Science.gov

Sample records for 3d domain swapping

  1. Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA

    NASA Technical Reports Server (NTRS)

    Lietzke, Susan E; Barnes, Cindy L.

    1998-01-01

    3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.

  2. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information

    PubMed Central

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids. PMID:27467780

  3. 3D domain swapping in a chimeric c-Src SH3 domain takes place through two hinge loops.

    PubMed

    Cámara-Artigas, Ana; Martínez-Rodríguez, Sergio; Ortiz-Salmerón, Emilia; Martín-García, José M

    2014-04-01

    In the Src Homology 3 domain (SH3) the RT and n-Src loops form a pocket that accounts for the specificity and affinity in binding of proline rich motifs (PRMs), while the distal and diverging turns play a key role in the folding of the protein. We have solved the structure of a chimeric mutant c-Src-SH3 domain where specific residues at the RT- and n-Src-loops have been replaced by those present in the corresponding Abl-SH3 domain. Crystals of the chimeric protein show a single molecule in the asymmetric unit, which appears in an unfolded-like structure that upon generation of the symmetry related molecules reveals the presence of a domain swapped dimer where both, RT- and n-Src loops, act as hinge loops. In contrast, the fold of the diverging type II β-turn and the distal loop are well conserved. Our results are the first evidence for the presence of a structured diverging type II β-turn in an unfolded-like intermediate of the c-Src-SH3 domain, which can be stabilized by interactions from the β-strands of the same polypeptide chain or from a neighboring one. Futhermore, this crystallographic structure opens a unique opportunity to study the effect of the amino acid sequence of the hinge loops on the 3D domain swapping process of c-Src-SH3. PMID:24556574

  4. 3D domain swapping causes extensive multimerisation of human interleukin-10 when expressed in planta.

    PubMed

    Westerhof, Lotte B; Wilbers, Ruud H P; Roosien, Jan; van de Velde, Jan; Goverse, Aska; Bakker, Jaap; Schots, Arjen

    2012-01-01

    Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10(mono)) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10(mono) no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10(mono) to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fcα), a natural dimer. Stable dimeric forms of IL-10, like Fcα-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications. PMID:23049703

  5. Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C.

    PubMed

    Orlikowska, Marta; Jankowska, Elżbieta; Kołodziejczyk, Robert; Jaskólski, Mariusz; Szymańska, Aneta

    2011-02-01

    Cystatins are natural inhibitors of cysteine proteases, enzymes that are widely distributed in animals, plants, and microorganisms. Human cystatin C (hCC) has been also recognized as an aggregating protein directly involved in the formation of pathological amyloid fibrils, and these amyloidogenic properties greatly increase in a naturally occurring L68Q hCC variant. For a long time only dimeric structure of wild-type hCC has been known. The dimer is created through 3D domain swapping process, in which two parts of the cystatin structure become separated from each other and next exchanged between two molecules. Important role in the domain swapping plays the L1 loop, which connects the exchanging segments and, upon dimerization, transforms from a β-turn into a part of a long β-strand. In the very recently published first monomeric structure of human cystatin C (hCC-stab1), dimerization was abrogated due to clasping of the β-strands from the swapping domains by an engineered disulfide bridge. We have designed and constructed another mutated cystatin C with the smallest possible structural intervention, that is a single-point mutation replacing hydrophobic V57 from the L1 loop by polar asparagine, known as a stabilizer of a β-turn motif. V57N hCC mutant occurred to be stable in its monomeric form and crystallized as a monomer, revealing typical cystatin fold with a five-stranded antiparallel β-sheet wrapped around an α-helix. Here we report a 2.04 Å resolution crystal structure of V57N hCC and discuss the architecture of the protein in comparison to chicken cystatin, hCC-stab1 and dimeric hCC. PMID:21074623

  6. Crystal Structure of the Mycoplasma arthritidis-Derived Mitogen in Apo Form Reveals a 3D Domain-Swapped Dimer

    SciTech Connect

    Liu, L.; Li, Z; Guo, Y; VanVranken, S; Mourad, W; Li, H

    2010-01-01

    Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular V{beta} elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-{angstrom} resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the 'reconstituted' MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM{sub wt} molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.

  7. Detection and Alignment of 3D Domain Swapping Proteins Using Angle-Distance Image-Based Secondary Structural Matching Techniques

    PubMed Central

    Wang, Hsin-Wei; Hsu, Yen-Chu; Hwang, Jenn-Kang; Lyu, Ping-Chiang; Pai, Tun-Wen; Tang, Chuan Yi

    2010-01-01

    This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had “opened” their “closed” structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge

  8. Domain swapping: entangling alliances between proteins.

    PubMed Central

    Bennett, M J; Choe, S; Eisenberg, D

    1994-01-01

    The comparison of monomeric and dimeric diphtheria toxin (DT) reveals a mode for protein association which we call domain swapping. The structure of dimeric DT has been extensively refined against data to 2.0-A resolution and a three-residue loop has been corrected as compared with our published 2.5-A-resolution structure. The monomeric DT structure has also been determined, at 2.3-A resolution. Monomeric DT is a Y-shaped molecule with three domains: catalytic (C), transmembrane (T), and receptor binding (R). Upon freezing in phosphate buffer, DT forms a long-lived, metastable dimer. The protein chain tracing discloses that upon dimerization an unprecedented conformational rearrangement occurs: the entire R domain from each molecule of the dimer is exchanged for the R domain from the other. This involves breaking the noncovalent interactions between the R domain and the C and T domains, rotating the R domain by 180 degrees with atomic movements up to 65 A, and re-forming the same noncovalent interactions between the R domain and the C and T domains of the other chain of the dimer. This conformational transition explains the long life and metastability of the DT dimer. Several other intertwined, dimeric protein structures satisfy our definition of domain swapping and suggest that domain swapping may be the molecular mechanism for evolution of these oligomers and possibly of oligomeric proteins in general. Images PMID:8159715

  9. Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain.

    PubMed

    Cámara-Artigas, Ana

    2016-07-15

    Oligomerization by 3D domain swapping is found in a variety of proteins of diverse size, fold and function. In the early 1960s this phenomenon was postulated for the oligomers of ribonuclease A, but it was not until the 1990s that X-ray diffraction provided the first experimental evidence of this special manner of oligomerization. Nowadays, structural information has allowed the identification of these swapped oligomers in over one hundred proteins. Although the functional relevance of this phenomenon is not clear, this alternative folding of protomers into intertwined oligomers has been related to amyloid formation. Studies on proteins that develop 3D domain swapping might provide some clues on the early stages of amyloid formation. The SH3 domain is a small modular domain that has been used as a model to study the basis of protein folding. Among SH3 domains, the c-Src-SH3 domain emerges as a helpful model to study 3D domain swapping and amyloid formation. PMID:26924596

  10. Intra-chain 3D segment swapping spawns the evolution of new multidomain protein architectures.

    PubMed

    Szilágyi, András; Zhang, Yang; Závodszky, Péter

    2012-01-01

    Multidomain proteins form in evolution through the concatenation of domains, but structural domains may comprise multiple segments of the chain. In this work, we demonstrate that new multidomain architectures can evolve by an apparent three-dimensional swap of segments between structurally similar domains within a single-chain monomer. By a comprehensive structural search of the current Protein Data Bank (PDB), we identified 32 well-defined segment-swapped proteins (SSPs) belonging to 18 structural families. Nearly 13% of all multidomain proteins in the PDB may have a segment-swapped evolutionary precursor as estimated by more permissive searching criteria. The formation of SSPs can be explained by two principal evolutionary mechanisms: (i) domain swapping and fusion (DSF) and (ii) circular permutation (CP). By large-scale comparative analyses using structural alignment and hidden Markov model methods, it was found that the majority of SSPs have evolved via the DSF mechanism, and a much smaller fraction, via CP. Functional analyses further revealed that segment swapping, which results in two linkers connecting the domains, may impart directed flexibility to multidomain proteins and contributes to the development of new functions. Thus, inter-domain segment swapping represents a novel general mechanism by which new protein folds and multidomain architectures arise in evolution, and SSPs have structural and functional properties that make them worth defining as a separate group. PMID:22079367

  11. Three-dimensional domain swapping and its relevance to conformational diseases

    NASA Astrophysics Data System (ADS)

    Jaskolski, Mariusz

    When a protein undergoes oligomerization via three-dimensional (3D) domain swapping, its molecules exchange secondary structure elements recreating the monomeric fold in an aberrant way, i.e., from chain segments belonging to different molecules. There is a hypothetical possibility that if this process took place in an open-ended, rather than reciprocal, fashion it could lead to the formation of pathological amyloid fibrils, which are associated with several conformational disorders. 3D domain swapping and disease-causing amyloid aggregation have been reported for many proteins, but human cystatin C (HCC) and the prion protein (PrP) are the only examples for which both phenomena have been observed.

  12. Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation

    PubMed Central

    Bacarizo, Julio; Martinez-Rodriguez, Sergio; Martin-Garcia, Jose Manuel; Andujar-Sanchez, Montserrat; Ortiz-Salmeron, Emilia; Neira, Jose Luis; Camara-Artigas, Ana

    2014-01-01

    The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation. PMID:25490095

  13. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  14. Domain-Swapped Dimer of Pseudomonas aeruginosa Cytochrome c551: Structural Insights into Domain Swapping of Cytochrome c Family Proteins

    PubMed Central

    Nagao, Satoshi; Ueda, Mariko; Osuka, Hisao; Komori, Hirofumi; Kamikubo, Hironari; Kataoka, Mikio; Higuchi, Yoshiki; Hirota, Shun

    2015-01-01

    Cytochrome c (cyt c) family proteins, such as horse cyt c, Pseudomonas aeruginosa cytochrome c551 (PA cyt c551), and Hydrogenobacter thermophilus cytochrome c552 (HT cyt c552), have been used as model proteins to study the relationship between the protein structure and folding process. We have shown in the past that horse cyt c forms oligomers by domain swapping its C-terminal helix, perturbing the Met–heme coordination significantly compared to the monomer. HT cyt c552 forms dimers by domain swapping the region containing the N-terminal α-helix and heme, where the heme axial His and Met ligands belong to different protomers. Herein, we show that PA cyt c551 also forms domain-swapped dimers by swapping the region containing the N-terminal α-helix and heme. The secondary structures of the M61A mutant of PA cyt c551 were perturbed slightly and its oligomer formation ability decreased compared to that of the wild-type protein, showing that the stability of the protein secondary structures is important for domain swapping. The hinge loop of domain swapping for cyt c family proteins corresponded to the unstable region specified by hydrogen exchange NMR measurements for the monomer, although the swapping region differed among proteins. These results show that the unstable loop region has a tendency to become a hinge loop in domain-swapped proteins. PMID:25853415

  15. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  16. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    SciTech Connect

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.

    2010-09-27

    ECD. Quite unexpectedly, ND1 forms a dimer mediated through the exchange of its last {beta}-strand (strand G). {beta}-strand swapping, which is a subset of 3D domain swapping, has been found to mediate cell-cell adhesion by cadherins. 3D domain swapping has been proposed to be a mechanism of protein oligomerization, aggregation, evolution of oligomeric proteins from single domains and amyloidogenesis. In domain swapped proteins, the same structural elements are involved in the final 3D structure, and so there is little overall energetic difference between the monomer and the swapped oligomers. However, there is often a high energy barrier for the conversion as it often goes through an unfolded state. It is also possible that strand-swapping occurs during folding of nascent polypeptide chains. Frequently, the exchange hinges contain proline-rich motifs which are often in high strain conformations. Domain swapping appears to be a strategy to resolve such local structural strain. The exchange hinge of ND1 contains a Pro-Glu-Pro tripeptide motif. Both of the proline residues adopt extended trans conformations, when compared with cis in the full-length ECD structure. Proline cis-trans isomerization may be the driving force for this exchange. Strand-exchanged dimerization may be a mechanism for the oligomerization of EMMPRIN ECD and its cis-dependent homophilic interactions in cell-cell adhesion.

  17. Crystal structure of domain-swapped STE20 OSR1 kinase domain

    SciTech Connect

    Lee, Seung-Jae; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2009-09-15

    OSR1 (oxidative stress-responsive-1) and SPAK (Ste20/Sps1-related proline/alanine-rich kinase) belong to the GCK-VI subfamily of Ste20 group kinases. OSR1 and SPAK are key regulators of NKCCs (Na{sup +}/K{sup +}/2Cl{sup -} cotransporters) and activated by WNK family members (with-no-lysine kinase), mutations of which are known to cause Gordon syndrome, an autosomal dominant form of inherited hypertension. The crystal structure of OSR1 kinase domain has been solved at 2.25 {angstrom}. OSR1 forms a domain-swapped dimer in an inactive conformation, in which P+1 loop and {alpha}EF helix are swapped between dimer-related monomers. Structural alignment with nonswapped Ste20 TAO2 kinase indicates that the integrity of chemical interactions in the kinase domain is well preserved in the domain-swapped interfaces. The OSR1 kinase domain has now been added to a growing list of domain-swapped protein kinases recently reported, suggesting that the domain-swapping event provides an additional layer of complexity in regulating protein kinase activity.

  18. Double Domain Swapping in Bovine Seminal RNase: Formation of Distinct N- and C-swapped Tetramers and Multimers with Increasing Biological Activities

    PubMed Central

    Gotte, Giovanni; Mahmoud Helmy, Alexander; Ercole, Carmine; Spadaccini, Roberta; Laurents, Douglas V.; Donadelli, Massimo; Picone, Delia

    2012-01-01

    Bovine seminal (BS) RNase, the unique natively dimeric member of the RNase super-family, represents a special case not only for its additional biological actions but also for the singular features of 3D domain swapping. The native enzyme is indeed a mixture of two isoforms: M = M, a dimer held together by two inter-subunit disulfide bonds, and MxM, 70% of the total, which, besides the two mentioned disulfides, is additionally stabilized by the swapping of its N-termini. When lyophilized from 40% acetic acid, BS-RNase oligomerizes as the super-family proto-type RNase A does. In this paper, we induced BS-RNase self-association and analyzed the multimers by size-exclusion chromatography, cross-linking, electrophoresis, mutagenesis, dynamic light scattering, molecular modelling. Finally, we evaluated their enzymatic and cytotoxic activities. Several BS-RNase domain-swapped oligomers were detected, including two tetramers, one exchanging only the N-termini, the other being either N- or C-swapped. The C-swapping event, confirmed by results on a BS-K113N mutant, has been firstly seen in BS-RNase here, and probably stabilizes also multimers larger than tetramers. Interestingly, all BS-RNase oligomers are more enzymatically active than the native dimer and, above all, they display a cytotoxic activity that definitely increases with the molecular weight of the multimers. This latter feature, to date unknown for BS-RNase, suggests again that the self-association of RNases strongly modulates their biological and potentially therapeutic properties. PMID:23071641

  19. 3D-spectral domain computational imaging

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Ferra, Herman; Lorenser, Dirk; Frisken, Steven

    2016-03-01

    We present a proof-of-concept experiment utilizing a novel "snap-shot" spectral domain OCT technique that captures a phase coherent volume in a single frame. The sample is illuminated with a collimated beam of 75 μm diameter and the back-reflected light is analyzed by a 2-D matrix of spectral interferograms. A key challenge that is addressed is simultaneously maintaining lateral and spectral phase coherence over the imaged volume in the presence of sample motion. Digital focusing is demonstrated for 5.0 μm lateral resolution over an 800 μm axial range.

  20. A Simple Model of Protein Domain Swapping in Crowded Cellular Environments.

    PubMed

    Woodard, Jaie C; Dunatunga, Sachith; Shakhnovich, Eugene I

    2016-06-01

    Domain swapping in proteins is an important mechanism of functional and structural innovation. However, despite its ubiquity and importance, the physical mechanisms that lead to domain swapping are poorly understood. Here, we present a simple two-dimensional coarse-grained model of protein domain swapping in the cytoplasm. In our model, two-domain proteins partially unfold and diffuse in continuous space. Monte Carlo multiprotein simulations of the model reveal that domain swapping occurs at intermediate temperatures, whereas folded dimers and folded monomers prevail at low temperatures, and partially unfolded monomers predominate at high temperatures. We use a simplified amino acid alphabet consisting of four residue types, and find that the oligomeric state at a given temperature depends on the sequence of the protein. We also show that hinge strain between domains can promote domain swapping, consistent with experimental observations for real proteins. Domain swapping depends nonmonotonically on the protein concentration, with domain-swapped dimers occurring at intermediate concentrations and nonspecific interactions between partially unfolded proteins occurring at high concentrations. For folded proteins, we recover the result obtained in three-dimensional lattice simulations, i.e., that functional dimerization is most prevalent at intermediate temperatures and nonspecific interactions increase at low temperatures. PMID:27276255

  1. Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells

    PubMed Central

    Hayashi, Yugo; Yamanaka, Masaru; Nagao, Satoshi; Komori, Hirofumi; Higuchi, Yoshiki; Hirota, Shun

    2016-01-01

    Knowledge on domain swapping in vitro is increasing, but domain swapping may not occur regularly in vivo, and its information in cells is limited. Herein, we show that domain-swapped oligomers of a thermostable c-type cytochrome, Hydrogenobacter thermophilus cyt c552, are formed in E. coli which expresses cyt c552. The region containing the N-terminal α-helix and heme was domain-swapped between protomers in the dimer formed in E. coli. The amount of cyt c552 oligomers increased in E. coli as the cyt c552 concentration was increased, whereas that of high-order oligomers decreased in the order of decrease in protein stability, indicating that domain swapping decreases in cells when the protein stability decreases. Apo cyt c552 was detected in the cyt c552 oligomer formed in E. coli, but not in that of the A5F/M11V/Y32F/Y41E/I76V mutant. The cyt c552 oligomer containing its apo protein may form at the periplasm, since the apo protein detected by mass measurements did not contain the signal peptide. These results show that domain-swapped cyt c552 oligomers were formed in E. coli, owing to the stability of the transient oligomer containing the apo protein before heme attachment. This is an indication that exceedingly stable proteins may have disadvantages forming domain-swapped oligomers in cells. PMID:26838805

  2. Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1.

    PubMed

    Medina, Exequiel; Córdova, Cristóbal; Villalobos, Pablo; Reyes, Javiera; Komives, Elizabeth A; Ramírez-Sarmiento, César A; Babul, Jorge

    2016-06-01

    The forkhead family of transcription factors (Fox) controls gene transcription during key processes such as regulation of metabolism, embryogenesis, and immunity. Structurally, Fox proteins feature a conserved DNA-binding domain known as forkhead. Interestingly, solved forkhead structures of members from the P subfamily (FoxP) show that they can oligomerize by three-dimensional domain swapping, whereby structural elements are exchanged between adjacent subunits, leading to an intertwined dimer. Recent evidence has largely stressed the biological relevance of domain swapping in FoxP, as several disease-causing mutations have been related to impairment of this process. Here, we explore the equilibrium folding and binding mechanism of the forkhead domain of wild-type FoxP1, and of two mutants that hinder DNA-binding (R53H) and domain swapping (A39P), using size-exclusion chromatography, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. Our results show that domain swapping of FoxP1 occurs at micromolar protein concentrations within hours of incubation and is energetically favored, in contrast to classical domain-swapping proteins. Also, DNA-binding mutations do not significantly affect domain swapping. Remarkably, equilibrium unfolding of dimeric FoxP1 follows a three-state N2 ↔ 2I ↔ 2U folding mechanism in which dimer dissociation into a monomeric intermediate precedes protein unfolding, in contrast to the typical two-state model described for most domain-swapping proteins, whereas the A39P mutant follows a two-state N ↔ U folding mechanism consistent with the second transition observed for dimeric FoxP1. Also, the free-energy change of the N ↔ U in A39P FoxP1 is ∼2 kcal⋅mol(-1) larger than the I ↔ U transition of both wild-type and R53H FoxP1. Finally, hydrogen-deuterium exchange mass spectrometry reveals that the intermediate strongly resembles the native state. Our results suggest that domain swapping in FoxP1 is at least

  3. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping.

    PubMed

    Wahlbom, Maria; Wang, Xin; Lindström, Veronica; Carlemalm, Eric; Jaskolski, Mariusz; Grubb, Anders

    2007-06-22

    Cystatin C and the prion protein have been shown to form dimers via three-dimensional domain swapping, and this process has also been hypothesized to be involved in amyloidogenesis. Production of oligomers of other amyloidogenic proteins has been reported to precede fibril formation, suggesting oligomers as intermediates in fibrillogenesis. A variant of cystatin C, with a Leu68-->Gln substitution, is highly amyloidogenic, and carriers of this mutation suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adulthood. This work describes doughnut-shaped oligomers formed by wild type and L68Q cystatin C upon incubation of the monomeric proteins. Purified oligomers of cystatin C are shown to fibrillize faster and at a lower concentration than the monomeric protein, indicating a role of the oligomers as fibril-assembly intermediates. Moreover, the present work demonstrates that three-dimensional domain swapping is involved in the formation of the oligomers, because variants of monomeric cystatin C, stabilized against three-dimensional domain swapping by engineered disulfide bonds, do not produce oligomers upon incubation under non-reducing conditions. Redox experiments using wild type and stabilized cystatin C strongly suggest that the oligomers, and thus probably the fibrils as well, are formed by propagated domain swapping rather than by assembly of domain-swapped cystatin C dimers. PMID:17470433

  4. Optical Control of Protein–Protein Interactions via Blue Light-Induced Domain Swapping

    PubMed Central

    2015-01-01

    The design of new optogenetic tools for controlling protein function would be facilitated by the development of protein scaffolds that undergo large, well-defined structural changes upon exposure to light. Domain swapping, a process in which a structural element of a monomeric protein is replaced by the same element of another copy of the same protein, leads to a well-defined change in protein structure. We observe domain swapping in a variant of the blue light photoreceptor photoactive yellow protein in which a surface loop is replaced by a well-characterized protein–protein interaction motif, the E-helix. In the domain-swapped dimer, the E-helix sequence specifically binds a partner K-helix sequence, whereas in the monomeric form of the protein, the E-helix sequence is unable to fold into a binding-competent conformation and no interaction with the K-helix is seen. Blue light irradiation decreases the extent of domain swapping (from Kd = 10 μM to Kd = 300 μM) and dramatically enhances the rate, from weeks to <1 min. Blue light-induced domain swapping thus provides a novel mechanism for controlling of protein–protein interactions in which light alters both the stability and the kinetic accessibility of binding-competent states. PMID:25003701

  5. Coverage Assessment and Target Tracking in 3D Domains

    PubMed Central

    Boudriga, Noureddine; Hamdi, Mohamed; Iyengar, Sitharama

    2011-01-01

    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes. PMID:22163733

  6. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  7. Formation of domain-swapped oligomer of cytochrome C from its molten globule state oligomer.

