, Zhisheng; Gao, Xiaorong; Wu, Jianle

    2010-08-01

    In the article, a system, which is used to reconstruct locomotive wheels, is described, helping workers detect the condition of a wheel through a direct view. The system consists of a line laser, a 2D camera, and a computer. We use 2D camera to capture the line-laser light reflected by the object, a wheel, and then compute the final coordinates of the structured light. Finally, using Matlab programming language, we transform the coordinate of points to a smooth surface and illustrate the 3D view of the wheel. The article also proposes the system structure, processing steps and methods, and sets up an experimental platform to verify the design proposal. We verify the feasibility of the whole process, and analyze the results comparing to standard date. The test results show that this system can work well, and has a high accuracy on the reconstruction. And because there is still no such application working in railway industries, so that it has practical value in railway inspection system.

  16. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  17. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  18. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  19. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.

    PubMed Central

    Li, Y.; Kong, Y.; Korolev, S.; Waksman, G.

    1998-01-01

    The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant. PMID:9605316

  20. DNA Hybridization-Mediated Liposome Fusion at the Aqueous Liquid Crystal Interface

    PubMed Central

    Noonan, Patrick S.; Mohan, Praveena; Goodwin, Andrew P.

    2014-01-01

    The prominence of receptor-mediated bilayer fusion in cellular biology motivates development of biomimetic strategies for studying fusogenic mechanisms. An approach is reported here for monitoring receptor-mediated fusion that exploits the unique physical and optical properties of liquid crystals (LC). PEG-functionalized lipids are used to create an interfacial environment capable of inhibiting spontaneous liposome fusion with an aqueous/LC interface. Then, DNA hybridization between oligonucleotides within bulk phase liposomes and a PEG-lipid monolayer at an aqueous/LC interface is exploited to induce receptor-mediated liposome fusion. These hybridization events induce strain within the liposome bilayer, promote lipid mixing with the LC interface, and consequently create an interfacial environment favoring re-orientation of the LC to a homeotropic (perpendicular) state. Furthermore, the bi-functionality of aptamers is exploited to modulate DNA hybridization-mediated liposome fusion by regulating the availability of the appropriate ligand (i.e., thrombin). Here, a LC-based approach for monitoring receptor (i.e., DNA hybridization)-mediated liposome fusion is demonstrated, liposome properties that dictate fusion dynamics are explored, and an example of how this approach may be used in a biosensing scheme is provided. PMID:25506314

  1. Crystal Structure of a Bacterial Topoisomerase IB in Complex with DNA Reveals a Secondary DNA Binding Site

    SciTech Connect

    Patel, Asmita; Yakovleva, Lyudmila; Shuman, Stewart; Mondragón, Alfonso

    2010-10-22

    Type IB DNA topoisomerases (TopIB) are monomeric enzymes that relax supercoils by cleaving and resealing one strand of duplex DNA within a protein clamp that embraces a {approx}21 DNA segment. A longstanding conundrum concerns the capacity of TopIB enzymes to stabilize intramolecular duplex DNA crossovers and form protein-DNA synaptic filaments. Here we report a structure of Deinococcus radiodurans TopIB in complex with a 12 bp duplex DNA that demonstrates a secondary DNA binding site located on the surface of the C-terminal domain. It comprises a distinctive interface with one strand of the DNA duplex and is conserved in all TopIB enzymes. Modeling of a TopIB with both DNA sites suggests that the secondary site could account for DNA crossover binding, nucleation of DNA synapsis, and generation of a filamentous plectoneme. Mutations of the secondary site eliminate synaptic plectoneme formation without affecting DNA cleavage or supercoil relaxation.

  2. Forward ramp in 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.

    The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 3D grain boundary migration

    NASA Astrophysics Data System (ADS)

    Becker, J. K.; Bons, P. D.

