Science.gov

Sample records for 3d electric resistivity

  1. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  2. Contribution of 3-D electrical resistivity tomography for landmines detection

    NASA Astrophysics Data System (ADS)

    Metwaly, M.; El-Qady, G.; Matsushima, J.; Szalai, S.; Al-Arifi, N. S. N.; Taha, A.

    2008-12-01

    Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic) landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR), and metal detector (MD) techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT) technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  3. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  4. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  5. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  6. Internal Structure of Periglacial Landforms: Assessment using 3D Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Emmert, Adrian; Kneisel, Christof

    2015-04-01

    The occurrence of internal heterogeneities within periglacial landforms (e.g. frost table topography or varying ice content) is in most cases not inferable from the surface. Hence, to develop an enhanced understanding of the interaction between surface and subsurface processes, it is necessary to analyse the internal structure of different periglacial landforms and landform elements. The assessment of the internal structure is provided by the application of three-dimensional Electrical Resistivity Imaging (ERI). ERI is the technique of merging datum points from several parallel and perpendicular performed two-dimensional ERT (Electrical Resistivity Tomography) measurements and inverting the data set with a 3D inversion algorithm (sometimes also referred to as quasi-3D ERT). The application of this method has proven to be a valuable tool for mapping the spatial extent of isolated permafrost bodies and associated subsurface conditions. In this contribution, we present results from four ERI measurements, carried out in summer 2014 at different investigation sites in the Swiss Alps: Three measurements were performed on pebbly rockglaciers of different size and topographical position and one measurement was performed on a solifluction slope. Each of the 3D survey grids consists of 17 to 32 single 2D ERT surveys (Dipol-Dipol or Wenner-Schlumberger array) and covers an area of between 6000 m² and 7000 m², depending on the specific survey grid set-up. The inversions of the data sets were performed using the two different inversion algorithms of the software products "RES3DINV" and "BERT" (Boundless Electrical Resistivity Tomography) for a comparative analysis and to further support the geomorphological interpretation of the geophysical models. Each of the resulting resistivity models shows strong small-scale spatial heterogeneities between the investigated landforms but also within landform elements. For the investigated rockglacier sites, these structures include

  7. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  8. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  9. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.

  10. 3-D Time-lapse Electrical Resistivity Monitoring of Injected CO2 in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Doetsch, J.; Vest Christiansen, A.; Auken, E.; Fiandaca, G.; Graham Cahill, A.

    2013-12-01

    Contamination of potable groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment, we investigate if surface electrical resistivity tomography (ERT) can detect dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and 10 m and monitored its migration using 320 electrodes on a 126 m × 20 m surface grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis using geostatistical techniques for noise estimation and data interpolation to compensate for intermittent instrument failure. We estimate a time-dependent noise level for each ERT configuration, taking data variation and measurement frequency into account. A baseline inversion reveals the geology at the site consisting of aeolian sands near the surface and glacial sands below 5 m depth. Directly following the injection, we image the CO2 gas phase in the aquifer as an increase in resistivity and the higher water saturation in the unsaturated zone as a decrease in resistivity. At later times, the 2-D and 3-D time-lapse inversions clearly image the dissolved CO2 plume with decreased electrical resistivity values. We can image the geochemical changes induced by the dissolved CO2 until the end of the acquisition, 120 days after the injection start. During these 120 days, the CO2 migrates about 40 m in the expected groundwater flow direction (towards south-west). Water electrical conductivity (EC) sampling using 68 sensors in 31 wells allows for very good verification of the ERT results. Water EC and ERT results generally agree very well, with the water sampling showing some fine scale variations that cannot be resolved by the ERT. The ERT images have their strength in outlining the plume's shape in three dimensions and in being able to image the plume outside the well field. These results highlight the potential for imaging

  11. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  12. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  13. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Linde, Niklas; Pessognelli, Mirco; Green, Alan G.; Günther, Thomas

    2012-03-01

    Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240 × 40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with the underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (> 300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~ 200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.

  14. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  15. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  16. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam

    2014-09-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath

  17. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  18. Deep electrical resistivity structure of the Northwestern U. S. derived from 3-D inversion of USArray Magnetotelluric data (Invited)

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.

    2013-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in

  19. Tri-Dimensional Electric Resistivity Tomography (ERT-3D) Technique, an Efficient Tool to Unveil the Subsoil of Archaeological Structures

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Vargas, D.; Cifuentes-Nava, G.; HernaNdez-Quintero, J. E.; Tejero, A.

    2014-12-01

    Three-Dimensional Electrical Resistivity Tomography techniques (ERT-3D) have demonstrated to be an efficient tool to study the subsurface of areas of archaeological interest by special arrays designed to 'illuminate' the subsoil beneath the structure under study. 'L'- and 'Corner'-arrays are applied to design alternative electrode geometries, which attempt to cover the subsurface with enough resistivity observations underneath the studied target. Two examples are presented where novel geometries can be applied to investigate the subsoil of two important pyramids in Mexico. First, the archaeological site of Cuicuilco is studied. The area is found towards the southern portion of the Mexican Basin. This pyramid presents a circular structure of 110 m in diameter and a total height of 25 m. The region is partially covered by the lava flows that came from an eruptive event form the Xitle Volcano 1500 years ago. The geophysical study was carried out at the base of the pyramid. 48 electrodes were deployed along a circular transect, with an electrode separation of 5.4 m. A total of 1716 apparent resistivity observations were measured. The inverted model computed is obtained with an investigation depth of 30 m, approximately (Figure 1, in color). A resistive anomaly can be observed towards the central portion of the model. This anomaly can be associated to a burial chamber, excavated by the archaeologists. The second example corresponds to the pyiramid El Castillo, located in the archaeological site of Chichen Itza, in the southern lowlands of Mexico, within the Yucatan Peninsula. Previous GPR studies carried out within the pyramid's Plaza provided evidences of a buried tunnel excavated within the limestone rocks. Such feature seemed to run beneath the eastern flank of the pyramide. The geophysical study was carried out by employing 96 flat-surface electrodes, which surrounded the edifice forming a square geometry. A total of 5,350 apparent resistivity observations were

  20. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  1. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  2. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun

    2014-10-01

    Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.

  3. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    Apuani, T.; Giani, G. P.; d'Attoli, M.; Fischanger, F.; Morelli, G.; Ranieri, G.; Santarato, G.

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  4. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography.

    PubMed

    Apuani, T; Giani, G P; d'Attoli, M; Fischanger, F; Morelli, G; Ranieri, G; Santarato, G

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  5. The Anatomy of a Fumarole inferred from a 3-D High-Resolution Electrical Resistivity Image of Solfatara Hydrothermal System (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Gresse, M.; Vandemeulebrouck, J.; Chiodini, G.; Byrdina, S.; Lebourg, T.; Johnson, T. C.

    2015-12-01

    Solfatara, the most active crater in the Phlegrean Fields volcanic complex, shows since ten years a remarkable renewal of activity characterized by an increase of CO2 total degassing from 1500 up to 3000 tons/day, associated with a large ground uplift (Chiodini et al., 2015). In order to precisely image the structure of the shallow hydrothermal system, we performed an extended electrical DC resistivity survey at Solfatara, with about 40 2-D profiles of length up to 1 km, as well as soil temperature and CO2 flux measurements over the area. We then realized a 3-D inversion from the ~40 000 resistivity data points, using E4D code (Johnson et al., 2010). At large scale, results clearly delineate two contrasted structures: - A very conductive body (resistivity < 5 Ohm.m) located beneath the Fangaia mud pools, and likely associated to a mineralized liquid rich plume. - An elongated more resistive body (20-30 Ohm.m) connected to the main fumarolic area and interpreted as the gas reservoir feeding the fumaroles. At smaller scale, our resistivity model originally highlights the 3-D anatomy of a fumarole and the interactions between condensate layers and gas chimneys. This high-resolution image of the shallow hydrothermal structure is a new step for the modeling of this system.

  6. Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Doetsch, Joseph; Fiandaca, Gianluca; Christiansen, Anders Vest; Gazoty, Aurélie; Cahill, Aaron Graham; Jakobsen, Rasmus

    2014-02-01

    Contamination of groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment in western Denmark, we investigate to what extent surface electrical resistivity tomography (ERT) can detect and image dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and 10 m and monitored its migration using 320 electrodes on a 126 m × 25 m surface grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis using geostatistical techniques for noise estimation and data interpolation to compensate for intermittent instrument failure. We estimate a time-dependent noise level for each ERT configuration, taking data variation and measurement frequency into account.

  7. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  8. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  9. The integration of 3D electrical resistivity tomography and ET flux measurements to characterize water mass balance in the soil-plant-atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2014-05-01

    The system of soil, vegetation, and the adjacent atmosphere is characterized by complex patterns, structures, and processes that act on a wide range of time and space scales. While the exchange of energy and water is continuous between compartments, the pertinent fluxes are strongly heterogeneous and variable in space and time. Therefore, quantitatively predicting the systems' behaviour constitutes a major challenge. Traditionally, soil moisture beneath irrigated crops has been determined using point measurement methods such as neutron probes or capacitance systems. These approaches cannot measure soil moisture at depths beyond the root-zone of plants and have limited lateral coverage. Literature results show that electrical resistivity tomography (ERT) can be used to reliable map the spatial heterogeneity in soil moisture. Here we present the application of the time-lapse non-invasive 3D micro - electrical tomography (ERT) to monitor soil-plant interactions in the root zone of an orange tree located in the Mediterranean semi-arid Sicilian (South Italy) context. The subsoil dynamics, particularly influenced by irrigation and root uptake, has been characterized a 3D ERT apparatus consisting of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, repeated ERT soil moisture measurements were collected, as well as laboratory characterization of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Plant transpiration was continuously monitored during the ERT experiment by the sap flow heat pulse (HP) method for a quantitative analysis of the mass balance in the soil-plant-atmosphere system under observation. In addition, evapo-transpiration has been continuously monitored at the same site using an eddy-correlation tower. The integration of measurements regarding soil,plant and atmosphere allows a better understanding of

  10. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  11. 3D inversion of magnetic and electrical resistivity-induced polarization data for an epithermal Au-Ag and underlying porphyry deposit: A case study from British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Abbassi, B.; Huebert, J.; Liu, L.; Lee, B.; Cheng, L.; Richards, J. P.; Unsworth, M. J.; Oldenburg, D.

    2013-12-01

    The Newton property is an epithermal Au-Ag deposit containing precious metals in association with disseminated sulfide minerals such as pyrite. This type of deposit often shows variable geological patterns, so it is important to find fast and cost-efficient methods for their exploration. Aeromagnetic surveys and ground electrical resistivity-induced polarization methods were applied over the Newton property. From preliminary 3D inversion of ZTEM and aeromagnetic data, and joint 3D inversion of electrical resistivity-induced polarization data, we show that low-resistivity and high-chargeability regions are signatures of disseminated sulfide mineralization. Potassic alteration, characterized by hydrothermal biotite (now mostly chloritized) and magnetite is also present locally, and may be related to underlying porphyry-type mineralization. This type of alteration can be identified from its magnetic signature, but the occurrence of other magnetic formations in the deposit area made interpretations of magnetic data difficult. We show that filtering geological noises related to background magnetic anomalies is an essential step in focusing on potassic alteration zones. We used electrical resistivity and induced polarization chargeability models to remove the signals of barren magnetic zones to focus on the susceptibilities pertaining to deep potassic alterations. In order to test the credibility of these interpretations, extensive petrophysical measurements (magnetic susceptibility, electrical resistivity, and gamma ray spectra) were collected on drill-core samples. We show that potassic alteration can also be characterized accurately from high levels of potassium to thorium ratio (K/Th) in gamma ray spectrometric measurements, and that this correlation is stronger than the magnetic signal (likely because hydrothermal magnetite is variable in abundance). Therefore, we focused on magnetic susceptibility values correlated with high K/Th ratios in order to reduce the

  12. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  13. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  14. Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling

    NASA Astrophysics Data System (ADS)

    Ichihara, Hiroshi; Mogi, Toru; Tanimoto, Kengo; Yamaya, Yusuke; Hashimoto, Takeshi; Uyeshima, Makoto; Ogawa, Yasuo

    2016-04-01

    The Hidaka collision zone, where the Kurile and northeastern (NE) Japan arcs collide, provides a useful study area for elucidating the processes of arc-continent evolution and inland earthquakes. To produce an image of the collision structure and elucidate the mechanisms of anomalously deep inland earthquakes such as the 1970 Hidaka earthquake (M6.7), we conducted magnetotelluric observations and generated a three-dimensional resistivity distribution in the southern part of the Hidaka collision zone. The modeled resistivity was characterized by a high resistivity area in the upper crust of the Kurile arc corresponding to metamorphic rocks. The model also showed conductive zones beneath the center of the collision zone. The boundary between the resistive and conductive areas corresponds geometrically to the Hidaka main thrust, which is regarded as the arc-arc boundary. The correspondence supports the collision model that the upper-middle part of crust in the Kurile arc is obducting over the NE Japan arc. The conductive areas were interpreted as fluid-filled zones associated with collision processes and upwelling of dehydrated fluid from the subducting Pacific slab. The fluid flow possibly contributes to over-pressurized conduction that produces deep inland earthquakes. We also observed a significant conductive anomaly beneath the area of Horoman peridotite, which may be related to the uplift of mantle materials to the surface.

  15. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  16. Assist feature printability prediction by 3-D resist profile reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    properties may then be used to optimize the printability vs. efficacy of an SRAF either prior to or during an Optical Proximity Correction (OPC) run. The process models that are used during OPC have never been able to reliably predict which SRAFs will print. This appears to be due to the fact that OPC process models are generally created using data that does not include printed subresolution patterns. An enhancement to compact modeling capability to predict Assist Features (AF) printability is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to bottom. Such a 3-D resist profile is an extrapolation of a well calibrated traditional OPC model without any additional information. Assist features are detected at either top of resist (dark field) or bottom of resist (bright field). Such detection can be done by just extracting top or bottom resist models from our 3-D resist model. There is no measurement of assist features needed when we build AF but it can be included if interested but focusing on resist calibration to account for both exposure dosage and focus change sensitivities. This approach significantly increases resist model's capability for predicting printed SRAF accuracy. And we don't need to calibrate an SRAF model in addition to the OPC model. Without increase in computation time, this compact model can draw assist feature contour with real placement and size at any vertical plane. The result is compared and validated with 3-D rigorous modeling as well as SEM images. Since this method does not change any form of compact modeling, it can be integrated into current MBAF solutions without any additional work.

  17. Modeling Electric Current Flow in 3D Fractured Media

    NASA Astrophysics Data System (ADS)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  18. Influence of 3D anisotropic structures on bipole-quadrupole DC resistivity (BQ-DC) measurements

    NASA Astrophysics Data System (ADS)

    Loewer, A.; Junge, A.; Guenther, T.; Grinat, M.; Hering, P.

    2015-12-01

    3D modelling of BQ-DC measurements can show a rather strong directional distortion of the electric current density for an inhomogeneous subsurface. Anisotropic structures increase this effect. Depending on the anisotropy direction, current density might vary by 90° between the interior and exterior of an anisotropic body. In combination with 3D effects currents might even flow into the opposite direction compared to those expected for a homogeneous half space. This effect can produce negative potential differences (in combination with positive geometry factors) at the surface which cannot be explained by an isotropic resistivity distribution and thus those data cannot be used by an isotropic inversion. Consequently, anisotropic forward modelling is necessary to explain such observations. In nature anisotropic resistivity can appear in the context of strongly foliated structures. Such structures exist in the Rhenish Massif, Germany, where extensive shallow greywacke shales with different strength of foliation are found. In this area a field campaign was performed in 2014 to provide evidence for the existence of anisotropic resistivity structures. Two perpendicular bipole current injections at 15 locations produced individual potential distributions. The potential differences were recorded for two orthogonal directions each at 30 positions for an array set up within the survey area. We use the apparent resistivity tensor after Bibby 1986 to display the BQ-DC data. It uses the hypothetical current densities of each of the two bipole sources calculated for an equivalent homogenous half space at the location of the quadrupole measurement to derive a resistivity tensor. The spatial behavior of modelled tensors gives evidence of the anisotropic body although the structure is covered by an isotropic layer. The data are explained by a 3D anisotropic resistivity distribution using a 3D isotropic inversion scheme combined with 3D anisotropic forward-modelling.

  19. Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?

    NASA Astrophysics Data System (ADS)

    Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.

    2010-04-01

    Aims: We study the particle acceleration at a magnetic null point in the solar corona, considering self-consistent magnetic fields, plasma flows and the corresponding convective electric fields. Methods: We calculate the electromagnetic fields by 3-D magnetohydrodynamic (MHD) simulations and expose charged particles to these fields within a full-orbit relativistic test-particle approach. In the 3-D MHD simulation part, the initial magnetic field configuration is set to be a potential field obtained by extrapolation from an analytic quadrupolar photospheric magnetic field with a typically observed magnitude. The configuration is chosen so that the resulting coronal magnetic field contains a null. Driven by photospheric plasma motion, the MHD simulation reveals the coronal plasma motion and the self-consistent electric and magnetic fields. In a subsequent test particle experiment the particle energies and orbits (determined by the forces exerted by the convective electric field and the magnetic field around the null) are calculated in time. Results: Test particle calculations show that protons can be accelerated up to 30 keV near the null if the local plasma flow velocity is of the order of 1000 km s-1 (in solar active regions). The final parallel velocity is much higher than the perpendicular velocity so that accelerated particles escape from the null along the magnetic field lines. Stronger convection electric field during big flare explosions can accelerate protons up to 2 MeV and electrons to 3 keV. Higher initial velocities can help most protons to be strongly accelerated, but a few protons also run the risk to be decelerated. Conclusions: Through its convective electric field and due to magnetic nonuniform drifts and de-magnetization process, the 3-D null can act as an effective accelerator for protons but not for electrons. Protons are more easily de-magnetized and accelerated than electrons because of their larger Larmor radii. Notice that macroscopic MHD

  20. Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

    NASA Astrophysics Data System (ADS)

    Sigala, R.; Smerieri, A.; Schüz, A.; Camorani, P.; Erokhin, V.

    2013-10-01

    Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

  1. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  2. 3D resistivity method to monitor degradation of an organic contaminant in sand boxes

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Bloem, E.; Philippe, R.; French, H. K.

    2015-12-01

    Degradation of organic chemicals under various saturation conditions is a process highly relevant to protect groundwater. The redox potential drives the degradation of organic compounds. Its variation affects the water chemistry, gas release and responses of the geo-electrical signature. This study explores how non-invasive measurements sensitive to geo-electrical properties provides quantitative information about the in-situ redox situation. During this presentation, the preliminary results of a laboratory experiment to study the degradation of deicing chemicals with 3D resistivity and self-potential techniques, water samples will be shown. The experiment consists of sand boxes (1.0x0.5x0.4 m) to which both sides of each box is contaminated with propylene glycol, an aircraft deicing fluid, commonly used in Norwegian airports. Each source is placed near the water table with static conditions. At one side a conductor is placed, linking the contamination zone at the water table and the unsaturated zone with a low water content, to improve the degradation by facilitating the electron exchange. At the other side, degradation occurs under natural conditions. Each box is equipped with 288 electrodes, distributed on six faces to perform 3D resistivity measurements. In addition to the resistivity, self-potential measurements are taken from the sand surface. Six water wells are installed above and below the water table to provide more information on the degradation processes. Moreover, measurements of carbon dioxide on the surface are performed as higher concentrations are expected where the pollutant is degraded.

  3. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  4. AF printability check with a full-chip 3D resist profile model

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-En R.; Chang, Jason; Song, Hua; Shiely, James

    2013-09-01

    A single compact resist model capable of predicting 3D resist profile is strongly demanded for the advanced technology nodes to avoid the potential hotspots due to imperfect resist pattern shape and its lack of resistance in the subsequent etch process. In this work, we propose a resist 3D (R3D) compact model that takes acidz-diffusion effect into account. The chemical reaction between acid and base along z-direction is treated as second order effect that is absorbed into the anisotropic diffusion length as a fitting parameter. Meanwhile, the resist model in the x-y wafer plane is still kept in general by applying the compact solution of 2D reaction-diffusion equation. In order to have the 2D contour predictability at arbitrary resist height, calibration from entire 3D data (CDs at several heights) areconducted simultaneously witha single cost function so that the R3D compact model is described by a common set of resist free parameters and threshold for all resist heights. With the low energy approximation, the acid z-diffusion effect is equivalent to a z-diffused TCC that takes the form of linear combination of pure optical TCCs sampled at discrete image-depth which can be pre-calculated. With this benefit, the R3D compact model offers a more physical approach but adds no runtime concern on the OPC and verification applications. The predicted resist cross-section profiles from our test patterns are compared those computed with rigorous lithography simulator SLITHO and show very good matching results between them. The demonstration of the AF printability check from the predicted cross-section profile at AF indicates the success of our R3D compact model.

  5. Fabrication of a 3D electrically small antenna using holographic photolithography

    NASA Astrophysics Data System (ADS)

    Toriz-Garcia, J. J.; Cowling, J. J.; Williams, G. L.; Bai, Q.; Seed, N. L.; Tennant, A.; McWilliam, R.; Purvis, A.; Soulard, F. B.; Ivey, P. A.

    2013-05-01

    We describe the novel fabrication of a 3D electrical small antenna and its subsequent characterization. The patterning of meander lines conformed onto a hemispherical substrate is achieved by 3D holographic photolithography, which uses time-division multiplexing of a series of iteratively optimized computer-generated holograms. The meander lines have a line width of 100 µm and line separation of 400 µm, with a line pitch of 500 µm and a total meander length of 145 mm. The working frequency is found to be 2.06 GHz, with an efficiency of 46%. This work demonstrates a new method for the fabrication of 3D conformal antennas.