    PubMed

    Deshpande, Megha Subhash; Parui, Partha Pratim; Kamikubo, Hironari; Yamanaka, Masaru; Nagao, Satoshi; Komori, Hirofumi; Kataoka, Mikio; Higuchi, Yoshiki; Hirota, Shun

    2014-07-22

    Many proteins, including cytochrome c (cyt c), have been shown to form domain-swapped oligomers, but the factors governing the oligomerization process remain unrevealed. We obtained oligomers of cyt c by refolding cyt c from its acid molten globule state to neutral pH state under high protein and ion concentrations. The amount of oligomeric cyt c obtained depended on the nature of the anion (chaotropic or kosmotropic) in the solution: ClO4(-) (oligomers, 11% ± 2% (heme unit)), SCN(-) (10% ± 2%), I(-) (6% ± 2%), NO3(-) (3% ± 1%), Br(-) (2% ± 1%), Cl(-) (2% ± 1%), and SO4(2-) (3% ± 1%) for refolding of 2 mM cyt c (anion concentration 125 mM). Dimeric cyt c obtained by refolding from the molten globule state exhibited a domain-swapped structure, in which the C-terminal α-helices were exchanged between protomers. According to small-angle X-ray scattering measurements, approximately 25% of the cyt c molecules were dimerized in the molten globule state containing 125 mM ClO4(-). These results indicate that a certain amount of molten globule state oligomers of cyt c convert to domain-swapped oligomers during refolding and that the intermolecular interactions necessary for domain swapping are present in the molten globule state. PMID:24981551

  8. 3D Vectorial Time Domain Computational Integrated Photonics

    SciTech Connect

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip

  9. [beta subsccript 2]-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

    SciTech Connect

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David

    2011-08-09

    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.

  10. Time domain topology optimization of 3D nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.

    2014-02-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.

  11. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C.

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  12. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  13. Protein reconstitution and three-dimensional domain swapping: Benefits and constraints of covalency

    PubMed Central

    Carey, Jannette; Lindman, Stina; Bauer, Mikael; Linse, Sara

    2007-01-01

    The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone. PMID:17962398

  14. Swapped domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection

    PubMed Central

    Chu, Shidong; Kaur, Hardeep; Nemati, Ariana; Walsh, Joseph D.; Partida, Vivian; Zhang, Shao-Qing; Gochin, Miriam

    2015-01-01

    The conformational rearrangement of N-and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus – cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nM inhibitors, while peptides derived from the NHR are low μM inhibitors. Here we describe the inhibitory activity of swapped domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nM inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content and trimer stability. Low nM activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped domain design resolves the problem of unstable and weakly active NHR peptides, and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion. PMID:25646644

  15. Engineering Fungal Nonreducing Polyketide Synthase by Heterologous Expression and Domain Swapping

    SciTech Connect

    Yeh, Hsu-Hua; Chang, Shu-Lin; Chiang, Yi-Ming; Bruno, Kenneth S.; Oakley, Berl R.; Wu, Tung-Kung; Wang, Clay C. C.

    2013-02-15

    Heterologous expression of the A. niger NR-PKS gene, e_gw1_19.204 and the adjacent stand-alone R domain gene, est_GWPlus_C_190476 in A. nidulans demonstrated that they belong to a single gene named dtbA. The DtbA protein produces two polyketides, 2,4-dihydroxy-3,5,6-trimethylbenzaldehyde 1 and 2-ethyl-4,6-dihydroxy-3,5-dimethylbenzaldehyde 2. Generation of DtbA+R-TE chimeric PKSs by swapping the DtbA R domain with the AusA (austinol biosynthesis) or ANID_06448 TE domain enabled the production of two metabolites with carboxylic acids replacing the corresponding aldehydes.

  16. The crystal structure of the mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer

    SciTech Connect

    Arbing, Mark A.; Kaufmann, Markus; Phan, Tung; Chan, Sum; Cascio, Duilio; Eisenberg, David

    2010-11-15

    Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 {angstrom} resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6 {center_dot} CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the {alpha}-helical domains of EsxS undergoes a loop-to-helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT-6 to exert a cytotoxic effect.

  17. Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains

    PubMed Central

    Hutchinson, Jordana B.; Cheema, Manjinder S.; Wang, Jason; Missiaen, Krystal; Finn, Ron; Gonzalez Romero, Rodrigo; Th’ng, John P. H.; Hendzel, Michael; Ausió, Juan

    2015-01-01

    Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD–CTD to the nucleosome. PMID:26182371

  18. Structure of a mutant [beta] toxin from Staphylococcus aureus reveals domain swapping and conformational flexibility

    SciTech Connect

    Kruse, Andrew C.; Huseby, Medora J.; Shi, Ke; Digre, Jeff; Ohlendorf, Douglas H.; Earhart, Cathleen A.

    2011-09-16

    The 3.35 {angstrom} resolution crystal structure of a mutant form of the staphylococcal sphingomyelinase {beta} toxin in which a conserved hydrophobic {beta}-hairpin has been deleted is reported. It is shown that this mutation induces domain swapping of a C-terminal {beta}-strand, leading to the formation of dimers linked by a conformationally flexible hinge region. Eight dimers are seen in the asymmetric unit, exhibiting a broad spectrum of conformations trapped in place by intermolecular contacts within the crystal lattice. Furthermore, the 16 monomers within each asymmetric unit exhibit a remarkable heterogeneity in thermal factors, which can be accounted for by the varying degrees to which each monomer interacts with other molecules in the crystal. This structure provides a unique example of the challenges associated with crystallographic study of flexible proteins.

  19. To Swap or Not To Swap.

    PubMed

    Ghosh, Gourisankar; Biswas, Tapan

    2016-09-01

    Domain swapping is a form of protein oligomerization in which identical structural units are exchanged among protomers within an oligomer. In this issue of Structure, Assar et al. (2016) report domain-swapped dimers of hCREBPII, pinpointing a single hydrogen bond and protein concentration as two critical regulators of the monomer/dimer balance. PMID:27602989

  20. Reconstructing photorealistic 3D models from image sequence using domain decomposition method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.

  1. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation

    PubMed Central

    Mourad, Raphaël; Cuvier, Olivier

    2016-01-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237

  2. Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media

    NASA Astrophysics Data System (ADS)

    Shin, Jungkyun; Shin, Changsoo; Calandra, Henri

    2016-06-01

    Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.

  3. Global regular solutions for the 3D Kawahara equation posed on unbounded domains

    NASA Astrophysics Data System (ADS)

    Larkin, Nikolai A.; Simões, Márcio Hiran

    2016-08-01

    An initial boundary value problem for the 3D Kawahara equation posed on a channel-type domain was considered. The existence and uniqueness results for global regular solutions as well as exponential decay of small solutions in the H 2-norm were established.

  4. Global regular solutions for the 3D Zakharov-Kuznetsov equation posed on unbounded domains

    NASA Astrophysics Data System (ADS)

    Larkin, N. A.

    2015-09-01

    An initial-boundary value problem for the 3D Zakharov-Kuznetsov equation posed on unbounded domains is considered. Existence and uniqueness of a global regular solution as well as exponential decay of the H2-norm for small initial data are proven.

  5. In vivo role of the HNF4α AF-1 activation domain revealed by exon swapping

    PubMed Central

    Briançon, Nadège; Weiss, Mary C

    2006-01-01

    The gene encoding the nuclear receptor hepatocyte nuclear factor 4α (HNF4α) generates isoforms HNF4α1 and HNF4α7 from usage of alternative promoters. In particular, HNF4α7 is expressed in the pancreas whereas HNF4α1 is found in liver, and mutations affecting HNF4α function cause impaired insulin secretion and/or hepatic defects in humans and in tissue-specific ‘knockout' mice. HNF4α1 and α7 isoforms differ exclusively by amino acids encoded by the first exon which, in HNF4α1 but not in HNF4α7, includes the activating function (AF)-1 transactivation domain. To investigate the roles of HNF4α1 and HNF4α7 in vivo, we generated mice expressing only one isoform under control of both promoters, via reciprocal swapping of the isoform-specific first exons. Unlike Hnf4α gene disruption which causes embryonic lethality, these ‘α7-only' and ‘α1-only' mice are viable, indicating functional redundancy of the isoforms. However, the former show dyslipidemia and preliminary results indicate impaired glucose tolerance for the latter, revealing functional specificities of the isoforms. These ‘knock-in' mice provide the first test in vivo of the HNF4α AF-1 function and have permitted identification of AF-1-dependent target genes. PMID:16498401

  6. 3D topology and arrangement of proteins inside ceramide-rich domains

    NASA Astrophysics Data System (ADS)

    Imhäuser, Christian; Gulbins, Heike; Gulbins, Erich; Lipinski, Hans-Gerd

    2010-04-01

    Clustering of receptor and signalling molecules (such as CD95 or CD40) within ceramide-enriched membrane domains results in a very high density of these proteins facilitating activation of associated enzymes, the exclusion of inhibitory molecules and/or the recruitment of further signalling molecules to transmit the signal into the cells. However, at present the mechanisms of receptor clustering and the exact distribution of proteins within the ceramide-enriched domains are unknown. Therefore, we generated digital images from anti-CD95 stimulated JYcells that were stained with FITC-coupled anti-ceramide and Cy3-labelled anti-CD95 antibodies. We developed image processing methods to determine the spatial distribution of proteins in ceramide-enriched membrane domains and visualized them by volume rendering and surface models. After image preprocessing with appropriate filters for contrast enhancement, noise reduction and logarithmic scaling, 3D models were generated using adapted volume and surface reconstruction. To detect the colocalization of CD95 and ceramide molecules we developed several different methods rasterizing 3D data of each channel into cells and counting intensity values above a specified colour threshold value. The colocalization voxel was set either by normalized product of totals (product intensity) or depending on binarization. In addition, a cross-covariance function to quantify the colocalization was determined and embedded as a 3D object. These computerized techniques allowed for a quantitative analysis of the spatial arrangement of proteins in ceramide-rich domains of living cells.

  7. 3D versus 2D domain wall interaction in ideal and rough nanowires

    NASA Astrophysics Data System (ADS)

    Pivano, A.; Dolocan, Voicu O.

    2015-11-01

    The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300 ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.

  8. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  9. Simulation domain size requirements for elastic response of 3D polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Stein, Clayton; Pokharel, Reeju; Hefferan, Christopher; Tucker, Harris; Jha, Sushant; John, Reji; Lebensohn, Ricardo A.; Kenesei, Peter; Suter, Robert M.; Rollett, Anthony D.

    2016-01-01

    A fast Fourier transform (FFT) based spectral algorithm is used to compute the full field mechanical response of polycrystalline microstructures. The field distributions in a specific region are used to determine the sensitivity of the method to the number of surrounding grains through quantification of the divergence of the field values from the largest simulation domain, as successively smaller surrounding volumes are included in the simulation. The analysis considers a mapped 3D structure where the location of interest is taken to be a particular pair of surface grains that enclose a small fatigue crack, and synthetically created statistically representative microstructures to further investigate the effect of anisotropy, loading condition, loading direction, and texture. The synthetic structures are generated via DREAM3D and the measured material is a cyclically loaded, Ni-based, low solvus high refractory (LSHR) superalloy that was characterized via 3D high energy x-ray diffraction microscopy (HEDM). Point-wise comparison of distributions in the grain pairs shows that, in order to obtain a Pearson correlation coefficient larger than 99%, the domain must extend to at least the third nearest neighbor. For an elastic FFT calculation, the stress-strain distributions are not sensitive to the shape of the domain. The main result is that convergence can be specified in terms of the number of grains surrounding a region of interest.

  10. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed

  11. 3D homogeneity study in PMMA layers using a Fourier domain OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel de J.; Torre-Ibarra, Manuel H. De La; Tavera, Cesar G.; Luna H., Juan M.; Mendoza-Santoyo, Fernando

    2016-11-01

    Micro-metallic particles embedded in polymers are now widely used in several industrial applications in order to modify the mechanical properties of the bulk. A uniform distribution of these particles inside the polymers is highly desired for instance, when a biological backscattering is simulated or a bio-framework is designed. A 3D Fourier domain optical coherence tomography system to detect the polymer's internal homogeneity is proposed. This optical system has a 2D camera sensor array that records a fringe pattern used to reconstruct with a single shot the tomographic image of the sample. The system gathers the full 3D tomographic and optical phase information during a controlled deformation by means of a motion linear stage. This stage avoids the use of expensive tilting stages, which in addition are commonly controlled by piezo drivers. As proof of principle, a series of different deformations were proposed to detect the uniform or non-uniform internal deposition of copper micro particles. The results are presented as images coming from the 3D tomographic micro reconstruction of the samples, and the 3D optical phase information that identifies the in-homogeneity regions within the Poly methyl methacrylate (PMMA) volume.

  12. Large-scale 3D inversion of frequency domain controlled-source electromagnetic data

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P.; Oldenburg, D. W.

    2005-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain EM sounding technique. The CSAMT source is a grounded horizontal electric dipole approximately one to two kilometers in length. This dipole source generates both inductive and galvanic currents so that the observed electric field arises due to both the static the vector potentials. At low frequencies, the behavior of the fields is similar to that observed in a geometric sounding such as a direct current experiment. At higher frequencies, the inductive character of the source modifies the behavior of the fields so that the experiment becomes more like a frequency sounding. Higher frequency data are useful for imaging near-surface features and lower frequency data are sensitive to deeper structure. Inversion of controlled source EM data provides a means to image the subsurface electrical conductivity structure. We consider a 3D CSAMT data set acquired over a known geothermal resource area in Western Idaho. The data are amplitudes and phases of the electric and magnetic fields acquired at 25 frequencies. The conductivity contrast between the geothermal fluid conduits and the resistive host material allows us to relate the inverted conductivity image to the distribution of fluid flow pathways in the geothermal system. Our 1D CSAMT inversion of the 3D data set indicates regions of conductive fluid pathways in the subsurface. Our next step is to invert these data using the full Maxwell's equations in 3D. Inversion of a single frequency data set at 2 Hz using the 3D frequency domain inversion algorithm (Haber et. al, 2004) shows regions of fluid circulation indicated by zones of higher conductivity. Comparing the images from different single frequency inversions allows us to identify persistent features in the conductivity image that adequately satisfy the data. With the aid of synthetic modeling we are investigating what frequencies? and what geometries? are appropriate to better resolve

  13. 3D Laplace-domain full waveform inversion using a single GPU card

    NASA Astrophysics Data System (ADS)

    Shin, Jungkyun; Ha, Wansoo; Jun, Hyunggu; Min, Dong-Joo; Shin, Changsoo

    2014-06-01

    The Laplace-domain full waveform inversion is an efficient long-wavelength velocity estimation method for seismic datasets lacking low-frequency components. However, to invert a 3D velocity model, a large cluster of CPU cores have commonly been required to overcome the extremely long computing time caused by a large impedance matrix and a number of source positions. In this study, a workstation with a single GPU card (NVIDIA GTX 580) is successfully used for the 3D Laplace-domain full waveform inversion rather than a large cluster of CPU cores. To exploit a GPU for our inversion algorithm, the routine for the iterative matrix solver is ported to the CUDA programming language for forward and backward modeling parts with minimized modification of the remaining parts, which were originally written in Fortran 90. Using a uniformly structured grid set, nonzero values in the sparse impedance matrix can be arranged according to certain rules, which efficiently parallelize the preconditioned conjugate gradient method for a number of threads contained in the GPU card. We perform a numerical experiment to verify the accuracy of a floating point operation performed by a GPU to calculate the Laplace-domain wavefield. We also measure the efficiencies of the original CPU and modified GPU programs using a cluster of CPU cores and a workstation with a GPU card, respectively. Through the analysis, the parallelized inversion code for a GPU achieves the speedup of 14.7-24.6x compared to a CPU-based serial code depending on the degrees of freedom of the impedance matrix. Finally, the practicality of the proposed algorithm is examined by inverting a 3D long-wavelength velocity model using wide azimuth real datasets in 3.7 days.

  14. A loose domain swapping organization confers a remarkable stability to the dimeric structure of the arginine binding protein from Thermotoga maritima.

    PubMed

    Ruggiero, Alessia; Dattelbaum, Jonathan D; Staiano, Maria; Berisio, Rita; D'Auria, Sabato; Vitagliano, Luigi

    2014-01-01

    The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate the atomic level structural properties of this intriguing protein, we determined the crystallographic structures of the apo and the arginine-bound forms of TmArgBP using MAD and SAD methods, respectively. The comparison of the liganded and unliganded models demonstrates that TmArgBP tertiary structure undergoes a very large structural re-organization upon arginine binding. This transition follows the Venus Fly-trap mechanism, although the entity of the re-organization observed in TmArgBP is larger than that observed in homologous proteins. Intriguingly, TmArgBP dimerizes through the swapping of the C-terminal helix. This dimer is stabilized exclusively by the interactions established by the swapping helix. Therefore, the TmArgBP dimer combines a high level of stability and conformational freedom. The structure of the TmArgBP dimer represents an uncommon example of large tertiary structure variations amplified at quaternary structure level by domain swapping. Although the biological relevance of the dimer needs further assessments, molecular modelling suggests that the two TmArgBP subunits may simultaneously interact with two distinct ABC transporters. Moreover, the present protein structures provide some clues about the determinants of the extraordinary stability of the biomolecule. The availability of

  15. Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein.

    PubMed

    Garcia-Manyes, Sergi; Giganti, David; Badilla, Carmen L; Lezamiz, Ainhoa; Perales-Calvo, Judit; Beedle, Amy E M; Fernández, Julio M

    2016-02-19

    Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation. PMID:26703476

  16. Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein*

    PubMed Central

    Garcia-Manyes, Sergi; Giganti, David; Badilla, Carmen L.; Lezamiz, Ainhoa; Perales-Calvo, Judit; Beedle, Amy E. M.; Fernández, Julio M.

    2016-01-01

    Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation. PMID:26703476

  17. 3D seismic data reconstruction based on complex-valued curvelet transform in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Chen, Xiaohong; Li, Hongxing

    2015-02-01

    Traditional seismic data sampling must follow the Nyquist Sampling Theorem. However, the field data acquisition may not meet the sampling criteria due to missing traces or limits in exploration cost, causing a prestack data reconstruction problem. Recently researchers have proposed many useful methods to regularize the seismic data. In this paper, a 3D seismic data reconstruction method based on the Projections Onto Convex Sets (POCS) algorithm and a complex-valued curvelet transform (CCT) has been introduced in the frequency domain. In order to improve reconstruction efficiency and reduce the computation time, the seismic data are transformed from the t-x-y domain to the f-x-y domain and the data reconstruction is processed for every frequency slice during the reconstruction process. The selection threshold parameter is important for reconstruction efficiency for each iteration, therefore an exponential square root decreased (ESRD) threshold is proposed. The experimental results show that the ESRD threshold can greatly reduce iterations and improve reconstruction efficiency compared to the other thresholds for the same reconstruction result. We also analyze the antinoise ability of the CCT-based POCS reconstruction method. The example studies on synthetic and real marine seismic data showed that our proposed method is more efficient and applicable.

  18. Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting

    NASA Astrophysics Data System (ADS)

    Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein

    2016-06-01

    In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.

  19. Domain Decomposition PN Solutions to the 3D Transport Benchmark over a Range in Parameter Space

    NASA Astrophysics Data System (ADS)

    Van Criekingen, S.

    2014-06-01

    The objectives of this contribution are twofold. First, the Domain Decomposition (DD) method used in the parafish parallel transport solver is re-interpreted as a Generalized Schwarz Splitting as defined by Tang [SIAM J Sci Stat Comput, vol.13 (2), pp. 573-595, 1992]. Second, parafish provides spherical harmonic (i.e., PN) solutions to the NEA benchmark suite for 3D transport methods and codes over a range in parameter space. To the best of the author's knowledge, these are the first spherical harmonic solutions provided for this demanding benchmark suite. They have been obtained using 512 CPU cores of the JuRoPa machine installed at the Jülich Computing Center (Germany).

  20. An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.

    PubMed

    Zhang, Yongjie; Hughes, Thomas J R; Bajaj, Chandrajit L

    2010-01-01

    This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555

  1. FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography

    NASA Astrophysics Data System (ADS)

    Champagne, Nathan J.; Berryman, James G.; Buettner, H. Michael

    2001-07-01

    A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.