    2009-04-01

    Microstructures of rocks play an important role in determining rheological properties and help to reveal the processes that lead to their formation. Some of these processes change the microstructure significantly and may thus have the opposite effect in obliterating any fabrics indicative of the previous history of the rocks. One of these processes is grain boundary migration (GBM). During static recrystallisation, GBM may produce a foam texture that completely overprints a pre-existing grain boundary network and GBM actively influences the rheology of a rock, via its influence on grain size and lattice defect concentration. We here present a new numerical simulation software that is capable of simulating a whole range of processes on the grain scale (it is not limited to grain boundary migration). The software is polyhedron-based, meaning that each grain (or phase) is represented by a polyhedron that has discrete boundaries. The boundary (the shell) of the polyhedron is defined by a set of facets which in turn is defined by a set of vertices. Each structural entity (polyhedron, facets and vertices) can have an unlimited number of parameters (depending on the process to be modeled) such as surface energy, concentration, etc. which can be used to calculate changes of the microstructre. We use the processes of grain boundary migration of a "regular" and a partially molten rock to demonstrate the software. Since this software is 3D, the formation of melt networks in a partially molten rock can also be studied. The interconnected melt network is of fundamental importance for melt segregation and migration in the crust and mantle and can help to understand the core-mantle differentiation of large terrestrial planets.

  4. Crystal growth and electronic phase diagram of 4 d -doped Na1 -δFe1 -xRhxAs in comparison to 3 d -dopedNa1 -δFe1 -xCoxAs

    NASA Astrophysics Data System (ADS)

    Steckel, Frank; Roslova, Maria; Beck, Robert; Morozov, Igor; Aswartham, Saicharan; Evtushinsky, Daniil; Blum, Christian G. F.; Abdel-Hafiez, Mahmoud; Bombor, Dirk; Maletz, Janek; Borisenko, Sergey; Shevelkov, Andrei V.; Wolter, Anja U. B.; Hess, Christian; Wurmehl, Sabine; Büchner, Bernd

    2015-05-01

    Single crystals of Na1 -δFe1 -xTxAs with T = Co, Rh have been grown using a self-flux technique. The crystals were thoroughly characterized by powder x-ray diffraction, magnetic susceptibility, and electronic transport with particular focus on the Rh-doped samples. Measurements of the specific heat and ARPES were conducted exemplarily for the optimally doped compositions. The spin-density wave transition (SDW) observed for samples with low Rh concentration (0 ≤x ≤0.013 ) is fully suppressed in the optimally doped sample. The superconducting transition temperature (Tc) is enhanced from 10 K in Na1 -δFeAs to 21 K in the optimally doped sample (x =0.019 ) of the Na1 -δFe1 -xRhxAs series and decreases for the overdoped compounds, revealing a typical shape for the superconducting part of the electronic phase diagram. Remarkably, the phase diagram is almost identical to that of Co-doped Na1 -δFeAs , suggesting a generic phase diagram for both dopants.

  5. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  6. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  7. Beowulf 3D: a case study

    NASA Astrophysics Data System (ADS)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  8. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  9. Expanding Geometry Understanding with 3D Printing

    ERIC Educational Resources Information Center

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  10. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  11. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  12. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair[C][W

    PubMed Central

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand

    2010-01-01

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway. PMID:20551348

  13. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  14. Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site

    PubMed Central

    Tay, Melanie; Liu, Su; Yuan, Y Adam

    2015-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) defense system is the only adaptive and inheritable immunity found in prokaryotes. The immunity is achieved through a multistep process of adaptation, expression, and interference. In the Type I-E system, interference is mediated by the CRISPR-associated complex for antiviral defense (Cascade), which recognizes invading double-stranded DNA (dsDNA) through the protospacer adjacent motif (PAM) by one of the Cascade components, Cse1. Here, we report the crystal structure of Thermobifida fusca Cse1 at 3.3 Å resolution. T. fusca Cse1 reveals the chair-like two-domain architecture with a well-defined flexible loop, L1, located at the larger N-terminal domain, which was not observed in previous structures of the single Cse1 protein. Structure-based mutagenesis analysis demonstrates that the well-defined flexible loop and a partially conserved structural motif ([FW]-X-[TH]) are involved in PAM binding and recognition, respectively. Moreover, structural docking of T. fusca Cse1 into Escherichia coli Cascade cryoelectron microscopy maps, coupled with structural comparison, reveals a conserved positive patch that is contiguous with Cse2 in the Cascade complex and adjacent to the Cas3 binding site, suggesting its role in R-loop formation/stabilization and the recruitment of Cas3 for target cleavage. Consistent with the structural observation, the introduction of alanine mutations at this positive patch abolished DNA binding activity by Cse1. Taken together, these results suggest that Cse1 is a critical Cascade component involved in Cascade assembly, dsDNA target recognition, R-loop formation, and Cas3 recruitment for target cleavage. PMID:25420472