  6. Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis

    NASA Astrophysics Data System (ADS)

    Lee, Jung A.; Lee, Seok Woo; Lee, Kwang-Cheol; Park, Se Il; Lee, Seung S.

    2008-03-01

    We present a fabrication method for freestanding complex 3D carbon microstructures utilizing a lithogaphy step and a heating step. We developed two fabrication methods for multi-level 3D SU-8 microstructures, which were used as polymer precursors in a carbonization process. In one method, multiple SU-8 layers were successively coated and cross-linked. In the other method, aligned partial exposures were used to control the thickness of the freestanding SU-8 layer. Freestyle, freestanding carbon microstructures were fabricated by heating 3D SU-8 microstructures below 1000 °C in a nitrogen atmosphere. Characterization of the pyrolysis process, through measurements such as dimensional changes, roughness, hardness, elastic modulus and resistivity, was performed for positive resists AZ5214 and AZ9260 as well as SU-8. 3D carbon microstructures fabricated using our methods can be utilized for various applications such as low cost resonating microsensors and microfluidics.

  7. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  8. Study of multi-level characteristics for 3D vertical resistive switching memory.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-07-22

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >10(10) endurance cycles, >10(4) s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation.

  9. Study of Multi-level Characteristics for 3D Vertical Resistive Switching Memory

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-01-01

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >1010 endurance cycles, >104 s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation. PMID:25047906

  10. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction.

    PubMed

    Molinari, Marc; Cox, Simon J; Blott, Barry H; Daniell, Geoffrey J

    2002-02-01

    Non-linear electrical impedance tomography reconstruction algorithms usually employ the Newton-Raphson iteration scheme to image the conductivity distribution inside the body. For complex 3D problems, the application of this method is not feasible any more due to the large matrices involved and their high storage requirements. In this paper we demonstrate the suitability of an alternative conjugate gradient reconstruction algorithm for 3D tomographic imaging incorporating adaptive mesh refinement and requiring less storage space than the Newton-Raphson scheme. We compare the reconstruction efficiency of both algorithms for a simple 3D head model. The results show that an increase in speed of about 30% is achievable with the conjugate gradient-based method without loss of accuracy.

  11. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  12. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  13. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  14. Source mask optimization using 3D mask and compact resist models

    NASA Astrophysics Data System (ADS)

    El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John

    2016-03-01

    Source Mask Optimization (SMO) has played an important role in technology setup and ground rule definition since the 2x nm technology node. While improvements in SMO algorithms have produced higher quality and more consistent results, the accuracy of the overall solution is critically linked to how faithfully the entire patterning system is modeled, from mask down to substrate. Fortunately, modeling technology has continued to advance to provide greater accuracy in modeling 3D mask effects, 3D resist behavior, and resist phenomena. Specifically, the Domain Decomposition Method (DDM) approximates the 3D mask response as a superposition of edge-responses.1 The DDM can be applied to a sectorized illumination source based on Hybrid-Hopkins Abbe approximation,2 which provides an accurate and fast solution for the modeling of 3D mask effects and has been widely used in OPC modeling. The implementation of DDM in the SMO flow, however, is more challenging because the shape and intensity of the source, unlike the case in OPC modeling, is evolving along the optimization path. As a result, it gets more complicated. It is accepted that inadequate pupil sectorization results in reduced accuracy in any application, however in SMO the required uniformity and density of pupil sampling is higher than typical OPC and modeling cases. In this paper, we describe a novel method to implement DDM in the SMO flow. The source sectorization is defined by following the universal pixel sizes used in SMO. Fast algorithms are developed to enable computation of edge signals from each fine pixel of the source. In this case, each pixel has accurate information to describe its contribution to imaging and the overall objective function. A more continuous angular spectrum from 3D mask scattering is thus captured, leading to accurate modeling of 3D mask effects throughout source optimization. This method is applied on a 2x nm middle-of-line layer test case. The impact of the 3D mask model accuracy on

  15. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  16. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  17. Rehand: Realistic electric prosthetic hand created with a 3D printer.

    PubMed

    Yoshikawa, Masahiro; Sato, Ryo; Higashihara, Takanori; Ogasawara, Tsukasa; Kawashima, Noritaka

    2015-01-01

    Myoelectric prosthetic hands provide an appearance with five fingers and a grasping function to forearm amputees. However, they have problems in weight, appearance, and cost. This paper reports on the Rehand, a realistic electric prosthetic hand created with a 3D printer. It provides a realistic appearance that is same as the cosmetic prosthetic hand and a grasping function. A simple link mechanism with one linear actuator for grasping and 3D printed parts achieve low cost, light weight, and ease of maintenance. An operating system based on a distance sensor provides a natural operability equivalent to the myoelectric control system. A supporter socket allows them to wear the prosthetic hand easily. An evaluation using the Southampton Hand Assessment Procedure (SHAP) demonstrated that an amputee was able to operate various objects and do everyday activities with the Rehand.

  18. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Mark; Greenhalgh, S. A.

    2009-01-01

    We present a new numerical scheme for 2.5-D/3-D direct current resistivity modelling in heterogeneous, anisotropic media. This method, named the `Gaussian quadrature grid' (GQG) method, cooperatively combines the solution of the Variational Principle of the partial differential equation, Gaussian quadrature abscissae and local cardinal functions so that it has the main advantages of the spectral element method. The formulation shows that the GQG method is a modification of the spectral element method but does not employ the constant elements or require the mesh generator to match the Earth's surface. This makes it much easier to deal with geological models having a 2-D/3-D complex topography than using traditional numerical methods. The GQG technique can achieve a similar convergence rate to the spectral element method. We show it transforms the 2.5-D/3-D resistivity modelling problem into a sparse and symmetric linear equation system that can be solved by an iterative or matrix inversion method. Comparison with analytic solutions for homogeneous isotropic and anisotropic models shows that the error depends on the Gaussian quadrature order (abscissa number) and the subdomain size. The higher the order or the smaller the subdomain size that is employed, the more accurate are the results obtained. Several other synthetic examples, both homogeneous and inhomogeneous, incorporating sloping, undulating and severe topography, are presented and found to yield results comparable to finite element solutions involving a dense mesh.

  19. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  20. Small oscillations of a 3D electric dipole in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    del Pino, L. A.; Atenas, B.; Curilef, S.

    2016-05-01

    The classical behavior of a 3D electric dipole in the presence of a uniform magnetic field is studied in the small oscillations approximation. Using the Lagrangian formulation, the equations of motion are obtained, as well as their solutions and constants of motion. Normal modes of oscillation and their corresponding normal coordinates are obtained. Furthermore, the existence of a type of bound states without turning points, so-called trapped states conjectured by Troncoso and Curilef [Eur. J. Phys 27 (2006) 1315-1322], is investigated.

  1. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  2. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  3. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels

    PubMed Central

    Chiang, Min-Yu; Hsu, Yao-Wen; Hsieh, Hsin-Yi; Chen, San-Yuan; Fan, Shih-Kang

    2016-01-01

    Formation of multifunctional, heterogeneous, and encoded hydrogel building blocks, or microgels, by crosslinking and assembly of microgels are two essential steps in establishing hierarchical, complicated, and three-dimensional (3D) hydrogel architectures that recapitulate natural and biological structures or originate new materials by design. However, for the variety of the hydrogel materials crosslinked differently and for the varied scales of microgels and architectures, the formation and assembly processes are usually performed separately, which increases the manufacturing complexity of designed hydrogel materials. We show the construction of hydrogel architectures through programmable formation and assembly on an electromicrofluidic platform, adopting two reciprocal electric manipulations (electrowetting and dielectrophoresis) to manipulate varied objects (i) in multiple phases, including prepolymer liquid droplets and crosslinked microgels, (ii) on a wide range of scales from micrometer functional particles or cells to millimeter-assembled hydrogel architectures, and (iii) with diverse properties, such as conductive and dielectric droplets that are photocrosslinkable, chemically crosslinkable, or thermally crosslinkable. Prepolymer droplets, particles, and dissolved molecules are electrically addressable to adjust the properties of the microgel building blocks in liquid phase that subsequently undergo crosslinking and assembly in a flexible sequence to accomplish heterogeneous and seamless hydrogel architectures. We expect the electromicrofluidic platform to become a general technique to obtain 3D complex architectures.

  4. Monitoring a CO2 plume using time-lapse 3D magnetotellurics, DC resistivity, and induced polarization

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.; Vincent, P.

    2014-12-01

    When CO2 is injected into a deep saline aquifer, the combination of fluid displacement and chemical interaction with groundwater and minerals results in changes to the electrical properties of the storage formation. Geophysical methods that are sensitive to the electrical resistivity and chargeability of the rocks and fluids are used to monitor a modeled CO2 plume. The arrival of supercritical CO2 appears as a resistive pulse as the CO2 displaces water while rising buoyantly. Groundwater becomes carbonated and undergoes a rapid drop in pH. Formation conductivity increases as acidic fluid mobilizes ions in the surrounding rock. A surge of increased conductivity is seen at the plume front as easily-mobilized ions enter the fluid. As the injection proceeds and groundwater flows, this high-conductivity plume front migrates, leaving behind an aquifer largely depleted of highly-mobile ions, with only slightly elevated conductivity. Meanwhile, the dissolution of minerals reduces surface area along the fluid-mineral interface. This causes pore throat widening and reduction of sites where electric charge can build up, thereby reducing the polarizability in the parts of the formation that have encountered the plume. This study looks at monitoring methods that are sensitive to all of these changes in electrical properties at various depths within the earth. These methods include magnetotellurics (MT) and combined DC resistivity and induced polarization (IP). MT is useful for showing large-scale structure using an array that is moveable to cover an arbitrarily large area as the plume expands far beyond initial monitoring locations. MT also allows for phase tensor analysis to clearly show deep resistivity gradients and changes in dimensionality. The active-source nature of DC and IP makes them effective at clearly showing the plume's extent in the region within a few km of the injection well. All methods are modeled in 3D using the planned Kevin Dome carbon storage site in

  5. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    NASA Astrophysics Data System (ADS)

    Li, Yu-yun; Xiong, Bo; Li, Zheng

    2016-09-01

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p-n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc.

  6. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  7. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  8. Complex Structures in Sediments Overlying Sinkholes: 3D-GPR and Azimuthal Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Kruse, S.; Kiflu, H. G.; Ammar, A. I., Sr.; Karashay, P., III; Marshall, A. M.; McNiff, C. M.

    2014-12-01

    3D GPR surveys in the covered karst terrain of west-central Florida, USA, reveal surprising geometries of surficial sediments. Several meters of surficial sands overlie progressively more clay-rich sediments, which in turn overlie weathered limestone. The top of a clay-rich horizon produces an exceptionally clear GPR reflector visible from depths between 0.5 and ~8 meters. On length scales of 10-20 meters, the geometry of this horizon as it drapes over underlying weathered limestone suggests that depressions are not conical, but instead more complex troughs that surround domed stratigraphic highs. Azimuthal semi-variograms of the clay horizon depth show greatest correlation in directions that are aligned with the direction of elevated resistivities at depths to 10-14 meters. One possible interpretation is that dissolution in underlying limestone is concentrated in elongated zones rather than in columnar or spherical voids. Elongated sand-filled depressions in the clay layer produce azimuthal resistivity highs in the direction of the elongation. This direction in turn corresponds to the major axis of depressions in the clay-rich GPR reflecting horizon. Groundwater recharge in this area is concentrated into conduits that breach the clay-rich units that overlie the limestone aquifer. This study suggests that the conduits themselves may be elongated features rather than cylindrical in form. Recharge flow paths may be more complex than previously recognized. The high-resolution GPR images require 3D surveys with 250 MHz and 500 MHz antennas, with 10-cm line spacings, careful corrections for antenna positions and 3D migrations of the data.

  9. 3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.

    NASA Astrophysics Data System (ADS)

    Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung

    2016-04-01

    Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.

  10. Recent development of 3D imaging laser sensor in Mitsubishi Electric Corporation

    NASA Astrophysics Data System (ADS)

    Imaki, M.; Kotake, N.; Tsuji, H.; Hirai, A.; Kameyama, S.

    2013-09-01

    We have been developing 3-D imaging laser sensors for several years, because they can acquire the additional information of the scene, i.e. the range data. It enhances the potential to detect unwanted people and objects, the sensors can be utilized for applications such as safety control and security surveillance, and so forth. In this paper, we focus on two types of our sensors, which are high-frame-rate type and compact-type. To realize the high-frame-rate type system, we have developed two key devices: the linear array receiver which has 256 single InAlAs-APD detectors and the read-out IC (ROIC) array which is fabricated in SiGe-BiCMOS process, and they are connected electrically to each other. Each ROIC measures not only the intensity, but also the distance to the scene by high-speed analog signal processing. In addition, by scanning the mirror mechanically in perpendicular direction to the linear image receiver, we have realized the high speed operation, in which the frame rate is over 30 Hz and the number of pixels is 256 x 256. In the compact-type 3-D imaging laser sensor development, we have succeeded in downsizing the transmitter by scanning only the laser beam with a two-dimensional MEMS scanner. To obtain wide fieldof- view image, as well as the angle of the MEMS scanner, the receiving optical system and the large area receiver are needed. We have developed the large detecting area receiver that consists of 32 rectangular detectors, where the output signals of each detector are summed up. In this phase, our original circuit evaluates each signal level, removes the low-level signals, and sums them, in order to improve the signalto- noise ratio. In the following paper, we describe the system configurations and the recent experimental results of the two types of our 3-D imaging laser sensors.

  11. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  12. Electric-dipole allowed and intercombination transitions among the 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV

    SciTech Connect

    Deb, Narayan C.; Hibbert, Alan

    2010-07-15

    Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

  13. Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1994-01-01

    The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.

  14. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.

    2012-12-01

    Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate

  15. Observations of 3-D Electric Fields and Waves Associated With Reconnection at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.

  16. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  17. A simplified 3D model of whole heart electrical activity and 12-lead ECG generation.

    PubMed

    Sovilj, Siniša; Magjarević, Ratko; Lovell, Nigel H; Dokos, Socrates

    2013-01-01

    We present a computationally efficient three-dimensional bidomain model of torso-embedded whole heart electrical activity, with spontaneous initiation of activation in the sinoatrial node, incorporating a specialized conduction system with heterogeneous action potential morphologies throughout the heart. The simplified geometry incorporates the whole heart as a volume source, with heart cavities, lungs, and torso as passive volume conductors. We placed four surface electrodes at the limbs of the torso: V R , V L , V F and V GND and six electrodes on the chest to simulate the Einthoven, Goldberger-augmented and precordial leads of a standard 12-lead system. By placing additional seven electrodes at the appropriate torso positions, we were also able to calculate the vectorcardiogram of the Frank lead system. Themodel was able to simulate realistic electrocardiogram (ECG) morphologies for the 12 standard leads, orthogonal X, Y, and Z leads, as well as the vectorcardiogram under normal and pathological heart states. Thus, simplified and easy replicable 3D cardiac bidomain model offers a compromise between computational load and model complexity and can be used as an investigative tool to adjust cell, tissue, and whole heart properties, such as setting ischemic lesions or regions of myocardial infarction, to readily investigate their effects on whole ECG morphology.

  18. Cone-based electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Pidlisecky, Adam

    Determining the 3-D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, I have developed a minimally invasive technology that provides information about the 3-D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), integrates the existing technologies of resistivity cone penetration testing (RCPT) with electrical resistivity tomography. Development of this tool included the creation of new software and modeling algorithms, the design of field equipment, field testing, and processing and interpretation of the resulting data. I present a 2.5-D forward modeling algorithm that incorporates an effective correction for the errors caused by boundary effects and source singularities. The algorithm includes an optimization technique for acquiring the Fourier coefficients required for the solution. A 3-D inversion algorithm is presented that has two major improvements over existing algorithms. First, it includes a 3-D version of the boundary correction/source singularity correction developed for the 2.5-D problem. Second, the algorithm can handle any type of acquisition geometry; this was a requirement for the development of C-bert. C-bert involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer and at the surface to measure the resultant potential field. In addition to these measurements, we obtain the standard suite of RCPT data, including high resolution resistivity logs. The RCPT data can be used to generate a realistic

  19. 3D-structures with arbitrary shapes created in negative resists by grayscale proton beam writing

    NASA Astrophysics Data System (ADS)

    Menzel, F.; Spemann, D.; Koal, T.; Butz, T.

    2011-10-01

    The direct and maskless technique of proton beam writing (PBW) was used for grayscale lithography which allows to create 3D microstructures with arbitrary surface topographies. For this purpose, several micrometer thick layers of the negative resists ma-N and SU-8 were irradiated with 2.25 MeV H+ and 1.125 MeV H2+ in arbitrary shapes using different fluences on different areas with values smaller than the threshold fluence for complete exposure. These irradiations result in multilevel microstructures, whose heights increase with increasing fluence. However, the comparison of the measured structure height with calculated predictions from SRIM simulations disproves the assumption that the structure height is proportional to the linear energy transfer (LET). In fact, the fluence reduction below the threshold for sufficient exposure is responsible for grayscale structuring due to reduced etching of the insufficiently exposed regions. The artifacts obtained with the first grayscale structures created by PBW in ma-N and strongly affecting the structure quality could be reduced by optimizing the scanning procedure, e.g. reducing the pixel distance. Therewith, a micro-Fresnel-lens could be fabricated in ma-N. The first PBW grayscale structures in SU-8 exhibited very strong mechanical instabilities which could be reduced by the use of a post exposure bake step, normally omitted for PBW with SU-8.

  20. Reducing Uncertainty in the Distribution of Hydrogeologic Units within Volcanic Composite Units of Pahute Mesa Using High-Resolution 3-D Resistivity Methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.

    2010-01-01

    Pahute Mesa within the Calico Hills zeolitic volcanic composite unit (VCU), an important hydrostratigraphic unit in Area 20. The resistivity response was evaluated and compared with existing well data and hydrogeologic unit tops from the current Pahute Mesa framework model. In 2008, the USGS processed and inverted the magnetotelluric data into a 3-D resistivity model. We interpreted nine depth slices and four west-east profile cross sections of the 3-D resistivity inversion model. This report documents the geologic interpretation of the 3-D resistivity model. Expectations are that spatial variations in the electrical properties of the Calico Hills zeolitic VCU can be detected and mapped with 3-D resistivity, and that these changes correlate to differences in rock permeability. With regard to LFA and TCU, electrical resistivity and permeability are typically related. Tuff confining units will typically have low electrical resistivity and low permeability, whereas LFA will have higher electrical resistivity and zones of higher fracture-related permeability. If expectations are shown to be correct, the method can be utilized by the UGTA scientists to refine the hydrostratigraphic unit (HSU) framework in an effort to more accurately predict radionuclide transport away from test areas on Pahute and Rainier Mesas.

  1. Microfabrication of 3D neural probes with combined electrical and chemical interfaces

    NASA Astrophysics Data System (ADS)

    John, Jessin; Li, Yuefa; Zhang, Jinsheng; Loeb, Jeffrey A.; Xu, Yong

    2011-10-01

    This paper reports a novel neural probe technology for the manufacture of 3D arrays of electrodes with integrated microchannels. This new technology is based on a silicon island structure and a simple folding procedure. This method simplifies the assembly or packaging process of 3D neural probes, leading to higher yield and lower cost. Prototypes with 3D arrays of electrodes have been successfully developed. Microchannels have been successfully integrated into the 3D neural probes via isotropic XeF2 gas phase etching and a parylene resealing process. The probes have been characterized by scanning electron microscopy imaging, optical imaging, impedance analysis, and atomic force microscopy characterization of the electrode surface. Preliminary animal tests have been carried out to demonstrate the recording functionality of the probes. Flow characteristics of the microchannels were also preliminarily measured.

  2. 3-D Resistivity Structure of La Soufrière Volcano (Guadeloupe): New Insights into the Hydrothermal System and Associated Hazards

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Nicollin, F.; Komorowski, J. C.; Gibert, D.; Deroussi, S.

    2015-12-01

    The 3-D electrical resistivity model of the dome of La Soufrière of Guadeloupe volcano was obtained by inverting more than 23000 electrical resistivity tomography (ERT) and mise-a-la-masse data points. Data acquisition involved 2-D and 3-D protocols, including several pairs of injection electrodes located on opposite sides of the volcano. For the mise-a-la-masse measurements, the contact with a conductive mass was achieved by immersing one of the current electrodes in the Tarissan acid pond (~25 Siemens/m) located in the volcano's summit. The 3-D inversion was performed using a deterministic smoothness-constrained least-squares algorithm with unstructured grid modeling to accurately account for topography. Resistivity contrasts of more than 4 orders of magnitude are observed. A thick and high-angle conductive structure is located in the volcano's southern flank. It extends from the Tarissan Crater's acid pond on the summit to a hot spring region located close to the dome's southern base. This suggests that a large hydrothermal reservoir is located below the southern base of the dome, and connected to the acid pond of the summit's main crater. Therefore, the steep southern flanks of the volcano could be resting on a low-strength, high-angle discontinuity saturated with circulating and possibly pressurized hydrothermal fluids. This could favor partial edifice collapse and lateral directed explosions as shown recurrently in the volcano's history. The resistivity model also reveals smaller hydrothermal reservoirs in the south-east and northern flanks that are linked to the main historical eruptive fractures and to ancient collapse structures such as the Cratère Amic structure. We discuss the main resistivity structures in relation with the geometry of observed faults, historical eruptive fractures, the dynamics of the near surface hydrothermal system manifestations on the dome and the potential implications for future hazards scenarios .