  2. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  3. Modified block-matching 3-D filter in Laplacian pyramid domain for speckle reduction

    NASA Astrophysics Data System (ADS)

    Wen, Donghai; Jiang, Yuesong; Zhang, Yanzhong; He, Yuntao; Hua, Houqiang; Yu, Rong; Wu, Xiaofang; Gao, Qian

    2014-07-01

    The Laplacian pyramid-based block-matching 3-D filtering (BM3D) is proposed (LPBM3D) for despeckling the speckle image. For BM3D in each pyramid layer, the criterion used to collect blocks in the 3-D groups to the actual data statistics is devised. An adaptive wavelet thresholding operator that depends on both noise level and signal characteristics is proposed. The performance of the proposed LPBM3D method has been compared with the state-of-the-art methods, including the recently proposed nonlocal mean (NLM) and BM3D method. Experimental results show that the visual quality and evaluation indexes outperform the other methods with no edge preservation. The proposed algorithm effectively realizes both despeckling and edge preservation.

  4. Improvements to the ICRH antenna time-domain 3D plasma simulation model

    NASA Astrophysics Data System (ADS)

    Smithe, David N.; Jenkins, Thomas G.; King, J. R.

    2015-12-01

    We present a summary of ongoing improvements to the 3D time-domain plasma modeling software that has been used to look at ICRH antennas on Alcator C-Mod, NSTX, and ITER [1]. Our past investigations have shown that in low density cases where the slow wave is propagating, strong amplitude lower hybrid resonant fields can occur. Such a scenario could result in significant parasitic power loss in the SOL. The primary resonance broadening in this case is likely collisions with neutral gas, and thus we are upgrading the model to include realistic neutral gas in the SOL, in order to provide a better understanding of energy balance in these situations. Related to this, we are adding a temporal variation capability to the local plasma density in front of the antenna in order to investigate whether the near fields of the antenna could modify the local density sufficiently to initiate a low density situation. We will start with a simple scalar ponderomotive potential density expulsion model [2] for the density evolution, but are also looking to eventually couple to a more complex fluid treatment that would include tensor pressures and convective physics and sources of neutrals and ionization. We also review continued benchmarking efforts, and ongoing and planned improvements to the computational algorithms, resulting from experience gained during our recent supercomputing runs on the Titan supercomputer, including GPU operations.

  5. Two-dimensional angular filter array for angular domain imaging with 3D printed angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) is a technique that is capable of generating two dimensional shadowgrams of attenuating targets embedded in a scattering medium. In ADI, an angular filter array (AFA) is positioned between the sample and the detector to distinguish between quasi-ballistic photons and scattered photons. An AFA is a series of micro-channels with a high aspect ratio. Previous AFAs from our group were constructed by micro-machining the micro-channels into a silicon wafer, limiting the imaging area to a one dimensional line. Two dimensional images were acquired via scanning. The objective of this work was to extend the AFA design to two dimensions to allow for two dimensional imaging with minimal scanning. The second objective of this work was to perform an initial characterization of the imaging capabilities of the 2D AFA. Our approach was to use rapid 3D prototyping techniques to generate an array of micro-channels. The imaging capabilities were then evaluated by imaging a 0.9 mm graphite rod submerged in a scattering media. Contrast was observed to improve when a second angular filter array was placed in front of the sample to mask the incoming light.

  6. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented. PMID:27046601

  7. 3D imaging of dental hard tissues with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yueli L.; Yang, Yi; Ma, Jing; Yan, Jun; Shou, Yuanxin; Wang, Tianheng; Ramesh, Aruna; Zhao, Jing; Zhu, Quing

    2011-03-01

    A fiber optical coherence tomography (OCT) probe is used for three dimensional dental imaging. The probe has a lightweight miniaturized design with a size of a pen to facilitate clinic in vivo diagnostics. The probe is interfaced with a swept-source / Fourier domain optical coherence tomography at 20K axial scanning rate. The tooth samples were scanned from occlusal, buccal, lingual, mesial, and distal orientations. Three dimensional imaging covers tooth surface area up to 10 mm x 10 mm with a depth about 5 mm, where a majority of caries affection occurs. OCT image provides better resolution and contrast compared to gold standard dental radiography (X-ray). In particular, the technology is well suited for occlusal caries detection. This is complementary to X-ray as occlusal caries affection is difficult to be detected due to the X-ray projectile scan geometry. The 3D topology of occlusal surface as well as the dentin-enamel junction (DEJ) surface inside the tooth can be visualized. The lesion area appears with much stronger back scattering signal intensity.

  8. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  9. Verification and validation of ShipMo3D ship motion predictions in the time and frequency domains

    NASA Astrophysics Data System (ADS)

    McTaggart, Kevin A.

    2011-03-01

    This paper compares frequency domain and time domain predictions from the ShipMo3D ship motion library with observed motions from model tests and sea trials. ShipMo3D evaluates hull radiation and diffraction forces using the frequency domain Green function for zero forward speed, which is a suitable approach for ships travelling at moderate speed (e.g., Froude numbers up to 0.4). Numerical predictions give generally good agreement with experiments. Frequency domain and linear time domain predictions are almost identical. Evaluation of nonlinear buoyancy and incident wave forces using the instantaneous wetted hull surface gives no improvement in numerical predictions. Consistent prediction of roll motions remains a challenge for seakeeping codes due to the associated viscous effects.

  10. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping.

    PubMed

    Yamanaka, Masaru; Nagao, Satoshi; Komori, Hirofumi; Higuchi, Yoshiki; Hirota, Shun

    2015-03-01

    Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555 ) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310 -α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310 -α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53-Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2-11.0. CN(-) and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN(-) and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2-11.0), respectively, in a wide range of temperature (25-85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping. PMID:25586341

  11. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping

    PubMed Central

    Yamanaka, Masaru; Nagao, Satoshi; Komori, Hirofumi; Higuchi, Yoshiki; Hirota, Shun

    2015-01-01

    Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310-α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310-α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53–Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2–11.0. CN- and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN- and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2–11.0), respectively, in a wide range of temperature (25–85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping. PMID:25586341

  12. An iterative KP1 method for solving the transport equation in 3D domains on unstructured grids

    NASA Astrophysics Data System (ADS)

    Kokonkov, N. I.; Nikolaeva, O. V.

    2015-10-01

    A two-step iterative KP1 method for solving systems of grid equations that approximate the integro-differential transport equation in 3D domains on unstructured grids using nodal SN methods is described. Results of testing the efficiency of the proposed method in solving benchmark problems of reactor protection on tetrahedral grids are presented.

  13. DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions

    PubMed Central

    Chen, Yongheng; Chen, Chunxia; Zhang, Zhe; Liu, Chun-Chi; Johnson, Matthew E.; Espinoza, Celso A.; Edsall, Lee E.; Ren, Bing; Zhou, Xianghong Jasmine; Grant, Struan F.A.; Wells, Andrew D.; Chen, Lin

    2015-01-01

    FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatin contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells. PMID:25567984

  14. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  15. The Multidrug Resistance IncA/C Transferable Plasmid Encodes a Novel Domain-swapped Dimeric Protein-disulfide Isomerase*

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A.; Martin, Jennifer L.

    2014-01-01

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (−161 mV) is more reducing than EcDsbC (−130 mV) and EcDsbG (−126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer. PMID:24311786

  16. PGD and separated space variables representation for linear elasticity in 3D representation of plate domains

    NASA Astrophysics Data System (ADS)

    Bognet, B.; Leygue, A.; Chinesta, F.; Poitou, A.

    2011-01-01

    In this paper, we focus on the simulation of linear elastic behaviour of plates using a 3D approach which numerical cost only scales like a 2D one. In the case of plates, the kinematic hypothesis introduced in plate theories to go from 3D to 2D is usually unsatisfactory where one cannot rely on St Venant's principle (usually close to the plate edges). We propose to apply the PGD (Proper Generalized Decomposition) method [1] to the simulation of the linear elastic behavior of plates. This method allows us to separately search for the in-plane and the out-of plane contributions to the 3D solution, yielding significant savings in computational cost. The method is validated on a simple case and its full potential is then presented for the simulation of the behavior of laminated composite plates.

  17. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    PubMed Central

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-01-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection. PMID:25606299

  18. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  19. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    PubMed Central

    Lakhlili, Wiame; Chevé, Gwénaël; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2015-01-01

    The AKT/mammalian target of rapamycin (mTOR) pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D) structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site. PMID:26257525

  20. JP3D compressed-domain watermarking of volumetric medical data sets

    NASA Astrophysics Data System (ADS)

    Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian

    2010-01-01

    Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.

  1. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. PMID:27138460

  2. Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain.

    PubMed Central

    Helms, L. R.; Wetzel, R.

    1995-01-01

    It is generally believed that loop regions in globular proteins, and particularly hypervariable loops in immunoglobulins, can accommodate a wide variety of sequence changes without jeopardizing protein structure or stability. We show here, however, that novel sequences introduced within complementarity determining regions (CDRs) 1 and 3 of the immunoglobulin variable domain REI VL can significantly diminish the stability of the native state of this protein. Besides their implications for the general role of loops in the stability of globular proteins, these results suggest previously unrecognized stability constraints on the variability of CDRs that may impact efforts to engineer new and improved activities into antibodies. PMID:8535243

  3. In Vivo 3D Meibography of the Human Eyelid Using Real Time Imaging Fourier-Domain OCT

    PubMed Central

    Hwang, Ho Sik; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Joo, Choun-Ki

    2013-01-01

    Recently, we reported obtaining tomograms of meibomian glands from healthy volunteers using commercial anterior segment optical coherence tomography (AS-OCT), which is widely employed in clinics for examination of the anterior segment. However, we could not create 3D images of the meibomian glands, because the commercial OCT does not have a 3D reconstruction function. In this study we report the creation of 3D images of the meibomian glands by reconstructing the tomograms of these glands using high speed Fourier-Domain OCT (FD-OCT) developed in our laboratory. This research was jointly undertaken at the Department of Ophthalmology, Seoul St. Mary's Hospital (Seoul, Korea) and the Advanced Photonics Research Institute of Gwangju Institute of Science and Technology (Gwangju, Korea) with two healthy volunteers and seven patients with meibomian gland dysfunction. A real time imaging FD-OCT system based on a high-speed wavelength swept laser was developed that had a spectral bandwidth of 100 nm at the 1310 nm center wavelength. The axial resolution was 5 µm and the lateral resolution was 13 µm in air. Using this device, the meibomian glands of nine subjects were examined. A series of tomograms from the upper eyelid measuring 5 mm (from left to right, B-scan) × 2 mm (from upper part to lower part, C-scan) were collected. Three-D images of the meibomian glands were then reconstructed using 3D “data visualization, analysis, and modeling software”. Established infrared meibography was also performed for comparison. The 3D images of healthy subjects clearly showed the meibomian glands, which looked similar to bunches of grapes. These results were consistent with previous infrared meibography results. The meibomian glands were parallel to each other, and the saccular acini were clearly visible. Here we report the successful production of 3D images of human meibomian glands by reconstructing tomograms of these glands with high speed FD-OCT. PMID:23805297

  4. Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues.

    PubMed

    Chintakayala, Kiran; Larson, Marilynn A; Grainger, William H; Scott, David J; Griep, Mark A; Hinrichs, Steven H; Soultanas, Panos

    2007-03-01

    The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles. PMID:17367384

  5. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: Insight into its domain swapping and DNA binding

    PubMed Central

    Chu, Yuan-Ping; Chang, Chia-Hao; Shiu, Jia-Hau; Chang, Yao-Tsung; Chen, Chiu-Yueh; Chuang, Woei-Jer

    2011-01-01

    FOXP1 belongs to the P-subfamily of forkhead transcription factors and contains a conserved forkhead DNA-binding domain. According to size exclusion chromatography analysis, the forkhead domain of FOXP1 existed as a mixture of monomer and dimer. The dissociation constants of the forkhead domain of wild-type, C61S, and C61Y mutants of FOXP1 were 27.3, 28.8, and 332.0 μM, respectively. In contrast, FOXP1 A39P mutant formed only a monomer. NMR analysis also showed that FOXP1 C61S and C61Y mutants existed as a mixture. The solution structure of FOXP1 A39P/C61Y mutant was similar to the X-ray structure of the FOXP2 monomer. Comparison of backbone dynamics of FOXP1 A39P/C61Y and C61Y mutants showed that the residues preceding helix 3, the hinge region, exhibited the largest conformational exchange in FOXP1 monomer. The A39 residue of FOXP1 dimer has a lower order parameter with internal motion on the ps-ns timescale, suggesting that the dynamics of the hinge region of FOXP1 are important in the formation of the swapped dimer. The analysis also showed that the residues exhibiting the motions on the ps-ns and μs-ms timescales were located at the DNA-binding surface of FOXP1, suggesting the interactions between FOXP1 and DNA may be highly dynamic. PMID:21416545

  6. On domain decomposition preconditioner of BPS type for finite element discretizations of 3D elliptic equations

    NASA Astrophysics Data System (ADS)

    Korneev, V. G.

    2012-09-01

    BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.

  7. Monitoring adipose-derived stem cells within 3D carrier by combined dielectric spectroscopy and spectral domain optical coherence topography

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    Monitoring non-invasively the cellular events in three dimensional carriers is a major challenge for tissue engineering and regenerative medicine that prevents time-lapsed studies over large population of sample. The potential of optical coherence tomography has been demonstrated to assess tissue formation within porous matrices. In this study we explore the combination of dielectric spectroscopy (DS) and spectral domain optical coherence tomography (SDOCT) to quality assess ADSCs loaded in three dimensional carriers. A SDOCT (930nm, FWHM 90nm) was combined to an open ended coaxial probe connected to material analyser, and broadband measurements between 20MHz and 1GHz were synchronized with Labview. Both ADSCs maintained in undifferentiated state within 3D carrier and induced towards osteoblasts were monitored with this multimodality technique and their DS spectra were acquired at high cell concentration simultaneously to 3D imaging. This multimodality technique will be instrumental to assess non-invasively cell loaded carriers for cell therapy.

  8. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization

    PubMed Central

    Ea, Vuthy; Baudement, Marie-Odile; Lesne, Annick; Forné, Thierry

    2015-01-01

    Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization. PMID:26226004

  9. Restoration of 3D medical images with total variation scheme on wavelet domains (TVW)

    NASA Astrophysics Data System (ADS)

    Ogier, Arnaud; Hellier, Pierre; Barillot, Christian

    2006-03-01

    The multiplicity of sensors used in medical imaging leads to different noises. Non informative noise can damage the image interpretation process and the performance of automatic analysis. The method proposed in this paper allows compensating highly noisy image data from non informative noise without sophisticated modeling of the noise statistics. This generic approach uses jointly a wavelet decomposition scheme and a non-isotropic Total Variation filtering of the transform coefficients. This framework benefits from both the hierarchical capabilities of the wavelet transform and the well-posed regularization scheme of the Total Variation. This algorithm has been tested and validated on test-bed data, as well as different clinical MR and 3D ultrasound images, enhancing the capabilities of the proposed method to cope with different noise models.

  10. Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ibrahim, Zuhaib; Lee, W. P. A.; Brandacher, Gerald; Kang, Jin U.

    2013-03-01

    Vascular and microvascular anastomosis is considered to be the foundation of plastic and reconstructive surgery, hand surgery, transplant surgery, vascular surgery and cardiac surgery. In the last two decades innovative techniques, such as vascular coupling devices, thermo-reversible poloxamers and suture-less cuff have been introduced. Intra-operative surgical guidance using a surgical imaging modality that provides in-depth view and 3D imaging can improve outcome following both conventional and innovative anastomosis techniques. Optical coherence tomography (OCT) is a noninvasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. In this work we performed a proof-of-concept evaluation study of OCT as an assisted intraoperative and post-operative imaging modality for microvascular anastomosis of rodent femoral vessels. The OCT imaging modality provided lateral resolution of 12 μm and 3.0 μm axial resolution in air and 0.27 volume/s imaging speed, which could provide the surgeon with clearly visualized vessel lumen wall and suture needle position relative to the vessel during intraoperative imaging. Graphics processing unit (GPU) accelerated phase-resolved Doppler OCT (PRDOCT) imaging of the surgical site was performed as a post-operative evaluation of the anastomosed vessels and to visualize the blood flow and thrombus formation. This information could help surgeons improve surgical precision in this highly challenging anastomosis of rodent vessels with diameter less than 0.5 mm. Our imaging modality could not only detect accidental suture through the back wall of lumen but also promptly diagnose and predict thrombosis immediately after reperfusion. Hence, real-time OCT can assist in decision-making process intra-operatively and avoid post-operative complications.

  11. Implicit scheme for Maxwell equations solution in case of flat 3D domains

    NASA Astrophysics Data System (ADS)

    Boronina, Marina; Vshivkov, Vitaly

    2016-02-01

    We present a new finite-difference scheme for Maxwell's equations solution for three-dimensional domains with different scales in different directions. The stability condition of the standard leap-frog scheme requires decreasing of the time-step with decreasing of the minimal spatial step, which depends on the minimal domain size. We overcome the conditional stability by modifying the standard scheme adding implicitness in the direction of the smallest size. The new scheme satisfies the Gauss law for the electric and magnetic fields in the final- differences. The approximation order, the maintenance of the wave amplitude and propagation speed, the invariance of the wave propagation on angle with the coordinate axes are analyzed.

  12. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  13. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  14. Efficient 3D Acoustic Numerical modeling in the Logarithmic-grid using the Expanding Domain Method

    NASA Astrophysics Data System (ADS)

    Hong, B. R.; Chung, W.; Ko, H.; Bae, H. S.

    2015-12-01

    In the numerical modeling of seismic wave propagation by the use of a discrete computing domain, dispersion analysis is preceded by the determination of the spatial grid spacings in order to ensure accurate modeling results. Grid spacing is a function of wavelength, and the wavelength depends on the minimum velocity and maximum source frequency. Therefore, as the frequency increases, the number of grids increase and this leads to computational overburden. In order to reduce the computing complexity, coordinate transformation techniques such as Riemannian coordinates and logarithmic grid sets are proposed. Riemannian wave-field extrapolation is a way to reformulate the wave-field by expressing it in Riemannian coordinates. In the logarithmic grid, grid spacing changes logarithmically, so this enables us to reduce the number of grids compared to a conventional grid set. Furthermore, this could completely remove boundary reflections by extending the model dimensions. However, numerical modeling in the logarithmic grid is still inefficient because it is performed for whole model at every individual time step. In this study we applied the expanding domain method to the logarithmic modeling in order to improve computational efficiency. This method, based on amplitude comparison, excludes computations for zero wave-fields by considering a non-zero domain boundary. Numerical examples demonstrated that our new modeling method enhances computational efficiency maintaining accuracy compared with conventional modeling methods. In wider and higher-order dimensions, particularly, the efficiency of our modeling method increased. Our new modeling technique could also be applied to the generation of underwater target echo signals requiring high frequency analysis.

  15. High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-03-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  16. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    PubMed Central

    Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760

  17. A parallel 3-D staggered grid pseudospectral time domain method for ground-penetrating radar wave simulation

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Li, Zhanhui; Wang, Yanbin

    2010-12-01

    We presented a parallel 3-D staggered grid pseudospectral time domain (PSTD) method for simulating ground-penetrating radar (GPR) wave propagation. We took the staggered grid method to weaken the global effect in PSTD and developed a modified fast Fourier transform (FFT) spatial derivative operator to eliminate the wraparound effect due to the implicit periodical boundary condition in FFT operator. After the above improvements, we achieved the parallel PSTD computation based on an overlap domain decomposition method without any absorbing condition for each subdomain, which can significantly reduce the required grids in each overlap subdomain comparing with other proposed algorithms. We test our parallel technique for some numerical models and obtained consistent results with the analytical ones and/or those of the nonparallel PSTD method. The above numerical tests showed that our parallel PSTD algorithm is effective in simulating 3-D GPR wave propagation, with merits of saving computation time, as well as more flexibility in dealing with complicated models without losing the accuracy. The application of our parallel PSTD method in applied geophysics and paleoseismology based on GPR data confirmed the efficiency of our algorithm and its potential applications in various subdisciplines of solid earth geophysics. This study would also provide a useful parallel PSTD approach to the simulation of other geophysical problems on distributed memory PC cluster.

  18. Controlling integrin specificity and stem cell differentiation in 2-D and 3-D environments through regulation of fibronectin domain stability

    PubMed Central

    Martino, Mikaël M.; Mochizuki, Mayumi; Rothenfluh, Dominique A.; Rempel, Sandra A.; Hubbell, Jeffrey A.; Barker, Thomas H.