  15. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    SciTech Connect

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  16. Crystallization of a member of the recFOR DNA repair pathway, RecO, with and without bound oligonucleotide.

    PubMed

    Aono, Shelly; Hartsch, Thomas; Schulze-Gahmen, Ursula

    2003-03-01

    RecFOR proteins are important for DNA repair by homologous recombination in bacteria. The RecO protein from Thermus thermophilus was cloned and purified, and its binding to oligonucleotides was characterized. The protein was crystallized alone and in complex with a 14-mer oligonucleotide. Both crystal forms grow under different crystallization conditions in the same space group, P3(1)21 or P3(2)21, with almost identical unit-cell parameters. Complete data sets were collected to 2.8 and 2.5 A for RecO alone and for the RecO-oligonucleotide complex, respectively. Visual comparison of the diffraction patterns between the two crystal forms and calculation of an R(merge) of 33.9% on F indicate that one of the crystal forms is indeed a complex of RecO with bound oligonucleotide. PMID:12595731

  17. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  18. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Bachmair, F.; Bäni, L.; Bergonzo, P.; Caylar, B.; Forcolin, G.; Haughton, I.; Hits, D.; Kagan, H.; Kass, R.; Li, L.; Oh, A.; Phan, S.; Pomorski, M.; Smith, D. S.; Tyzhnevyi, V.; Wallny, R.; Whitehead, D.

    2015-06-01

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time.

  19. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  20. RELAP5-3D User Problems

    SciTech Connect

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  1. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  2. A 3D POM–MOF composite based on Ni(ΙΙ) ion and 2,2´-bipyridyl-3,3´-dicarboxylic acid: Crystal structure and proton conductivity

    SciTech Connect

    Wei, Meilin; Wang, Xiaoxiang; Sun, Jingjing; Duan, Xianying

    2013-06-01

    We have succeeded in constructing a 3D POM–MOF, (H[Ni(Hbpdc)(H₂O)₂]₂[PW₁₂O₄₀]·8H₂O)n (H₂bpdc=2,2´-bipyridyl-3,3´-dicarboxylic acid), by the controllable self-assembly of H₂bpdc, Keggin-anions and Ni²⁺ ions based on the electrostatic and coordination interactions. Interestingly, Hbpdc⁻ as polydentate organic ligands and Keggin-anion as polydentate inorganic ligands are covalently linked transition-metal nickel at the same time. The title complex represents a new example of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs chemistry. Based on Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid framework, the title complex realizes four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs. Its water adsorption isotherm at room temperature and pressure shows that the water content in it was 31 cm³ g⁻¹ at the maximum allowable humidity, corresponding to 3.7 water molecules per unit formula. It exhibits good proton conductivities (10⁻⁴–10⁻³ S cm⁻¹) at 100 °C in the relative humidity range 35–98%. The corresponding activation energy (E{sub a}) of conductivity was estimated to be 1.01 eV. - Graphical abstract: A POM–MOF composite constructed by Keggin-type polyanion, Ni²⁺ and H₂bpdc shows good proton conductivities of 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C under 35–98% RH. - Highlights: • A POM–MOF was constructed by combining metal N-heterocyclic multi-carboxylic acid framework and Keggin anion. • It opens a pathway for design and synthesis of multifunctional hybrid materials based on two building units. • Three types of potential proton-carriers have been assembled in the 1D hydrophilic channels of the POM–MOF. • It achieved such proton conductivities as 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C in the RH range 35–98%.