  3. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  4. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  5. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  6. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  7. A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault, Jordan

    NASA Astrophysics Data System (ADS)

    Rödder, A.; Tezkan, B.

    2013-01-01

    72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m. The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area. After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.

  8. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  9. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  10. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  11. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  12. Geostatistical modelling with 3D+T data: soil moisture, temperature, and electrical conductivity at the field scale

    NASA Astrophysics Data System (ADS)

    Gasch, Caley K.; Hengl, Tomislav; Gräler, Benedikt; Meyer, Hanna; Magney, Troy; Brown, David J.

    2015-04-01

    Dynamic soil data collected using automated sensor networks can facilitate our understanding of soil processes, but highly dimensional data may be difficult to analyze in a manner that incorporates correlation in properties through 3-dimensions and time (3D+T). We demonstrate two approaches to making continuous predictions of dynamic soil properties from fixed point observations. For this analysis, we used the Cook Farm data set, which includes hourly measurements of soil volumetric water content, temperature, and electrical conductivity at 42 points and five depths, collected over five years. We compare performance of two modeling frameworks. In the first framework we used random forest algorithms to fit a 3D+T regression model to make predictions of all three soil variables from 2- and 3-dimensional, temporal, and spatio-temporal covariates. In the second framework we developed a 3D+T kriging model after detrending the observations for depth-dependent seasonal effects. The results show that both models accurately predicted soil temperature, but the kriging model outperformed the regression model according to cross-validation; it explained 37%, 96%, and 16% of the variability in water content, temperature, and electrical conductivity respectively versus 34%, 93%, and 4% explained by the random forest model. The full random forest regression model had high goodness-of-fit for all variables, which was reduced in cross-validation. Temporal model components (i.e. day of the year) explained most of the variability in observations. The seamless predictions of 3D+T data produced from this analysis can assist in understanding soil processes and how they change through a season, under different land management scenarios, and how they relate to other environmental processes.

  13. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.

    PubMed

    Chamakuri, Nagaiah; Kunisch, Karl; Plank, Gernot

    2016-04-01

    A computational study of an optimal control approach for cardiac defibrillation in a 3D geometry is presented. The cardiac bioelectric activity at the tissue and bath volumes is modeled by the bidomain model equations. The model includes intramural fiber rotation, axially symmetric around the fiber direction, and anisotropic conductivity coefficients, which are extracted from a histological image. The dynamics of the ionic currents are based on the regularized Mitchell-Schaeffer model. The controls enter in the form of electrodes, which are placed at the boundary of the bath volume with the goal of dampening undesired arrhythmias. The numerical optimization is based on Newton techniques. We demonstrated the parallel architecture environment for the computation of potentials on multidomains and for the higher order optimization techniques.

  14. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  15. Computation of electric and magnetic stimulation in human head using the 3-D impedance method.

    PubMed

    Nadeem, Mohammad; Thorlin, Thorleif; Gandhi, Om P; Persson, Mikael

    2003-07-01

    A comparative, computational study of the modeling of transcranial magnetic stimulation (TMS) and electroconvulsive therapy (ECT) is presented using a human head model. The magnetic fields from a typical TMS coil of figure-eight type is modeled using the Biot-Savart law. The TMS coil is placed in a position used clinically for treatment of depression. Induced current densities and electric field distributions are calculated in the model using the impedance method. The calculations are made using driving currents and wave forms typical in the clinical setting. The obtained results are compared and contrasted with the corresponding ECT results. In the ECT case, a uniform current density is injected on one side of the head and extracted from the equal area on the opposite side of the head. The area of the injected currents corresponds to the electrode placement used in the clinic. The currents and electric fields, thus, produced within the model are computed using the same three-dimensional impedance method as used for the TMS case. The ECT calculations are made using currents and wave forms typical in the clinic. The electrical tissue properties are obtained from a 4-Cole-Cole model. The numerical results obtained are shown on a two-dimenaional cross section of the model. In this study, we find that the current densities and electric fields in the ECT case are stronger and deeper penetrating than the corresponding TMS quantities but both methods show biologically interesting current levels deep inside the brain. PMID:12848358

  16. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  17. Discontinuities detection using transmission electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Boyle, Alistair; Grychtol, Bartłomiej; Adler, Andy

    2015-04-01

    In the context of nuclear waste storage, low permeability clays are investigated as potential geological barrier. Discontinuities in such formations might facilitate the radionuclide transport to the environment. The underground platform of Tournemire (Aveyron, France) presents the opportunity to perform in-situ experiments to evaluate the potential of geophysical methods to detect and characterize the presence of discontinuities in the sub-surface. In this work, we apply transmission electrical resistivity tomography to image the medium surrounding a regional fault. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault. The objective of a such geometry is to acquire data in transmission across the massif in addition to classical protocol such as Schlumberger or dipole-dipole in order to better cover the sounded medium. 3D models considering the gallery geometry, the topography and the injection of current in transmission through the massif were developed for the analysis of such particular data sets. For the reconstruction of the medium electrical resistivity, the parametrization of the inverse problem was adapted to the geometry of the experience in a scope to reduce the inversion under-determination. The resulting image obtained with classical protocols and transmission current injection is compared to an image obtained using only classical protocols to better highlight the interest of a transmission experiment in terms of resolution and penetration depth. The addition of protocols in transmission allows a better coverage of the sounded medium so the resulting image presents a better resolution at higher depths than the image resulting from a single profile of electrodes. The proposed configuration of electrical resistivity measurements in transmission is then promising for hydrogeophysical studies, in particular for

  18. Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields.

    PubMed

    Raveendran, Joshua; Wood, Jeffery A; Docoslis, Aristides

    2016-09-20

    The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment.

  19. Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields.

    PubMed

    Raveendran, Joshua; Wood, Jeffery A; Docoslis, Aristides

    2016-09-20

    The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment. PMID:27541583

  20. A Non-Linear Inversion for the Global 3-D Electrical Conductivity Distribution in the Upper to Mid-Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Schultz, A.

    2004-12-01

    The case for substantial heterogeneity in mantle conductivity has stimulated the development of methods for solving Maxwell's equations in a heterogeneous conducting sphere. A global 3-D frequency domain forward solver has been devised (Uyeshima & Schultz, 2000), accurate and efficient enough to be an attractive kernel of a practical inverse method. The solver employs a staggered-grid finite difference formulation in spherical coordinates. The induced fields are found as a solution to the integral form of Maxwell's equations, while the system is solved using stabilised biconjugate gradient methods. A single, accurate forward solution takes approx. 4 minutes on 5 GFLOP (peak) processor. The aim of our present research is to produce an inverse solver, to be applied to the Fujii & Schultz (2002) data set of globally-distributed EM response functions, which would reconstruct the 3-D electrical conductivity distribution in the upper to mid-mantle. Geophysical inversion is an ill-posed problem, therefore the aim is to apply suitable parameter constraints and a nonlinear search algorithm to identify candidate minima, then to apply local gradient methods around those minima. Our specific target involves designing a fast enough global optimisation routine that would allow us to produce at least one fully 3-D starting model, optimal with respect to the RMS misfit between the data and the forward solutions. A new and very flexible inverse solver has been developed utilizing parallel optimisation routines to obtain a starting model that satisfies the data. 3-D simulations have been run, the parametrization based on a spherical harmonic representation of a chess board model of varying degree and order. The inversion has demonstrated accurate fidelity in reproducing resolvable features of the test model. A study has been made of the reduction in fidelity as the number and distribution of observatory sites on the Earth's surface is degraded. An inversion of the Fujii & Schultz

  1. 3D Stationary electric current density in a spherical tumor treated with low direct current: an analytical solution.

    PubMed

    Jiménez, Rolando Placeres; Pupo, Ana Elisa Bergues; Cabrales, Jesús Manuel Bergues; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Nava, Juan José Godina; Aguilera, Andrés Ramírez; Mateus, Miguel Angel O'Farril; Jarque, Manuel Verdecia; Brooks, Soraida Candida Acosta

    2011-02-01

    Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.

  2. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2007-05-01

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured).

  3. Electrical Stimulation to Restore Vestibular Function – Development of a 3-D Vestibular Prosthesis

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.

    2009-01-01

    Patients who fail to compensate for bilateral loss of vestibular sensory function are disabled by disequilibrium and illusory movement of the visual field during head movement. An implantable prosthesis that restores vestibular sensation could significantly improve quality of life for these patients. To be effective, such a device should encode head rotation in all 3 dimensions. We describe the 3-dimensional angular vestibulo-ocular reflex of normal chinchillas and vestibular-deficient chinchillas undergoing functional electrical stimulation of the vestibular nerve. We also describe the design and fabrication of a head-mounted, 8 electrode vestibular prosthesis that encodes head movement in 3 dimensions. PMID:17281986

  4. Machining of Christmas tree parts of 06Kh20N8M3D2L corrosion-resistant steel

    SciTech Connect

    Rubinov, S.R.; Balaoglanov, M.M.; Baluyants, E.G.

    1983-09-01

    To address the problem of corrosion cracking, equipment has been developed of 06Kh20N8M3D21 austenitic-ferritic corrosion-resistant multiply alloyed steel. But as this steel is difficult to machine investigations were made to determine the parameters and conditions for machining Christmas tree parts made of this steel. Turning, drilling, thread cutting, and milling are specified. The optimum conditions for machining Christmas tree parts were established in tests. The tests also showed that the coefficient of machinability of the steel is 3 or 4 times less than that of 20KhGSL steel, which is normally used for Christmas tree production.

  5. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  6. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  7. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  8. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  9. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  10. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  11. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  12. Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10 metallic glass by using laminated 3D micro-electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wu, Xiao-yu; Ma, Jiang; Liang, Xiong; Lei, Jian-guo; Wu, Bo; Ruan, Shuang-chen; Wang, Zhen-long

    2016-03-01

    For obtaining 3D micro-molds with better surface quality (slight ridges) and mechanical properties, in this paper 3D micro-electrodes were fabricated and applied to micro-electrical discharge machining (micro-EDM) to process Pd40Cu30P20Ni10 metallic glass. First, 100 μm-thick Cu foil was cut to obtain multilayer 2D micro-structures and these were connected to fit 3D micro-electrodes (with feature sizes of less than 1 mm). Second, under the voltage of 80 V, pulse frequency of 0.2MHZ, pulse width of 800 ns and pulse interval of 4200 ns, the 3D micro-electrodes were applied to micro-EDM for processing Pd40Cu30P20Ni10 metallic glass. The 3D micro-molds with feature within 1 mm were obtained. Third, scanning electron microscope, energy dispersive spectroscopy and x-ray diffraction analysis were carried out on the processed results. The analysis results indicate that with an increase in the depth of micro-EDM, carbon on the processed surface gradually increased from 0.5% to 5.8%, and the processed surface contained new phases (Ni12P5 and Cu3P).

  13. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    PubMed

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  14. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    ERIC Educational Resources Information Center

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  15. Molecular cytogenetic characterization of a wheat - Leymus mollis 3D(3Ns) substitution line with resistance to leaf rust.

    PubMed

    Pang, Yuhui; Chen, Xinhong; Zhao, Jixin; Du, Wanli; Cheng, Xueni; Wu, Jun; Li, Yanli; Wang, Liangming; Wang, Jing; Yang, Qunhui

    2014-04-20

    Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many potentially valuable traits that could be transferred to common wheat during breeding programs. In this study, the karyotypic constitution of a wheat - L. mollis 3D(3Ns#1) disomic substitution line isolated from the F5 progeny of octoploid Tritileymus M842-16 × Triticum durum cv. D4286, which was designated as 10DM57, was determined using genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH), SSR markers, and EST-STS markers. Screening of mitosis and meiosis showed that 10DM57 had a chromosome karyotype of 2n = 42 = 21II. GISH indicated that 10DM57 was a line with 40 chromosomes from wheat and two of the Ns chromosomes from L. mollis, which formed a ring bivalent in pollen mother cells at metaphase I. FISH analysis showed that the chromosome 3D may be replaced by 3Ns#1 in 10DM57. DNA markers, including SSR and EST-STS primers, showed that the pair of wheat chromosome 3D in 10DM57 was substituted by the pair of chromosome 3Ns#1 from L. mollis. Evaluation of the agronomic traits showed that, compared with its common wheat relative 7182, 10DM57 was resistant to leaf rust while the spike length and number of spikes per plant were improved significantly, which correlated with a higher wheat yield. The new germplasm, 10DM57, could be exploited as an intermediate material in wheat genetic and breeding programs. PMID:24780618

  16. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  17. Modeling electric fields inside the LUX detector in 3D using 83mKr calibration data

    NASA Astrophysics Data System (ADS)

    Tvrznikova, Lucie; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) experiment is a 350 kg two-phase liquid/gas xenon time projection chamber designed for the direct detection of weakly interacting massive particles, a leading dark matter candidate. LUX operates on the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. Weekly calibrations using a homogeneous injection of a monoenergetic 83mKr source enable us to monitor xenon within the active region. For this project, a 3D model of the electric fields inside the LUX detector was created using COMSOL Multiphysics software. A simulation of electrons drifting in the detector then produces a set of computational predictions. These are then reconciled with the 83mKr data to confirm the accuracy of the field model. The result of this work is a more accurate understanding of the electric field inside the active region. This model, in conjuction with these methods, may now be used to study other phenomena such as possible surface charge buildup in detector materials.

  18. External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields.

    PubMed

    Makarov, Vladimir I; Khmelinskii, Igor

    2016-01-01

    We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.

  19. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles.

    PubMed

    Chudobova, Dagmar; Cihalova, Kristyna; Skalickova, Sylvie; Zitka, Jan; Rodrigo, Miguel Angel Merlos; Milosavljevic, Vedran; Hynek, David; Kopel, Pavel; Vesely, Radek; Adam, Vojtech; Kizek, Rene

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to β-lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D-printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross-linking aggregation phenomenon of DNA-functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one-step identification of mecA gene using the unique platform that employs the rapid, low-cost, and easy-to-use colorimetric method for MRSA detection in various samples.

  20. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2009-06-01

    Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

  1. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  2. A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy

    SciTech Connect

    Silva, V.C.; Meunier, G.; Foggia, A.

    1995-05-01

    A 3-D scheme based on the Finite Element Method, which takes electric and magnetic anisotropy into consideration, has been developed for computing eddy-current losses caused by stray magnetic fields in laminated iron cores of large transformers and generators. The model is applied to some laminated iron-core samples and compared with equivalent solid-iron cases.

  3. Measuring Electrical Resistivity Of Compacted Powder

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Slightly modified micrometer used in conjunction with special cup to measure electrical resistance of specimen of powder as function of packing fraction. Powder pressed between anvils of micrometer, which make electrical contact with specimen. Device used in manufacturing batteries to determine effective electrical conductivities of powders loaded into plastic sheets to make battery substrates. Coupled with good mathematical description of expected conductivity of particulate composite as function of packing density. Also serves as tool for evaluating conductivity of dispersed phase, as well as evaluating electrical resistances of interparticle contacts.

  4. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  5. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  6. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    NASA Astrophysics Data System (ADS)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized

  7. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  8. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  9. 3d xy scaling of the resistivity and the effect of disorder in YBa 2Cu 3O 7-δ thin films

    NASA Astrophysics Data System (ADS)

    Wooldridge, Ian; Howson, Mark A.; Gauzzi, Andrea; Pavuna, Davor; Walker, Daron J. C.

    1994-12-01

    We present measurements for the resistivity of ‘c’ axis oriented YBa 2Cu 3O 7-δ (YBCO) films grown on (100) SrTiO 3 substrates by both Laser Ablation and ion beam sputtering. The effect of the magnetic field on the resistivity is investigated with the field parallel to the ‘c’ axis. The zero field transition widths vary from 1K to 4K in different films. However the data exhibits 3d XY critical scaling having introduced an ‘effective’ magnetic field, characteristic of the length scale of the disorder in the film.

  10. 3D printing in chemistry: past, present and future

    NASA Astrophysics Data System (ADS)

    Shatford, Ryan; Karanassios, Vassili

    2016-05-01

    During the last years, 3d printing for rapid prototyping using additive manufacturing has been receiving increased attention in the technical and scientific literature including some Chemistry-related journals. Furthermore, 3D printing technology (defining size and resolution of 3D objects) and properties of printed materials (e.g., strength, resistance to chemical attack, electrical insulation) proved to be important for chemistry-related applications. In this paper these are discussed in detail. In addition, application of 3D printing for development of Micro Plasma Devices (MPDs) is discussed and 2d-profilometry data of a 3D printed surfaces is reported. And, past and present chemistry and bio-related applications of 3D printing are reviewed and possible future directions are postulated.

  11. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Semenov, Alexey

    2012-06-01

    We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.

  12. Pedotransfer functions in soil electrical resistivity estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  13. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  14. Temperature dependent electrical resistivity of liquid Sn

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.

    2016-05-01

    The present paper deals with the effect of temperature variation on the electrical resistivity (ρ) of liquid Sn(Tin). We have used a new parameter free pseudopotential along with screening Taylor et al and Farid et al local field correction functions. The Percus-Yevick Hard Sphere (PYHS) reference system is used to describe structural information. Zeeman formula has been used for finding resistivity with the variation of temperature. The balanced harmonies between present data and experimental data have been achieved with a minimal deviation. So, we concluded that our newly constructed model potential is an effective one to produce the data of electrical resistivity of liquid Sn(Tin) as a function of temperature.

  15. New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data

    SciTech Connect

    Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

    2006-06-14

    Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

  16. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  17. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape

  18. Electrical and Mechanical Properties of Through-Silicon Vias and Bonding Layers in Stacked Wafers for 3D Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Hwang, Sung-Hwan; Kim, Byoung-Joon; Lee, Ho-Young; Joo, Young-Chang

    2012-02-01

    Thermal stress issues in a three-dimensional (3D) stacked wafer system were examined using finite-element analysis of the stacked wafers. This paper elucidates the effects of the bonding dimensions on mechanical failure and the keep-away zone, where devices cannot be located because of the stress in the Si. The key factors in decreasing the thermal strain were the bonding diameter and thickness. When the bonding diameter decreased from 40 μm to 12 μm, the equivalent strain decreased by 83%. It is noteworthy that the keep-away zone also decreased from 17 μm to zero when the bonding diameter decreased from 40 μm to 12 μm. When the bonding thickness doubled, the equivalent strain decreased by 44%. The effects of the dimensions and arrangement of through-silicon vias (TSV) were also analyzed. Small TSV diameter and pitch are important to decrease the equivalent strain, especially when the amount of Cu per unit volume is fixed. When the TSV diameter and pitch decreased fourfold, the equivalent strain decreased by 70%. The effects of TSV height and the number of die stacks were not significant, because the underfill acted as a buffer against thermal strain.

  19. mr-PosEBR: a novel positive tone resist for high resolution electron beam lithography and 3D surface patterning

    NASA Astrophysics Data System (ADS)

    Pfirrmann, Stefan; Kirchner, Robert; Lohse, Olga; Guzenko, Vitaliy A.; Voigt, Anja; Harder, Irina; Kolander, Anett; Schift, Helmut; Grützner, Gabi

    2016-03-01

    In this contribution, we present the results of a systematic material variation for the development of a resist material for high resolution positive tone electron beam lithography (EBL). Several acrylic copolymer materials with different compositions, that is varying mass fractions of the comonomers and different molecular weights, were synthesized and - as resist solutions - evaluated in terms of EBL performance at acceleration voltages of 30 kV and 100 kV. The resist material exhibiting the best combination of the desired properties, named mr-PosEBR, is two times more sensitive than PMMA 495k and performs comparably to the known high resolution resist ZEP520A at 30 kV. For example, a grating pattern with 29 nm wide lines with a period of 100 nm could be lithographically generated in films of mr-PosEBR with an area dose of 100 μC/cm2. In terms of resolution, single lines of only 35 nm width could be fabricated via metal liftoff. Furthermore, the dry etch stability of mr-PosEBR in a CF4/SF6 process is similar to the one of ZEP520A. Consequently, via dry etching nano patterns in mr-PosEBR could be smoothly transferred into the underlying Si substrate with high fidelity. Moreover, mr-PosEBR was evaluated as electron beam grayscale patterning and reflow resist. It was shown that the resist exhibits a good grayscale and reflow performance very similar to PMMA 120k and ZEP520A. Via these well controllable processes the generation of a wide variety of features and applications is possible.

  20. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  1. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %.

  2. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %. PMID:25384188

  3. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  4. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  5. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  6. An introduction to electrical resistivity in geophysics

    NASA Astrophysics Data System (ADS)

    Herman, Rhett

    2001-09-01

    Physicists are finding that the skills they have learned in their training may be applied to areas beyond traditional physics topics. One such field is that of geophysics. This paper presents the electrical resistivity component of an undergraduate geophysics course at Radford University. It is taught from a physics perspective, yet the application of the theory to the real world is the overriding goal. The concepts involved in electrical resistivity studies are first discussed in a general sense, and then they are studied through the application of the relevant electromagnetic theory. Since geology majors comprise the bulk of the students in this class, the math used is only that which is typically required of geology majors. The final results are given in a form that practicing geophysicists may use in the field. A method is presented for constructing an inexpensive apparatus for measuring electrical resistivity in both a tabletop laboratory setting and in the field. This apparatus is truly "plug and play" since its assembly and use requires only the most basic knowledge of electronics. This apparatus is tested in a tabletop laboratory setting as well as in two field surveys.