    2009-01-01

    The extracellular matrix (ECM) exerts powerful control over many cellular phenomena, including stem cell differentiation. As such, design and modulation of ECM analogs to ligate specific integrin is a promising approach to control cellular processes in vitro and in vivo for regenerative medicine strategies. Although fibronectin (FN), a crucial ECM protein in tissue development and repair, and its RGD peptide are widely used for cell adhesion, the promiscuity with which they engage integrins leads to difficulty in control of receptor-specific interactions. Recent simulations of force-mediated unfolding of FN domains and sequences analysis of human versus mouse FN suggest that the structural stability of the FN’s central cell-binding domains (FN III9-10) affects its integrin specificity. Through production of FN III9-10 variants with variable stabilities, we obtained ligands that present different specificities for the integrin α5β1 and that can be covalently linked into fibrin matrices. Here, we demonstrate the capacity of α5β1 integrin-specific engagement to influence human mesenchymal stem cell (MSC) behavior in 2D and 3D environments. Our data indicate that α5β1 has an important role in the control of MSC osteogenic differentiation. FN fragments with increased specificity for α5β1 versus αvβ3 results in significantly enhanced osteogenic differentiation of MSCs in 2D and in a clinically relevant 3D fibrin matrix system, although attachment/spreading and proliferation were comparable with that on full-length FN. This work shows how integrin-dependant cellular interactions with the ECM can be engineered to control stem cell fate, within a system appropriate for both 3D cell culture and tissue engineering. PMID:19027948

  19. Dialog-Based 3D-Image Recognition Using a Domain Ontology

    NASA Astrophysics Data System (ADS)

    Hois, Joana; Wünstel, Michael; Bateman, John A.; Röfer, Thomas

    The combination of vision and speech, together with the resulting necessity for formal representations, builds a central component of an autonomous system. A robot that is supposed to navigate autonomously through space must be able to perceive its environment as automatically as possible. But each recognition system has its own inherent limits. Especially a robot whose task is to navigate through unknown terrain has to deal with unidentified or even unknown objects, thus compounding the recognition problem still further. The system described in this paper takes this into account by trying to identify objects based on their functionality where possible. To handle cases where recognition is insufficient, we examine here two further strategies: on the one hand, the linguistic reference and labeling of the unidentified objects and, on the other hand, ontological deduction. This approach then connects the probabilistic area of object recognition with the logical area of formal reasoning. In order to support formal reasoning, additional relational scene information has to be supplied by the recognition system. Moreover, for a sound ontological basis for these reasoning tasks, it is necessary to define a domain ontology that provides for the representation of real-world objects and their corresponding spatial relations in linguistic and physical respects. Physical spatial relations and objects are measured by the visual system, whereas linguistic spatial relations and objects are required for interactions with a user.

  20. 3D Polarized Radiative Transfer for Solar System Applications Using the public-domain HYPERION Code

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Robitaille, T.; Whitney, B. A.

    2012-12-01

    We present a public-domain radiative transfer tool that will allow researchers to examine a wide-range of interesting solar system applications. Hyperion is a new three-dimensional continuum Monte-Carlo radiative transfer code that is designed to be as general as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids (Robitaille, 2011, Astronomy & Astrophysics 536 A79). The main part of the code is problem-independent, and only requires the user to define the three-dimensional density structure, and the opacity and the illumination properties (as well as a few parameters that control execution and output of the code). Hyperion is written in Fortran 90 and parallelized using the MPI-2 standard. It is bundled with Python libraries that enable very flexible pre- and post-processing options (arbitrary shapes, multiple aerosol components, etc.). These routines are very amenable to user-extensibility. The package is currently distributed at www.hyperion-rt.org. Our presentation will feature 1) a brief overview of the code, including a description of the solar system-specific modifications that we have made beyond the capabilities in the original release; 2) Several solar system applications (i.e., Deep Impact Plume, Martian atmosphere, etc.); 3) discussion of availability and distribution of code components via www.hyperion-rt.org.

  1. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  2. The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA

    PubMed Central

    Hellert, Jan; Weidner-Glunde, Magdalena; Krausze, Joern; Lünsdorf, Heinrich; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2015-01-01

    Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains (“LANA speckles”), a hallmark of KSHV latency. PMID:25947153

  3. Bi-planar 2D-to-3D registration in Fourier domain for stereoscopic x-ray motion tracking

    NASA Astrophysics Data System (ADS)

    Zosso, Dominique; Le Callennec, Benoît; Bach Cuadra, Meritxell; Aminian, Kamiar; Jolles, Brigitte M.; Thiran, Jean-Philippe

    2008-03-01

    In this paper we present a new method to track bone movements in stereoscopic X-ray image series of the knee joint. The method is based on two different X-ray image sets: a rotational series of acquisitions of the still subject knee that allows the tomographic reconstruction of the three-dimensional volume (model), and a stereoscopic image series of orthogonal projections as the subject performs movements. Tracking the movements of bones throughout the stereoscopic image series means to determine, for each frame, the best pose of every moving element (bone) previously identified in the 3D reconstructed model. The quality of a pose is reflected in the similarity between its theoretical projections and the actual radiographs. We use direct Fourier reconstruction to approximate the three-dimensional volume of the knee joint. Then, to avoid the expensive computation of digitally rendered radiographs (DRR) for pose recovery, we develop a corollary to the 3-dimensional central-slice theorem and reformulate the tracking problem in the Fourier domain. Under the hypothesis of parallel X-ray beams, the heavy 2D-to-3D registration of projections in the signal domain is replaced by efficient slice-to-volume registration in the Fourier domain. Focusing on rotational movements, the translation-relevant phase information can be discarded and we only consider scalar Fourier amplitudes. The core of our motion tracking algorithm can be implemented as a classical frame-wise slice-to-volume registration task. Results on both synthetic and real images confirm the validity of our approach.

  4. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model

    PubMed Central

    Hartman, Olga; Zhang, Chu; Adams, Elizabeth L.; Farach-Carson, Mary C.; Petrelli, Nicholas J.; Chase, Bruce D.; Rabolt, John F.

    2010-01-01

    Because prostate cancer cells metastasize to bone and exhibit osteoblastic features (osteomimicry), the interrelationships between bone-specific microenvironment and prostate cancer cells at sites of bone metastasis are critical to disease progression. In this work the bone marrow microenvironment in vitro was recreated both by tailoring scaffolds physical properties and by functionalizing electrospun polymer fibers with a bioactive peptide derived from domain IV of perlecan heparan sulfate proteoglycan. Electrospun poly (ε-caprolactone) (PCL) fibers and PCL/gelatin composite scaffolds were modified covalently with perlecan domain IV (PlnDIV) peptide. The expression of tight junction protein (E-cadherin) and focal adhesion kinase (FAK) phosphorylation on tyrosine 397 also were investigated. The described bioactive motif significantly enhanced adherence and infiltration of the metastatic prostate cancer cells on all modified electrospun substrates by day 5 post-seeding. Cells cultured on PlnDIV-modified matrices organized stress fibers and increased proliferation at statistically significant rates. Additional findings suggest that presence of PlnDIV peptide in the matrix reduced expression of tight junction protein and binding to PlnDIV peptide was accompanied by increased focal adhesion kinase (FAK) phosphorylation on tyrosine 397. We conclude that PlnDIV peptide supports key signaling events leading to proliferation, survival, and migration of C4-2B cancer cells; hence its incorporation into electrospun matrix is a key improvement to create a successful three-dimensional (3-D) pharmacokinetic cancer model. PMID:20417554

  5. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  6. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  7. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  8. Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel

    PubMed Central

    Brohawn, Stephen G.; Campbell, Ernest B.; MacKinnon, Roderick

    2013-01-01

    TRAAK (TWIK-related arachidonic acid-stimulated K+ channel, K2P4.1) K+ ion channels are expressed predominantly in the nervous system to control cellular resting membrane potential and are regulated by mechanical and chemical properties of the lipid membrane. TRAAK channels are twofold symmetric, which precludes a direct extension of gating mechanisms that close canonical fourfold symmetric K+ channels. We present the crystal structure of human TRAAK in complex with antibody antigen-binding fragments (Fabs) at 2.75-Å resolution. In contrast to a previous structure, this structure reveals a domain-swapped chain connectivity enabled by the helical cap that exchanges two opposing outer helices 180° around the channel. An unrelated conformational change of an inner helix seals a side opening to the membrane bilayer and is associated with structural changes around the K+-selectivity filter that may have implications for mechanosensitivity and gating of TRAAK channels. PMID:23341632

  9. 3D Non-destructive Imaging of Punctures in Polyethylene Composite Armor by THz Time Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palka, N.; Panowicz, R.; Ospald, F.; Beigang, R.

    2015-08-01

    An ultra-high molecular weight polyethylene composite sample totally punctured by a projectile was examined by THz TDS raster scanning method in reflection configuration. The scanning results correctly match the distribution of delaminations inside the sample, which was proven with cross-sectional and frontal views after waterjet cutting. For further analysis, a signal-processing algorithm based on the deconvolution method was developed and the modified reference signal was used to reduce disturbances. The complex refractive index of the sample was determined by transmission TDS technique and was later used for the simulation of pulse propagation by the finite difference time domain method. These simulations verified the correctness of the proposed method and showed its constraints. Using the proposed algorithm, the ambiguous raw THz image was converted into a binary 3D image of the sample, which consists only of two areas: sample—polyethylene and delamination—air. As a result, a clear image of the distribution of delaminations with their spatial extent was obtained which can be used for further comparative analysis. The limitation of the proposed method is that parts of the central area of the puncture cannot be analyzed because tilted layers deflect the incident signal.

  10. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian Quadrature Grid (GQG) approach

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Stewart; Zhou, Bing; Maurer, Hansruedi

    2010-05-01

    We have developed a modified version of the spectral element method (SEM), called the Gaussian Quadrature Grid (GQG) approach, for frequency domain 3D seismic modelling in arbitrary heterogeneous, anisotropic media. The model may incorporate an arbitrary free-surface topography and irregular subsurface interfaces. Unlike the SEM ,it does not require a powerful mesh generator such as the Delauney Triangular or TetGen. Rather, the GQG approach replaces the element mesh with Gaussian quadrature abscissae to directly sample the physical properties of the model parameters and compute the weighted residual or variational integral. This renders the model discretisation simple and easily matched to the model topography, as well as direct control of the model paramterisation for subsequent inversion. In addition, it offers high accuracy in numerical modelling provided that an appropriate density of the Gaussian quadrature abscissae is employed. The second innovation of the GQG is the incorporation of a new implementation of perfectly matched layers to suppress artificial reflections from the domain margins. We employ PML model parameters (specified complex valued density and elastic moduli) rather than explicitly solving the governing wave equation with a complex co-ordinate system as in conventional approaches. Such an implementation is simple, general, effective and easily extendable to any class of anisotropy and other numerical modelling methods. The accuracy of the GQG approach is controlled by the number of Gaussian quadrature points per minimum wavelength, the so-called sampling density. The optimal sampling density should be the one which enables high definition of geological characteristics and high precision of the variational integral evaluation and spatial differentiation. Our experiments show that satisfactory results can be obtained using sampling densities of 5 points per minimum wavelength. Efficiency of the GQG approach mainly depends on the linear

  11. Strategies for Development of Functionally Equivalent Promoters with Minimum Sequence Homology for Transgene Expression in Plants: cis-Elements in a Novel DNA Context versus Domain Swapping1

    PubMed Central

    Bhullar, Simran; Chakravarthy, Suma; Advani, Sonia; Datta, Sudipta; Pental, Deepak; Burma, Pradeep Kumar

    2003-01-01

    The cauliflower mosaic virus 35S (35S) promoter has been extensively used for the constitutive expression of transgenes in dicotyledonous plants. The repetitive use of the same promoter is known to induce transgene inactivation due to promoter homology. As a way to circumvent this problem, we tested two different strategies for the development of synthetic promoters that are functionally equivalent but have a minimum sequence homology. Such promoters can be generated by (a) introducing known cis-elements in a novel or synthetic stretch of DNA or (b) “domain swapping,” wherein domains of one promoter can be replaced with functionally equivalent domains from other heterologous promoters. We evaluated the two strategies for promoter modifications using domain A (consisting of minimal promoter and subdomain A1) of the 35S promoter as a model. A set of modified 35S promoters were developed whose strength was compared with the 35S promoter per se using β-glucuronidase as the reporter gene. Analysis of the expression of the reporter gene in transient assay system showed that domain swapping led to a significant fall in promoter activity. In contrast, promoters developed by placing cis-elements in a novel DNA context showed levels of expression comparable with that of the 35S. Two promoter constructs Mod2A1T and Mod3A1T were then designed by placing the core sequences of minimal promoter and subdomain A1 in divergent DNA sequences. Transgenics developed in tobacco (Nicotiana tabacum) with the two constructs and with 35S as control were used to assess the promoter activity in different tissues of primary transformants. Mod2A1T and Mod3A1T were found to be active in all of the tissues tested, at levels comparable with that of 35S. Further, the expression of the Mod2A1T promoter in the seedlings of the T1 generation was also similar to that of the 35S promoter. The present strategy opens up the possibility of creating a set of synthetic promoters with minimum sequence

  12. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  13. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  14. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    -Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  15. Crystal and solution studies of the "Plus-C" odorant-binding protein 48 from Anopheles gambiae: control of binding specificity through three-dimensional domain swapping.

    PubMed

    Tsitsanou, Katerina E; Drakou, Christina E; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E

    2013-11-15

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  16. Independent and arbitrary generation of spots in the 3D space domain with computer generated holograms written on a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Jian; Xia, Yang; Wang, Hao

    2012-10-01

    An improved multiple independent iterative plane algorithm, based on a projection optimization idea, is proposed for the independent and arbitrary generation of one spot or multiple spots in a speckle-suppressed 3D work-area. Details of the mathematical expressions of the algorithm are given to theoretically show how it is improved for 3D spot generation. Both simulations and experiments are conducted to investigate the performance of the algorithm for independent and arbitrary 3D spot generation in several different cases. Simulation results agree well with experimental results, which validates the effectiveness of the algorithm proposed. Several additional experiments are demonstrated for fast and independent generation of four or more spots in the 3D space domain, which confirms the capabilities and practicalities of the algorithm further.

  17. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Dandelion PPO-1/PPO-2 domain-swaps: the C-terminal domain modulates the pH optimum and the linker affects SDS-mediated activation and stability.

    PubMed

    Leufken, Christine M; Moerschbacher, Bruno M; Dirks-Hofmeister, Mareike E

    2015-02-01

    Plant polyphenol oxidases (PPOs) have a conserved three-domain structure: (i) the N-terminal domain (containing the active site) is connected via (ii) a linker to (iii) the C-terminal domain. The latter covers the active site, thereby maintaining the enzyme in a latent state. Activation can be achieved with SDS but little is known about the mechanism. We prepared domain-swap variants of dandelion PPO-1 and PPO-2 to test the specific functions of individual domains and their impact on enzyme characteristics. Our experiments revealed that the C-terminal domain modulates the pH optimum curve and has a strong influence on the optimal pH value. The linker determines the SDS concentration required for full activation. It also influences the SDS concentration required for half maximal activation (kSDS) and the stability of the enzyme during prolonged incubation in buffers containing SDS, but the N-terminal domain has the strongest effect on these parameters. The N-terminal domain also determines the IC50 of SDS and the stability in buffers containing or lacking SDS. We propose that the linker and C-terminal domain fine-tune the activation of plant PPOs. The C-terminal domain adjusts the pH optimum and the linker probably contains an SDS-binding/interaction site that influences inactivation and determines the SDS concentration required for activation. For the first time, we have determined the influence of the three PPO domains on enzyme activation and stability providing insight into the regulation and activation mechanisms of type-3 copper proteins in general. PMID:25484281

  19. Domain swapping in the low-similarity isomerase/hydratase superfamily: the crystal structure of rat mitochondrial Delta3, Delta2-enoyl-CoA isomerase.

    PubMed

    Hubbard, Paul A; Yu, Wenfeng; Schulz, Horst; Kim, Jung-Ja P

    2005-06-01

    Two monofunctional Delta(3), Delta(2)-enoyl-CoA isomerases, one in mitochondria (mECI) and the other in both mitochondria and peroxisomes (pECI), belong to the low-similarity isomerase/hydratase superfamily. Both enzymes catalyze the movement of a double bond from C3 to C2 of an unsaturated acyl-CoA substrate for re-entry into the beta-oxidation pathway. Mutagenesis has shown that Glu165 of rat mECI is involved in catalysis; however, the putative catalytic residue in yeast pECI, Glu158, is not conserved in mECI. To elucidate whether Glu165 of mECI is correctly positioned for catalysis, the crystal structure of rat mECI has been solved. Crystal packing suggests the enzyme is trimeric, in contrast to other members of the superfamily, which appear crystallographically to be dimers of trimers. The polypeptide fold of mECI, like pECI, belongs to a subset of this superfamily in which the C-terminal domain of a given monomer interacts with its own N-terminal domain. This differs from that of crotonase and 1,4-dihydroxy-2-naphtoyl-CoA synthase, whose C-terminal domains are involved in domain swapping with an adjacent monomer. The structure confirms Glu165 as the putative catalytic acid/base, positioned to abstract the pro-R proton from C2 and reprotonate at C4 of the acyl chain. The large tunnel-shaped active site cavity observed in the mECI structure explains the relative substrate promiscuity in acyl-chain length and stereochemistry. Comparison with the crystal structure of pECI suggests the catalytic residues from both enzymes are spatially conserved but not in their primary structures, providing a powerful reminder of how catalytic residues cannot be determined solely by sequence alignments. PMID:15883186

  20. Three-dimensional unstructured grid refinement and optimization using edge-swapping

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Barth, Timothy

    1993-01-01

    This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.

  1. Domain swapping between homologous bacterial small RNAs dissects processing and Hfq binding determinants and uncovers an aptamer for conditional RNase E cleavage

    PubMed Central

    Göpel, Yvonne; Khan, Muna Ayesha; Görke, Boris

    2016-01-01

    In E. coli, small RNA GlmZ activates the glmS mRNA by base-pairing in an Hfq dependent manner. When not required, GlmZ is bound by adaptor protein RapZ and recruited to RNase E, which cleaves GlmZ in its base-pairing sequence. Small RNA GlmY counteracts cleavage of GlmZ by sequestration of RapZ. Although both sRNAs are highly homologous, only GlmZ specifically binds Hfq and undergoes cleavage by RNase E. We used domain swapping to identify the responsible modules. Two elements, the 3′ terminal oligo(U) stretch and the base-pairing region enable GlmZ to interact with Hfq. Accordingly, Hfq inhibits cleavage of GlmZ, directing it to base-pairing. Intriguingly, the central stem loop of GlmZ is decisive for cleavage, whereas the sequence comprising the actual cleavage site is dispensable. Assisted by RapZ, RNase E cleaves any RNA fused to the 3′ end of this module. These results suggest a novel mode for RNase E recognition, in which one of the required handholds in the substrate is replaced by an RNA binding protein. This device can generate RNAs of interest in their 5′ monophosphorylated form on demand. As these species are rapidly degraded, this tool allows to regulate gene expression post-transcriptionally by modulation of RapZ levels. PMID:26531825

  2. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap

    PubMed Central

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J.; Pickersgill, Richard W.

    2015-01-01

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release. PMID:26616290

  3. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap

    NASA Astrophysics Data System (ADS)

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J.; Pickersgill, Richard W.

    2015-11-01

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release.

  4. iVirtualWorld: A Domain-Oriented End-User Development Environment for Building 3D Virtual Chemistry Experiments

    ERIC Educational Resources Information Center

    Zhong, Ying

    2013-01-01

    Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…

  5. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    NASA Astrophysics Data System (ADS)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  6. Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    PubMed Central

    Dharmaraj, Christopher D.; Thadikonda, Kishan; Fletcher, Anthony R.; Doan, Phuc N.; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A.; Cook, John A.; Mitchell, James B.; Subramanian, Sankaran; Krishna, Murali C.

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 × 23 × 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time. PMID:19672315

  7. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time. PMID:19672315

  8. A novel keratan sulphate domain preferentially expressed on the large aggregating proteoglycan from human articular cartilage is recognized by the monoclonal antibody 3D12/H7.

    PubMed Central

    Fischer, D C; Haubeck, H D; Eich, K; Kolbe-Busch, S; Stöcker, G; Stuhlsatz, H W; Greiling, H

    1996-01-01

    Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF-gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan. PMID:8836155

  9. A novel keratan sulphate domain preferentially expressed on the large aggregating proteoglycan from human articular cartilage is recognized by the monoclonal antibody 3D12/H7.

    PubMed

    Fischer, D C; Haubeck, H D; Eich, K; Kolbe-Busch, S; Stöcker, G; Stuhlsatz, H W; Greiling, H

    1996-09-15

    Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF-gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan. PMID:8836155

  10. 3D pseudospectral time domain for modeling second-harmonic generation in periodically poled lithium niobate ridge-type waveguides

    NASA Astrophysics Data System (ADS)

    Devaux, Fabrice; Lantz, Eric; Chauvet, Mathieu

    2016-04-01

    We report an application of the tri-dimensional pseudo-spectral time domain algorithm, that solves with accuracy the nonlinear Maxwell's equations, to predict second harmonic generation in lithium niobate ridge-type waveguides with high index contrast. Characteristics of the nonlinear process such as conversion efficiency as well as impact of the multimode character of the waveguide are investigated as a function of the waveguide geometry in uniformly and periodically poled medium.

  11. Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor.

    PubMed

    Ford-Green, Jason; Isayev, Olexandr; Gorb, Leonid; Perkins, Edward J; Leszczynski, Jerzy

    2012-04-01

    Overactivation of the N-methyl-D-aspartate receptor (NMDAR) in postsynaptic neurons leads to glutamate-related excitotoxicity in the central nervous system of mammals. We have built 3-D models of each domain for the universal screening of potential toxicants and their binding mechanisms. Our docking results show that the calculated pK (i) values of glycine and L: -glutamate significantly increase (>1) when the NR1 and NR2A S1S2 domains are closing, respectively. Inversely, D: -cycloserine (DCS) and 5,7-dichlorokynurenic acid (5,7-DCKA) do not show such a dependence on domain closure. Replica exchange molecular dynamics (REMD) confirmed 5 different conformational states of the S1S2 domain along the 308.2 K temperature trajectory. Analysis of residue fluctuations during this temperature trajectory showed that residues in loop 1, loop 2, the amino terminal domain (ATD), and the area linked to ion channel α-helices are involved in this movement. This further implicates the notion that efficacious ligands act through S1S2 lobe movement which can culminate in the opening or closing of the ion channel. We further tested this by docking hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) to the S1S2 domain. Our results predict that these nitramines are not efficacious and thus do not produce excitoxicity when they bind to the S1S2 domain of the NMDAR. PMID:21735122

  12. 3D acoustic wave modelling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sen, Mrinal K.