  3. 3D printing of natural organic materials by photochemistry

    NASA Astrophysics Data System (ADS)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  4. A 3D polarizing display system base on backlight control

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Huang, Ziqiang

    2011-08-01

    In this paper a new three-dimensional (3D) liquid crystal display (LCD) display mode based on backlight control is presented to avoid the left and right eye images crosstalk in 3D display. There are two major issues in this new black frame 3D display mode. One is continuously playing every frame images twice. The other is controlling the backlight switch periodically. First, this paper explains the cause of the left and right eye images crosstalk, and presents a solution to avoid this problem. Then, we propose to play the entire frame images twice by repeating each frame image after it was played instead of playing the left images and the right images frame by frame alternately. Finally, the backlight is switched periodically instead of turned on all the time. The backlight is turned off while a frame of image is played for the first time, then turned on during the second time, after that it will be turned off again and run the next period with the next frame of image start to refresh. Controlling the backlight switch periodically like this is the key to achieve the black frame 3D display mode. This mode can not only achieve better 3D display effect by avoid the left and right image crosstalk, but also save the backlight power consumption. Theoretical analysis and experiments show that our method is reasonable and efficient.

  5. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  6. Automatic 3D video format detection

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  7. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA

    PubMed Central

    Ha, Sung Chul; Kim, Doyoun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2008-01-01

    Mammalian DAI (DNA-dependent activator of IFN-regulatory factors), an activator of the innate immune response, senses cytosolic DNA by using 2 N-terminal Z-DNA binding domains (ZBDs) and a third putative DNA binding domain located next to the second ZBD. Compared with other previously known ZBDs, the second ZBD of human DAI (hZβDAI) shows significant variation in the sequence of the residues that are essential for DNA binding. In this article, the crystal structure of the hZβDAI/Z-DNA complex reveals that hZβDAI has a similar fold to that of other ZBDs, but adopts an unusual binding mode for recognition of Z-DNA. A residue in the first β-strand rather than residues in the β-loop contributes to DNA binding, and part of the (α3) recognition helix adopts a 310 helix conformation. The role of each residue that makes contact with DNA was confirmed by mutational analysis. The 2 ZBDs of DAI can together bind to DNA and both are necessary for full B-to-Z conversion. It is possible that binding 2 DAIs to 1 dsDNA brings about dimerization of DAI that might facilitate DNA-mediated innate immune activation. PMID:19095800

  8. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  9. Four 3D "brick-wall"-like metal-organic frameworks with a flexible ligand of (S,S,R,R)-1,2,3,4-cyclopentanetetracarboxylic acid: crystal structures, luminescent and magnetic properties.

    PubMed

    Cui, Lin; Luan, Xin-Jun; Zhang, Cui-Ping; Kang, Yi-Fan; Zhang, Wen-Tao; Wang, Yao-Yu; Shi, Qi-Zhen

    2013-02-01

    To investigate the conformation of cyclopentanetetracarboxylic acid, four new "brick-wall"-like metal-organic frameworks have been synthesized from hydrothermal reactions with different metal salts, (S,S,R,R)-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)cptc) and auxiliary N-donor ligands, namely, Cu(2)(S,S,R,R-cptc)(bpe)(H(2)O)(2)·2H(2)O (1), Co(2)(S,S,R,R-cptc)(bpe)(0.5)(H(2)O)(2)·2H(2)O (2), Cd(4)(S,S,R,R-cptc)(2)(bpa)(2)(H(2)O)(5)·2H(2)O (3) and Co(2)(S,S,R,R-cptc)(bpy)(0.5)(H(2)O)(2)·2(H(2)O) (4) (bpe = 4-(2-(pyridine-4-yl)vinyl)pyridine, bpa = 4-(2-(pyridine-4-yl)ethyl)pyridine, bpy = 4-(pyridine-4-yl)pyridine). The complexes were further characterized by single-crystal X-ray diffraction, power X-ray diffraction, FT-IR spectra, fluorescent measurements and variable-temperature magnetic susceptibility measurements. The results of the structural investigations show that 1 is a charming (3,3,4)-trinodal architecture, 3 is an interesting trinodal (3,4,5)-connected architecture, and 2 and 4 are isostructural, which are both (4,5)-connected networks. In addition, the magnetic measurements indicate that 2 and 4 show weak antiferromagnetic interactions, and the fluorescent measurement shows the strong solid-state fluorescent emission at room temperature for 3.