  7. Delineation of graves using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.

    2016-03-01

    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  8. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2014-03-01

    The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  9. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  10. Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3-d films

    NASA Astrophysics Data System (ADS)

    Wang, Xianjie; Hu, Chang; Song, Yongli; Zhao, Xiaofeng; Zhang, Lingli; Lv, Zhe; Wang, Yang; Liu, Zhiguo; Wang, Yi; Zhang, Yu; Sui, Yu; Song, Bo

    2016-07-01

    Herein, we demonstrate the contribution of the oxygen-deficiencies on the bipolar resistance switching (RS) properties of amorphous-YFe0.5Cr0.5O3-d (a-YFCO) films. The a-YFCO films were prepared under various oxygen pressures to tune the concentration of oxygen-deficiencies in the films. The XPS data verify that the oxygen-deficiencies increase with decreasing oxygen pressure. The RS property becomes more pronounced with more oxygen-deficiencies in a-YFCO films. Based on the Ohmic conduction measurements in the low resistance state, we confirm that the RS mechanism is related to the migration of oxygen-deficiencies. The enhanced RS and long retention in a-YFCO suggest a great potential for applications in nonvolatile memory devices.

  11. Rational Experimental Design for Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R.

    2008-12-01

    Over the past several decades advances in the acquisition and processing of electrical resistivity data, through multi-channel acquisition systems and new inversion algorithms, have greatly increased the value of these data to near-surface environmental and hydrological problems. There has, however, been relatively little advancement in the design of actual surveys. Data acquisition still typically involves using a small number of traditional arrays (e.g. Wenner, Schlumberger) despite a demonstrated improvement in data quality from the use of non-standard arrays. While optimized experimental design has been widely studied in applied mathematics and the physical and biological sciences, it is rarely implemented for non-linear problems, such as electrical resistivity imaging (ERI). We focus specifically on using ERI in the field for monitoring changes in the subsurface electrical resistivity structure. For this application we seek an experimental design method that can be used in the field to modify the data acquisition scheme (spatial and temporal sampling) based on prior knowledge of the site and/or knowledge gained during the imaging experiment. Some recent studies have investigated optimized design of electrical resistivity surveys by linearizing the problem or with computationally-intensive search algorithms. We propose a method for rational experimental design based on the concept of informed imaging, the use of prior information regarding subsurface properties and processes to develop problem-specific data acquisition and inversion schemes. Specifically, we use realistic subsurface resistivity models to aid in choosing source configurations that maximize the information content of our data. Our approach is based on first assessing the current density within a region of interest, in order to provide sufficient energy to the region of interest to overcome a noise threshold, and then evaluating the direction of current vectors, in order to maximize the

  12. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  13. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  14. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  15. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Se,Te)3

    NASA Astrophysics Data System (ADS)

    Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2015-03-01

    The group V-VI compounds—like Bi2Se3, Sb2Te3, or Bi2Te3—have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb)2(Te,Se)3 compound. Similar to some of its sister compounds, the (Bi,Sb)2(Te,Se)3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.

  16. A Multi-channel Semicircular Canal Neural Prosthesis Using Electrical Stimulation to Restore 3D Vestibular Sensation

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.

    2009-01-01

    Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the 3 semicircular canals in a normal ear, such a device should at least transduce 3 orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multi-channel vestibular prosthesis that encodes head movement in 3 dimensions as pulse-frequency-modulated electrical stimulation of 3 or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocular reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode’s targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior. PMID:17554821

  17. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  18. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  19. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  20. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'.

    PubMed

    Lloris-Garcerá, Pilar; Slusky, Joanna S G; Seppälä, Susanna; Prieß, Marten; Schäfer, Lars V; von Heijne, Gunnar

    2013-11-15

    The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.

  1. Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

    PubMed

    Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong

    2016-09-01

    Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology. PMID:27525738

  2. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  3. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    PubMed

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  4. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    PubMed

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  5. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D Structural Model of Aspergillus fumigatus CYP51A protein.

    PubMed

    Liu, Musang; Zheng, Nan; Li, Dongmei; Zheng, Hailin; Zhang, Lili; Ge, Hu; Liu, Weida

    2016-05-01

    Mutations of CYP51A protein (Cytochrome P450 14-α Sterol demethylase) play a central role in the azole resistance of Aspergillus fumigatus The available structural models of CYP51A protein ofA. fumigatus are built based on that of Homo sapiens and that of Mycobacterium tuberculosis, of which the amino acid homology is only 38% and 29% compared with CYP51A protein ofA. fumigatus, respectively. In the present study, we constructed a new 3D structural model ofA. fumigatus CYP51A protein based on a recently resolved crystal structure of the homologous protein in the fungus S. cerevisiae, which shares 50% amino acid homology with A. fumigatus CYP51A protein. Three azole molecules, itraconazole, voriconazole, and posaconazole, were docked to the wild-type and the mutant A. fumigatus CYP51A protein models, respectively, to illustrate the impact of cyp51A mutations to azole-resistance. We found the mutations that occurred at L98, M220, and Y431 positions would decrease the binding affinity of azoles to the CYP51A protein and therefore would reduce their inhibitory effects. Additionally, the mutations of L98 and G432 would reduce the stability of the protein, which might lead to conformational change of its binding pocket and eventually the resistance to azoles.

  6. Determination of electrical resistivity of dry coke beds

    SciTech Connect

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  7. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  8. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration. PMID:25630631

  9. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration.

  10. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  11. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. Electrical resistivity imaging for unknown bridge foundation depth determination

    NASA Astrophysics Data System (ADS)

    Arjwech, Rungroj

    Unknown bridge foundations pose a significant safety risk due to stream scour and erosion. Records from older structures may be non-existent, incomplete, or incorrect. Nondestructive and inexpensive geophysical methods have been identified as suitable to investigate unknown bridge foundations. The objective of the present study is to apply advanced 2D electrical resistivity imaging (ERI) in order to identify depth of unknown bridge foundations. A survey procedure is carried out in mixed terrain water and land environments with rough topography. A conventional resistivity survey procedure is used with the electrodes installed on the stream banks. However, some electrodes must be adapted for underwater use. Tests were conducted in one laboratory experimentation and at five field experimentations located at three roadway bridges, a geotechnical test site, and a railway bridge. The first experimentation was at the bridges with the smallest foundations, later working up in size to larger drilled shafts and spread footings. Both known to unknown foundations were investigated. The geotechnical test site is used as an experimental site for 2D and 3D ERI. The data acquisition is carried out along 2D profile with a linear array in the dipole-dipole configuration. The data collections have been carried out using electrodes deployed directly across smaller foundations. Electrodes are deployed in proximity to larger foundations to image them from the side. The 2D ERI can detect the presence of a bridge foundation but is unable to resolve its precise shape and depth. Increasing the spatial extent of the foundation permits better image of its shape and depth. Using electrode < 1 m to detect a slender foundation < 1 m in diameter is not feasible. The 2D ERI method that has been widely used for land surface surveys presently can be adapted effectively in water-covered environments. The method is the most appropriate geophysical method for determination of unknown bridge foundations

  13. Impact of device size and thickness of Al2O 3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application.

    PubMed

    Panja, Rajeswar; Roy, Sourav; Jana, Debanjan; Maikap, Siddheswar

    2014-12-01

    Impact of the device size and thickness of Al2O3 film on the Cu pillars and resistive switching memory characteristics of the Al/Cu/Al2O3/TiN structures have been investigated for the first time. The memory device size and thickness of Al2O3 of 18 nm are observed by transmission electron microscope image. The 20-nm-thick Al2O3 films have been used for the Cu pillar formation (i.e., stronger Cu filaments) in the Al/Cu/Al2O3/TiN structures, which can be used for three-dimensional (3D) cross-point architecture as reported previously Nanoscale Res. Lett.9:366, 2014. Fifty randomly picked devices with sizes ranging from 8 × 8 to 0.4 × 0.4 μm(2) have been measured. The 8-μm devices show 100% yield of Cu pillars, whereas only 74% successful is observed for the 0.4-μm devices, because smaller size devices have higher Joule heating effect and larger size devices show long read endurance of 10(5) cycles at a high read voltage of -1.5 V. On the other hand, the resistive switching memory characteristics of the 0.4-μm devices with a 2-nm-thick Al2O3 film show superior as compared to those of both the larger device sizes and thicker (10 nm) Al2O3 film, owing to higher Cu diffusion rate for the larger size and thicker Al2O3 film. In consequence, higher device-to-device uniformity of 88% and lower average RESET current of approximately 328 μA are observed for the 0.4-μm devices with a 2-nm-thick Al2O3 film. Data retention capability of our memory device of >48 h makes it a promising one for future nanoscale nonvolatile application. This conductive bridging resistive random access memory (CBRAM) device is forming free at a current compliance (CC) of 30 μA (even at a lowest CC of 0.1 μA) and operation voltage of ±3 V at a high resistance ratio of >10(4). PMID:26088986

  14. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  15. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  16. Characterization and monitoring of subsurface processes using parallel computing and electrical resistivity imaging

    SciTech Connect

    Johnson, Timothy C.; Truex, Michael J.; Wellman, Dawn M.; Marble, Justin

    2011-12-01

    This newsletter discusses recent advancement in subsurface resistivity characterization and monitoring capabilities. The BC Cribs field desiccation treatability test resistivity monitoring data is use an example to demonstrate near-real time 3D subsurface imaging capabilities. Electrical resistivity tomography (ERT) is a method of imaging the electrical resistivity distribution of the subsurface. An ERT data collection system consists of an array of electrodes, deployed on the ground surface or within boreholes, that are connected to a control unit which can access each electrode independently (Figure 1). A single measurement is collected by injecting current across a pair of current injection electrodes (source and sink), and measuring the resulting potential generated across a pair of potential measurement electrodes (positive and negative). An ERT data set is generated by collecting many such measurements using strategically selected current and potential electrode pairs. This data set is then processed using an inversion algorithm, which reconstructs an estimate (or image) of the electrical conductivity (i.e. the inverse of resistivity) distribution that gave rise to the measured data.

  17. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  18. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  19. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  20. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  1. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  2. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  3. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  4. Predicting and tracking spatiotemporal moments in electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J.; Bai, L.

    2015-12-01

    Visualisation is an invaluable tool in the study of near sub-surface processes, whether by mathematical modelling or by geophysical imaging. Quantitative analysis can further assist interpretation of the ongoing physical processes, and it is clear that any reliable model should take direct observations into account. Using electrical resistivity tomography (ERT), localised areas can be surveyed to produce 2-D and 3-D time-lapse images. This study investigates combining quantitative results obtained via ERT with spatio-temporal motion models in tracer experiments to interpret and predict fluid flow. As with any indirect imaging technique, ERT suffers specific issues with resolution and smoothness as a result of its inversion process. In addition, artefacts are typical in the resulting volumes. Mathematical models are also a source of uncertainty - and in combining these with ERT images, a trade-off must be made between the theoretical and the observed. Using computational imaging, distinct regions of stable resistivity can be directly extracted from a time-slice of an ERT volume. The automated nature, as well the potential for more than one region-of-interest, means that multiple regions can be detected. Using Kalman filters, it is possible to convert the detections into a process state, taking into account pre-defined models and predicting progression. In consecutive time-steps, newly detected features are assigned, where possible, to existing predictions to create tracks that match the tracer model. Preliminary studies looked at a simple motion model, tracking the centre of mass of a tracer plume with assumed constant velocity and mean resistivity. Extending the model to factor in spatial distribution of the plume, an oriented semi-axis is used to represent the centralised second-order moment, with an increasing factor of magnitude to represent the plume dispersion. Initial results demonstrate the efficacy of the approach, significantly improving reliability as the

  5. Electrical Stimulation for Drug-Resistant Epilepsy

    PubMed Central

    Chambers, A; Bowen, JM

    2013-01-01

    Objective The objective of this analysis was to evaluate the effectiveness of deep brain stimulation (DBS) and vagus nerve stimulation (VNS) for the treatment of drug-resistant epilepsy in adults and children. Data Sources A literature search was performed using MEDLINE, EMBASE, the Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 2007 until December 2012. Review Methods Systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies (in the absence of RCTs) of adults or children were included. DBS studies were included if they specified that the anterior nucleus of thalamus was the area of the brain stimulated. Outcomes of interest were seizure frequency, health resource utilization, and safety. A cost analysis was also performed. Results The search identified 6 studies that assessed changes in seizure frequency after electrical stimulation: 1 RCT on DBS in adults, 4 RCTs on VNS in adults, and 1 RCT on VNS in children. The studies of DBS and VNS in adults found significantly improved rates of seizure frequency, but the study of VNS in children did not find a significant difference in seizure frequency between the high and low stimulation groups. Significant reductions in hospitalizations and emergency department visits were found for adults and children who received VNS. No studies addressed the use of health resources for patients undergoing DBS. Five studies reported on adverse events, which ranged from serious to transient for both procedures in adults and were mostly transient in the 1 study of VNS in children. Limitations We found no evidence on DBS in children or on health care use related to DBS. The measurement of seizure frequency is self-reported and is therefore subject to bias and issues of compliance. Conclusions Based on evidence of low to moderate quality, both DBS and VNS seemed to reduce seizure frequency in adults. In children, VNS did not appear to be as

  6. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    SciTech Connect

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-27

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950 deg. C. The lowest resistances were obtained mainly from MWNTs grown at 900 deg. C. The MWNT resistance is larger on average at lower (800 deg. C) and higher (950 deg. C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  7. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-01

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950°C. The lowest resistances were obtained mainly from MWNTs grown at 900°C. The MWNT resistance is larger on average at lower (800°C) and higher (950°C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  8. Determination of anisotropic karst features in the Biscayne Aquifer using multi electrical resistivity imaging techniques

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, A.; Whitman, D.

    2012-12-01

    The Biscayne Aquifer of Southeast Florida is characterized by limestone cavities and solution hole features that are often beneath the surface and are difficult to detect and quantify accurately. Electrical resistivity imaging (ERI) is often used to image the subsurface for detection of cavities and other karst features. A recent regional study of electrical anisotropy derived from rotated square array measurements measured coefficients of anisotropy of 1.12 or less. At one particular site however, the coefficient of anisotropy was found to be as high as 1.36 with the average minimum resistivity direction trending 105°. The highest values of anisotropy are found at squares array sizes equivalent to effective depths of 4-9m. The cause of this higher anisotropy and its associated orientation was investigated using a combination of azimuthal 2-D profiles and a 3-D tomography survey using a mixed dipole gradient array. Results indicate a low resistivity zone at a depth of 5-10 m in the saturated zone (10-40Ωm) trending 109° in the 2-D profiles and the presence of low resistivity zone (14-43Ωm) trending 90-105° in the 3-D model. This observed lower resistivity zone is at least 50% lower than the surrounding resistivity. Although further geophysical studies are planned at the site, the primary analysis from these three contrasting ERI techniques indicates that the cause of higher anisotropy might be due to the presence of a solution cavity oriented in the E-SE direction.

  9. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  10. Implications of 3D electrical conductivity beneath the Payun Matru basalt province in western Argentina (36.5S, 69.5W)

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Burd, A.; Mackie, R.; Favetto, A.; Pomposiello, C.

    2009-12-01

    To understand geologic processes that shaped western North America in the early Cenozoic, it is useful to look at southern South America, where similar processes such as flat-slab subduction and intraplate basaltic volcanism are active today. Payún Matrú is a very large shield volcano east of the Andes at 36.5 S 69.5 W. It is the largest feature of the “Payunia” basalt province that covers about 15,000 sq km. The most recent activity may have been about 1,000 years ago. Lava chemistry has evolved with time. Despite being only 150 km east of the axis of the Andean Southern Volcanic Zone, the younger lavas are essentially OIB. We have collected 38 long period magnetolluric (MT) sites in an array that extends beyond the Payunia basalts to investigate the source of magma. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) have been inverted for smoothest log resistivity using a 3D non-linear conjugate gradient (NLCG) algorithm. The model includes the Atlantic and Pacific oceans, which both significantly affect the data. The image shows the isosurface at 30 Ohm-m together with the locations of sites (inverted triangles), earthquakes deeper than 50 km (filled circles) and volcanoes with geological recent activity (normal triangles). The result is that Payún Matrú (the large triangle) lies at the northern end of a conductive finger at the top of the mantle. This finger has a pimple that rises into the upper crust just west of the caldera. The finger appears to originate in anomalously conductive mantle deeper than 150 km that extends south and to the east (away from the Andes). If this conductor is due to fully interconnected basalt partial melt, the region inside this isosurface has more than 3% partial melt. This structure appears to rule out such processes as crustal delamination or a vertical plume for this volcanic province. It also suggests that the lithosphere east of the asthenospheric wedge under the Andes is

  11. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing. PMID:25380249

  12. Thermal conductivity and electrical resistivity of porous materials

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1972-01-01

    Process for determining thermal conductivity and electrical resistivity of porous materials is described. Characteristics of materials are identified and used in development of mathematical models. Limitations of method are examined.

  13. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Bachmair, F.; Bäni, L.; Bergonzo, P.; Caylar, B.; Forcolin, G.; Haughton, I.; Hits, D.; Kagan, H.; Kass, R.; Li, L.; Oh, A.; Phan, S.; Pomorski, M.; Smith, D. S.; Tyzhnevyi, V.; Wallny, R.; Whitehead, D.

    2015-06-01

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time.

  14. Experimental study on the electrical resistivity of soil cement admixtures

    NASA Astrophysics Data System (ADS)

    Liu, Song Yu; Du, Yan Jun; Han, L. H.; Gu, M. F.

    2008-05-01

    Recently in China, soil cement is widely used to improve the soft ground in the highway construction engineering. Literature studies are mainly investigating the mechanical properties of the soil cement, while its properties of the electrical resistivity are not well addressed. In this paper, the properties of the electrical resistivity of the reconstituted soil-cement and the in situ soil cement columns are investigated. The test results show that the electrical resistivity of the soil cement increases with the increase in the cement-mixing ratio and curing time, whereas it decreases with the increase in the water content, degree of saturation and water cement ratio. A simple equation is proposed to predict the electrical resistivity of soil cement under the condition of the specified curing time and water cement ratio. It is found that the electrical resistivity has a good relationship with the unconfined compression strength and blow count of SPT. It is expected that the electrical resistivity method can be widely used for checking/controlling the quality of soil cement in practice.

  15. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  16. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  17. Interfacing graphene and related 2D materials with the 3D world.

    PubMed

    Tománek, David

    2015-04-10

    An important prerequisite to translating the exceptional intrinsic performance of 2D materials such as graphene and transition metal dichalcogenides into useful devices precludes their successful integration within the current 3D technology. This review provides theoretical insight into nontrivial issues arising from interfacing 2D materials with 3D systems including epitaxy and ways to accommodate lattice mismatch, the key role of contact resistance and the effect of defects in electrical and thermal transport.

  18. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  19. Four-terminal electrical testing device. [initiator bridgewire resistance

    NASA Technical Reports Server (NTRS)

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)

    1987-01-01

    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  20. The data preprocessing in apparent resistivity pesudo-section construction of two-dimensional electrical resistivity tomography survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.

    2015-12-01

    Although three-dimensional (3-D) electrical resistivity tomography (ERT) survey has become a popular practice in the site characterization and process monitoring, the two-dimensional (2-D) ERT survey is still often used in the field. This is because that the 2-D ERT survey is relatively easy to do and the focus of site characterization is on the information of 2-D cross section, not necessarily of the 3-D subsurface structure. Examples of such practice include tunnel line and crossing fault survey. In these cases, depending on the property of surface soil to be surveyed, the 2-D ERT survey with pole-pole array may occasionally make us obtain quality good data, however it often gives us a suit of data set both with real and erroneous ones that incorporated the effects of electrode contact and not far enough far electrodes. Without preprocessing, the apparent resistivity pseudo-section constructed from this kind of data set may quite deviate from the real one and the information obtained from it may be misleading and even completely incorrect. In this study, we developed a method of far electrode dynamic correction that is appropriate for raw data preprocessing from 2-D pole-pole array ERT survey. Based on this method, we not only can find and delete the abnormal data points easily, but also can position the coordinates of far electrodes actually working in the field, thus delete the far electrode effects and make best use of the looked strange data points. The method also makes us to be able to judge the effects of electrode contact and avoid using such data points in the following apparent resistivity pseudo-section construction. With this preprocessing to the data set, the constructed apparent resistivity pseudo-section is demonstrated to be more approximate to the real one. This makes the following reversion calculation more robust. We'll introduce this far electrode dynamic correction method and show application examples in the meeting.

  1. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  2. Visualizing Hyporheic Flow Paths in Three Dimensions Using Time-Lapse Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Kohler, B.; Hall, R. O., Jr.; Carr, B.

    2015-12-01

    The hyporheic zone, the region underneath/surrounding a stream where surface and subsurface waters - and subsequently solutes - are exchanged and interact, is important for many biogeochemical, hydrological, and ecological processes. However, it has remained difficult for researchers to sufficiently describe solute transport within the hyporheic zone, due, in part, to the great degree of heterogeneity of the subsurface. Thus, more direct and invasive sampling techniques are limited in their usefulness. We used an indirect approach for measuring the hyporheic zone, employing 3D time-lapse electrical resistivity tomography (ERT), with a pole-dipole configuration, downstream of a constant-rate addition of an electrically conductive salt tracer (Cl-) as a solution via a high-precision peristaltic pump. This method allowed us to measure the extent of subsurface dynamics of streams in Wyoming's Laramie and Snowy Range mountains, as it yields a three-dimensional view of solute transport and exchange within the hyporheic zone. We found that the physical size of the hyporheic zone and the rate of exchange between the hyporheic and surface waters, as estimated from 3D ERT, are largely related to sediment properties (i.e. grain size distribution) and the extent of tailing of the solute's breakthrough curve (length of time for the solute to flush from the subsurface post cessation of the pump upstream). Coarser sediments with a relatively large porosity, such as gravels and sands, allowed for more subsurface exchange, and larger flow paths, than finer sediments with tighter packing structures, such as clays. Stream reaches that showed a higher degree of tailing in the breakthrough curve, traditionally implying a large transient storage zone, had larger and more active hyporheic zones as measured by 3D ERT. We therefore believe further investigations with 3D ERT will better our understanding of hyporheic exchange and stream solute transport.