    2011-09-01

    Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of

  13. 3D Lithospheric Imaging by Time-Domain Full-Waveform Inversion of Teleseismic Body-Waves

    NASA Astrophysics Data System (ADS)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Combe, L.; Metivier, L.; Virieux, J.; Nissen-Meyer, T.; Paul, A.

    2014-12-01

    With the deployment of dense seismic arrays and the continuous growth of computing facilities, full-waveform inversion (FWI) of teleseismic data has become a method of choice for high-resolution lithospheric imaging. FWI can be recast as a local optimization problem that seeks to estimate Earth's elastic properties by iteratively minimizing the misfit function between observed and modeled seismograms.In passive teleseismic configurations, the seismic source no longer corresponds to a point source embedded in the targeted medium but rather corresponds to a wavefront incoming from the outside of the model. We develop a 3-dimensional time-domain full-waveform inversion program that is more designed for this configuration. The gradient of the misfit function is efficiently computed with the adjoint-state method. A velocity-stress finite-difference time-domain modeling engine, which is interfaced with the so-called total-field/scattered-field method, is used to propagate in the targeted medium the incident wavefield inferred from a global Earth simulation (AxiSEM). Such interfacing is required to account for the multiple arrivals in the incoming wavefield and the sphericity of the Earth. Despite the limited number of nearly plane-wave sources, the interaction of the incident wavefield with the topography (P-Sv conversions and P-P reflections acting as secondary sources) provides a suitable framework to record both transmitted wavefields and reflected wavefields from lithospheric reflectors. These recordings of both transmitted and reflected waves makes FWI amenable to a broadband-wavenumber (i.e., high resolution) reconstruction of the lithosphere.Feasibility of the method is assessed with a realistic synthetic model representative of the Western Alps. One key issue is the estimation of the temporal source excitation, as there might be some trade-off between the source estimation and the subsurface update. To avoid being trapped in a local minimum, we follow a

  14. Switchable field-tuned control of magnetic domain wall pinning along Co microwires by 3D e-beam lithographed structures

    NASA Astrophysics Data System (ADS)

    Blanco-Roldán, C.; Quirós, C.; Rodriguez-Rodriguez, G.; Vélez, M.; Martín, J. I.; Alameda, J. M.

    2016-02-01

    Three-dimensional magnetic circuits composed of Co microwires crossed by elevated Co bridges have been patterned on Si substrate by e-beam lithography and lift-off process. The lithographic procedure includes a double resist procedure that optimizes the shape of the bridge, so that 200 nm air gaps can be routinely achieved in between the wire and bridge elements. Microwire magnetization reversal processes have been analyzed by magneto-optical Kerr effect microscopy with different remanent bridge configurations. When the Co bridge is magnetized along the in-plane direction parallel to the wire axis, its stray field induces a marked pinning effect on domain wall propagation along the wire below it, even without being in contact. Changing the sign of the remanent state of the bridge, domain wall pinning can be selected to occur in either the ascending or descending branches of the wire hysteresis loop. Thus, these wire-bridge 3D circuits provide a simple system for tunable domain wall pinning controllable through the pre-recorded bridge remanent state.

  15. Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images.

    PubMed

    Brosch, Tom; Tam, Roger

    2015-01-01

    Deep learning has traditionally been computationally expensive, and advances in training methods have been the prerequisite for improving its efficiency in order to expand its application to a variety of image classification problems. In this letter, we address the problem of efficient training of convolutional deep belief networks by learning the weights in the frequency domain, which eliminates the time-consuming calculation of convolutions. An essential consideration in the design of the algorithm is to minimize the number of transformations to and from frequency space. We have evaluated the running time improvements using two standard benchmark data sets, showing a speed-up of up to 8 times on 2D images and up to 200 times on 3D volumes. Our training algorithm makes training of convolutional deep belief networks on 3D medical images with a resolution of up to 128×128×128 voxels practical, which opens new directions for using deep learning for medical image analysis. PMID:25380341

  16. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.

    PubMed

    Serohijos, Adrian W R; Hegedus, Tamás; Aleksandrov, Andrei A; He, Lihua; Cui, Liying; Dokholyan, Nikolay V; Riordan, John R

    2008-03-01

    Deletion of phenylalanine-508 (Phe-508) from the N-terminal nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) transporter family, disrupts both its folding and function and causes most cystic fibrosis. Most mutant nascent chains do not pass quality control in the ER, and those that do remain thermally unstable, only partially functional, and are rapidly endocytosed and degraded. Although the lack of the Phe-508 peptide backbone diminishes the NBD1 folding yield, the absence of the aromatic side chain is primarily responsible for defective CFTR assembly and channel gating. However, the site of interdomain contact by the side chain is unknown as is the high-resolution 3D structure of the complete protein. Here we present a 3D structure of CFTR, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2). This crucial cytoplasmic membrane interface, which is dynamically involved in regulation of channel gating, explains the known sensitivity of CFTR assembly to many disease-associated mutations in CL4 as well as NBD1 and provides a sharply focused target for small molecules to treat CF. In addition to identifying a key intramolecular site to be repaired therapeutically, our findings advance understanding of CFTR structure and function and provide a platform for focused biochemical studies of other features of this unique ABC ion channel. PMID:18305154

  17. Phenylalanine-508 mediates a cytoplasmic–membrane domain contact in the CFTR 3D structure crucial to assembly and channel function

    PubMed Central

    Serohijos, Adrian W. R.; Hegedűs, Tamás; Aleksandrov, Andrei A.; He, Lihua; Cui, Liying; Dokholyan, Nikolay V.; Riordan, John R.

    2008-01-01

    Deletion of phenylalanine-508 (Phe-508) from the N-terminal nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) transporter family, disrupts both its folding and function and causes most cystic fibrosis. Most mutant nascent chains do not pass quality control in the ER, and those that do remain thermally unstable, only partially functional, and are rapidly endocytosed and degraded. Although the lack of the Phe-508 peptide backbone diminishes the NBD1 folding yield, the absence of the aromatic side chain is primarily responsible for defective CFTR assembly and channel gating. However, the site of interdomain contact by the side chain is unknown as is the high-resolution 3D structure of the complete protein. Here we present a 3D structure of CFTR, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2). This crucial cytoplasmic membrane interface, which is dynamically involved in regulation of channel gating, explains the known sensitivity of CFTR assembly to many disease-associated mutations in CL4 as well as NBD1 and provides a sharply focused target for small molecules to treat CF. In addition to identifying a key intramolecular site to be repaired therapeutically, our findings advance understanding of CFTR structure and function and provide a platform for focused biochemical studies of other features of this unique ABC ion channel. PMID:18305154

  18. 3D Time-domain wave modeling in fluid-solid coupled media: a cell-based finite-difference method approach

    NASA Astrophysics Data System (ADS)

    Lee, H.; Min, D.; Lim, S.; Yang, J.; Kwon, B.; Yoo, H.

    2009-12-01

    In a conventional marine seismic data analysis, pressure data have been usually interpreted on the basis of acoustic wave equation. The acoustic wave equation, however, only deals with P-wave propagation, and it cannot correctly describe the wave propagation in acoustic-elastic (fluid-solid) coupled media. Recently, in 4C OBC survey (4-component ocean bottom cable), it is possible to acquire both pressure and 3-component displacements (measured at the sea-bottom). Combining pressure and displacement data allows us to interpret subsurface structures more accurately. In order to accurately simulate wave propagation in fluid-solid coupled media, we need an acoustic-elastic coupled modeling algorithm, which deals with displacements in elastic region and pressure in acoustic region. For waveform inversion and reverse-time migration that require a great number of forward modeling, it is essential to develop an efficient scheme that reduces computing time and computer core memory. In this study, we present a 3D time-domain acoustic-elastic coupled modeling algorithm on the basis of the cell-based finite difference method. The cell-based method has proven to properly describe the free-surface boundary, which indicates that it will also properly describe the fluid-solid interface boundaries. In the acoustic-elastic coupled modeling, we first compose cell-based finite differences individually for the 3D acoustic and elastic media, and then combine the differences using the fluid-solid interface boundary conditions. Considering that the 2D acoustic-elastic coupled modeling algorithm gives numerical solutions comparable to analytic solutions, we expect that the 3D acoustic-elastic coupled modeling will correctly describe wave propagation in the fluid-solid coupled media. We apply our algorithm to 3D horizontal two- and three-layer models. Numerical experiments show that the cell-based coupled modeling algorithm properly describes S- and converted waves as well as P-waves. The

  19. Longitudinal, 3D Imaging of Collagen Remodeling in Murine Hypertrophic Scars In Vivo Using Polarization-Sensitive Optical Frequency Domain Imaging.

    PubMed

    Lo, William C Y; Villiger, Martin; Golberg, Alexander; Broelsch, G Felix; Khan, Saiqa; Lian, Christine G; Austen, William G; Yarmush, Martin; Bouma, Brett E

    2016-01-01

    Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge because of the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and noninvasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4-10 days on incisional wounds and imaged up to 1 month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation and degree of polarization provide a robust signature for HTS. Compared with normal skin with heterogeneous local retardation and low degree of polarization, HTS was characterized by an initially low local retardation, which increased as collagen fibers remodeled, and a persistently high degree of polarization. This study demonstrates that polarization-sensitive optical frequency domain imaging offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies. PMID:26763427

  20. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  1. 76 FR 27621 - Margin Requirements for Uncleared Swaps for Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... margin requirements for swap dealers (SDs) and major swap participants (MSPs). Elsewhere today in the... commission merchants (FCMs) that also register as SDs or MSPs and supplemental capital requirements, and... variation margin requirements for swap dealers (SDs) and major swap participants (MSPs). Elsewhere today...

  2. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain.

    PubMed

    Kothandan, Gugan; Gadhe, Changdev G; Madhavan, Thirumurthy; Choi, Cheol Hee; Cho, Seung Joo

    2011-09-01

    In order to explore the interactions between flavones and P-gp, in silico methodologies such as docking and 3D-QSAR were performed. CoMFA and CoMSIA analyses were done using ligand based and receptor guided alignment schemes. Validation statistics include leave-one-out cross-validated R(2) (q(2)), internal prediction parameter by progressive scrambling (Q(*2)), external prediction with test set. They show that models derived from this study are quite robust. Ligand based CoMFA (q(2) = 0.747, Q(*2) = 0.639, r(pred)(2)=0.802) and CoMSIA model (q(2) = 0.810, Q(*2) = 0.676, r(pred)(2)=0.785) were developed using atom by atom matching. Receptor guided CoMFA (q(2) = 0.712, Q(*2) = 0.497, r(pred)(2) = 0.841) and for CoMSIA (q(2) = 0.805, Q(*2) = 0.589, r(pred)(2) = 0.937) models were developed by docking of highly active flavone into the proposed NBD (nucleotide binding domain) of P-gp. The 3D-QSAR models generated here predicted that hydrophobic and steric parameters are important for activity toward P-gp. Our studies indicate the important amino acid in NBD crucial for binding in accordance with the previous results. This site forms a hydrophobic site. Since flavonoids have potential without toxicity, we propose to inspect this hydrophobic site including Asn1043 and Asp1049 should be considered for future inhibitor design. PMID:21723648

  3. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  4. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  5. Longitudinal, 3D Imaging of Collagen Remodeling in Murine Hypertrophic Scars In Vivo using Polarization-sensitive Optical Frequency Domain Imaging

    PubMed Central

    Lo, William C. Y.; Villiger, Martin; Golberg, Alexander; Broelsch, G. Felix; Khan, Saiqa; Lian, Christine G.; Austen, William G.; Yarmush, Martin; Bouma, Brett E.

    2016-01-01

    Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge due to the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and non-invasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging (PS-OFDI) for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4 to 10 days on incisional wounds and imaged up to one month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation (LR) and degree of polarization (DOP) provide a robust signature for HTS. Compared to normal skin with heterogeneous LR and low DOP, HTS was characterized by an initially low LR, which increased as collagen fibers remodeled, and a persistently high DOP. This study demonstrates that PS-OFDI offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies. PMID:26763427

  6. 76 FR 49291 - Agricultural Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Commission recently promulgated a final rule defining the term ``agricultural commodity.'' See 76 FR 41048... Agricultural Swaps, 76 FR 6095, February 3, 2011. \\8\\ See Agricultural Swaps, 75 FR 59666, Sept. 28, 2010. C... specifically addressing the costs and benefits of the proposed agricultural swaps rules. \\10\\ See NPRM, 76...

  7. Interest rate swaps under CIR

    NASA Astrophysics Data System (ADS)

    Mallier, R.; Alobaidi, G.

    2004-03-01

    We consider fixed-for-floating interest rate swaps under the assumption that interest rates are given by the mean-reverting Cox-Ingersoll-Ross model. By using a Green's function approach, we derive analytical expressions for the values of both a vanilla swap and an in-arrears swap.

  8. 77 FR 41109 - Margin Requirements for Uncleared Swaps for Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    .... \\1\\ See 76 FR 23732. \\2\\ The WGMR is comprised of representatives from over 25 domestic and... transactions.\\6\\ \\4\\ See 76 FR 23732. \\5\\ The WGMR is comprised of representatives from over 25 domestic and... requirements on uncleared swaps for swap dealers (``SDs'') and major swap participants (``MSPs'').\\1\\...

  9. Module swaps between related translocator proteins pIV(f1), pIV(IKe) and PulD: identification of a specificity domain.

    PubMed

    Daefler, S; Russel, M; Model, P

    1997-03-14

    In Gram-negative bacteria, type II and type III secretion and filamentous phage assembly systems use related outer membrane proteins for substrate-specific transport across the outer membrane. We show here that the specificity domain of the phage f1 outer membrane protein pIV is contained within the 149 N-terminal amino acid residues. When the pIV(f1) specificity domain is fused to the translocator domain of the related pIV of phage IKe, the chimeric construct supports f1 but not IKe assembly. Functional coupling between the two domains in this chimeric construct is poor and is improved by a single amino acid change in the translocator domain of the pIV(IKe). In native pIV(IKe), two amino acid changes within its specificity domain are both necessary and sufficient to change the specificity from IKe to f1 assembly. Analysis of 39 chimeric constructs between pIV(f1) and the outer membrane protein PulD of the pullulanase secretion system failed to identify a comparable exchangeable specificity domain. These results indicate that the two domains may not function autonomously, and suggest that tertiary and quarternary changes of the entire translocator component rather than of an autonomous functional domain are required for specific translocation across the outer membrane. PMID:9086275

  10. 78 FR 17 - Business Conduct and Documentation Requirements for Swap Dealers and Major Swap Participants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... Trading Relationship Documentation Requirements for Swap Dealers and Major Swap Participants, 77 FR 55904... Trading Relationship Documentation Requirements for Swap Dealers and Major Swap Participants, 77 FR 55904... Trading Relationship Documentation for Swap Dealers and Major Swap Participants, 76 FR 6715 (proposed...

  11. 77 FR 35199 - Swap Data Recordkeeping and Reporting Requirements: Pre-Enactment and Transition Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Reporting Pre-Enactment Swap Transactions (``Pre-Enactment Swaps IFR''), 75 FR 63080 (Oct. 14, 2010...-Enactment Swap Transactions (``Post-Enactment Swaps IFR'' or ``Transition Swaps IFR''), 75 FR 78892 (Dec. 17... to particular swaps. \\19\\ 77 FR 2136 (February 13, 2012). With respect to recordkeeping, part...

  12. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

    PubMed Central

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-01-01

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085

  13. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics.

    PubMed

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-02-15

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085

  14. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-02-01

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems.

  15. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    PubMed

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes. PMID:26820614

  16. Comment on '3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach' by Bing Zhou and S. A. Greenhalgh

    NASA Astrophysics Data System (ADS)

    de Basabe, Jonás D.

    2011-08-01

    Zhou & Greenhalgh have recently presented an application of the Gaussian quadrature grid to seismic modelling in which the authors propose a meshing scheme that partitions the domain independently of the discontinuities in the media parameters. This comment aims to clarify the implications that this strategy has on the accuracy.

  17. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  19. 77 FR 3590 - Registration of Swap Dealers and Major Swap Participants; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... emiller@cftc.gov . SUPPLEMENTARY INFORMATION: In the final rule, FR Doc. 2012-00792, on page 2613 in the... swap dealers (SDs) and major swap participants (MSPs, and collectively with SDs, Swaps Entities)...

  20. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return. PMID:25002632

  1. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  2. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  3. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    SciTech Connect

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  4. Estimating the Temporal Domain when the Discount of the Net Evaporation Term Affects the Resulting Net Precipitation Pattern in the Moisture Budget Using a 3-D Lagrangian Approach

    PubMed Central

    Castillo, Rodrigo; Nieto, Raquel; Drumond, Anita; Gimeno, Luis

    2014-01-01

    The Lagrangian FLEXPART model has been used during the last decade to detect moisture sources that affect the climate in different regions of the world. While most of these studies provided a climatological perspective on the atmospheric branch of the hydrological cycle in terms of precipitation, none assessed the minimum temporal domain for which the climatological approach is valid. The methodology identifies the contribution of humidity to the moisture budget in a region by computing the changes in specific humidity along backward (or forward) trajectories of air masses over a period of ten days beforehand (afterwards), thereby allowing the calculation of monthly, seasonal and annual averages. The current study calculates as an example the climatological seasonal mean and variance of the net precipitation for regions in which precipitation exceeds evaporation (E-P<0) for the North Atlantic moisture source region using different time periods, for winter and summer from 1980 to 2000. The results show that net evaporation (E-P>0) can be discounted after when the integration of E-P is done without affecting the general net precipitation patterns when it is discounted in a monthly or longer time scale. PMID:24893002

  5. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy

    PubMed Central

    Sha, Huizi; Zou, Zhengyun; Xin, Kai; Bian, Xinyu; Cai, Xueting; Lu, Wuguang; Chen, Jiao; Chen, Gang; Huang, Leaf; Blair, Andrew M.; Cao, Peng; Liu, Baorui

    2016-01-01

    Human tumors, including gastric cancer, frequently express high levels of epidermal growth factor receptors (EGFRs), which are associated with a poor prognosis. Targeted delivery of anticancer drugs to cancerous tissues shows potential in sparing unaffected tissues. However, it has been a major challenge for drug penetration in solid tumor tissues due to the complicated tumor microenvironment. We have constructed a recombinant protein named anti-EGFR-iRGD consisting of an anti-EGFR VHH (the variable domain from the heavy chain of the antibody) fused to iRGD, a tumor-specific binding peptide with high permeability. Anti-EGFR-iRGD, which targets EGFR and αvβ3, spreads extensively throughout both the multicellular spheroids and the tumor mass. The recombinant protein anti-EGFR-iRGD also exhibited antitumor activity in tumor cell lines, multicellular spheroids, and mice. Moreover, anti-EGFR-iRGD could improve anticancer drugs, such as doxorubicin (DOX), bevacizumab, nanoparticle permeability and efficacy in multicellular spheroids. This study draws attention to the importance of iRGD peptide in the therapeutic approach of anti-EGFR-iRGD. As a consequence, anti-EGFR-iRGD could be a drug candidate for cancer treatment and a useful adjunct of other anticancer drugs. PMID:25553823

  6. Utilities swap pollution credits

    SciTech Connect

    Warkentin, D.

    1995-03-01

    In an innovative plan to reduce acid rain and greenhouse gas emissions, Niagara Mohawk Power Corp. (NMPC) will transfer 1.75 million tons of CO{sub 2} reductions to Arizona Public Service Co. (APS) in return for 25,000 tons of SO{sub 2} allowances. The two companies agreed to the plan - the first-ever interpollutant credit swap - late in 1994. NMPC will donate the APS-supplied SO{sub 2} allowances to a non-profit environmental organization. The allowances will be permanently retired and not released into the atmosphere. NMPC will use the tax benefit resulting from the donation, which is expected to be about $1 million, to fund energy efficiency programs or energy supply networks. These programs and projects, according to the companies, will create additional reductions in greenhouse gas emissions and other pollutant emissions. A portion of the tax benefits will also be used to fund similar projects outside the United States to further reduce global emissions of greenhouse gases. The Environmental Defense Fund, in consultation with DOE, will assist both companies in implementing the transfer agreement.

  7. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  8. Higher-order in time "quasi-unconditionally stable" ADI solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains

    NASA Astrophysics Data System (ADS)

    Bruno, Oscar P.; Cubillos, Max

    2016-02-01

    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are "quasi-unconditionally stable" in the following sense: each algorithm is stable for all couples (h , Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0 ,Mh) × (0 ,Mt). In other words, for each fixed value of Δt below a certain threshold, the Navier-Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier-Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier-Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions.

  9. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-01

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A. PMID:26393783

  10. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  11. Imaging Nuclear Waste Plumes at the Hanford Site using Large Domain 3D High Resolution Resistivity Methods and the New Parallel-Processing EarthImager3DCL Program

    NASA Astrophysics Data System (ADS)

    Greenwood, J.; Rucker, D.; Levitt, M.; Yang, X.; Lagmanson, M.