  10. Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that may Discriminate Substrates During DNA Repair

    PubMed Central

    Das, Debanu; Moiani, Davide; Axelrod, Herbert L.; Miller, Mitchell D.; McMullan, Daniel; Jin, Kevin K.; Abdubek, Polat; Astakhova, Tamara; Burra, Prasad; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tainer, John A.; Wilson, Ian A.

    2010-01-01

    Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks (DSBs). As x-ray structural information has only been available for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is the Mre11 endo/exonuclease from T. maritima (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only ∼20%. However, they differ substantially in their DNA specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA specificity domain are not. The structural differences likely affect how Mre11s from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on ssDNA and dsDNA substrates, respectively. PMID:20122942

  11. Crystal structure of DnaT84–153-dT10 ssDNA complex reveals a novel single-stranded DNA binding mode

    PubMed Central

    Liu, Zheng; Chen, Peng; Wang, Xuejuan; Cai, Gang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-01-01

    DnaT is a primosomal protein that is required for the stalled replication fork restart in Escherichia coli. As an adapter, DnaT mediates the PriA-PriB-ssDNA ternary complex and the DnaB/C complex. However, the fundamental function of DnaT during PriA-dependent primosome assembly is still a black box. Here, we report the 2.83 Å DnaT84–153-dT10 ssDNA complex structure, which reveals a novel three-helix bundle single-stranded DNA binding mode. Based on binding assays and negative-staining electron microscopy results, we found that DnaT can bind to phiX 174 ssDNA to form nucleoprotein filaments for the first time, which indicates that DnaT might function as a scaffold protein during the PriA-dependent primosome assembly. In combination with biochemical analysis, we propose a cooperative mechanism for the binding of DnaT to ssDNA and a possible model for the assembly of PriA-PriB-ssDNA-DnaT complex that sheds light on the function of DnaT during the primosome assembly and stalled replication fork restart. This report presents the first structure of the DnaT C-terminal complex with ssDNA and a novel model that explains the interactions between the three-helix bundle and ssDNA. PMID:25053836

  12. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  14. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  15. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  16. Crystallization and preliminary crystallographic analysis of the type IIL restriction enzyme MmeI in complex with DNA

    SciTech Connect

    Callahan, Scott J.; Morgan, Richard D.; Jain, Rinku; Townson, Sharon A.; Wilson, Geoffrey G.; Roberts, Richard J.; Aggarwal, Aneel K.

    2012-05-29

    Type IIL restriction enzymes have rejuvenated the search for user-specified DNA binding and cutting. By aligning and contrasting the highly comparable amino-acid sequences yet diverse recognition specificities across the family of enzymes, amino acids involved in DNA binding have been identified and mutated to produce alternative binding specificities. To date, the specificity of MmeI (a type IIL restriction enzyme) has successfully been altered at positions 3, 4 and 6 of the asymmetric TCCRAC (where R is a purine) DNA-recognition sequence. To further understand the structural basis of MmeI DNA-binding specificity, the enzyme has been crystallized in complex with its DNA substrate. The crystal belonged to space group P1, with unit-cell parameters a = 61.73, b = 94.96, c = 161.24 {angstrom}, {alpha} = 72.79, {beta} = 89.12, {gamma} = 71.68{sup o}, and diffracted to 2.6 {angstrom} resolution when exposed to synchrotron radiation. The structure promises to reveal the basis of MmeI DNA-binding specificity and will complement efforts to create enzymes with novel specificities.

  17. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  18. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  19. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.

  20. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies. PMID:27183171

  1. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  2. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  3. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  4. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  5. Crystallization of the Ets1-Runx1-CBFβ-DNA complex formed on the TCRα gene enhancer.