  3. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  4. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  5. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  6. Epikarstic storage and doline structural characterization with time-lapse geophysics (seismic refraction & electrical resistivity)

    NASA Astrophysics Data System (ADS)

    Valois, R.; Galibert, P.; Guérin, R.; Mendes, M.; Plagnes, V.

    2011-12-01

    Karst formations are one of the most challenging environments in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning groundwater vulnerability assessment, exploitation or hazard estimation. First, dolines are studied as preferential pathways for the protection of karstic aquifer in south France. Geophysics helps to characterize lateral and underground morphologies of such objects and is able to detect doline hidden by the soil cover too. Electrical resistivity and seismic refraction tomographies provide information about dolines filling and could help to propose a genesis scenario. Time-lapse resistivity measurements show that the studied doline is more vulnerable to infiltration on its sides than at its centre. The epikarst could be defined as a perched aquifer above the massive carbonate rocks; it constitutes a highly fractured zone, which water stock capacities. So, the epikarst was investigated with 3D seismic refraction and results show an important velocity anisotropy linked to the fracturing and weathering of the dolostone. The 3D model presents also some large heterogeneities: a corridor with highly weathered dolostone and an unweathered pinnacle. The corridor is probably situated on vertical joints, which have conducted aggressive water. The associated weathering with residual weathered-rock keeping its initial volume could create a "ghost-rock" corridor. So, the epikarst in the dolostones of the Causse du Larzac (France) seems to be composed by "ghost-rock" developed around a specific direction of fractures. Time-lapse electrical resistivity and seismic refraction velocity were carried out on this epikarst to observe the influence of water saturation on the measurements. The results show important variations for both seismic and electrical methods and are localized in the first 6 m: in the weathered zone. So, time-lapse measurements could more easily identify

  7. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  8. Electrical Resistivity Measurements of Hot Dense Aluminum

    NASA Astrophysics Data System (ADS)

    Benage, J. F.; Shanahan, W. R.; Murillo, M. S.

    1999-10-01

    Electrical transport properties of dense aluminum are measured in the disordered liquidlike phase using a well-tamped, thermally equilibrated, exploding wire z pinch. Direct measurements of the electrical conductivity have been made using voltage and current measurements. Our measurements span the minimum conductivity regime, at higher densities than have been produced previously. We find that some Ziman-like theoretical predictions are in fair agreement with the data and one Ziman-like theoretical approach is in good agreement, in contrast to other experiments performed in similar regimes which indicate poor agreement with such theories.

  9. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  10. Detection of Old Mine Tunnels in Mexico City Highlands by Electric Resistivity Image Methods

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Tejero, A.; Cifuentes-Nava, G.; HernaNdez-Quintero, J.

    2013-12-01

    Electrical Resistivity Tomography (ERT) methods have been applied to study cavities or subsurface subsidence threatening urbanized areas. Unfortunately, ERT-3D techniques carried out on heavily urbanized areas become a difficult task, since parallel ERT arrays cannot be deployed. Then, a conventional regular grid cannot be carried out. We present a subsidence problem located in a densely populated portion of Mexico City highlands. Since the damaged houses are in the middle of a highly populated low-class neighborhood, an unconventional ERT array had to be applied. At first, a ';T'-array formed by two perpendicular transects was applied, deployed within a small alley, that stretched from the house entrance. This study determined a tubular structure beneath the houses following an irregular path at depth. Finally, houses were demolished due to the extensive damaged in their foundations. This made possible to carry out a second ERT-3D study, which included a dipolar array called ';L' and ';Corner' arrays. Such a new work defined a similar tubular structure. The cavity entrance was discovered, when excavations were made, although its precise shape could not be defined. The ERT-3D interpretation contributed to locate and accurately determine the geometrical characteristics of the geological feature that caused the collapse of dwellings.

  11. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  12. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  13. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  14. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  15. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  16. Skin electrical resistance does not change following infraclavicular block.

    PubMed

    Lehavi, Amit; Kiorescu, Alexander; Abecasis, Philippe; Baskevitch, Arkady; Katz, Yeshayahu

    2012-06-01

    Peripheral nerve blocks are common and effective means for anesthesia for limb surgery. The evaluation of the success of a peripheral blockade is based on the loss of sensation, with no objective means of detecting a successful block. The autonomic innervation to the upper extremity, which controls both the vascular tone and the activity of sweat glands, is supplied by nerve fibers accompanying the somatic nerve fibers. Previous studies have shown changes in both skin temperature and electrical resistance of the skin following brachial plexus block. We studied 20 patients undergoing hand surgery under infraclavicular brachial plexus block. The electrical resistance of the skin on the palmar aspect of the forearm was continuously recorded on the block arm and on the contralateral arm using a commercial skin resistance monitor. No statistically significant change in the electrical resistance of the skin was observed during 20 minutes after placement of the block. These results strongly suggest that the electrical resistance of the skin cannot be used to predict a successful infraclavicular block. PMID:22848979

  17. Electrical resistivity of Au-ZnO nanocomposite films

    SciTech Connect

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V.

    2013-04-14

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (f{sub c} = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 {mu}{Omega} cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  18. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  19. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  20. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  1. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  2. Electrical resistance tomography experiments at the Oregon Graduate Institute

    NASA Astrophysics Data System (ADS)

    Daily, W.; Ramirez, A.; LaBrecque, D.; Barber, W.

    1995-04-01

    Three controlled experiments were conducted at the Oregon Graduate Institute (OGI) with the purpose of evaluating electrical resistance tomography for imaging underground processes associated with in-situ site assessment and remediation. The OGI facilities are unique: a double-wall tank 10 m square and 5 m deep, filled with river bottom sediments and instrumented for geophysical and hydrological studies. At this facility, liquid contaminants could be released into the confined soil at a scale sufficiently large to represent real-world physical phenomena. In the first test, images of electrical resistivity were made before and during a controlled spill of gasoline into a sandy soil. The primary purpose was to determine if electrical resistivity images could detect the hydrocarbon in either the vadose or saturated zone. Definite changes in electrical resistivity were observed in both the vadose and saturated soils. The effects were an increase in resistivity of as much as 10% above pre-release values. A single resistive anomaly was imaged, directly below the release point, principally within the vadose zone but extending below the phreatic surface. The anomaly remained identifiable in tomograms taken two days after the release ended with clear indications of lateral spreading along the water table. The second test involved electrical resistance measurements before, during, and after air sparging in a saturated soil. The primary purpose was to determine if the electrical images could be used to detect and delineate the extent of the zone influenced by sparging. The images showed an increase of about 20% in resistivity over background values within the sparged zone and the extent of the imaged zone agreed with that inferred from other information. Electrical resistivity tomography measurements were made under a simulated oil storage tank in the third test. Comparison of images taken before and during separate releases of brine and water showed effects of changes

  3. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  4. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  5. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  6. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  7. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  8. Electrical Resistivity Changes in Saturated Rock under Stress.

    PubMed

    Brace, W F; Orange, A S

    1966-09-23

    Electrical resistivity of water-saturated crystalline rock such as granite, diabase, dunite, or quartzite changes by an order of magnitude prior to fracture of the rock in compression. The effect observed even under high confining pressure is due to formation of open cracks which first appear at one-third to two-thirds the fracture stress.

  9. Using electrical resistance probes for moisture determination in switchgrass windrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...

  10. Electrical Resistivity Changes in Saturated Rock under Stress.

    PubMed

    Brace, W F; Orange, A S

    1966-09-23

    Electrical resistivity of water-saturated crystalline rock such as granite, diabase, dunite, or quartzite changes by an order of magnitude prior to fracture of the rock in compression. The effect observed even under high confining pressure is due to formation of open cracks which first appear at one-third to two-thirds the fracture stress. PMID:17749731

  11. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  12. Seasonal Variations in Subsurface Electrical Resistivity in a Floodplain Aquifer

    NASA Astrophysics Data System (ADS)

    Esker, A.; Marshall, S. T.

    2015-12-01

    In an attempt to create a three-dimensional model of a floodplain aquifer along the New River in western North Carolina, we have collected numerous DC electrical resistivity profiles over the course of six years. Unfortunately, the electrical resistivity of geologic materials can be partially controlled by temperature and water content which both vary temporally. To determine the extent to which resistivity data is affected by temporal variations at our site, we conducted multiple DC electrical resistivity surveys collected at the same location at various times of the year to quantify changes in the resistivity patterns. We use a Wenner array that offers a large signal to noise ratio, but relatively few data points, and a Dipole-Dipole array that produces more data, but is more sensitive to noise. For each data acquisition date, we measure the depth to water at seven boreholes parallel to the survey to determine if any of the collected resistivity surveys can be independently used to detect the water table and if any changes affect subsurface resistivities. We created a stacked model of all surveys of the same array type, and compare to each survey to qualitatively and quantitatively identify changes in the subsurface patterns. Results indicate there are few major changes in the qualitative subsurface patterns with time. RMS errors between the stacked model and different surveys range from 56 to 201 Ohm-m and percent differences range from 5.84% to 21.50%. The surveys with largest RMS errors correspond to days that had a significant change of water table level from the static level. Our preliminary results suggest that so long as surveys are collected during similar water table conditions, data from multiple years should yield similar results. Furthermore, the subsurface resistivity values and GPR surveys do not clearly delineate the water table levels, suggesting that near surface geophysical methods many not be able to detect the water table at our site.

  13. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  14. Design and fabrication of a 3D-structured gold film with nanopores for local electric field enhancement in the pore.

    PubMed

    Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy

    2016-02-12

    Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.

  15. Electrical resistance of complex two-dimensional structures of loops

    NASA Astrophysics Data System (ADS)

    Gomes, M. A. F.; Hora, R. R.; Brito, V. P.

    2011-06-01

    This work presents a study of the dc electrical resistance of a recently discovered hierarchical two-dimensional system which has a complex topology consisting of a distribution of disordered macroscopic loops with no characteristic size and a distribution of several types of contacts between loops. In addition to its intrinsic interest in the important context of low-dimensional systems and crumpled systems, the structures under study are of relevance in a number of areas including soft condensed matter and packing of DNA in viral capsids. In the particular case discussed here, the loops are made of layers of graphite with a height of tens of nanometers deposited on a substrate of cellulose. Experiments with these systems indicate an anomalous electrical resistance of sub-diffusive type. The results reported here are explained with scaling arguments and computer simulation. A comparison with the dc electrical properties of percolation clusters is made, and some other experimental issues as future prospects are commented.

  16. Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Petrovic, Ljubica; Massdodi, Iqbal; Rizvi, Imran; Hasan, Tayyaba

    2013-03-01

    The dismal survival statistics for pancreatic cancer are due in large part to the notoriously poor response of these tumors to conventional therapies. Here we examine the ability of photodynamic therapy (PDT), using the photosensitizer verteporfin to enhance of the efficacy of traditional chemotherapy agents and/or eradicate populations that are nonresponsive to these agents. Using an in vitro 3D tumor model of pancreatic cancer combined with an imaging-based methodology for quantifying therapeutic response, we specifically examine PDT combination treatments with gemcitabine and oxaliplatin. We show that our 3D cell culture model recapitulates a more clinically-relevant dose response to gemcitabine, with minimal cytotoxic response even at high doses. The same cultures exhibit modest response to PDT treatments, but are also less responsive to this modality relative to our previous reports of monolayer dose response in the same cells. In combination we found no evidence of any enhancement in efficacy of either PDT or gemcitabine treatment regardless of dose or sequence (PDT before gemcitabine, or gemcitabine before PDT). However, when oxaliplatin chemotherapy was administered immediately after treatment with 2.5J/cm2 verteporfin PDT, there was an observable enhancement in response that appears to exceed the additive combination of either treatment alone and suggesting there may be a synergistic interaction. This observation is consistent with previous reports of enhanced efficacy in combinations of PDT with platinum-based chemotherapy. The contrast in results between the combinations examined here underscores the need for rational design of mechanism-based PDT combinations.

  17. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Wilkinson, P. B.; Penn, S.; Meldrum, P. I.; Kuras, O.; Loke, M. H.; Gunn, D. A.

    2013-06-01

    We describe the application of 3D electrical resistivity tomography (ERT) to the characterisation and reserve estimation of an economic fluvial sand and gravel deposit. Due to the smoothness constraints used to regularise the inversion, it can be difficult to accurately determine the geometry of sharp interfaces. We have therefore considered two approaches to interface detection that we have applied to the 3D ERT results in an attempt to provide an accurate and objective assessment of the bedrock surface elevation. The first is a gradient-based approach, in which the steepest gradient of the vertical resistivity profile is assumed to correspond to the elevation of the mineral/bedrock interface. The second method uses an intrusive sample point to identify the interface resistivity at a location within the model, from which an iso-resistivity surface is identified that is assumed to define the interface. Validation of these methods has been achieved through direct comparison with observed bedrock surface elevations that were measured using real-time-kinematic GPS subsequent to the 3D ERT survey when quarrying exposed the bedrock surface. The gradient-based edge detector severely underestimated the depth to bedrock in this case, whereas the interface resistivity method produced bedrock surface elevations that were in close agreement with the GPS-derived surface. The failure of the gradient-based method is attributed to insufficient model sensitivity in the region of the bedrock surface, whereas the success of the interface resistivity method is a consequence of the homogeneity of the mineral and bedrock, resulting in a consistent interface resistivity. These results highlight the need for some intrusive data for model validation and for edge detection approaches to be chosen on the basis of local geological conditions.

  18. Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Nilsson, H.; Kuras, O.; Bai, L.

    2016-05-01

    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention.

  19. SAR analysis of the improved resonant cavity applicator with electrical shield and water bolus for deep tumors by a 3-D FEM.

    PubMed

    Shindo, Yasuhiro; Iseki, Y; Yokoyama, K; Arakawa, J; Watanabe, K; Kato, K; Kubo, M; Uzuka, T; Takahashi, H

    2012-01-01

    This paper discusses the improvements of the re-entrant resonant cavity applicator, such as an electromagnetic shield and a water bolus for concentrating heating energy on deep tumors in an abdominal region of the human body. From our previous study, it was found that the proposed heating system using the resonant cavity applicator, was effective for heating brain tumors and also for heating other small objects. However, when heating the abdomen with the developed applicator, undesirable areas such as the neck, arm, hip and breast were heated. Therefore, we have improved the resonant cavity applicator to overcome these problems. First, a cylindrical shield made of an aluminum alloy was installed inside the cavity. It was designed to protect non-tumorous areas from concentrated electromagnetic fields. Second, in order to concentrate heating energy on deep tumors inside the human body, a water bolus was installed around the body. Third, the length of the lower inner electrode was changed to control the heating area. In this study, to evaluate the effectiveness of the proposed methods, specific absorption rate (SAR) distributions were calculated by FEM with the 3-D anatomical human body model reconstructed from MRI images. From these results, it was confirmed that the improved heating system was effective to non-invasively heat abdominal deep tumors.

  20. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    NASA Astrophysics Data System (ADS)

    Chiodarelli, Nicolo'; Masahito, Sugiura; Kashiwagi, Yusaku; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J.; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M.

    2011-02-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  1. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  2. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  3. Soil characterization using electrical resistivity tomography and geotechnical investigations

    NASA Astrophysics Data System (ADS)

    Sudha, Kumari; Israil, M.; Mittal, S.; Rai, J.

    2009-01-01

    Electrical Resistivity Tomography (ERT) has been used in association with Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) for Geotechnical investigations at two sites, proposed for thermal power plants, in Uttar Pradesh (UP), India. SPT and DCPT tests were conducted at 28 points and two ERT profiles, each measuring 355 m long, were recorded using 72 electrodes deployed at 5 m spacing. Electrical characterization of subsurface soil was done using borehole data and grain size analysis of the soil samples collected from boreholes. The concept of electrical resistivity variation with soil strength related to the grain size distribution, cementation, porosity and saturation has been used to correlate the transverse resistance of soil with the number of blow counts ( N-values) obtained from SPT and DCPT data. It was thus observed that the transverse resistance of soil column is linearly related with the number of blow counts ( N-values) at these sites. The linear relationships are site-specific and the coefficients of linear relation are sensitive to the lithology of subsurface formation, which was verified by borehole data. The study demonstrates the usefulness of the ERT method in geotechnical investigations, which is economic, efficient and less time consuming in comparison to the other geotechnical methods, such as SPT and DCPT, used for the purpose.

  4. Characterization of fracture aperture field heterogeneity by electrical resistance measurement.

    PubMed

    Boschan, A; Ippolito, I; Chertcoff, R; Hulin, J P; Auradou, H

    2011-04-01

    We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement experiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create "channel" or "barrier" structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity U(→). In the "channel" geometry, the resistance displays an initial linear variation followed by a tail part which reflects the velocity contrast between slow and fast flow channels. In the "barrier" geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple flow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement.

  5. High precision measurement of electrical resistance across endothelial cell monolayers.

    PubMed

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  6. Design, Synthesis, and Preclinical Evaluation of 4-Substituted-5-methyl-furo[2,3-d]pyrimidines as Microtubule Targeting Agents That Are Effective against Multidrug Resistant Cancer Cells.

    PubMed

    Devambatla, Ravi Kumar Vyas; Namjoshi, Ojas A; Choudhary, Shruti; Hamel, Ernest; Shaffer, Corena V; Rohena, Cristina C; Mooberry, Susan L; Gangjee, Aleem

    2016-06-23

    The design, synthesis, and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-d]pyrimidines are reported. Synthesis involved N(4)-alkylation of N-aryl-5-methylfuro[2,3-d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-d]pyrimidine and appropriate aryl iodides. Compounds 3, 4, and 9 showed potent microtubule depolymerizing activities, while compounds 6-8 had slightly lower potency. Compounds 4, 6, 7, and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-4). Compounds 3, 4, and 6-9 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that can limit the efficacy of paclitaxel, docetaxel, and the vinca alkaloids. In the NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with antitumor activity. PMID:27213719

  7. Feature enhancement from electrical resistivity data in an archaeological survey: the Sapelos hillfort experiment (Boticas, Portugal)

    NASA Astrophysics Data System (ADS)

    Alves, Mafalda; Bernardes, Paulo; Fontes, Luís.; Martins, Manuela; Madeira, Joaquim

    2015-06-01

    The PoPaTERVA project is developing applied research regarding the comprehension of the multi-layered cultural background of the Terva Valley Archaeological Park, in Boticas, Portugal. One of the main aspects focused on the project is the appliance of remote sensing techniques to enhance non visible archaeological features. An earth resistance tomography (ERT) survey was carried out at the Sapelos hillfort, by the specialized SINERGEO geophysicist's team, using a Wenner-Schlumberger array. The resulting data was analyzed by the authors in order to extract and verify valid archaeological features regarding the settlement's structures. There are several adequate systems that can be used to visualize the surveyed data (x, y, z, Ω). However, the authors preferred the open source Visualization Toolkit (VTK) from Kitware Inc., since it supports several visualization and modelling techniques that are useful for interpretation purposes in archaeological contexts: for instance, it is possible to represent the archaeological site as a virtual scale model, which can be freely manipulated. For the Sapelos hillfort, two distinct visualizations were developed to represent the acquired electrical resistivity data. The first one is used to create a comprehensive volume from the surveyed data, which is imported as structured 3D points and mapped into a 3D volume. However, this representation does not provide the necessary insight for analysis purposes, so a second visualization is needed to cluster the relevant data for archaeological research. This visualization is based on contouring algorithms that generate isosurfaces from scalar resistivity values (Ω), therefore enhancing the features with potential archaeological interest.

  8. A unique data acquisition system for electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Zonge, K.

    1996-01-04

    Unique capabilities are needed in instrumentation used for acquiring data to do electrical resistance tomography (ERT). A data acquisition system is described which has a good combination of the required capabilities and yet is field rugged and user friendly. The system is a multichannel detector for high data rates, can operate over a wide range of load conditions, will measure both in phase and quadrature resistance at frequencies between 0.0007 Hz and 8 kHz. The system has been used in both the field and laboratory to collect data with a typical accuracy between 1 and 10%.

  9. Aeromagnetic and electrical resistivity surveys of Ascension Island

    SciTech Connect

    Ross, H.P.; Nielson, D.L.

    1995-12-31

    As part of an evaluation of the geothermal energy potential, the University of Utah Research Institute conducted a detailed aeromagnetic survey of Ascension Island, South Atlantic Ocean, in 1983. Interpretation of the data, supported by three-dimensional numerical modeling, indicated structural features and a low-magnetization area near the center of the island. Reconnaissance and detailed electrical resistivity surveys were completed in 1984 and these identified a zone of low apparent resistivity which corresponds to anomalous temperatures and alteration well above a high-temperature geothermal system.

  10. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  11. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.

  12. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  13. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.

  14. MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE

    NASA Technical Reports Server (NTRS)

    Shaeffer, J. F.