    2007-12-01

    High Resolution Resistivity data is currently used by hydroGEOPHYSICS, Inc to detect and characterize the distribution of suspected contaminant plumes beneath leaking tanks and disposal sites within the U.S. Department of Energy Hanford Site, in Eastern Washington State. The success of the characterization effort has led to resistivity data acquisition in extremely large survey areas exceeding 0.6 km2 and containing over 6,000 electrodes. Optimal data processing results are achieved by utilizing 105 data points within a single finite difference or finite element model domain. The large number of measurements and electrodes and high resolution of the modeling domain requires a model mesh of over 106 nodes. Existing commercially available resistivity inversion software could not support the domain size due to software and hardware limitations. hydroGEOPHYSICS, Inc teamed with Advanced Geosciences, Inc to advance the existing EarthImager3D inversion software to allow for parallel-processing and large memory support under a 64 bit operating system. The basis for the selection of EarthImager3D is demonstrated with a series of verification tests and benchmark comparisons using synthetic test models, field scale experiments and 6 months of intensive modeling using an array of multi-processor servers. The results of benchmark testing show equivalence to other industry standard inversion codes that perform the same function on significantly smaller domain models. hydroGEOPHYSICS, Inc included the use of 214 steel-cased monitoring wells as "long electrodes", 6000 surface electrodes and 8 buried point source electrodes. Advanced Geosciences, Inc. implemented a long electrode modeling function to support the Hanford Site well casing data. This utility is unique to commercial resistivity inversion software, and was evaluated through a series of laboratory and field scale tests using engineered subsurface plumes. The Hanford site is an ideal proving ground for these methods due

  12. 77 FR 2613 - Registration of Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ...The Commodity Futures Trading Commission (Commission or CFTC) is adopting regulations under the Commodity Exchange Act (Act or CEA) that establish the process for the registration of swap dealers (SDs) and major swap participants (MSPs, and collectively with SDs, Swaps Entities) and that require Swaps Entities to become and remain members of a registered futures association (RFA). The......

  13. 75 FR 80637 - Business Conduct Standards for Swap Dealers and Major Swap Participants With Counterparties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... of Swap Dealers and Major Swap Participants, 75 FR 71397, Nov. 23, 2010 (proposed Sec. 23.602... obligations for swap dealers and major swap participants. See 75 FR 71397, Nov. 23, 2010. Section 4s(h)(1)(B... supervision requirements of subpart J. \\24\\ See proposed Sec. Sec. 23.600 and 23.602, 75 FR 71397, Nov....

  14. 76 FR 22833 - Swap Data Recordkeeping and Reporting Requirements: Pre-Enactment and Transition Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Final Rule for Reporting Pre-Enactment Swap Transactions (``Pre-Enactment Swaps IFR''), 75 FR 63080 (Oct... COMMISSION 17 CFR Part 46 Swap Data Recordkeeping and Reporting Requirements: Pre-Enactment and Transition... rules adopted by the Commission shall provide for the reporting of data relating to swaps entered...

  15. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  16. SWAP-70 Identifies a Transitional Subset of Actin Filaments in Motile CellsV⃞

    PubMed Central

    Hilpelä, Pirta; Oberbanscheidt, Pia; Hahne, Penelope; Hund, Martin; Kalhammer, Georg; Small, J. Victor; Bähler, Martin

    2003-01-01

    Functionally different subsets of actin filament arrays contribute to cellular organization and motility. We report the identification of a novel subset of loose actin filament arrays through regulated association with the widely expressed protein SWAP-70. These loose actin filament arrays were commonly located behind protruding lamellipodia and membrane ruffles. Visualization of these loose actin filament arrays was dependent on lamellipodial protrusion and the binding of the SWAP-70 PH-domain to a 3′-phosphoinositide. SWAP-70 with a functional pleckstrin homology-domain lacking the C-terminal 60 residues was targeted to the area of the loose actin filament arrays, but it did not associate with actin filaments. The C-terminal 60 residues were sufficient for actin filament association, but they provided no specificity for the subset of loose actin filament arrays. These results identify SWAP-70 as a phosphoinositide 3-kinase signaling-dependent marker for a distinct, hitherto unrecognized, array of actin filaments. Overexpression of SWAP-70 altered the actin organization and lamellipodial morphology. These alterations were dependent on a proper subcellular targeting of SWAP-70. We propose that SWAP-70 regulates the actincytoskeletonasaneffectororadaptorproteininresponsetoagoniststimulatedphosphatidylinositol (3,4)-bisphosphate production and cell protrusion. PMID:12925760

  17. 17 CFR 45.2 - Swap recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... archival storage from which they are retrievable by the swap data repository within three business days. (h... relating to the business of such entity or person with respect to swaps, as prescribed by the Commission... the final termination of the swap, and shall be retrievable by the registrant within three...

  18. 17 CFR 45.2 - Swap recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... archival storage from which they are retrievable by the swap data repository within three business days. (h... relating to the business of such entity or person with respect to swaps, as prescribed by the Commission... the final termination of the swap, and shall be retrievable by the registrant within three...

  19. 17 CFR 45.2 - Swap recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... archival storage from which they are retrievable by the swap data repository within three business days. (h... relating to the business of such entity or person with respect to swaps, as prescribed by the Commission... the final termination of the swap, and shall be retrievable by the registrant within three...

  20. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  1. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  2. Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Miniussi, A.; Brossier, R.; Combe, L.; Métivier, L.; Monteiller, V.; Ribodetti, A.; Virieux, J.

    2015-08-01

    Computationally efficient 3-D frequency-domain full waveform inversion (FWI) is applied to ocean-bottom cable data from the Valhall oil field in the visco-acoustic vertical transverse isotropic (VTI) approximation. Frequency-domain seismic modelling is performed with a parallel sparse direct solver on a limited number of computer nodes. A multiscale imaging is performed by successive inversions of single frequencies in the 3.5-10 Hz frequency band. The vertical wave speed is updated during FWI while density, quality factor QP and anisotropic Thomsen's parameters δ and ɛ are kept fixed to their initial values. The final FWI model shows the resolution improvement that was achieved compared to the initial model that was built by reflection traveltime tomography. This FWI model shows a glacial channel system at 175 m depth, the footprint of drifting icebergs on the palaeo-seafloor at 500 m depth, a detailed view of a gas cloud at 1 km depth and the base cretaceous reflector at 3.5 km depth. The relevance of the FWI model is assessed by frequency-domain and time-domain seismic modelling and source wavelet estimation. The agreement between the modelled and recorded data in the frequency domain is excellent up to 10 Hz although amplitudes of modelled wavefields propagating across the gas cloud are overestimated. This might highlight the footprint of attenuation, whose absorption effects are underestimated by the homogeneous background QP model (QP = 200). The match between recorded and modelled time-domain seismograms suggests that the inversion was not significantly hampered by cycle skipping. However, late arrivals in the synthetic seismograms, computed without attenuation and with a source wavelet estimated from short-offset early arrivals, arrive 40 ms earlier than the recorded seismograms. This might result from dispersion effects related to attenuation. The repeatability of the source wavelets inferred from data that are weighted by a linear gain with offset is

  3. 76 FR 6715 - Swap Trading Relationship Documentation Requirements for Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... in these products. The ``Big Bang Protocol'' further standardized a number of critical operational.../Big-Bang-Protocol.pdf . B. Proposed Swap Trading Relationship Documentation Rule To promote the... rules to be proposed under section 4s(e) of the CEA that relate to margin requirements. \\17\\ See 75...

  4. 76 FR 23732 - Margin Requirements for Uncleared Swaps for Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... financial condition reporting requirements of SDs and MSPs.\\4\\ \\3\\ See 75 FR 71379 (Nov. 23, 2010). \\4\\ As... Swap Participants, 76 FR 6715 (Feb. 8, 2011). Under rules being proposed by the prudential regulators... Participants, 75 FR 71397, 71405 (Nov. 23, 2010). The Commission solicits comment regarding whether...

  5. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  6. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 45.5 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA...) An alphanumeric code generated and assigned to that swap by the automated systems of the swap... alphanumeric code generated and assigned to that swap by the automated systems of the swap dealer or major...

  7. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 45.5 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION (CONTINUED) SWAP DATA...) An alphanumeric code generated and assigned to that swap by the automated systems of the swap... alphanumeric code generated and assigned to that swap by the automated systems of the swap dealer or major...

  8. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 45.5 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA...) An alphanumeric code generated and assigned to that swap by the automated systems of the swap... alphanumeric code generated and assigned to that swap by the automated systems of the swap dealer or major...

  9. Coseismic slip distribution of the 2015 Mw7.8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3-D heterogeneous Domain

    NASA Astrophysics Data System (ADS)

    Tung, Sui; Masterlark, Timothy

    2016-05-01

    We derive a coseismic slip model of the 2015 Mw7.8 Gorkha earthquake on the basis of GPS and line-of-sight displacements from ALOS-2 descending interferograms, using Green's functions calculated with a 3-D finite element model (FEM). The FEM simulates a nonuniform distribution of elastic material properties and a precise geometric configuration of the irregular topographical surface. The rupturing fault is modeled as a low-angle and north dipping surface within the Main Frontal Thrust along the convergent margin of the Himalayas. The optimal model that inherits heterogeneous material properties provides a significantly better solution than that in a homogenous domain at the 95% confidence interval. The best fit solution for the domain having a nonuniform distribution of material properties reveals a rhombus-shaped slip zone of three composite asperities. Slip is primarily concentrated at a depth of 15 km with both dip-slip (maximum 6.54 m) and strike-slip (maximum 2.0 m) components, giving rise to a geodetic-based moment of 1.09 × 1021 Nm in general agreement with the seismological estimate. The optimal relative weights among GPS and interferometric synthetic aperture radar (InSAR) are deduced from a new method, MC-HVCE which combines a Monte Carlo search and a Helmert Method of Variance Components Estimation. This method determines the relative weights in a systemic approach which preserves the intrinsic solution smoothness. The joint solution is significantly better than those inverted from each individual data set. This methodology allows us to integrate multiple data sets of geodetic observations with seismic tomography, in an effort to achieve a better understanding of seismic ruptures within crustal heterogeneity.

  10. 75 FR 71397 - Regulations Establishing and Governing the Duties of Swap Dealers and Major Swap Participants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... swap participants. \\15\\ 5 U.S.C. 601 et seq. \\16\\ 47 FR 18618, Apr. 30, 1982. Swap dealers and major..., in the judgement of the Commission, are reasonably necessary to effectuate any of the provisions...

  11. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  12. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  13. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  14. 77 FR 20127 - Swap Dealer and Major Swap Participant Recordkeeping, Reporting, and Duties Rules; Futures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Commission considered ] each of these comments in formulating the final regulations.\\5\\ \\2\\ See 75 FR 76666... Major Swap Participants (Recordkeeping NPRM)); 75 FR 71397 (Nov. 23, 2010) (Regulations Establishing and Governing the Duties of Swap Dealers and Major Swap Participants (Duties NPRM)); 75 FR 70152 (Nov. 17,...

  15. 17 CFR 23.600 - Risk Management Program for swap dealers and major swap participants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pricing (excluding price verification for risk management purposes), trading, sales, marketing... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Risk Management Program for... Major Swap Participants § 23.600 Risk Management Program for swap dealers and major swap...

  16. 17 CFR 23.600 - Risk Management Program for swap dealers and major swap participants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pricing (excluding price verification for risk management purposes), trading, sales, marketing... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Risk Management Program for... Major Swap Participants § 23.600 Risk Management Program for swap dealers and major swap...

  17. Radiosity diffusion model in 3D

    NASA Astrophysics Data System (ADS)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  18. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  19. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  20. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  1. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  2. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  3. 76 FR 29817 - Further Definition of “Swap,” “Security-Based Swap,” and “Security-Based Swap Agreement”; Mixed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Dealers and Major Swap Participants, 75 FR 71397, Nov. 23, 2010; Swap Data Recordkeeping and Reporting Requirements, 75 FR 76573, Dec. 8, 2010. The SEC has also issued proposed rules regarding security-based swap... Security-Based Swap Data Repository Registration, Duties, and Core Principles, 75 FR 77306, Dec. 10,...

  4. 17 CFR 46.8 - Data reporting for swaps in a swap asset class not accepted by any swap data repository.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... REQUIREMENTS: PRE-ENACTMENT AND TRANSITION SWAPS § 46.8 Data reporting for swaps in a swap asset class not... reported to the Commission pursuant to this section with respect to pre-enactment and transition swaps in... Officer by paragraph (c) of this section shall include: (1) With respect to all pre-enactment...

  5. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  6. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  7. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  8. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  10. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems. PMID:22752138

  11. Molecular Design Principles Underlying beta-strand Swapping in the Adhesive Dimerization of Cadherins

    SciTech Connect

    J Vendome; S Posy; X Jin; F Bahna; G Ahlsen; L Shapiro; B Honig

    2011-12-31

    Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal {beta}-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca{sup 2+} ions. We also demonstrate that a conserved proline-proline motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations that transform a monomeric EC2-EC3 domain cadherin construct into a strand-swapped dimer.

  12. A subdomain swap strategy for reengineering nonribosomal peptides.

    PubMed

    Kries, Hajo; Niquille, David L; Hilvert, Donald

    2015-05-21

    Nonribosomal peptide synthetases (NRPSs) protect microorganisms from environmental threats by producing diverse siderophores, antibiotics, and other peptide natural products. Their modular molecular structure is also attractive from the standpoint of biosynthetic engineering. Here we evaluate a methodology for swapping module specificities of these mega-enzymes that takes advantage of flavodoxin-like subdomains involved in substrate recognition. Nine subdomains encoding diverse specificities were transplanted into the Phe-specific GrsA initiation module of gramicidin S synthetase. All chimeras could be purified as soluble protein. One construct based on a Val-specific subdomain showed sizable adenylation activity and functioned as a Val-Pro diketopiperazine synthetase upon addition of the proline-specific GrsB1 module. These results suggest that subdomain swapping could be a viable alternative to previous NRPS design approaches targeting binding pockets, domains, or entire modules. The short length of the swapped sequence stretch may facilitate straightforward exploitation of the wealth of existing NRPS modules for combinatorial biosynthesis. PMID:26000750

  13. A 3D radiative transfer framework. VI. PHOENIX/3D example applications

    NASA Astrophysics Data System (ADS)

    Hauschildt, P. H.; Baron, E.

    2010-01-01

    Aims: We demonstrate the application of our 3D radiative transfer framework in the model atmosphere code PHOENIX for a number of spectrum synthesis calculations for very different conditions. Methods: The 3DRT framework discussed in the previous papers of this series was added to our general-purpose model atmosphere code PHOENIX/1D and an extended 3D version PHOENIX/3D was created. The PHOENIX/3D code is parallelized via the MPI library using a hierarchical domain decomposition and displays very good strong scaling. Results: We present the results of several test cases for widely different atmosphere conditions and compare the 3D calculations with equivalent 1D models to assess the internal accuracy of the 3D modeling. In addition, we show the results for a number of parameterized 3D structures. Conclusions: With presently available computational resources it is possible to solve the full 3D radiative transfer (including scattering) problem with the same micro-physics as included in 1D modeling.

  14. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the swap data repository within three business days. (c) All records required to be kept pursuant to... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Swap data repository... COMMISSION (CONTINUED) SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a)...

  15. 76 FR 42508 - Effective Date for Swap Regulation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ..., 76 FR 25274, May 4, 2011. \\5\\ The Commission has noted its ability to phase in implementation of the... Participant,'' ``Major Security-Based Swap Participant'' and ``Eligible Contract Participant,'' 75 FR 80174...,'' and ``Security-Based Swap Agreement''; Mixed Swaps; Security-Based Swap Agreement Recordkeeping, 76...

  16. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  17. Quantum states prepared by realistic entanglement swapping

    SciTech Connect

    Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang

    2009-12-15

    Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.

  18. 17 CFR 37.10 - Process for a swap execution facility to make a swap available to trade.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... offers that swap for trading on its trading system or platform. (b) Factors to consider. To make a swap... COMMODITY FUTURES TRADING COMMISSION SWAP EXECUTION FACILITIES General Provisions § 37.10 Process for a swap... and sellers; (2) The frequency or size of transactions; (3) The trading volume; (4) The number...

  19. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  20. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  1. Pricing of range accrual swap in the quantum finance Libor Market Model

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Du, Xin; Tang, Pan; Cao, Yang

    2014-05-01

    We study the range accrual swap in the quantum finance formulation of the Libor Market Model (LMM). It is shown that the formulation can exactly price the path dependent instrument. An approximate price is obtained as an expansion in the volatility of Libor. The Monte Carlo simulation method is used to study the nonlinear domain of the model and determine the range of validity of the approximate formula. The price of accrual swap is analyzed by generating daily sample values by simulating a two dimension Gaussian quantum field.

  2. One-cavity scheme enabling to implement delayed choice for entanglement swapping in cavity QED

    NASA Astrophysics Data System (ADS)

    de Almeida, N. G.

    2015-06-01

    In this paper we present a simplified scheme to implement entanglement swapping in the context of cavity QED. The scheme presented here has the advantage of being much simpler than those presented previously, and can easily be adapted to perform the delayed choice for entanglement swapping, thus enabling one to also demonstrate time-like entanglement in the cavity QED domain. In contrast to previous schemes, our proposal uses just one high-Q cavity, besides the usual circular Rydberg atoms, Ramsey zones and selective atomic state detectors. The simplicity of our scheme makes it feasible with current QED technology, making it attractive from the experimental point of view for demonstrating entanglement swapping both in the conventional and in the delayed choice manner.

  3. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  4. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  5. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  6. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  7. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  8. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  9. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  10. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  12. 77 FR 48207 - Further Definition of “Swap,” “Security-Based Swap,” and “Security-Based Swap Agreement”; Mixed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Standards, Duties and Core Principles, 76 FR 54538 (Sep. 1, 2011); Swap Data Recordkeeping and Reporting Requirements, 77 FR 2136 (Jan. 13, 2012). The SEC has also issued proposed rules regarding security-based swap... Security- Based Swap Data Repository Registration, Duties, and Core Principles, 75 FR 77306 (Dec. 10,...

  13. 76 FR 6708 - Orderly Liquidation Termination Provision in Swap Trading Relationship Documentation for Swap...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... proposed rules would affect swap dealers and major swap participants. \\28\\ 5 U.S.C. 601 et seq. \\29\\ 47 FR... CFR part 23, as proposed to be added in FR Doc. 2010-29024, published in the ] Federal Register on November 23, 2010 (75 FR 71379), and as proposed to be amended elsewhere in this issue of the...

  14. 77 FR 9733 - Business Conduct Standards for Swap Dealers and Major Swap Participants With Counterparties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... for Swap Dealers and Major Swap Participants With Counterparties, 75 FR 80638, Dec. 22, 2010...-Frank Wall Street Reform and Consumer Protection Act, 76 FR 25274, May 4, 2011 (``Extension of Comment... with commenters after the comment period officially closed. \\6\\ Proposing release, 75 FR at...

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  18. 3D puzzle reconstruction for archeological fragments

    NASA Astrophysics Data System (ADS)

    Jampy, F.; Hostein, A.; Fauvet, E.; Laligant, O.; Truchetet, F.

    2015-03-01

    The reconstruction of broken artifacts is a common task in archeology domain; it can be supported now by 3D data acquisition device and computer processing. Many works have been dedicated in the past to reconstructing 2D puzzles but very few propose a true 3D approach. We present here a complete solution including a dedicated transportable 3D acquisition set-up and a virtual tool with a graphic interface allowing the archeologists to manipulate the fragments and to, interactively, reconstruct the puzzle. The whole lateral part is acquired by rotating the fragment around an axis chosen within a light sheet thanks to a step-motor synchronized with the camera frame clock. Another camera provides a top view of the fragment under scanning. A scanning accuracy of 100μm is attained. The iterative automatic processing algorithm is based on segmentation into facets of the lateral part of the fragments followed by a 3D matching providing the user with a ranked short list of possible assemblies. The device has been applied to the reconstruction of a set of 1200 fragments from broken tablets supporting a Latin inscription dating from the first century AD.

  19. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  20. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  1. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  2. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  3. Anisotropy effects on 3D waveform inversion

    NASA Astrophysics Data System (ADS)

    Stekl, I.; Warner, M.; Umpleby, A.

    2010-12-01

    misinterpretation of results. However if correct physics is used results agree with correct model. Our algorithm is relatively affordable and runs on standard pc clusters in acceptable time. Refferences: H. Ben Hadj Ali, S. Operto and J. Virieux. Velocity model building by 3D frequency-domain full-waveform inversion of wide-aperture seismic data, Geophysics (Special issue: Velocity Model Building), 73(6), P. VE101-VE117 (2008). L. Sirgue, O.I. Barkved, J. Dellinger, J. Etgen, U. Albertin, J.H. Kommedal, Full waveform inversion: the next leap forward in imaging at Valhall, First Brake April 2010 - Issue 4 - Volume 28 M. Warner, I. Stekl, A. Umpleby, Efficient and Effective 3D Wavefield Tomography, 70th EAGE Conference & Exhibition (2008)

  4. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  5. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  6. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  7. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  8. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  9. 17 CFR 45.10 - Reporting to a single swap data repository.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the swap data repository to which the first report of required swap creation data is made pursuant to... designated contract market that reports required swap creation data as required by § 45.3 shall report all... of the swap data repository to which required swap creation data is reported by the swap...

  10. Entanglement swapping of two arbitrarily degraded entangled states

    NASA Astrophysics Data System (ADS)

    Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael

    2016-07-01

    We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.

  11. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  12. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  13. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  14. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  15. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... data repository within three business days. (c) All records required to be kept pursuant to this... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Swap data repository... COMMISSION SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a) A...

  16. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... data repository within three business days. (c) All records required to be kept pursuant to this... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Swap data repository... COMMISSION SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a) A...

  17. 17 CFR 45.4 - Swap data reporting: continuation data.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Swap data reporting: continuation data. 45.4 Section 45.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION (CONTINUED) SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.4 Swap data reporting: continuation...

  18. 17 CFR 45.3 - Swap data reporting: creation data.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Swap data reporting: creation data. 45.3 Section 45.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION (CONTINUED) SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.3 Swap data reporting: creation...

  19. 17 CFR 45.4 - Swap data reporting: continuation data.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Swap data reporting: continuation data. 45.4 Section 45.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.4 Swap data reporting: continuation...