    PubMed

    Shiina, Masaaki; Hamada, Keisuke; Inoue-Bungo, Taiko; Shimamura, Mariko; Baba, Shiho; Sato, Ko; Ogata, Kazuhiro

    2014-10-01

    Gene transcription is regulated in part through the assembly of multiple transcription factors (TFs) on gene enhancers. To enable examination of the mechanism underlying the formation of these complexes and their response to a phosphorylation signal, two kinds of higher-order TF-DNA assemblies were crystallized composed of an unmodified or phosphorylated Ets1 fragment, a Runx1(L94K) fragment and a CBFβ fragment on the T-cell receptor (TCR) α gene enhancer. Within these complexes, the Ets1 and Runx1 fragments contain intrinsically disordered regulatory regions as well as their DNA-binding domains. Crystals of the complex containing unmodified Ets1 belonged to space group P212121, with unit-cell parameters a = 78.7, b = 102.1, c = 195.0 Å, and diffracted X-rays to a resolution of 2.35 Å, and those containing phosphorylated Ets1 belonged to the same space group, with unit-cell parameters a = 78.6, b = 101.7, c = 194.7 Å, and diffracted X-rays to a similar resolution. To facilitate crystallization, a Runx1 residue involved in a hydrophobic patch that was predicted to be engaged in crystal packing based on the previously reported structures of Runx1-containing crystals was mutated.

  6. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  7. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  8. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  9. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  10. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  11. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  12. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  13. 3D Printing. What's the Harm?

    ERIC Educational Resources Information Center

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  14. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  15. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  16. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  17. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  18. High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55;#8201;Å

    SciTech Connect

    Brzezinski, Krzysztof; Brzuszkiewicz, Anna; Dauter, Miroslawa; Kubicki, Maciej; Jaskolski, Mariusz; Dauter, Zbigniew

    2011-12-02

    The crystal structure of a Z-DNA hexamer duplex d(CGCGCG){sub 2} determined at ultra high resolution of 0.55 {angstrom} and refined without restraints, displays a high degree of regularity and rigidity in its stereochemistry, in contrast to the more flexible B-DNA duplexes. The estimations of standard uncertainties of all individually refined parameters, obtained by full-matrix least-squares optimization, are comparable with values that are typical for small-molecule crystallography. The Z-DNA model generated with ultra high-resolution diffraction data can be used to revise the stereochemical restraints applied in lower resolution refinements. Detailed comparisons of the stereochemical library values with the present accurate Z-DNA parameters, shows in general a good agreement, but also reveals significant discrepancies in the description of guanine-sugar valence angles and in the geometry of the phosphate groups.

  19. Latest developments in a multi-user 3D display

    NASA Astrophysics Data System (ADS)

    Surman, Phil; Sexton, Ian; Bates, Richard; Lee, Wing Kai; Hopf, Klaus; Koukoulas, Triantaffilos

    2005-11-01

    De Montfort University, in conjunction with the Heinrich Hertz Institute, is developing a 3D display that is targeted specifically at the television market. It is capable of supplying 3D to several viewers who do not have to wear special glasses, and who are able to move freely over a room-sized area. The display consists of a single liquid crystal display that presents the same stereo pair to every viewer by employing spatial multiplexing. This presents a stereo pair on alternate pixel rows, with the conventional backlight replaced by novel steering optics controlled by the output of a head position tracker. Illumination is achieved using arrays of coaxial optical elements in conjunction with high-density white light emitting diode arrays. The operation of the steering and multiplexing optics in the prototype display are explained. The results obtained from a prototype built under the European Union-funded ATTEST 3D television project are described. The performance of this model was not optimum, but was sufficient to prove that the principle of operation is viable for a 3D television display. A second prototype, incorporating improvements based on experience gained, is currently under construction and this is also described. The prototype is capable of being developed into a display appropriate for a production model that will enable 3D television to come to market within the next ten years. With the current widespread usage of flat panel displays it is likely that customer preference will be for a hang-on-the-wall 3D display, and this challenge will be met by reconfiguring the optics and incorporating novel optical addressing techniques.

  20. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  1. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  2. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  3. Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition

    PubMed Central

    Larson, John D.; Jenkins, Jermaine L.; Schuermann, Jonathan P.; Zhou, Yuzhen; Becker, Donald F.; Tanner, John J.