    1994-01-01

    MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and

  15. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  16. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  17. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  18. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. Negative differential electrical resistance of a rotational organic nanomotor

    PubMed Central

    Sadeghi, Hatef; Sangtarash, Sara; Al-Galiby, Qusiy; Sparks, Rachel

    2015-01-01

    Summary A robust, nanoelectromechanical switch is proposed based upon an asymmetric pendant moiety anchored to an organic backbone between two C60 fullerenes, which in turn are connected to gold electrodes. Ab initio density functional calculations are used to demonstrate that an electric field induces rotation of the pendant group, leading to a nonlinear current–voltage relation. The nonlinearity is strong enough to lead to negative differential resistance at modest source–drain voltages. PMID:26734524

  20. Electrical resistivity of V-Cr-Ti alloys

    SciTech Connect

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  1. Assessment of contamination by intensive cattle activity through electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sainato, Claudia M.; Losinno, Beatriz N.; Malleville, Horacio J.

    2012-01-01

    The intensive animal production is considered highly risky for groundwater and soil because of high mobility of some contaminants from animal wastes. The aim of this work was to obtain an electrical conductivity image of unsaturated and saturated zones at a feedlot (cattle feeding field) at the surroundings of Buenos Aires city (Argentina) in order to detect the most critical sectors of the field, with regard to contamination by animal wastes. Dipole-dipole electrical soundings (electrical resistivity tomography) were performed at the corral zone and the surroundings. 2D and 3D models of conductivity were obtained. Even if there is a calcareous plate below some parts of the corrals and soil compaction is high, vertical infiltration or subsurface runoff may have occurred since these sites, with high animal charge, show soil conductivities higher than the surroundings. The models showed higher conductivities of saturated zone increasing in the direction of groundwater flow. These results were taken into account for further designs of soil and groundwater sampling. Groundwater conductivity was three times greater downgradient from the corrals with high concentrations of nitrates and phosphorous. A zone of high conductivity was found below a small channel of effluents from the corrals.

  2. Complex electrical resistance tomography of a subsurface PCE plume

    SciTech Connect

    Ramirez, A.; Daily, W,; LeBrecque, D.

    1996-01-01

    A controlled experiment was conducted to evaluate the performance of complex electrical resistivity tomography (CERT) for detecting and delineating free product dense non-aqueous phase liquid (DNAPL) in the subsurface. One hundred ninety liters of PCE were released at a rate of 2 liters per hour from a point 0.5 m below ground surface. The spill was conducted within a double walled tank where saturated layers of sand, bentonite and a sand/bentonite mixture were installed. Complex electrical resistance measurements were performed. Data were taken before the release, several times during, and then after the PCE was released. Magnitude and phase were measured at 1 and 64 Hz. Data from before the release were compared with those during the release for the purpose of imaging the changes in conductivity resulting from the plume. Conductivity difference tomographs showed a decrease in electrical conductivity as the DNAPL penetrated the soil. A pancake-shaped anomaly developed on the top of a bentonite layer at 2 m depth. The anomaly grew in magnitude and extent during the release and borehole television surveys data confirmed the anomaly to be free-product PCE whose downward migration was stopped by the low permeability clay. The tomographs clearly delineated the plume as a resistive anomaly.

  3. 3D stability analysis of Rayleigh-Bénard convection of a liquid metal layer in the presence of a magnetic field—effect of wall electrical conductivity

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Dimitrios; Pelekasis, Nikos A.

    2014-10-01

    Rayleigh-Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three-dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electrical conductivity of the cavity walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and increases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha 2 signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, cH + Ha -1. When poor conducting Hartmann walls are considered, cH ≪ 1, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electrical conductivity of the Hartmann

  4. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  5. Metallic nanowire networks: effects of thermal annealing on electrical resistance.

    PubMed

    Langley, D P; Lagrange, M; Giusti, G; Jiménez, C; Bréchet, Y; Nguyen, N D; Bellet, D

    2014-11-21

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq(-1). Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.

  6. Metallic nanowire networks: effects of thermal annealing on electrical resistance.

    PubMed

    Langley, D P; Lagrange, M; Giusti, G; Jiménez, C; Bréchet, Y; Nguyen, N D; Bellet, D

    2014-11-21

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq(-1). Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays. PMID:25267592

  7. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  8. Electrical resistivity tomography investigations on a paleoseismological trenching study

    NASA Astrophysics Data System (ADS)

    Berge, Meriç Aziz

    2014-10-01

    Two-dimensional electrical resistivity tomography (ERT) investigation was performed in a paleoseismological trenching study. Data acquisition strategies such as the selection of electrode configuration and electrode intervals of ERT application were investigated in this paper. The ERT results showed that the Wenner and Wenner-Schlumberger arrays yielded similar results for subsurface characteristics whereas the DD array provided slightly different results. The combined usage of these arrays produced satisfactory images of the subsurface resistivity distribution. In addition, the electrode spacing tests revealed that a suitable interpretation of subsurface geology can be obtained from a 5 m electrode interval. However, a suitable trenching location defined by successful 2D resistivity models was obtained for 1 m electrode spacing. Therefore, the comparison of the trench and ERT results was also possible. The results of trenching and ERT studies substantially support each other.

  9. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  10. Enhancing the detectability of a high-resistivity target by using a synthetic aperture source for 3D marine CSEM modelling of a rugged seafloor

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Shen, Jinsong; Gao, Yan

    2016-10-01

    When processing marine controlled-source electromagnetic (CSEM) data from a rugged seafloor, enhancing the reservoir response and suppressing the topographic effect and other interference are significant issues, especially in shallow water. We simulated the CSEM responses specific to these issues using an efficient finite-difference (FD) code. The synthetic aperture technique was applied to steer the EM field toward a high-resistivity target on the seafloor. A weighted 2D synthetic aperture source was constructed by imposing a real weighting factor on each source point. Numerical experiments showed that using the weighted 2D synthetic aperture source significantly enhanced the effective CSEM signals. Because of the destructive interference between bathymetric distortion and the airwave effect in shallow water, the synthetic aperture technique is useful for dealing with seafloor topography. Better results can be obtained before steering the distorted response with a bathymetric correction. However, the detectability results may exhibit a huge difference in numerical values if the background resistivity of the bathymetric model is estimated incorrectly.

  11. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Brown, Brandon; Hughes, Mary E.

    2001-03-01

    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  12. Electrical Resistivity Tomography of the Karstic Aquifer of Bittit spring (Middle Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Qarqori, Kh.; Rouai, M.; Moreau, F.; Saracco, G.; Hermitte, D.; Boualoul, M.; Dauteuil, O.; Biessy, G.; Sahbi, H.

    2009-04-01

    3D picture of the fracture system has been drawn showing a mini-graben structure. Geophysical scans and interpreted fractures were displayed with Gocad software leading to geometric construction of aquifer units and to 3D modelling of subsurface architecture. Several horizontal electrical resistivity profiles and electromagnetic VLF profiles were also performed in order to discriminate between dry and favourable hydrological fractures. ERT appears to be an appropriate geophysical method in this issue, especially by improving understanding of fracture geometry. This study initiates a hydrogeophysical research in the Middle Atlas karst in order to improve water resources management and reducing aquifer vulnerability in the region.

  13. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried

  14. 3-D capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1998-01-01

    A capacitive type proximity sensor having improved range and sensitivity between a surface of arbitrary shape and an intruding object in the vicinity of the surface having one or more outer conductors on the surface which serve as capacitive sensing elements shaped to conform to the underlying surface of a machine. Each sensing element is backed by a reflector driven at the same voltage and in phase with the corresponding capacitive sensing element. Each reflector, in turn, serves to reflect the electric field lines of the capacitive sensing element away from the surface of the machine on which the sensor is mounted so as to enhance the component constituted by the capacitance between the sensing element and an intruding object as a fraction of the total capacitance between the sensing element and ground. Each sensing element and corresponding reflecting element are electrically driven in phase, and the capacitance between the sensing elements individually and the sensed object is determined using circuitry known to the art. The reflector may be shaped to shield the sensor and to shape its field of view, in effect providing an electrostatic lensing effect. Sensors and reflectors may be fabricated using a variety of known techniques such as vapor deposition, sputtering, painting, plating, or deformation of flexible films, to provide conformal coverage of surfaces of arbitrary shape.

  15. Case histories of electrical resistivity and controlled-source magnetotelluric surveys for the site investigation of tunnel construction

    SciTech Connect

    Kwon, H.S.; Song, Y.; Yi, M.J.; Chung, H.J.; Kim, K.S.

    2006-12-15

    In tunnel construction, the information regarding rock mass quality and the distribution of weak zones is crucial for economical tunnel design and to ensure safety. Usually, the rock mass grade is estimated by observing recovered cores obtained by drilling or by physical parameters calculated in a laboratory using core samples. However, the high drilling cost limits the number of boreholes; furthermore, rough terrains can reduce the access of drilling machines to the survey sites. In such situations, surface geophysical methods such as electrical resistivity or controlled-source magnetotelluric (CSMT) can provide a rough estimate of the rock mass condition over the planned tunnel route. These methods can also map weak zones (faults, fractures, coal bearing zones, and cavities), which are characterized by a lower resistivity than the surrounding fresh rock mass. We present two successful applications of the electrical resistivity and CSMT methods to the site investigation of tunnel construction over a rough terrain. The first example demonstrates that the boundary of the bedrock and weak zones related to the distribution of coaly shale and coal seams were estimated to extend beyond a few hundred meters below the rough surface. The second example shows that the developing direction and depth of cavities, which are mainly related to the weak zones in limestone, were successfully interpreted by a three-dimensional (3-D) electrical resistivity survey with the aid of borehole test results.

  16. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  17. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  18. Cyclic electric field stress on bipolar resistive switching devices

    NASA Astrophysics Data System (ADS)

    Schulman, A.; Acha, C.

    2013-12-01

    We have studied the effects of accumulating cyclic electrical pulses of increasing amplitude on the non-volatile resistance state of interfaces made by sputtering a metal (Au, Pt) on top of the surface of a cuprate superconductor YBa2Cu3O7-δ. We have analyzed the influence of the number of applied pulses N on the relative amplitude of the remnant resistance change between the high (RH) and the low (RL) state [(α=(RH-RL)/RL] at different temperatures (T). We show that the critical voltage (Vc) needed to produce a resistive switching (RS, i.e., α >0) decreases with increasing N or T. We also find a power law relation between the voltage of the pulses and the number of pulses Nα0 required to produce a RS of α =α0. This relation remains very similar to the Basquin equation used to describe the stress-fatigue lifetime curves in mechanical tests. This points out to the similarity between the physics of the RS, associated with the diffusion of oxygen vacancies induced by electrical pulses, and the propagation of defects in materials subjected to repeated mechanical stress.

  19. Connection equation and shaly-sand correction for electrical resistivity

    USGS Publications Warehouse

    Lee, Myung W.

    2011-01-01

    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  20. Modelling the electrical resistivity response to CO2 plumes generated in a laboratory, cylindrical sandbox

    NASA Astrophysics Data System (ADS)

    Kremer, T.; Maineult, A. J.; Binley, A.; Vieira, C.; Zamora, M.

    2012-12-01

    CO2 capture and storage into deep geological formations is one of the main solutions proposed to reduce the concentration of anthropic CO2 in the atmosphere. The monitoring of injection sites is a crucial issue to assess for the long term viability of CO2 storage. With the intention of detecting potential leakages, we are investigating the possibility of using electrical resistivity tomography (ERT) techniques to detect CO2 transfers in the shallow sub-surface. ERT measurements were performed during a CO2 injection in a cylindrical tank filled with Fontainebleau sand and saturated with water. Several measurements protocols were tested. The inversion of the resistances measured with the software R3T (Binley and Kemna (2005)) clearly showed that the CO2 injection induces significant changes in the resistivity distribution of the medium, and that ERT has a promising potential for the detection and survey of CO2 transfers through unconsolidated saturated media. We modeled this experiment using Matlab by building a 3D cellular automaton that describes the CO2 spreading, following the geometric and stochastic approach described by Selker et al. (2007). The CO2 circulation is described as independents, circular and continuous gas channels whose horizontal spread depends on a Gaussian probability law. From the channel distribution we define the corresponding gas concentration distribution and calculate the resistivity of the medium by applying Archie's law for unsaturated conditions. The forward modelling was performed with the software R3T to convert the resistivity distribution into resistances values, each corresponding to one of the electrode arrays used in the experimental measurements. Modelled and measured resistances show a good correlation, except for the electrode arrays located at the top or the bottom of the tank. We improved the precision of the model by considering the effects due to CO2 dissolution in the water which increases the conductivity of the

  1. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  2. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors.

    PubMed

    Sarisozen, Can; Abouzeid, Abraham H; Torchilin, Vladimir P

    2014-10-01

    Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and in spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for the evaluation of co-delivery of anticancer compounds in targeted micelles. PMID:25016976

  3. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors

    PubMed Central

    Sarisozen, Can; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2014-01-01

    Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with Transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for evaluation of co-delivery of anticancer compounds in targeted micelles. PMID:25016976

  4. Optical device with low electrical and thermal resistance Bragg reflectors

    DOEpatents

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  5. Optical device with low electrical and thermal resistance bragg reflectors

    DOEpatents

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  6. Evaluation of the radiation resistance of electrical insulation materials

    NASA Astrophysics Data System (ADS)

    Perrin, Sh.; Schönbacher, H.; Tavlet, M.; Widler, R.

    2002-12-01

    The qualification of insulating materials for electrical cables is often accomplished according to the IEC 60544 standard of the International Electrotechnical Commission. The mechanical properties of the polymeric insulators are tested prior and after irradiation at relatively high dose rates. To assess the ageing of selected materials under realistic service conditions, usually at lower dose rate, an IEC Working Group has proposed extrapolation methods (IEC 61244-2), one of which is applied here for a cable sheathing material from Huber+Suhner. The method is found to be suitable to compare radiation resistance data of different materials irradiated under different conditions.

  7. Final Report, FY 2001 200 East Vadose Test Site Hanford Washington Electrical Resistance Tomography

    SciTech Connect

    Ramirez, A.; Daily, W.; Binley, A.

    2001-06-30

    This report covers the electrical resistance tomography (ERT) work performed at the Hanford Reservation, 200 East Area Vadose test (Sisson and Lu) site during the period March 23 through May 5,2001. The purposes of the ERT work were to: (1) Compare and contrast the development of the highly concentrated sodium thiosulfate plume (FY 01 work) with the fresh river water plume observed during FY 00. (2) Use the resistance images to infer the dynamics of the plume during two or three of the sodium thio-sulfate releases and during the water ''chaser'' release. (3) Determine the influence of the site's steel casings on the ability to construct reliable ERT images. (4) Determine if the steel casings at the site can be used as long electrodes to provide useful images of at least one release. (5) Develop quantitative estimates of the noise in the data and its effect on reconstructed images. Eleven electrode arrays (nine electrodes arrays available for the FY00 work), each with 15 electrodes, were installed at the site. These were used to perform 3D surveys before, during, and after 3 different spills.

  8. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  9. Ion-migration Polarity Change and 3D Shape Evaluation in the WDT Method

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Mitobe, Kazutaka; Yoshimura, Noboru

    In this paper, protection resistance was measured as a parameter for the 3D shape of the dendrite, which was produced on the copper, printed wired board by the WDT method. The measurement was occurred using the 3D shape measurement system. We measured the 3D shape of a dendrite in a nonuniform electric field with a changing polarity. Moreover, the polar effect of ion-migration was examined by the 3D shape electric field analysis using ANSYS. Consequently, the height of the accumulation things at anode was higher than the negative pole side under round shaped cathode condition. Similarly, the quantity of the accumulation thing is also found larger at anode. On the other hand, the dispersal of the accumulation thing is observed between the anode and the negative pole under a round shaped anode conditions. And it turns out that there is also smaller accumulation thing at the tip part of a round shaped electrode. Moreover, for a same protection resistance, the amounts of generating of the accumulation objects per unit electric charge were larger for round shaped anode conditions comparing to the cathode. It is seen from 3d shape electric field analysis, that horizontal part of the electric field vector at anode is greater than the cathode. At the same time, the field intensity at anode is also larger than cathode. For a round shaped anode in 3D shape electric field analysis, the strongest electric field vector was found between a round shape electrode tip part and flat electrode. Although in the round shape cathode, the electric field vector had become the strongest between the flat electrode and the round shape electrode tip part. The electric field intensity of a nearby flat electrode was strong for a round shape electrode facing the field. Since the action states of the accumulation thing after a short circuit is different depending on the polarity of electrode for a nonuniform electric field conditions, it appears that it will not take much time to occur a failure

  10. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  13. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

  14. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  15. Review of Electrical Resistivity Measurements of Dense Aluminum

    NASA Astrophysics Data System (ADS)

    Benage, John F.

    1999-11-01

    We have completed an analysis of recent experiments that were done at Los Alamos and other laboratories that measured the electrical resistivity of aluminum at conditions where the aluminum is in a dense, strongly coupled, plasma state. Strongly coupled plasmas occur in laboratory systems of high energy density whenever material is rapidly heated to plasma conditions, such as laser heated plasmas and ohmically heated metals. The properties of these plasmas cannot be treated using standard plasma theory, which treats the correlations among particles as a small effect. Many theories have been developed which predict the properties of such plasmas, but little experimental data exists with which to compare. These recent experiments provide data for a more comprehensive comparison of electrical resistivity with dense plasma theories. The experiments were carried out under a wide range of conditions, from temperatures << 1 eV up to 25 eV and densities from nearly solid density to << 1comparison of the data with various theoretical predictions. From this comparison we draw some conclusions concerning under what conditions these theories are accurate. A discussion of yet unresolved issues will also be presented.

  16. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  17. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  18. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  19. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  20. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  1. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  2. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    USGS Publications Warehouse

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  3. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  4. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  6. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  7. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  8. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    PubMed Central

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A.

    2012-01-01

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages. PMID:23443085

  9. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  10. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous

  11. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  12. Particle Acceleration at Reconnecting 3D Null Points

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Browning, P.; Gordovskyy, M.; Dalla, S.

    2012-12-01

    Hard X-ray observations from the RHESSI spacecraft indicate that a significant fraction of solar flare energy release is in non-thermal energetic particles. A plausible acceleration mechanism for these are the strong electric fields associated with reconnection, a process that can be particularly efficient when particles become unmagnetised near to null points. This mechanism has been well studied in 2D, at X-points within reconnecting current sheets; however, 3D reconnection models show significant qualitative differences and it is not known whether these new models are efficient for particle acceleration. We place test particles in analytic model fields (eg. Craig and Fabling 1996) and numerical solutions to the the resistive magnetohydrodynamic (MHD) equations near reconnecting 3D nulls. We compare the behaviour of these test particles with previous results for test particle acceleration in ideal MHD models (Dalla and Browning 2005). We find that the fan model is very efficient due to an increasing "guide field" that stabilises particles against ejection from the current sheet. However, the spine model, which was the most promising in the ideal case, gives weak acceleration as the reconnection electric field is localised to a narrow cylinder about the spine axis.

  13. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  14. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  15. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  16. 3D printing of a multifunctional nanocomposite helical liquid sensor

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Zhuang; Yang, Xuelu; Heuzey, Marie-Claude; Therriault, Daniel

    2015-04-01

    A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents.A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00278h

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  19. 3D hollow nanostructures as building blocks for multifunctional plasmonics.

    PubMed

    De Angelis, Francesco; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Zaccaria, Remo Proietti; Di Fabrizio, Enzo

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications.

  20. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  1. Resistive graphene humidity sensors with rapid and direct electrical readout

    NASA Astrophysics Data System (ADS)

    Smith, Anderson D.; Elgammal, Karim; Niklaus, Frank; Delin, Anna; Fischer, Andreas C.; Vaziri, Sam; Forsberg, Fredrik; Råsander, Mikael; Hugosson, Håkan; Bergqvist, Lars; Schröder, Stephan; Kataria, Satender; Östling, Mikael; Lemme, Max C.

    2015-11-01

    We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further

  2. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  3. Electrical resistivity tomography at the DOE Hanford site

    SciTech Connect

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring.

  4. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C.; Kirby, Kevin K.; Gregoire, Daniel J.

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  5. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1993-07-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  6. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D. ); Nicol, T.H. )

    1993-01-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  7. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (<1000 Ohm.m) below 2 to 5 meter depths and higher resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this

  8. Inverse estimation of the unsaturated soil hydraulic properties from tension disc infiltrometer data and electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Swinnen, R.; Pessel, M.; Vanderborght, J.; Coquet, Y.; Vachier, P.

    2009-04-01

    An accurate and time-efficient estimation of unsaturated soil hydraulic properties in the field remains a challenge. Tension-infiltrometry is often used to determine unsaturated soil hydraulic conductivity and its spatial variability in the field. Due to capillary flow, a 3-D wetting bulb develops under the tension infiltrometer. The shape of the bulb depends mainly on the unsaturated soil hydraulic properties. In classical tension-infiltrometer experiments only the amount of infiltrated water is measured with time and used to infer soil hydraulic conductivity. Electrical resistivity tomography (ERT) offers the possibility to image the spatial distribution of bulk soil electrical conductivity from a set of apparent electrical resistivity (ER) measurements, which is related through a petrophysical model to the soil water content. Therefore, apparent ER data contain information about the 3-D structure of the wetting bulb, which may be exploited to infer soil hydraulic properties. Whether a combination of tension-infiltrometer and apparent ER data can be used to estimate soil hydraulic parameters was investigated in numerical experiments. Instead of using a tomographic inversion of the apparent ER data, i.e. ERTomography, to derive the spatial distribution of the wetting bulb from which subsequently hydraulic parameters are derived, we explore the potential of a joint inversion approach that derives hydraulic parameters directly from apparent ER data. The combined infiltration and apparent ER datasets showed that the soil hydraulic parameters could be inverted from a single infiltration experiment, which is not possible when only infiltration data are used for inversion. Application of the proposed method was performed on a silt clay loam. Results have shown accurate estimations on the saturated hydraulic conductivity and on the hydraulic parameters of the water retention curve.