  20. 17 CFR 45.4 - Swap data reporting: continuation data.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Swap data reporting: continuation data. 45.4 Section 45.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.4 Swap data reporting: continuation...

  1. 17 CFR 45.3 - Swap data reporting: creation data.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Swap data reporting: creation data. 45.3 Section 45.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.3 Swap data reporting: creation data....

  2. 17 CFR 45.3 - Swap data reporting: creation data.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Swap data reporting: creation data. 45.3 Section 45.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS § 45.3 Swap data reporting: creation data....

  3. 75 FR 76573 - Swap Data Recordkeeping and Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ...The Commodity Futures Trading Commission (``Commission or CFTC'') is proposing rules to implement new statutory provisions enacted by Title VII of the Dodd-Frank Wall Street Reform and Consumer Protection Act. These proposed rules apply to swap data recordkeeping and reporting requirements for swap data repositories, derivatives clearing organizations, designated contract markets, swap......

  4. 76 FR 40605 - Exemptions for Security-Based Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... Swaps; Security-Based Swap Agreement Recordkeeping, Release No. 33-9204 (Apr. 29, 2011), 76 FR 29818.... 34-63825 (Feb. 2, 2011), 76 FR 10948 (Feb. 28, 2011)(``Security-Based SEF Proposing Release''). \\18..., 2010), 75 FR 72660 (Nov. 26, 2010). As a result, because security-based swaps will become securities...

  5. 77 FR 2135 - Swap Data Recordkeeping and Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ...\\ amended the CEA \\3\\ to establish a comprehensive new regulatory framework for swaps and security-based... activities relating to the business of such entities or persons with respect to swaps, including, without... activities relating to the business of such entities with respect to swaps), in a way that makes the...

  6. Entanglement swapping for generalized nonlocal correlations

    SciTech Connect

    Short, A. J.; Popescu, S.; Gisin, N.

    2006-01-15

    We consider an analog of entanglement-swapping for a set of black boxes with the most general nonlocal correlations consistent with relativity (including correlations which are stronger than any attainable in quantum theory). In an attempt to incorporate this phenomenon, we consider expanding the space of objects to include not only correlated boxes, but 'couplers', which are an analog for boxes of measurements with entangled eigenstates in quantum theory. Surprisingly, we find that no couplers exist for two binary-input-binary-output boxes, and hence that there is no analog of entanglement swapping for such boxes.

  7. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  8. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  10. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  11. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  12. 17 CFR 22.2 - Futures Commission Merchants: Treatment of Cleared Swaps and Associated Cleared Swaps Customer...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... merchant may invest money, securities, or other property constituting Cleared Swaps Customer Collateral in... merchant may not include, as Cleared Swaps Customer Collateral, (i) Money invested in the securities... execution facility, or swap data repository, or (ii) Money, securities, or other property that...

  13. 17 CFR 22.2 - Futures Commission Merchants: Treatment of Cleared Swaps and Associated Cleared Swaps Customer...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... merchant may invest money, securities, or other property constituting Cleared Swaps Customer Collateral in... merchant may not include, as Cleared Swaps Customer Collateral, (i) Money invested in the securities... execution facility, or swap data repository, or (ii) Money, securities, or other property that...

  14. 17 CFR 22.2 - Futures Commission Merchants: Treatment of Cleared Swaps and Associated Cleared Swaps Customer...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... merchant may invest money, securities, or other property constituting Cleared Swaps Customer Collateral in... merchant may not include, as Cleared Swaps Customer Collateral, (i) Money invested in the securities... execution facility, or swap data repository, or (ii) Money, securities, or other property that...

  15. DSI3D-RCS: Theory manual

    SciTech Connect

    Madsen, N.; Steich, D.; Cook, G.; Eme, B.

    1995-03-16

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is non-dissipative, is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  16. DSI3D - RCS user manual

    SciTech Connect

    Madsen, N.; Steich, D.; Cook, G.

    1995-08-23

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  17. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  18. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  19. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  20. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  1. 75 FR 80897 - Swap Data Repositories

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... of Proposed Rulemaking: Revisions to part 40 (Provisions Common to Registered Entities), 75 FR 67282... Proposed Rulemaking: Swap Data Recordkeeping and Reporting Requirements, 75 FR 76574 (Dec. 8, 2010) (the... Proposed Rulemaking: Registration of Foreign Boards of Trade, 75 FR 70974 (Nov. 19, 2010) (expected to...

  2. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we

  3. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  4. An elliptic calculation procedure for 3-D viscous flow

    NASA Astrophysics Data System (ADS)

    Moore, J. G.

    1985-05-01

    The computation of 3-D internal transonic flows by means of a 3-D Euler Code is discussed. A multidomain approach for time hyperbolic system is presented. This technique, based on the decomposition of the computational domain into several subdomains which may overlap one another, makes it possible to simplify some mesh generation problems and to fit discontinuities such as shocks and slip surfaces. A description of the 3-D Euler Code is given. The space discretization method and the treatment of boundary conditions are emphasized. Various applications of this code in turbomachinery are discussed.

  5. S3D: An interactive surface grid generation tool

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1992-01-01

    S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.

  6. An Antibody Loop Replacement Design Feasibility Study and a Loop-Swapped Dimer Structure

    SciTech Connect

    Clark, L.; Boriack-Sjodin, P; Day, E; Eldredge, J; Fitch, C; Jarpe, M; Miller, S; Li, Y; Simon, K; van Vlijmen, H

    2009-01-01

    A design approach was taken to investigate the feasibility of replacing single complementarity determining region (CDR) antibody loops. This approach may complement simpler mutation-based strategies for rational antibody design by expanding conformation space. Enormous crystal structure diversity is available, making CDR loops logical targets for structure-based design. A detailed analysis for the L1 loop shows that each loop length takes a distinct conformation, thereby allowing control on a length scale beyond that accessible to simple mutations. The L1 loop in the anti-VLA1 antibody was replaced with the L2 loop residues longer in an attempt to add an additional hydrogen bond and fill space on the antibody-antigen interface. The designs expressed well, but failed to improve affinity. In an effort to learn more, one design was crystallized and data were collected at 1.9 {angstrom} resolution. The designed L1 loop takes the qualitatively desired conformation; confirming that loop replacement by design is feasible. The crystal structure also shows that the outermost loop (residues Leu51-Ser68) is domain swapped with another monomer. Tryptophan fluorescence measurements were used to monitor unfolding as a function of temperature and indicate that the loop involved in domain swapping does not unfold below 60C. The domain-swapping is not directly responsible for the affinity loss, but is likely a side-effect of the structural instability which may contribute to affinity loss. A second round of design was successful in eliminating the dimerization through mutation of a residue (Leu51Ser) at the joint of the domain-swapped loop.

  7. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  8. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  9. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  10. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  11. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  12. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  13. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  14. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  15. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  16. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  17. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. 3D ladar ATR based on recognition by parts

    NASA Astrophysics Data System (ADS)

    Sobel, Erik; Douglas, Joel; Ettinger, Gil

    2003-09-01

    LADAR imaging is unique in its potential to accurately measure the 3D surface geometry of targets. We exploit this 3D geometry to perform automatic target recognition on targets in the domain of military and civilian ground vehicles. Here we present a robust model based 3D LADAR ATR system which efficiently searches through target hypothesis space by reasoning hierarchically from vehicle parts up to identification of a whole vehicle with specific pose and articulation state. The LADAR data consists of one or more 3D point clouds generated by laser returns from ground vehicles viewed from multiple sensor locations. The key to this approach is an automated 3D registration process to precisely align and match multiple data views to model based predictions of observed LADAR data. We accomplish this registration using robust 3D surface alignment techniques which we have also used successfully in 3D medical image analysis applications. The registration routine seeks to minimize a robust 3D surface distance metric to recover the best six-degree-of-freedom pose and fit. We process the observed LADAR data by first extracting salient parts, matching these parts to model based predictions and hierarchically constructing and testing increasingly detailed hypotheses about the identity of the observed target. This cycle of prediction, extraction, and matching efficiently partitions the target hypothesis space based on the distinctive anatomy of the target models and achieves effective recognition by progressing logically from a target's constituent parts up to its complete pose and articulation state.

  19. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  20. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  1. 17 CFR 23.451 - Political contributions by certain swap dealers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Political contributions by certain swap dealers. 23.451 Section 23.451 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DEALERS AND MAJOR SWAP PARTICIPANTS Business Conduct Standards for Swap Dealers and Major Swap Participants Dealing...

  2. Entanglement Swapping between Discrete and Continuous Variables

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira

    2015-03-01

    We experimentally realize "hybrid" entanglement swapping between discrete-variable (DV) and continuous-variable (CV) optical systems. DV two-mode entanglement as obtainable from a single photon split at a beam splitter is robustly transferred by means of efficient CV entanglement and operations, using sources of squeezed light and homodyne detections. The DV entanglement after the swapping is verified without postselection by the logarithmic negativity of up to 0.28 ±0.01 . Furthermore, our analysis shows that the optimally transferred state can be postselected into a highly entangled state that violates a Clauser-Horne-Shimony-Holt inequality by more than 4 standard deviations, and thus it may serve as a resource for quantum teleportation and quantum cryptography.

  3. Entanglement swapping between discrete and continuous variables.

    PubMed

    Takeda, Shuntaro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira

    2015-03-13

    We experimentally realize "hybrid" entanglement swapping between discrete-variable (DV) and continuous-variable (CV) optical systems. DV two-mode entanglement as obtainable from a single photon split at a beam splitter is robustly transferred by means of efficient CV entanglement and operations, using sources of squeezed light and homodyne detections. The DV entanglement after the swapping is verified without postselection by the logarithmic negativity of up to 0.28±0.01. Furthermore, our analysis shows that the optimally transferred state can be postselected into a highly entangled state that violates a Clauser-Horne-Shimony-Holt inequality by more than 4 standard deviations, and thus it may serve as a resource for quantum teleportation and quantum cryptography. PMID:25815914

  4. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  5. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  6. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  7. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  8. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  9. 77 FR 30595 - Further Definition of “Swap Dealer,” “Security-Based Swap Dealer,” “Major Swap Participant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Agreement''; Mixed Swaps; Security-Based Swap Agreement Recordkeeping, 76 FR 29818 (May 23, 2011) (``Product...,'' Securities Exchange Act Release No. 63452, 75 FR 80174 (Dec. 21, 2010) (``Proposing Release''). Prior to..., 75 FR 51429 (Aug. 20, 2010). The Proposing Release and these final rules both reflect...

  10. 17 CFR 46.8 - Data reporting for swaps in a swap asset class not accepted by any swap data repository.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA RECORDKEEPING AND REPORTING REQUIREMENTS: PRE... reported to the Commission pursuant to this section with respect to pre-enactment and transition swaps in... Officer by paragraph (c) of this section shall include: (1) With respect to all pre-enactment...

  11. 77 FR 39626 - Further Definition of “Swap Dealer,” “Security-Based Swap Dealer,” “Major Swap Participant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ..., 2012 (77 FR 30596). The rules further defined the terms ``swap dealer,'' ``security-based swap dealer.... SUPPLEMENTARY INFORMATION: In FR Doc. 2012-10562 appearing on page 30596 in the Federal Register of Wednesday... 1094, the words ``CFTC Regulation Sec. 1.3(mmm)(2);'' are removed. Sec. 1.3 0 2. On page 30745, in...

  12. Quantum Authentication Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Penghao, Niu; Yuan, Chen; Chong, Li

    2016-01-01

    Based on the entanglement swapping, a quantum authentication scheme with a trusted- party is proposed in this paper. With this scheme, two users can perform mutual identity authentication to confirm each other's validity. In addition, the scheme is proved to be secure under circumstances where a malicious attacker is capable of monitoring the classical and quantum channels and has the power to forge all information on the public channel.

  13. Simple proposal for radial 3D needlets

    NASA Astrophysics Data System (ADS)

    Durastanti, C.; Fantaye, Y.; Hansen, F.; Marinucci, D.; Pesenson, I. Z.

    2014-11-01

    We present here a simple construction of a wavelet system for the three-dimensional ball, which we label radial 3D needlets. The construction envisages a data collection environment in which an observer located at the center of the ball is surrounded by concentric spheres with the same pixelization at different radial distances, for any given resolution. The system is then obtained by weighting the projector operator built on the corresponding set of eigenfunctions and performing a discretization step which turns out to be computationally very convenient. The resulting wavelets can be shown to have very good localization properties in the real and harmonic domain; their implementation is computationally very convenient, and they allow for exact reconstruction as they form a tight frame system. Our theoretical results are supported by an extensive numerical analysis.

  14. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  15. 3-D electromagnetic modeling of wakefields in accelerator components

    SciTech Connect

    Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C.; Steich, D.

    1996-09-18

    We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.

  16. 3-D electromagnetic modeling of wakefields in accelerator components

    SciTech Connect

    Poole, Brian R.; Caporaso, George J.; Ng, Wang C.; Shang, Clifford C.; Steich, David

    1997-02-01

    We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for the modeling of accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been extremely successful in predicting the wake potential and wake impedances of these structures, but fully 3-D modeling of complex structures has been limited due to the substantial computer resources required for a fully 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes will be discussed in the context of their applicability to accelerator problems. A variety of 3-D structures are tested with an existing cubical cell FDTD code and the wake impedances are compared with simple analytic models for the structures. These results will provide a set of benchmarks for testing the new time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for the monopole and dipole impedances with the models are found for these structures below the cutoff frequency of the beam line.

  17. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  18. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  19. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  1. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  2. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  3. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  4. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  5. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  6. Green Team Hosts Plant Swap to Encourage Gardening | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer What started out as a way for Howard Young, Ph.D., to thin out his garden last fall turned into the NCI at Frederick Green Team’s Plant Swap. The group held its Fall Plant Swap on October 24, encouraging all members of the Fort Detrick community to pick up a free plant or swap a plant of theirs for another. “Those who love to garden introduce others to the joy of gardening,” said Dolores Winterstein, a member of the Green Team and the coordinator of the Fall Plant Swap.

  7. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  8. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  9. Axisymmetric Implementation for 3D-Based DSMC Codes

    NASA Technical Reports Server (NTRS)

    Stewart, Benedicte; Lumpkin, F. E.; LeBeau, G. J.

    2011-01-01

    The primary objective in developing NASA s DSMC Analysis Code (DAC) was to provide a high fidelity modeling tool for 3D rarefied flows such as vacuum plume impingement and hypersonic re-entry flows [1]. The initial implementation has been expanded over time to offer other capabilities including a novel axisymmetric implementation. Because of the inherently 3D nature of DAC, this axisymmetric implementation uses a 3D Cartesian domain and 3D surfaces. Molecules are moved in all three dimensions but their movements are limited by physical walls to a small wedge centered on the plane of symmetry (Figure 1). Unfortunately, far from the axis of symmetry, the cell size in the direction perpendicular to the plane of symmetry (the Z-direction) may become large compared to the flow mean free path. This frequently results in inaccuracies in these regions of the domain. A new axisymmetric implementation is presented which aims to solve this issue by using Bird s approach for the molecular movement while preserving the 3D nature of the DAC software [2]. First, the computational domain is similar to that previously used such that a wedge must still be used to define the inflow surface and solid walls within the domain. As before molecules are created inside the inflow wedge triangles but they are now rotated back to the symmetry plane. During the move step, molecules are moved in 3D but instead of interacting with the wedge walls, the molecules are rotated back to the plane of symmetry at the end of the move step. This new implementation was tested for multiple flows over axisymmetric shapes, including a sphere, a cone, a double cone and a hollow cylinder. Comparisons to previous DSMC solutions and experiments, when available, are made.

  10. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  11. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  12. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both

  13. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  14. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  15. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  16. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  17. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  18. 3D surface defect analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, B.; Jia, M.; Song, G. J.; Tao, L.; Harding, K. G.

    2008-08-01

    A method is proposed for surface defect analysis and evaluation. Good 3D point clouds can now be obtained through a variety of surface profiling methods such as stylus tracers, structured light, or interferometry. In order to inspect a surface for defects, first a reference surface that represents the surface without any defects needs to be identified. This reference surface can then be fit to the point cloud. The algorithm we present finds the least square solution for the overdetermined equation set to obtain the parameters of the reference surface mathematical description. The distance between each point within the point cloud and the reference surface is then calculated using to the derived reference surface equation. For analysis of the data, the user can preset a threshold distance value. If the calculated distance is bigger than the threshold value, the corresponding point is marked as a defect point. The software then generates a color-coded map of the measured surface. Defect points that are connected together are formed into a defect-clustering domain. Each defect-clustering domain is treated as one defect area. We then use a clustering domain searching algorithm to auto-search all the defect areas in the point cloud. The different critical parameters used for evaluating the defect status of a point cloud that can be calculated are described as: P-Depth,a peak depth of all defects; Defect Number, the number of surface defects; Defects/Area, the defect number in unit area; and Defect Coverage Ratio which is a ratio of the defect area to the region of interest.

  19. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  20. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  2. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  3. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  4. 3D Inverse problem: Seawater intrusions

    NASA Astrophysics Data System (ADS)

    Steklova, K.; Haber, E.

    2013-12-01

    Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two

  5. Book Swap Now Open to All Employees | Poster

    Cancer.gov

    Not only did the year 2000 mark the start of a new millennium, the beginning of the Human Genome Project, and the opening of the International Space Station, but it was also the first year that the Scientific Library held its annual Book & Media Swap. Starting Nov. 12, the 15th annual Book Swap is open to all NCI at Frederick employees.

  6. 76 FR 6095 - Commodity Options and Agricultural Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... 64 FR 68011, Dec. 6, 1999, respectively. In either case (whether transacted pursuant to the ATOM....'' See 75 FR 65586, Oct. 26, 2010. In addition to the provisions on swaps in an agricultural commodity... related matters. \\12\\ See Agricultural Swaps, 75 FR 59666, Sept. 28, 2010. II. Background A....

  7. 12 CFR 211.603 - Commodity swap transactions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Commodity swap transactions. 211.603 Section 211.603 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM... Commodity swap transactions. For text of interpretation relating to this subject, see § 208.128 of...

  8. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts.

    PubMed

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin; Morishita, Kazuhiro; Ichikawa, Tomonaga; Jessberger, Rolf; Fukui, Yasuhisa

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. PMID:26103139

  9. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  10. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  11. Synthesizing 3D Surfaces from Parameterized Strip Charts

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; Gomez, Julian; Morehouse, Michael; Gawdiak, Yuri

    2004-01-01

    We believe 3D information visualization has the power to unlock new levels of productivity in the monitoring and control of complex processes. Our goal is to provide visual methods to allow for rapid human insight into systems consisting of thousands to millions of parameters. We explore this hypothesis in two complex domains: NASA program management and NASA International Space Station (ISS) spacecraft computer operations. We seek to extend a common form of visualization called the strip chart from 2D to 3D. A strip chart can display the time series progression of a parameter and allows for trends and events to be identified. Strip charts can be overlayed when multiple parameters need to visualized in order to correlate their events. When many parameters are involved, the direct overlaying of strip charts can become confusing and may not fully utilize the graphing area to convey the relationships between the parameters. We provide a solution to this problem by generating 3D surfaces from parameterized strip charts. The 3D surface utilizes significantly more screen area to illustrate the differences in the parameters and the overlayed strip charts, and it can rapidly be scanned by humans to gain insight. The selection of the third dimension must be a parallel or parameterized homogenous resource in the target domain, defined using a finite, ordered, enumerated type, and not a heterogeneous type. We demonstrate our concepts with examples from the NASA program management domain (assessing the state of many plans) and the computers of the ISS (assessing the state of many computers). We identify 2D strip charts in each domain and show how to construct the corresponding 3D surfaces. The user can navigate the surface, zooming in on regions of interest, setting a mark and drilling down to source documents from which the data points have been derived. We close by discussing design issues, related work, and implementation challenges.

  12. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  13. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  14. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  15. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  16. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  17. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  18. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  19. 76 FR 77728 - Process for a Designated Contract Market or Swap Execution Facility To Make a Swap Available To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ...The Commodity Futures Trading Commission (``Commission'') is proposing regulations that establish a process for a designated contract market (``DCM'') or swap execution facility (``SEF'') to make a swap ``available to trade'' as set forth in new Section 2(h)(8) of the Commodity Exchange Act (``CEA'') pursuant to Section 723 of the Dodd-Frank Wall Street Reform and Consumer Protection Act......

  20. 76 FR 42395 - Business Conduct Standards for Security-Based Swap Dealers and Major Security-Based Swap...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ..., 2010), 75 FR 80174 (Dec. 21, 2010) (``Definitions Release''). \\5\\ Section 761 of the Dodd-Frank Act... Security-Based Swaps, Exchange Act Release No. 63236 (Nov. 3, 2010), 75 FR 68560 (Nov. 8, 2010). The... Major Swap Participants with Counterparties, 75 FR 80638 (Dec. 22, 2010) (``CFTC External...

  1. 75 FR 71391 - Implementation of Conflicts of Interest Policies and Procedures by Swap Dealers and Major Swap...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... accordance with the RFA.\\7\\ The proposed rules would affect SDs and MSPs. \\6\\ 5 U.S.C. 601-611. \\7\\ 47 FR... interest requirements for swap dealers (SDs) and major swap participants (MSPs) for the purpose of ensuring... potential conflicts of interest in the preparation and release of research reports by SDs and MSPs;...

  2. Aligning genomes with inversions and swaps

    SciTech Connect

    Holloway, J.L.; Cull, P.