    2006-01-01

    PutA (proline utilization A) from Escherichia coli is a 1320-amino-acid residue protein that is both a bifunctional proline catabolic enzyme and an autogenous transcriptional repressor. Here, we report the first crystal structure of a PutA DNA-binding domain along with functional analysis of a mutant PutA defective in DNA binding. Crystals were grown using a polypeptide corresponding to residues 1–52 of E. coli PutA (PutA52). The 2.1 Å resolution structure of PutA52 mutant Lys9Met was determined using Se-Met MAD phasing, and the structure of native PutA52 was solved at 1.9 Å resolution using molecular replacement. Residues 3–46 form a ribbon–helix–helix (RHH) substructure, thus establishing PutA as the largest protein to contain an RHH domain. The PutA RHH domain forms the intertwined dimer with tightly packed hydrophobic core that is characteristic of the RHH family. The structures were used to examine the three-dimensional context of residues conserved in PutA RHH domains. Homology modeling suggests that Lys9 and Thr5 contact DNA bases through the major groove, while Arg15, Thr28, and His30 may interact with the phosphate backbone. Lys9 is shown to be essential for specific recognition of put control DNA using gel shift analysis of the Lys9Met mutant of full-length PutA. Lys9 is disordered in the PutA52 structure, which implies an induced-fit binding mechanism in which the side chain of Lys9 becomes ordered through interaction with DNA. These results provide new insights into the structural basis of DNA recognition by PutA and reveal three-dimensional structural details of the PutA dimer interface. PMID:17001030

  4. 3-D physical models of amitosis (cytokinesis).

    PubMed

    Cheng, Kang; Zou, Changhua

    2005-01-01

    Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too.

  5. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  6. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  7. Low-cost 3D rangefinder system

    NASA Astrophysics Data System (ADS)

    Chen, Bor-Tow; Lou, Wen-Shiou; Chen, Chia-Chen; Lin, Hsien-Chang

    1998-06-01

    Nowadays, 3D data are popularly performed in computer, and 3D browsers manipulate 3D model in the virtual world. Yet, till now, 3D digitizer is still a high-cost product and not a familiar equipment. In order to meet the requirement of 3D fancy world, in this paper, the concept of a low-cost 3D digitizer system is proposed to catch 3D range data from objects. The specified optical design of the 3D extraction is effective to depress the size, and the processing software of the system is compatible with PC to promote its portable capability. Both features contribute a low-cost system in PC environment in contrast to a large system bundled in an expensive workstation platform. In the structure of 3D extraction, laser beam and CCD camera are adopted to construct a 3D sensor. Instead of 2 CCD cameras for capturing laser lines twice before, a 2-in-1 system is proposed to merge 2 images in one CCD which still retains the information of two fields of views to inhibit occlusion problems. Besides, optical paths of two camera views are reflected by mirror in order that the volume of the system can be minified with one rotary axis only. It makes a portable system be more possible to work. Combined with the processing software executable in PC windows system, the proposed system not only saves hardware cost but also processing time of software. The system performance achieves 0.05 mm accuracy. It shows that a low- cost system is more possible to be high-performance.

  8. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  9. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca{sub 5}Bi{sub 3}D{sub 0.93}, Yb{sub 5}Bi{sub 3}H{sub x}, and Sm{sub 5}Bi{sub 3}H{sub a}pprox{sub 1} by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Alejandro Leon-Escamilla, E.; Dervenagas, Panagiotis; Stassis, Constantine; Corbett, John D.

    2010-01-15

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub a}pprox{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of beta-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures. - Graphical abstract: The structure of Ca{sub 5}Bi{sub 3}H{sub 0.93} occurs in the novel Ca{sub 5}Sb{sub 3}F structure type with D centered in the shaded calcium tetrahedra.

  10. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding.