  9. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  10. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  11. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  12. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  13. Investigations of discontinuous permafrost using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni

    2016-04-01

    We have used electrical resistivity tomography (ERT) extensively over the past five years to examine frozen ground characteristics at natural and disturbed sites within the discontinuous permafrost zones of northern Canada. Examples of pure research include investigations to delimit permafrost patch size, to examine changes in permafrost conditions at altitudinal treeline, and to assess permafrost thickness in palsa bogs. Applied research has included hazard mapping where ERT, in association with boreholes, has been used to characterize permafrost conditions in different terrain units at Yukon communities as part of planning for climate change adaptation. ERT has also been used to examine temporal change through repeated surveys at sites equipped with permanent arrays. Rapid change is occurring at sites which were subject to recent forest fire in the Northwest Territories. Gradual reductions in average resistivity at sites along the Alaska Highway in Yukon and northern British Columbia indicate progressive increases in unfrozen moisture while ground temperatures at the same sites have increased only very slightly. We conclude that ERT should become a standard technique for the investigation of discontinuous permafrost sites and should be incorporated as a monitoring technique within international programs such as the Global Terrestrial Network for Permafrost.

  14. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines

    NASA Astrophysics Data System (ADS)

    Fikos, I.; Vargemezis, G.; Zlotnicki, J.; Puertollano, J. R.; Alanis, P. B.; Pigtain, R. C.; Villacorte, E. U.; Malipot, G. A.; Sasai, Y.

    2012-10-01

    Taal volcano (311 m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250 m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261-266, 2005; Zlotnicki et al. Bull Volcanol 71:29-49, 2009a, Phys Chem Earth 34:294-408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.

  15. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  16. Comparison of transport in lysimeters with undisturbed loamy sand and silty soil using non invasive imaging with electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Garre, S.; Köstel, J.; Vanderborght, J.; Javaux, M.

    2009-04-01

    The transport of chemicals through soil is subject to the 3-D structure of the soil hydraulic properties (e.g. unsaturated hydraulic conductivity function) and state variables (e.g. water content). Although this is known for decades, it is still difficult to quantitatively predict solute transport especially when preferential flow or fingering occurs. One reason for this is the shortcoming of 3-D data on both the solute transport process itself and its determining parameters. Lysimeters provide excellent means to control the boundary conditions and are accessible from all sides. Filled with undisturbed soil and equipped with geophysical imaging devices they provide a valuable tool to visualize and better understand solute transport in natural soils. In our study we conducted solute tracer step experiments on two distinct undisturbed unsaturated field soils (gleyic Cambisol and orthic Luvisol). The boundary conditions were set to constant irrigation (1.5 cm/day) at the top and a constant suction at the bottom. Tracer breakthrough was monitored using 3-D Electrical Resistivity Tomography (ERT) and Time-Domain Reflectometry (TDR). We used the effluent tracer breakthrough and TDR measured breakthrough as a ground truth for the ERT data. From these data, apparent convection-dispersion transport parameters were derived. We found considerably different transport velocities and dispersivities for the two soils. In the orthic Luvisol, distinct preferential transport paths were visualized and followed in time. In the gleyic Cambisol we observed minor heterogeneities in the transport front which were aligned to the plowing direction. The study demonstrates the usefulness of ERT to characterize and compare the 3-D spatio-temporal evolution of solute fronts. The results are beneficial to investigate relationships between soil structure and the transport process and to explain the scale dependency of the transport processes from the spatial structure of the process at a smaller

  17. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  18. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  19. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  20. Monitoring water flows with time-lapse Electrical Resistivity Tomography on the Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Gance, J.; Sailhac, P.; Malet, J.-P.; Grandjean, G.; Supper, R.; Jochum, B.; Ottowitz, D.

    2012-04-01

    in sub-surface soil temperature. Two high-resolution optical cameras are installed on stable crests on the side of the cross-sections and time-lapse stereoscopy is used to reconstruct the displacement field to locate the electrodes in space and time (in order to take into account changes in the dipole geometry). The apparent electrical resistivity values were inverted with a time-lapse approach using an initial model constructed from statistical analysis of resistivity data and a priori knowledge on the landslide structure from a previous geotechnical model. The near surface apparent resistivity can vary of ten percent without any input of water. This shows the importance of temperature effect on the measurement. The temperature correction is handled from a complete study of the soil temperature propagation solving the heat equation with several temperature probes placed at different depths in soil and in the water table. The results are interpreted in combination to hydrological data (rain, water table level). The acquisition of 8 ERT all over the studied area, in different directions permits to create by interpolation a 3D electrical resistivity model of the area. This model shows the importance of the bedrock topography because high water content areas are visible at the theoretical hydrological network computed from the 3D geotechnical model of Travelletti and Malet (2011). Transversal waterflow circulation not predicted are also visible and permit to interpret the results taking into account the 3D structure of the landslide. A 250 m long P-wave tomography acquired on the studied profile and inversed with a quasi-Newton algorithm that uses Fresnel wavepaths and the finite bandwidth of the source signal, specially developed for the study of very heterogeneous soils, shows a very good correlation with electrical resistivity and permits to propose a geotechnical model of the profile. Spatially heterogeneous water flow patterns are identified and the presence of a

  1. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  2. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  3. A combined CoMFA and CoMSIA 3D-QSAR study of benzamide type antibacterial inhibitors of the FtsZ protein in drug-resistant Staphylococcus aureus.

    PubMed

    Andrades, J; Campanini, J; Vásquez, D; Silvestri, C; Morales, C; Romero, J; Mella, J

    2015-01-01

    A major problem today is bacterial resistance to antibiotics and the small number of new therapeutic agents approved in recent years. The development of new antibiotics capable of acting on new targets is urgently required. The filamenting temperature-sensitive Z (FtsZ) bacterial protein is a key biomolecule for bacterial division and survival. This makes FtsZ an attractive new pharmacological target for the development of antibacterial agents. There have been several attempts to develop ligands able to inhibit FtsZ. Despite the large number of synthesized compounds that inhibit the FtsZ protein, there are no quantitative structure-activity relationships (QSAR) that allow for the rational design and synthesis of promising new molecules. We present the first 3D-QSAR study of a large and diverse set of molecules that are able to inhibit the FtsZ bacterial protein. We summarize a set of chemical changes that can be made in the steric, electrostatic, hydrophobic and donor/acceptor hydrogen-bonding properties of the pharmacophore, to generate new bioactive molecules against FtsZ. These results provide a rational guide for the design and synthesis of promising new antibacterial agents, supported by the strong statistical parameters obtained from CoMFA (r(2)(pred) = 0.974) and CoMSIA (r(2)(pred) = 0.980) analyses. PMID:26505124

  4. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    PubMed

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil

  5. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles

    NASA Astrophysics Data System (ADS)

    Taheri, Peyman; Hsieh, Scott; Bahrami, Majid

    2011-08-01

    Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections, i.e., roughness and out-of-flatness, and acts as an ohmic resistance at the electrode-collector joints. A custom-designed testbed is developed to conduct a systematic experimental study. ECR is measured at separable bolted electrode connections of a sample Li-ion battery, and a straightforward analysis to evaluate the relevant energy loss is presented. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered Li-ion battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. Consequently, a heat flow can be initiated from the electrodes towards the internal battery structure, which results in a considerable temperature increase and onset of thermal runaway. At sever conditions, heat generation due to ECR might cause serious safety issues, sparks, and even melting of the electrodes.

  6. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  7. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  8. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed

  10. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a

  11. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Hadzick, Z. L.; Garzio, A.; Pachepsky, Y. A.; Hill, R. L.; Rowland, R. A.; Golovko, L. A.

    2008-12-01

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. The studied soil had the sandy loam texture. The 20x20-m study plot was located at the ARS Beltsville OPE3 site. Relationship between ER, bulk density, and soil water contents was first studied in disturbed 80-cm3 soil samples taken at 10 depths with 20 cm increment. Soil water contents were brought to 6 predefined levels in each sample and were in the range from air dry to 0.27g g-1. Soil bulk density varied in the range from 1.28 to 1.45 g cm-3. The ER in soil samples decreased as the gravimetric water content increased. The ER decrease became more pronounced as bulk density decreased. Next, soil samples were taken at field water contents from 10 depths at 12 locations. Particle size distributions, pH, water content and ER were measured in each sample. Bulk density values in part of the soil profiles below 80 cm ranged from 1.5 to 1.8 g cm- 3 and no dependence between ER and water content could be established in this soil layer where the lowest values of ER were recorded. The increased conductivity of the soil solid phase could be a possible reason for that since soil in this part of the profile had pH values two or more units less than in the upper part. The lowest sand contents corresponded to highest ER values in this soil layer. Finally, the vertical electrical sounding (LandMapper ERM-02) was used to infer spatial distribution of soil resistivity along a 9-m transect for different dates when soil was dry and when it was relatively uniformly wetted with long low- intensity rain. The Wenner-Shlumberger array with 31-electrodes spaced 30-cm apart was used. Soil temperature and water content with multisensor capacitance probes (SENTEC) were monitored at 10 depths down

  12. Microfluidic 3D models of cancer

    PubMed Central

    Sung, Kyung Eun; Beebe, David J.

    2014-01-01

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models has the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery. PMID:25017040

  13. Microfluidic 3D models of cancer.

    PubMed

    Sung, Kyung Eun; Beebe, David J

    2014-12-15

    Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models have the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery.

  14. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  15. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  16. CORRIGENDUM: Multiscale electrical contact resistance in clustered contact distribution Multiscale electrical contact resistance in clustered contact distribution

    NASA Astrophysics Data System (ADS)

    Lee, Sangyoung; Cho, Hyun; Jang, Yong Hoon

    2010-06-01

    The authors wish to explain the similarity between some figures in the above paper (hereafter called the JPD paper) and in their other publication, Lee S, Jang Y H and Kim W 2008 Effects of nanosized contact spots on thermal contact resistance J. Appl. Phys.103 074308 (hereafter called the JAP paper), and to explain the differences between the two papers, which are not explicitly stated in the JPD paper. The main objective of the JAP paper is to calculate the thermal contact resistance of the nanosized contact spots in multiscale contact. During the process of multiscale analysis, the thermal conductivity varies, especially below the phonon mean free path. The JPD paper deals with the electrical contact resistance in the multiscale contact distribution with an assumption of constant electrical resistivity, which is known as a different kind of physics in a larger characteristic length scale. There are similar figures in the JPD paper and the JAP paper: figures 6, 7 and 8 in the JPD paper and figures 3, 4 and 5 in the JAP paper. Two research works were performed on the basis of a specific microcontact distribution. In the JAP paper, the scale of the contact distribution is in the range of the phonon mean free path of Si, which is a very small size of contact distribution. In the JPD paper, the scale of contact distribution is in the continuum scale, which is larger than the phonon mean free path. In addition, due to the characteristics of a fractal surface which repeatedly generates a similar shape of contact distribution in the different length scales, the shape of contact distribution looks similar, but the total sizes of domain in the JPD and JAP figures are different. The projected areas L × L of fractal surface of the JAP paper and JPD paper are 10 μm × 10 μm and 10 mm × 10 mm, respectively. The length scale is already stated in the JAP paper, but not in the JPD paper. Thus, we have to state that the figures were adapted from the JAP paper without clear

  17. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  18. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests. PMID:25427774

  19. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  20. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  1. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-01

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices. PMID:24634978

  2. 3D joint dynamics analysis of healthy children's gait.

    PubMed

    Samson, William; Desroches, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-11-13

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this 3D angle may help in characterizing the level of gait maturation. The present study explores 3D joint moments, 3D joint power and the proposed 3D angle for both children's and adults' gaits to highlight differences in the strategies used. The results seem to confirm that children have an alternative strategy of mainly ankle stabilization and hip propulsion compared to the adults' strategy of mainly ankle resistance and propulsion and hip stabilization. In the future, the same 3D angle analysis should be applied to different age groups for better describing the evolution of the 3D joint dynamic strategies during the growth.

  3. Measuring turbulence in a flotation cell using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Xie, Weiguo; Runge, Kym; Bradshaw, Dee

    2015-11-01

    Measuring turbulence in an industrial flotation environment has long been problematic due to the opaque, aggressive, and abrasive three-phase environment in a flotation cell. One of the promising measurement techniques is electrical resistance tomography (ERT). By measuring the conductivity distribution across a measurement area, ERT has been adopted by many researchers to monitor and investigate many processes involving multiphase flows. In the research outlined in this paper, a compact ERT probe was built and then used to measure the conductivity distribution within a 60 l flotation cell operated with water and air. Two approaches were then developed to process the ERT data and estimate turbulence-related parameters. One is a conductivity variance method and the other is based on the Green-Kubo relations. Both rely on and use the fluctuation in the ERT measurement caused by bubbles moving through the measurement area changing the density of the fluid. The results from both approaches were validated by comparing the results produced by the ERT probe in a 60l flotation cell operated at different air rates and impeller speeds to that measured using an alternative turbulence measurement device. The second approach is considered superior to the first as the first requires the development of auxiliary information which would not usually be known for a new system.

  4. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  5. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  6. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration. PMID:16961484

  7. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  8. Dissipation mechanism in 3D magnetic reconnection

    SciTech Connect

    Fujimoto, Keizo

    2011-11-15

    Dissipation processes responsible for fast magnetic reconnection in collisionless plasmas are investigated using 3D electromagnetic particle-in-cell simulations. The present study revisits the two simulation runs performed in the previous study (Fujimoto, Phys. Plasmas 16, 042103 (2009)); one with small system size in the current density direction, and the other with larger system size. In the case with small system size, the reconnection processes are almost the same as those in 2D reconnection, while in the other case a kink mode evolves along the current density and deforms the current sheet structure drastically. Although fast reconnection is achieved in both the cases, the dissipation mechanism is very different between them. In the case without kink mode, the electrons transit the electron diffusion region without thermalization, so that the magnetic dissipation is supported by the inertia resistivity alone. On the other hand, in the kinked current sheet, the electrons are not only accelerated in bulk, but they are also partly scattered and thermalized by the kink mode, which results in the anomalous resistivity in addition to the inertia resistivity. It is demonstrated that in 3D reconnection the thickness of the electron current sheet becomes larger than the local electron inertia length, consistent with the theoretical prediction in Fujimoto and Sydora (Phys. Plasmas 16, 112309 (2009)).

  9. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  10. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  11. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  12. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  13. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  14. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  15. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  16. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  17. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  18. 3D plasmonic nanoantennas integrated with MEA biosensors

    NASA Astrophysics Data System (ADS)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic

  19. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    -distributions of σb. These, in turn, may be translated to many σw values by applying the σw-σb-θ calibration relationship obtained in the laboratory by using the TDR probes. A field experiment was conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari - Italy). The experiment consisted of three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped by a dripper irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii) an ERT apparatus in the Wenner configuration array. Overall, 17 measurement campaigns were carried out. Monitoring along transects also allowed to evaluate the role of different smaller and larger scale heterogeneities on the electrical conductivity measured by the two different sensors. Because of the different variability patterns and structure of the ERT and TDR data due to the different observation windows, a site-by-site comparison of the corresponding readings may not reveal the actual correlation between the σb values deduced by ERT measurements on one side and the TDR data on the other. In order to make TDR and ERT data actually comparable, we analyzed the effect of the different observation windows of the two sensors on the different spatial and temporal variability observed in the two data series. Specifically, the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.

  20. Specific features of the electrical resistivity of half-metallic ferromagnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2014-03-01

    The transport properties of half-metallic ferromagnetic Heusler alloys Fe2MeAl (where Me = Ti, V, Cr, Mn, Fe, and Ni are 3 d transition elements) have been measured in the temperature range of 4-900 K. The specific features in the behavior of the electrical resistivity have been considered in terms of the two-current conduction model, which takes into account the presence of an energy gap in the electron spectrum of the alloys near the Fermi level.

  1. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  2. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-01-01

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  3. Three-dimensional structure of a highly heterogeneous horizon described by Electrical Resistivity Tomography: consequences on the determination of effective hydraulic properties

    NASA Astrophysics Data System (ADS)

    Cousin, I.; Frison, A.; Samouëlian, A.; Bourennane, H.; Guérin, R.; Richard, G.

    2009-04-01

    Despite the increasing demand of soil hydraulic properties as input data for soil-plant-atmosphere models, the estimation of hydraulic properties in heterogeneous horizons remains a challenge. One reason is the lack of knowledge of the structure of such horizons, which limits the estimation of effective hydraulic properties at small scale. The aim of this paper is to demonstrate the interest of 3-D Electrical Resistivity Tomography (ERT) to describe the soil structure and to identify the Representative Elementary Volume of a heterogeneous horizon. The studied soil is an Albeluvisol that exhibits some horizons composed by the juxtaposition of two Elementary Pedological Volumes (EPVs); they can be visually distinguished by their colours (ochre and white) and they have differential hydraulic functioning: the clayey ochre ones conduct less water than the loamy white ones. Local electrical resistivity measurements showed that the ochre and white EPVs could be identified by ERT. Several 3D ERTs with an interelectrode spacing equal to 3 cm were then conducted on a 1 m² surface : i) seven Wenner arrays (16 electrodes) spaced of 9 cm and four Wenner arrays (32 electrodes) spaced of 9 cm, perpendicular to the seven previous ones; ii) a square array of 32 electrodes spaced of 3 cm. After these measurements, a 6 cm slice of the studied horizon was removed and the electrical resistivity measurements were recorded again at this second depth, and the whole protocol was recorded a third time. Thanks to all these measurements, the decrease of resolution with depth could be corrected. The data were then interpreted by using the Res2DInv and the Res3DInv softwares by using different strategies: -a- each 2D ERT was interpreted independently and all the interpreted resistivity data were gathered to create a 3-D block by regular kriging, -b- the 3D square array was interpreted and the resulting interpreted data were added to the 2D previous ones, -c- all the apparent resistivity data

  4. Electrical resistivity and piezoresistivity of Ni-CNT filled epoxy-based composites

    NASA Astrophysics Data System (ADS)

    Jiang, Jinbao; Xiao, Huigang; Li, Hui

    2013-04-01

    This paper investigates properties about electrical resistivity and piezoresistivity of multi-wall carbon nanotubes (MWCNTs)-filled epoxy-based composite and its further use for strain sensing. The MWCNTs dispersed epoxy resin, using MWCNTs in the amount of 1.5~3.0 vol.%, was first prepared by combined high-speed stirring and sonication methods. Then, the MWCNTs dispersed epoxy resin was cast into an aluminum mold to form specimens measuring 10×10×36 mm. After curing, DC electrical resistance measurements were performed along the longitudinal axis using the four-probe method, in which copper nets served as electrical contacts. The percolation threshold zone of resistivity was got as MWCNTs in the amount of 2.00-2.50 vol.%. Further compressive testing of these specimens was conducted with four-probe method for resistance measurements at the same time. Testing results show that the electrical resistivity of the composites changes with the strain's development, namely piezoresistivity. While for practical strain sensing use, signals of electric resistance and current in the acquisition circuits were both studied. Results show that the signal of current, compared with that of resistance, had better linear relationship with the compressive strain, better stability and longer effective section to reflect the whole deformation process of the specimens under pressure. Further works about the effects of low magnetic field on the electrical resistivity and piezoresistivity of Ni-CNTs filled epoxy-based composites were presented briefly at the end of the paper.

  5. Thermal Expansion and Electrical Resistivity Studies of Nickel and ARMCO Iron at High Temperatures

    NASA Astrophysics Data System (ADS)

    Palchaev, D. K.; Murlieva, Zh. Kh.; Gadzhimagomedov, S. H.; Iskhakov, M. E.; Rabadanov, M. Kh.; Abdulagatov, I. M.

    2015-11-01

    The electrical resistance, ρ (T), and thermal expansion coefficient, β (T), of nickel and ARMCO iron have been simultaneously measured over a wide temperature range from (300 to 1100) K. The well-known standard four-probe potentiometric method was used for measurements of the electrical resistance. The thermal expansion coefficient was measured using the quartz dilatometer technique. Both techniques were combined in the same apparatus for simultaneous measurements of the electrical resistance and TEC for the same specimen. The combined expanded uncertainty of the electrical resistance and thermal expansion coefficient measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.5 % and (1.5 to 4.0) %, respectively. The distinct ρ (T) scattering contribution (phonon ρ _{ph}, magnetic ρ m, and residual ρ S) terms were separated and extracted from the measured total resistivity. The physical nature and details of the temperature dependence of the electrical resistance of solid materials and correct estimations of the contributions of various scattering mechanisms to the measured total resistivity were discussed in terms of the anharmonic effect. We experimentally found simple, universal, physically based, semiempirical linear correlations between the kinetic coefficient (electrical resistance) and a thermodynamic (equilibrium) property, the thermal expansion coefficient, of solid materials. The developed, physically based, correlation model has been successfully applied for nanoscale materials (ferromagnetic nickel nanowire). A new s-d-exchange interaction energy determination technique has been proposed.

  6. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  7. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    DOEpatents

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  8. Measurement and modelling of moisture-electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy

    NASA Astrophysics Data System (ADS)

    Merritt, A. J.; Chambers, J. E.; Wilkinson, P. B.; West, L. J.; Murphy, W.; Gunn, D.; Uhlemann, S.