    1994-12-31

    The decision about what operators to allow and how to charge for these operations when aligning strings that arise in a biological context is the decision about what model of evolution to assume. Frequently the operators used to construct an alignment between biological sequences axe limited to deletion, insertion, or replacement of a character or block of characters, but there is biological evidence for the evolutionary operations of exchanging the positions of two segments in a sequence and the replacement of a segment by its reversed complement. In this paper we describe a family of heuristics designed to compute alignments of biological sequences assuming a model of evolution with swaps and inversions. The heuristics will necessarily be approximate since the appropriate way to charge for the evolutionary events (delete, insert, substitute, swap, and invert) is not known. The paper concludes with a pair-wise comparison of 20 Picornavirus genomes, and a detailed comparison of the hepatitis delta virus with the citrus exocortis viroid.

  3. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  4. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  5. Protein Folding Modulates the Swapped Dimerization Mechanism of Methyl-Accepting Chemotaxis Heme Sensors

    PubMed Central

    Silva, Marta A.; Lucas, Tânia G.; Salgueiro, Carlos A.; Gomes, Cláudio M.

    2012-01-01

    The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol−1 for GSU0935 and ΔG = 26.3 kJ.mol−1 for GSU0582), and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582), which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the β-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it's folding and stability

  6. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  7. MAGNUS-3D: Accelerator magnet calculations in 3-dimensions

    NASA Astrophysics Data System (ADS)

    Pissanetzky, S.

    1988-12-01

    MAGNUS-3D is a professional finite element code for nonlinear magnetic engineering. MAGNUS-3D can solve numerically any general problem of linear or nonlinear magnetostatics in three dimensions. The problem is formulated in a domain with Dirichlet, Neumann or periodic boundary conditions, that can contain any combination of conductors of any shape in space, nonlinear magnetic materials with magnetic properties specified by magnetization tables, and nonlinear permanent magnets with any given demagnetization curve. MAGNUS-3D uses the two-scalar-potentials formulation of Magnetostatics and the finite element method, has an automatic 3D mesh generator, and advanced post-processing features that include graphics on a variety of supported devices, tabulation, and calculation of design quantities required in Magnetic Engineering. MAGNUS-3D is a general purpose 3D code, but it has been extensively used for accelerator work and many special features required for accelerator engineering have been incorporated into the code. One of such features is the calculation of field harmonic coefficients averaged in the direction of the beam, so important for the design of magnet ends. Another feature is its ability to calculate line integrals of any field component along the direction of the beam, or plot the field as a function of the z coordinate. MAGNUS-3D has found applications to the design of accelerator magnets and spectrometers, steering magnets, wigglers and undulators for free electron lasers, microtrons and magnets for synchrotron light sources, as well as magnets for NMR and medical applications, recording heads and various magnetic devices. There are three more programs closely associated with MAGNUS-3D. MAGNUS-GKS is the graphical postprocessor for the package; it supports a numer of output devices, including color vector or bit map devices. WIRE is an independent program that can calculate the field produced by any configuration of electric conductors in space, at any

  8. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  9. 3D model of amphioxus steroid receptor complexed with estradiol

    SciTech Connect

    Baker, Michael E.; Chang, David J.

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  10. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  11. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  12. 78 FR 66621 - Protection of Collateral of Counterparties to Uncleared Swaps; Treatment of Securities in a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Uncleared Swaps for Swap Dealers and Major Swap Participants, 76 FR 23732 (Apr. 28, 2011). Among other... Swap Entities, 76 FR 27564 (May 11, 2011). The Commission is continuing to consider this proposal in... a Commodity Broker Bankruptcy, 75 FR 75432 (Dec. 3, 2010). \\10\\ The comment period closed...

  13. 17 CFR 43.5 - Time delays for public dissemination of swap transaction and pricing data.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of this part. It is the responsibility of the registered swap data repository that accepts and... repository shall publicly disseminate swap transaction and pricing data that is subject to a time delay... registered swap data repository later than one hour immediately after execution, the registered swap...

  14. 17 CFR 43.5 - Time delays for public dissemination of swap transaction and pricing data.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of this part. It is the responsibility of the registered swap data repository that accepts and... repository shall publicly disseminate swap transaction and pricing data that is subject to a time delay... registered swap data repository later than one hour immediately after execution, the registered swap...

  15. 17 CFR 43.5 - Time delays for public dissemination of swap transaction and pricing data.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of this part. It is the responsibility of the registered swap data repository that accepts and... repository shall publicly disseminate swap transaction and pricing data that is subject to a time delay... registered swap data repository later than one hour immediately after execution, the registered swap...

  16. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  17. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  18. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NASA Astrophysics Data System (ADS)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  19. Advanced gradient-index lens design tools to maximize system performance and reduce SWaP

    NASA Astrophysics Data System (ADS)

    Campbell, Sawyer D.; Nagar, Jogender; Brocker, Donovan E.; Easum, John A.; Turpin, Jeremiah P.; Werner, Douglas H.

    2016-05-01

    GRadient-INdex (GRIN) lenses have long been of interest due to their potential for providing levels of performance unachievable with traditional homogeneous lenses. While historically limited by a lack of suitable materials, rapid advancements in manufacturing techniques, including 3D printing, have recently kindled a renewed interest in GRIN optics. Further increasing the desire for GRIN devices has been the advent of Transformation Optics (TO), which provides the mathematical framework for representing the behavior of electromagnetic radiation in a given geometry by "transforming" it to an alternative, usually more desirable, geometry through an appropriate mapping of the constituent material parameters. Using TO, aspherical lenses can be transformed to simpler spherical and flat geometries or even rotationally-asymmetric shapes which result in true 3D GRIN profiles. Meanwhile, there is a critical lack of suitable design tools which can effectively evaluate the optical wave propagation through 3D GRIN profiles produced by TO. Current modeling software packages for optical lens systems also lack advanced multi-objective global optimization capability which allows the user to explicitly view the trade-offs between all design objectives such as focus quality, FOV, ▵nand focal drift due to chromatic aberrations. When coupled with advanced design methodologies such as TO, wavefront matching (WFM), and analytical achromatic GRIN theory, these tools provide a powerful framework for maximizing SWaP (Size, Weight and Power) reduction in GRIN-enabled optical systems. We provide an overview of our advanced GRIN design tools and examples which minimize the presence of mono- and polychromatic aberrations in the context of reducing SWaP.

  20. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  1. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  2. Metallic and 3D-printed dielectric helical terahertz waveguides.

    PubMed

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices. PMID:26832000

  3. Parallel PAB3D: Experiences with a Prototype in MPI

    NASA Technical Reports Server (NTRS)

    Guerinoni, Fabio; Abdol-Hamid, Khaled S.; Pao, S. Paul

    1998-01-01

    PAB3D is a three-dimensional Navier Stokes solver that has gained acceptance in the research and industrial communities. It takes as computational domain, a set disjoint blocks covering the physical domain. This is the first report on the implementation of PAB3D using the Message Passing Interface (MPI), a standard for parallel processing. We discuss briefly the characteristics of tile code and define a prototype for testing. The principal data structure used for communication is derived from preprocessing "patching". We describe a simple interface (COMMSYS) for MPI communication, and some general techniques likely to be encountered when working on problems of this nature. Last, we identify levels of improvement from the current version and outline future work.

  4. Improved IR detectors to swap heavy systems for SWaP

    NASA Astrophysics Data System (ADS)

    Manissadjian, Alain; Rubaldo, Laurent; Rebeil, Yann; Kerlain, Alexandre; Brellier, Delphine; Mollard, Laurent

    2012-06-01

    Cooled IR technologies are challenged for answering new system needs like the compactness and the reduction of cryopower which is a key feature for the SWaP (Size, Weight and Power) requirements. Over the last years, SOFRADIR has improved its HgCdTe technology, with effect on dark current reduction, opening the way for High Operating Temperature (HOT) systems that can get rid of the 80K temperature constraint, and therefore releases the Stirling cooler engine power consumption. Performances of the 640×512 15μm pitch LW detector working above 100K will be presented. A compact 640×512 15μm pitch MW detector presenting high EO performance above 130K with cut-off wavelength above 5.0μm has been developed. Its different performances with respect to the market requirements for SWaP will be discussed. High performance compact systems will make no compromise on detector resolution. The pixel pitch reduction is the answer for resolution enhancement with size reduction. We will therefore also discuss the ongoing developments and market needs for SWaP systems.

  5. Classical simulation of entanglement swapping with bounded communication.

    PubMed

    Branciard, Cyril; Brunner, Nicolas; Buhrman, Harry; Cleve, Richard; Gisin, Nicolas; Portmann, Samuel; Rosset, Denis; Szegedy, Mario

    2012-09-01

    Entanglement appears under two different forms in quantum theory, namely, as a property of states of joint systems and as a property of measurement eigenstates in joint measurements. By combining these two aspects of entanglement, it is possible to generate nonlocality between particles that never interacted, using the protocol of entanglement swapping. We show that even in the more constraining bilocal scenario where distant sources of particles are assumed to be independent, i.e., to share no prior randomness, entanglement swapping can be simulated classically with bounded communication, using only 9 bits in total. Our result thus provides an upper bound on the nonlocality of the entanglement swapping process. PMID:23005265

  6. LayTracks3D: A new approach for meshing general solids using medial axis transform

    SciTech Connect

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.

  7. Advances in 3D electromagnetic finite element modeling

    SciTech Connect

    Nelson, E.M.

    1997-08-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.

  8. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  9. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  10. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  11. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  12. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  14. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  15. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  16. An Overview of 3d Topology for Ladm-Based Objects

    NASA Astrophysics Data System (ADS)

    Zulkifli, N. A.; Rahman, A. A.; van Oosterom, P.

    2015-10-01

    This paper reviews 3D topology within Land Administration Domain Model (LADM) international standard. It is important to review characteristic of the different 3D topological models and to choose the most suitable model for certain applications. The characteristic of the different 3D topological models are based on several main aspects (e.g. space or plane partition, used primitives, constructive rules, orientation and explicit or implicit relationships). The most suitable 3D topological model depends on the type of application it is used for. There is no single 3D topology model best suitable for all types of applications. Therefore, it is very important to define the requirements of the 3D topology model. The context of this paper is a 3D topology for LADM-based objects.

  17. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  18. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  19. 17 CFR 1.9 - Regulation of mixed swaps.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the Commodity Exchange Act; (iii) Reporting to a swap data repository: section 4r of the Commodity... comment period provided for in paragraph (c)(4) of this section and shall recommence with the business...

  20. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  1. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  2. 17 CFR 23.504 - Swap trading relationship documentation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... under section 210(c)(9)(A) of the Dodd-Frank Wall Street Reform and Consumer Protection Act, 12 U.S.C. 5390(c)(9)(A), or 12 U.S.C. 1821(e)(9)(A); and (iv) An agreement between the swap dealer or major swap.... 1813) or a financial company (as defined in section 201(a)(11) of the Dodd-Frank Act, 12 U.S.C....

  3. 17 CFR 23.504 - Swap trading relationship documentation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... under section 210(c)(9)(A) of the Dodd-Frank Wall Street Reform and Consumer Protection Act, 12 U.S.C. 5390(c)(9)(A), or 12 U.S.C. 1821(e)(9)(A); and (iv) An agreement between the swap dealer or major swap.... 1813) or a financial company (as defined in section 201(a)(11) of the Dodd-Frank Act, 12 U.S.C....

  4. Green Team Readies for Spring with Plant Swap | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer Those looking for a cost-effective way to spruce up their yards this spring can stop by the National Cancer Institute at Frederick Green Team’s booth during the Spring Research Festival (SRF) on May 7 and 8. Pick up a free plant, donate overgrown plants from your yard, or swap for a new plant. Everyone is invited to participate in the swap, whether you have plants to donate or not.

  5. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  6. 3-D seismology in the Arabian Gulf

    SciTech Connect

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  7. A 3D Geostatistical Mapping Tool

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  8. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  9. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  10. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  11. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  12. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  13. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  14. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  15. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  16. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  17. First light of SWAP on-board PROBA2

    NASA Astrophysics Data System (ADS)

    Halain, Jean-Philippe; Berghmans, David; Defise, Jean-Marc; Renotte, Etienne; Thibert, Tanguy; Mazy, Emmanuel; Rochus, Pierre; Nicula, Bogdan; de Groof, Anik; Seaton, Dan; Schühle, Udo

    2010-07-01

    The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTBBessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results.

  18. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  19. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  20. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  1. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  2. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  3. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  4. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  5. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  6. The ADAMTS13 metalloprotease domain: roles of subsites in enzyme activity and specificity.

    PubMed

    de Groot, Rens; Lane, David A; Crawley, James T B

    2010-10-21

    ADAMTS13 modulates von Willebrand factor (VWF) platelet-tethering function by proteolysis of the Tyr1605-Met1606 bond in the VWF A2 domain. To examine the role of the metalloprotease domain of ADAMTS13 in scissile bond specificity, we identified 3 variable regions (VR1, -2, and -3) in the ADAMTS family metalloprotease domain that flank the active site, which might be important for specificity. Eight composite sequence swaps (to residues in ADAMTS1 or ADAMTS2) and 18 single-point mutants were generated in these VRs and expressed. Swapping VR1 (E184-R193) of ADAMTS13 with that of ADAMTS1 or ADAMTS2 abolished/severely impaired ADAMTS13 function. Kinetic analysis of VR1 point mutants using VWF115 as a short substrate revealed reduced proteolytic function (k(cat)/K(m) reduced by 2- to 10-fold) as a result of D187A, R190A, and R193A substitutions. Analysis of VR2 (F216-V220) revealed a minor importance of this region. Mutants of VR3 (G236-A261) proteolysed wild-type VWF115 normally. However, using either short or full-length VWF substrates containing the P1' M1606A mutation, we identified residues within VR3 (D252-P256) that influence P1' amino acid specificity, we hypothesize, by shaping the S1' pocket. It is concluded that 2 subsites, D187-R193 and D252-P256, in the metalloprotease domain play an important role in cleavage efficiency and site specificity. PMID:20647566

  7. 3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Samuel C.

    Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation cite [Shen 2005]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

  8. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  9. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  10. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879

  11. Extra Dimensions: 3D in PDF Documentation

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2012-12-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  12. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    SciTech Connect

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H. Prodromou, Chrisostomos

    2015-05-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.

  13. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  18. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models. PMID:19147891

  19. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  20. Explicit 3-D Hydrodynamic FEM Program

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  1. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  2. An Improved Version of TOPAZ 3D

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  3. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  5. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  6. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  7. Credit Default Swaps networks and systemic risk

    NASA Astrophysics Data System (ADS)

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-11-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.

  8. Credit Default Swaps networks and systemic risk.

    PubMed

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-01-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities. PMID:25366654

  9. Credit Default Swaps networks and systemic risk

    PubMed Central

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-01-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities. PMID:25366654

  10. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  11. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  12. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface

  13. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    PubMed

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  14. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.

    PubMed

    Roll, James; Zirbel, Craig L; Sweeney, Blake; Petrov, Anton I; Leontis, Neocles

    2016-07-01

    Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417

  15. A parallel algorithm for solving the 3d Schroedinger equation

    SciTech Connect

    Strickland, Michael; Yager-Elorriaga, David

    2010-08-20

    We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.

  16. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  17. 3D-printed bioanalytical devices

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  18. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  19. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  20. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  1. 3D Visualization of Recent Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  2. Future Engineers 3-D Print Timelapse

    NASA Video Gallery

    NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...

  3. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  4. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  5. 3D-patterned polymer brush surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Xuechang; Liu, Xuqing; Xie, Zhuang; Zheng, Zijian

    2011-12-01

    Polymer brush-based three-dimensional (3D) structures are emerging as a powerful platform to engineer a surface by providing abundant spatially distributed chemical and physical properties. In this feature article, we aim to give a summary of the recent progress on the fabrication of 3D structures with polymer brushes, with a particular focus on the micro- and nanoscale. We start with a brief introduction on polymer brushes and the challenges to prepare their 3D structures. Then, we highlight the recent advances of the fabrication approaches on the basis of traditional polymerization time and grafting density strategies, and a recently developed feature density strategy. Finally, we provide some perspective outlooks on the future directions of engineering the 3D structures with polymer brushes.

  6. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  7. Eyes on the Earth 3D

    NASA Technical Reports Server (NTRS)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  8. 3-D Animation of Typhoon Bopha

    NASA Video Gallery

    This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...

  9. 3-D TRMM Flyby of Hurricane Amanda

    NASA Video Gallery

    The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...

  10. Cyclone Rusty's Landfall in 3-D

    NASA Video Gallery

    This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...

  11. TRMM 3-D Flyby of Ingrid

    NASA Video Gallery

    This 3-D flyby of Tropical Storm Ingrid's rainfall was created from TRMM satellite data for Sept. 16. Heaviest rainfall appears in red towers over the Gulf of Mexico, while moderate rainfall stretc...

  12. 3D-printed bioanalytical devices.

    PubMed

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  13. Palacios field: A 3-D case history

    SciTech Connect

    McWhorter, R.; Torguson, B.

    1994-12-31

    In late 1992, Mitchell Energy Corporation acquired a 7.75 sq mi (20.0 km{sup 2}) 3-D seismic survey over Palacios field. Matagorda County, Texas. The company shot the survey to help evaluate the field for further development by delineating the fault pattern of the producing Middle Oligocene Frio interval. They compare the mapping of the field before and after the 3-D survey. This comparison shows that the 3-D volume yields superior fault imaging and interpretability compared to the dense 2-D data set. The problems with the 2-D data set are improper imaging of small and oblique faults and insufficient coverage over a complex fault pattern. Whereas the 2-D data set validated a simple fault model, the 3-D volume revealed a more complex history of faulting that includes three different fault systems. This discovery enabled them to reconstruct the depositional and structural history of Palacios field.

  14. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  15. 3D-HST results and prospects

    NASA Astrophysics Data System (ADS)

    Van Dokkum, Pieter G.

    2015-01-01

    The 3D-HST survey is providing a comprehensive census of the distant Universe, combining HST WFC3 imaging and grism spectroscopy with a myriad of other ground- and space-based datasets. This talk constitutes an overview of science results from the survey, with a focus on ongoing work and ways to exploit the rich public release of the 3D-HST data.

  16. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  17. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  18. DYNA3D example problem manual

    SciTech Connect

    Lovejoy, S.C.; Whirley, R.G.

    1990-10-10

    This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.

  19. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care. PMID:25620087

  20. RAG-3D: a search tool for RNA 3D substructures.

    PubMed

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  1. 3-D SAR image formation from sparse aperture data using 3-D target grids

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  2. Rapid 360 degree imaging and stitching of 3D objects using multiple precision 3D cameras

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Yin, Stuart; Zhang, Jianzhong; Li, Jiangan; Wu, Frank

    2008-02-01

    In this paper, we present the system architecture of a 360 degree view 3D imaging system. The system consists of multiple 3D sensors synchronized to take 3D images around the object. Each 3D camera employs a single high-resolution digital camera and a color-coded light projector. The cameras are synchronized to rapidly capture the 3D and color information of a static object or a live person. The color encoded structure lighting ensures the precise reconstruction of the depth of the object. A 3D imaging system architecture is presented. The architecture employs the displacement of the camera and the projector to triangulate the depth information. The 3D camera system has achieved high depth resolution down to 0.1mm on a human head sized object and 360 degree imaging capability.

  3. CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.

    2013-01-01

    Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.

  4. Has the Swap Influenced Aid Flows in the Health Sector?

    PubMed

    Sweeney, Rohan; Mortimer, Duncan

    2016-05-01

    The sector wide approach (SWAp) emerged during the 1990s as a mechanism for managing aid from the multiplicity of development partners that operate in the recipient country's health, education or agricultural sectors. Health SWAps aim to give increased control to recipient governments, allowing greater domestic influence over how health aid is allocated and facilitating allocative efficiency gains. This paper assesses whether health SWAps have increased recipient control of health aid via increased general sector-support and have facilitated (re)allocations of health aid across disease areas. Using a uniquely compiled panel data set of countries receiving development assistance for health over the period 1990-2010, we employ fixed effects and dynamic panel models to assess the impact of introducing a health SWAp on levels of general sector-support for health and allocations of health-sector aid across key funding silos (including HIV, 'maternal and child health' and 'sector-support'). Our results suggest that health SWAps have influenced health-sector aid flows in a manner consistent with increased recipient control and improvements in allocative efficiency. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25762110

  5. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).

  6. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  7. PLOT3D Export Tool for Tecplot

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  8. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  9. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  10. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGESBeta

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  11. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  12. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  13. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  14. Using CATH-Gene3D to Analyze the Sequence, Structure, and Function of Proteins.

    PubMed

    Sillitoe, Ian; Lewis, Tony; Orengo, Christine

    2015-01-01

    The CATH database is a classification of protein structures found in the Protein Data Bank (PDB). Protein structures are chopped into individual units of structural domains, and these domains are grouped together into superfamilies if there is sufficient evidence that they have diverged from a common ancestor during the process of evolution. A sister resource, Gene3D, extends this information by scanning sequence profiles of these CATH domain superfamilies against many millions of known proteins to identify related sequences. Thus the combined CATH-Gene3D resource provides confident predictions of the likely structural fold, domain organisation, and evolutionary relatives of these proteins. In addition, this resource incorporates annotations from a large number of external databases such as known enzyme active sites, GO molecular functions, physical interactions, and mutations. This unit details how to access and understand the information contained within the CATH-Gene3D Web pages, the downloadable data files, and the remotely accessible Web services. PMID:26087950

  15. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, A.

    2016-07-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  16. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers.

    PubMed

    Saidaoui, Hamed Ben Mohamed; Manchon, A

    2016-07-15

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime. PMID:27472125

  17. Shim3d Helmholtz Solution Package

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  18. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  19. T-HEMP3D user manual

    SciTech Connect

    Turner, D.

    1983-08-01

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  20. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.