    PubMed

    Timmins, Joanna; Leiros, Ingar; McSweeney, Sean

    2007-07-11

    The crystal structure of the complex formed between Deinococcus radiodurans RecR and RecO (drRecOR) has been determined. In accordance with previous biochemical characterisation, the drRecOR complex displays a RecR:RecO molecular ratio of 2:1. The biologically relevant drRecOR entity consists of a heterohexamer in the form of two drRecO molecules positioned on either side of the tetrameric ring of drRecR, with their OB (oligonucleotide/oligosaccharide-binding) domains pointing towards the interior of the ring. Mutagenesis studies validated the protein-protein interactions observed in the crystal structure and allowed mapping of the residues in the drRecOR complex required for DNA binding. Furthermore, the preferred DNA substrate of drRecOR was identified as being 3'-overhanging DNA, as encountered at ssDNA-dsDNA junctions. Together these results suggest a possible mechanism for drRecOR recognition of stalled replication forks. PMID:17581636

  11. 3-D Television Without Glasses: On Standard Bandwidth

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1983-10-01

    This system for stereoscopic television uses relative camera to scene translating motion and does not require optical aids at the observer's eyes, presents a horizontal parallax (hologram like) 3-D full motion scene to a wide audience, has no dead zones or pseudo 3-D zones over the entire horizontal viewing field and operates on standard telecast signals requiring no changes to the television studio equipment or the home television antenna. The only change required at the receiving end is a special television projector. The system is compatible with pre-recorded standard color television signals. The cathode ray tube is eliminated by substituting an array of solid state charge couple device liquid crystal light valves which have the property to receive television fields in parallel from memory and which are arrayed in an arc for scanning purposes. The array contains a scrolled sequence of successive television frames which serve as the basis for 3-D horizontal viewing parallax. These light valves reflect polarized light with the degree of polarization made a function of the scene brightness. The array is optically scanned and the sequence rapidly projected onto a cylindrical concaved semi-specular screen that returns all of the light to a rapidly translating vertical "aerial" exit slit of light through which the audience views the reconstructed 3-D scene.

  12. Scanning Acoustic Microscope of 3D-Interconnect

    NASA Astrophysics Data System (ADS)

    Wai Kong, Lay; Diebold, A. C.; Rudack, A.; Arkalgud, S.

    2009-09-01

    The College of Nanoscale Science and Engineering of the University at Albany in collaboration with International SEMATECH is investigating the use of Scanning Acoustic Microscope (SAM) for analyzing 3D Interconnects. SAM is a non-destructive metrology technique which utilizes high frequency ultrasound to generate a microscopic image of the internal parts of a specimen. The goal of this project is to develop microscopic techniques for evaluating Through-Silicon Vias (TSVs) for 3D-Interconnects. Preliminary data shows voids and other defects in the interface between bonded wafers as shown in Figure 1. Our SAM laboratory system operates at 230 MHz and has a spatial resolution of 5-10 μm and focal length of 5.9 mm on a silicon wafer. The spatial resolution and sampling depth depend on the ultrasonic frequency, sound velocity, focal length and diameter of piezoelectric crystal. Typically, the silicon wafers have a thickness of 775 μm before they are bonded. Our initial work is focused on blanket wafers in order to develop the bonding process. The next step is to bond wafers with test die where the patterning obscures the interface. This paper will discuss the limitations of SAM and compare it to infrared microscopy which is another important imaging capability for 3D Interconnect. We also discuss the current status of research into more advanced acoustic microscopy methods and how this might impact 3D Interconnect imaging.

  13. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  14. Crystallization and preliminary X-ray analysis of the NKX2.5 homeodomain in complex with DNA

    PubMed Central

    Genis, Caroli; Scone, Peyton; Kasahara, Hideko; Nam, Hyun-Joo

    2008-01-01

    As part of an effort to elucidate the molecular basis for the pathogenesis of NKX2.5 mutations in congenital heart disease using X-ray crystallography, the NKX2.5 homeodomain has been crystallized in complex with a specific DNA element, the −242 promoter region of atrial natriuretic factor. Crystals of the homeodomain–DNA complex diffracted X-rays to 1.7 Å resolution and belonged to space group P65, with unit-cell parameters a = b = 71.5, c = 94.3 Å. The asymmetric unit contained two molecules of the NKX2.5 homeodomain and one double-stranded oligonucleotide. PMID:18997347

  15. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  16. 3D facial expression modeling for recognition

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  17. Digital relief generation from 3D models

    NASA Astrophysics Data System (ADS)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  18. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  19. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3