    2016-01-01

    A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content. Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples. However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances. The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes. Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman-Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The

  9. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  10. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  11. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  12. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  13. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  14. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  15. The effect of irrigation frequency on water depletion by bell pepper: the added value of electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Garre, S.; Assouline, S.; Furman, A.

    2013-12-01

    The dynamics of root uptake, and its relation to soil water content, are still insufficiently understood. Nevertheless, it is a very important component in the terrestrial water balance and may determine water resources management, ecology and agriculture. In this research we explore the spatial and temporal distribution of soil water under different irrigation schemes in high resolution using electrical resistivity tomography (ERT). Bell peppers were planted in a chamber and irrigated in two different schemes, differing only in irrigation frequency. The daily dose remains the same for both treatments. This irrigation difference results in different spatio-temporal distribution of the soil water in the root zone, which in turn implies spatio-temporal differences in root uptake. The experiment was conducted under very high evapotranspiration (ET) conditions. The resistivity surveys, using 96 electrodes placed around the growth chamber were taken over 10 times daily. Plants subjected to high frequency irrigation generally were faster in growth and matured about a week earlier. This is primarily attributed to the higher water content that exists in the root zone, and primarily during the high ET periods at noon. The 3-D resistivity distributions provide an interesting insight into the water depletion by the crop in space and time. However, the ERT survey also encountered some challenges related to time-varying error levels and electrode contact changes during wetting and drying cycles.

  16. The effect of irrigation frequency on water depletion by bell pepper: the added value of electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Garré, Sarah; Assouline, Shmuel; Furman, Alex

    2014-05-01

    The dynamics of root uptake, and its relation to soil moisture, is a very important component in the terrestrial water balance and may determine water resources management, ecology and agriculture. In this research we explore the spatial and temporal distribution of soil water under different irrigation schemes in high resolution using electrical resistivity tomography (ERT). Bell pepper was planted in containers and irrigated in two different schemes, differing only in irrigation frequency. The daily dose remains the same for both treatments. This irrigation difference results in different spatio-temporal distribution of the soil water in the root zone, which in turn implies spatio-temporal differences in root uptake. The experiment was conducted under very high evapotranspiration (ET) conditions. The resistivity surveys, using 96 electrodes placed around the growth chamber were taken over 10 times daily. Plants subjected to high frequency irrigation generally were faster in growth and matured about a week earlier. This is primarily attributed to the higher water content that exists in the root zone, and primarily during the high ET periods at noon. The 3-D resistivity distributions provide an interesting insight into the water depletion by the crop in space and time. However, the ERT survey also encountered some challenges related to time-varying error levels and electrode contact changes during wetting and drying cycles.

  17. Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors

    NASA Astrophysics Data System (ADS)

    Grönlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael

    2008-02-01

    Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensing electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases.

  18. Process for 3D chip stacking

    DOEpatents

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  19. Process for 3D chip stacking

    DOEpatents

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  20. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  1. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  2. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  3. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  4. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  5. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  6. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.

    PubMed

    Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios

    2014-07-01

    Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation.

  7. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  8. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  9. Highly compressible 3D periodic graphene aerogel microlattices.

    PubMed

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  10. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  11. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  12. An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    SciTech Connect

    LaBrecque, Douglas J; Adkins, Paula L

    2008-12-09

    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at

  13. 3D printed impedance elements by micro-dispensing

    NASA Astrophysics Data System (ADS)

    Robles Dominguez, Ubaldo

    Micro-dispensing allows electric circuits to be "3D printed," which can be used to give 3D printed systems electronic and electromagnetic functionality. The focus of this thesis is using micro-dispensing to fabricate capacitors and inductors. 3D printed impedance elements are capable of being more easily embedded, can be used to create structural electronics, and will have extensive applications in antennas, metamaterials, frequency selective surfaces, and more. This is the first known effort to print and measure impedance elements by micro-dispensing which holds great potential for manufacturing multi-material devices.

  14. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  15. 3-D magnetic field calculations for wiggglers using MAGNUS-3D

    SciTech Connect

    Pissanetzky, S.; Tompkins, P.

    1988-01-01

    The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.

  16. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  17. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  18. Fracture network characterisation of a landslide by electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Szalai, S.; Szokoli, K.; Novák, A.; Tóth, Á.; Metwaly, M.; Prácser, E.

    2014-06-01

    In contrary to most of the landslide studies which concentrate to the sliding surface in this paper the fracture system of a loess landslide is investigated. The continuity and geometry, orientation and dip of the major fractures are crucial parameters for assessing rock stability and landslide evolution. Rain infiltrating moreover easily into the rock mass through fractures providing lubrication for the material to slide, and increases the self-mass of the material increasing the slumping rate. Fracture maps enable beside of the characterisation of the fractured area the delineation of the endangered area of slow-moving landslides in due time and getting information about its inner structure. For constructing such maps Electrical Resistivity Tomography (ERT) measurements have been carried out using different geoelectric configurations. In spite of the high density of the fractures and their changing physical parameters in function of their water content - which make the interpretation rather difficult - a number of fractures have been detected and more or less well localised. On the basis of the present research the application of the Schlumberger and the Pole-Dipole arrays is recommended to fulfil the aim of the study. The optimised Stummer array is at the same time the only array which presents conductive anomalies (supposedly water filled fractures), as well, and indicates that fractures elongate deep downwards. Because these features seem to be realistic based on field observations or theoretical considerations the Stummer array may be a very good tool for completing e.g. P-Dp measurements. The study area could have been divided by all arrays into differently fractured zones, which assists a lot in understanding the landslide structure and evolution. It was shown, moreover, that in the still passive area there are thick fractures, too, verifying its dangerousness, as well. The ERT results enabled localising the rupture surfaces of future slumps which proved to

  19. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  20. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  1. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  2. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  3. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  4. Effects of Contact Resistance on Electrical Conductivity Measurements of SiC-Based Materials

    SciTech Connect

    Youngblood, Gerald E.; Thomsen, Edwin C.; Henager, Charles H.

    2012-04-17

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from RT to ~700°C. The specific contact resistance values (Rc) behaved similarly for each type of metallic electrode: Rc >~1000 Ω-cm2 at RT, decreasing continuously to ~1-10 Ω-cm2 at 700°C. The temperature dependence of the inverse Rc indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ~0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by ~1/2.

  5. Modeling the electrical resistivity of deformation processed metal-metal composites

    SciTech Connect

    Tian, Liang; Anderson, Iver; Riedemann, Trevor; Russell, Alan

    2014-09-01

    Deformation processed metal–metal (matrix–reinforcement) composites (DMMCs) are high-strength, high-conductivity in situ composites produced by severe plastic deformation. The electrical resistivity of DMMCs is rarely investigated mechanistically and tends to be slightly higher than the rule-of-mixtures prediction. In this paper, we analyze several possible physical mechanisms (i.e. phonons, interfaces, mutual solution, grain boundaries, dislocations) responsible for the electrical resistivity of DMMC systems and how these mechanisms could be affected by processing conditions (i.e. temperature, deformation processing). As an innovation, we identified and assembled the major scattering mechanisms for specific DMMC systems and modeled their electrical resistivity in combination. From this analysis, it appears that filament coarsening rather than dislocation annihilation is primarily responsible for the resistivity drop observed in these materials after annealing and that grain boundary scattering contributes to the resistivity at least at the same magnitude as does interface scattering.

  6. Electrical earth resistivity surveys near brine holding ponds in Illinois. Environmental geology notes

    SciTech Connect

    Reed, P.C.; Cartwright, K.; Osby, D.

    1981-04-01

    Electrical earth resistivity surveys were conducted in the vicinity of five oil field brine holding ponds to develop a methodology for identifying elevated levels of soluble salts near oil fields. The five sites, all in similar hydrogeologic environments, were distributed across the main oil producing region of Illinois. Four of these sites were selected for detailed study of a possible relationship between changes in apparent electrical earth resistivities and changes in water quality.

  7. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  8. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Ng, M. Z.; Anantha, P.; Lin, Y. D.; Li, Z. G.; Gan, C. L.; Tan, C. S.

    2016-06-01

    An enhanced copper paste, formulated by copper micro- and nano-particles mixture, is reported to prevent paste cracking and obtain an improved packing density. The particle mixture of two different sizes enables reduction in porosity of the micro-paste and resolves the cracking issue in the nano-paste. In-situ temperature and resistance measurements indicate that the mixed paste has a lower densification temperature. Electrical study also shows a ˜12× lower sheet resistance of 0.27 Ω/sq. In addition, scanning electron microscope image analysis confirms a ˜50% lower porosity, which is consistent with the thermal and electrical results. The 3:1 (micro:nano, wt. %) mixed paste is found to have the strongest synergistic effect. This phenomenon is discussed further. Consequently, the mixed paste is a promising material for potential low temperature 3D interconnects fabrication.

  9. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  10. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  11. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  12. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  13. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  14. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  15. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  16. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  18. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  19. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  20. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  1. Method and device with adjustable focusing for measuring the electric resistivity of geological formations

    SciTech Connect

    Desbrandes, R.

    1983-10-25

    The method of the invention comprises determining the variation of the electric potential on both sides of a central electrode in a borehole, detecting the two levels of the borehole where the potential gradient is zero, and measuring the electric resistivity of the geological formation between these two levels.

  2. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  3. Electrical properties of deuteron irradiated high resistivity silicon

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Karcz, Waldemar; Avdeyev, Sergej P.; Kamiński, Paweł; Kozłowski, Roman

    2014-04-01

    We have investigated resistivity changes introduced on the high-resistivity p-type silicon wafer by the irradiation with deuteron beam with an energy of 4.4 GeV performed in the NUCLOTRON superconducting accelerator. Two contactless techniques were used for the measurements of resistivity changes: namely the microwave split post dielectric resonator (SPDR) technique and capacitance measurements in the frequency domain. The first technique allows resistivity measurements in the plane of the wafer, while the second one in the direction perpendicular to the wafer. The resistivity map obtained with the SPDR technique enabled us to obtain a permanent fingerprint of the accelerator beam intensity profile. It has been shown that after the irradiation, the material resistivity increased to ˜3.9 × 105 Ω cm in the wafer region exposed to the maximum beam intensity. Complementary studies of the properties and concentrations of radiation deep-level defects were performed by the high-resolution photo-induced current transient spectroscopy (HRPITS). These studies have shown that the irradiation of the high resistivity silicon with 4.4-GeV deuterons results in the formation of several types of deep-level defects responsible for the charge compensation.

  4. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  5. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  6. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  7. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are

  8. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways. PMID:27550050

  9. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.

  10. Shape corrections for 3D EIT

    NASA Astrophysics Data System (ADS)

    Paridis, Kyriakos; Lionheart, William R. B.

    2010-04-01

    Movement of the boundary in biomedical Electrical Impedance Tomography (EIT) has been always a source of error in image reconstruction. In the case of pulmonary EIT, where the patient's chest shape changes during respiration, this is inevitable, so it is essential to be able to correct for shape changes and consequently avoid artifacts. Assuming that the conductivity is isotropic, an assumption that is reasonable for lung tissue but admittedly violated for muscle, the boundary shape up to a Möbius transformation (conformal mapping) as well as the conductivity can theoretically be determined by 3D EIT data. While in two dimensions the space of conformal mappings are infinite dimensional, in the three dimensional case the Möbius transformations are given by a finite number of parameters. In this paper, we concentrate on the three dimensional case and take a linear approximation. We will give results of numerical studies analogous to the two dimensional work of Boyle et al on the effect of electrode movement and shape error in 3D EIT.

  11. Plans for a 3D reconnection experiment

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2010-11-01

    Plasma-filled, current-carrying magnetic flux tubes are the essence of tokamaks, RFP's, spheromaks, solar coronal loops, and astrophysical jets. Relevant behaviors/issues are magnetic helicity content and injection, motion of the tube axis (hoop force, kinking), plasma confinement (balance between hydrodynamic pressure and pinch force), axial jet flows (acceleration and stagnation), waves, particle orbits, reconnection, and open v. closed field lines. These behaviors/issues and their mutual interaction are being investigated via Alfven time-scale imaging and conventional diagnostics in highly reproducible experiments having the simplest relevant geometry. High-speed movies clearly show flux tube kinking, motion of the flux tube axis due to hoop force, axial jet flows, an unusual particle orbit associated with flows counter to the electrical current, and reconnection between adjacent co- or counter-helicity flux tubes. A new experiment now under construction will have two slightly offset plasma-filled, current carrying flux tubes locally reconnect in 3D to form a single long flux tube. The setup requires two floating power supplies to drive the pre-reconnection currents as post-reconnection the power supplies become series-connected. A means for overcoming the topologically unavoidable mutual repulsion between the pre-reconnection currents is also required. It is anticipated that Alfven waves will radiate from the 3D localized reconnection region.

  12. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  13. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  14. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  15. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  16. 3D printing of microscopic bacterial communities

    PubMed Central

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  17. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells.

    PubMed

    Parker, Joseph F; Nelson, Eric S; Wattendorf, Matthew D; Chervin, Christopher N; Long, Jeffrey W; Rolison, Debra R

    2014-11-26

    We fabricate three-dimensional zinc electrodes from emulsion-cast sponges of Zn powder that are thermally treated to produce rugged monoliths. This highly conductive, 3D-wired aperiodic scaffold achieves 740 mA h gZn(-1) when discharged in primary Zn-air cells (>90% of theoretical Zn capacity). We use scanning electron microscopy and X-ray diffraction to monitor the microstructural evolution of a series of Zn sponges when oxidized in Zn-air cells to specific depths-of-discharge (20, 40, 60, 80% DOD) at a technologically relevant rate (C/40; 4-6 mA cm(-2)). The Zn sponges maintain their 3D-monolithic form factor at all DOD. The cell resistance remains low under all test conditions, indicating that an inner core of metallic Zn persists that 3D-electrically wires the electrode, even to deep DOD.

  18. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells.

    PubMed

    Parker, Joseph F; Nelson, Eric S; Wattendorf, Matthew D; Chervin, Christopher N; Long, Jeffrey W; Rolison, Debra R

    2014-11-26

    We fabricate three-dimensional zinc electrodes from emulsion-cast sponges of Zn powder that are thermally treated to produce rugged monoliths. This highly conductive, 3D-wired aperiodic scaffold achieves 740 mA h gZn(-1) when discharged in primary Zn-air cells (>90% of theoretical Zn capacity). We use scanning electron microscopy and X-ray diffraction to monitor the microstructural evolution of a series of Zn sponges when oxidized in Zn-air cells to specific depths-of-discharge (20, 40, 60, 80% DOD) at a technologically relevant rate (C/40; 4-6 mA cm(-2)). The Zn sponges maintain their 3D-monolithic form factor at all DOD. The cell resistance remains low under all test conditions, indicating that an inner core of metallic Zn persists that 3D-electrically wires the electrode, even to deep DOD. PMID:25350789

  19. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  20. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    NASA Astrophysics Data System (ADS)

    Mohiuddin, Mohammad; van Hoa, Suong

    2011-06-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure.

  1. Resistance and internal electric field in cloud-to-ground lightning channel

    SciTech Connect

    Cen, Jianyong; Yuan, Ping Xue, Simin; Wang, Xuejuan

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  2. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-04-28

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  3. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  4. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  5. Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia.

    NASA Astrophysics Data System (ADS)

    Kvon, Dina; Vladimir, Shevnin; Boris, Nikulin; Albert, Ryjov; Alexey, Skobelev

    2013-04-01

    Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia. Kvon D. A.(1)*, Shevnin V.A.(1), Nikulin B. A.(1), Ryjov A. A.(2), Skobelev A. O.(1) (1)Geophysical dept., Faculty of Geology, Moscow state university; (2)VSEGINGEO Due to acute shortage of fresh drinking water near Anapa town (not far from the Black Sea), geophysical investigations were performed for searching and mapping aquifers in the area, where, according to rare wells exist probability to find fresh underground water. Geophysical explorations were carried out by Electrical resistivity tomography (ERT) method and water resistivity measurements. The resistivity of fresh groundwater is 15 Ohm.m, its salinity is 0.4 g/l. The structure of the area has been obtained by previous geological and hydrogeological studies and boreholes drilling. Geological structure of the area consists of two parts: the upper part of cross-section presented by loose lacustrine-alluvial sediments of Upper Pleistocene - Holocene, the lower part presented by hard rocs of carbonate-flysch formation of Upper Cretaceous age consisted of marl and limestone. Prospective areas to find underground water are: water-bearing horizon of upper Pleistocene-Holocene sediments, which is presented by gravel layer (base layer of modern lacustrine-alluvial sediments), and fractured zones in hard rocks of the carbonate-flysch formation of Maastricht age (Supseh formation). Analysis of rocks' resistivity obtained from Electrical resistivity tomography followed by calculation of rock resistivity on known petrophysical parameters (in Petrowin program created by A. A. Ryjov) [Shevnin et al., 2007]. The calculation showed that there is low clay content in carbonate rocks of the studied area, and the rock is limestone, not marl. Measurement of rock samples with X-ray radiometric method showed high calcium content (30-35%) or 75-87.5% limestone. This fact shows that flysch formation of the area is mainly

  6. Dependence of the Anomalous Resistivity on the Induced Electric Field in Solar Flares

    NASA Astrophysics Data System (ADS)

    Wu, Guiping; Huang, Guangli; Ji, Haisheng

    2010-09-01

    Anomalous resistivity is a critical parameter for triggering the fast magnetic reconnection and interpreting the eruption of solar flares in the nearly collisionless coronal plasma. However, the mechanism for the production of anomalous resistivity and its evolution are weakly understood. In this paper, the one-dimensional Vlasov equation was numerically solved with the typical solar coronal parameters and realistic mass ratio in the presence of strong inductive electric field, and the relationship between the anomalous resistivity and the reconnecting electric field was inferred for the area near the center of reconnecting current sheets. Our principal findings are summarized as follows. (1) The relationship between the anomalous resistivity and the reconnecting electric field E 0 may be represented by ηeff = [10.82-10.99 exp (-0.36 E 0)]Ω m. (2) If E 0 is small enough, it may be described by ηeff = [4.02 E 0 - 0.18]Ω m, which is basically consistent with the early experimental results on the plasma response to the applied electric field. (3) In comparison with theoretical formulas for the current-driven ion-acoustic and Buneman anomalous resistivities, if E 0 is small, the anomalous resistivity may be due to the ion-acoustic instability; if E 0 is large, the anomalous resistivity may be due to the Buneman instability. These results are also basically consistent with early experiments.

  7. Electric stimulations mediated beta lactam resistance reversal and correlation with growth dynamics of community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Kainthola, Anup; Uniyal, Akshat; Srivastava, Nidhi; Bhatt, Ajay B

    2015-08-01

    The community associated methicillin resistant Staphylococcus aureus (CA-MRSA) is a serious issue of public health. Here, we conducted an experimental approach to determine: (i) the optimal significant stimulation range of electrical current for effective checking of CA-MRSA growth; (ii) the effect of electrical stimulations on methicillin susceptibility and possible beta lactam resistance reversal; and (iii) the variation in the level of ATP as function of exposure to electric current. An 8 chambered electrical system was developed for DC flow in control and test sets, with and without drug (oxacillin 4 mg/ml). Measurement of growth by CFU/ml and spectrometry, susceptibility and ATP levels were calculated and interpreted. Linear pattern in reduction of ATP was observed with respect to the intensity of electric current (EC) and an enhanced inhibitory effect was explicit with 1000 microampere (μA) with 30 min exposure. At 4000 μA exposure to DC at 180 min and in combination of drug (μA+D), the growth of CA-MRSA was substantially checked to 0.23 absorbance in comparison to current without drug and the effect of DC electrical current to the culture showed that 10 μA, 100 μA and 4000 μA current exposure in combination of oxacillin (μA+D), markedly reduced the CFU to an average of 256.4. ATP level was linearly reduced with exposure to EC.

  8. Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.

    2014-12-01

    There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.

  9. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  10. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  11. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  12. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  13. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  14. Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling

    SciTech Connect

    Detwiler, R L; Roberts, J J

    2003-06-23

    The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  15. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  16. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  17. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  18. Locomotive wheel 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Luo, Zhisheng; Gao, Xiaorong; Wu, Jianle

    2010-08-01

    In the article, a system, which is used to reconstruct locomotive wheels, is described, helping workers detect the condition of a wheel through a direct view. The system consists of a line laser, a 2D camera, and a computer. We use 2D camera to capture the line-laser light reflected by the object, a wheel, and then compute the final coordinates of the structured light. Finally, using Matlab programming language, we transform the coordinate of points to a smooth surface and illustrate the 3D view of the wheel. The article also proposes the system structure, processing steps and methods, and sets up an experimental platform to verify the design proposal. We verify the feasibility of the whole process, and analyze the results comparing to standard date. The test results show that this system can work well, and has a high accuracy on the reconstruction. And because there is still no such application working in railway industries, so that it has practical value in railway inspection system.

  19. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  20. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  1. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  2. Simultaneous electrical resistivity and mass uptake measurements in bromine intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1986-01-01

    Changes in mass and electrical resistivity of several types of pitch-based and vapor-grown graphite fibers were monitored during reaction with bromine. The observed threshold pressure dependent reaction suggested that the fibers were intercalated. In the fully brominated compound, the mass was increased by 44 percent and the resistivity was improved by a factor of 17. In the residue compound, the mass was increased by 22 percent and the resistivity was improved by a factor of 5. Fibers possessing different degrees of graphitization had surprisingly similar changes in both mass and resistivity.

  3. Studying ground water under Delmarva coastal bays using electrical resistivity

    USGS Publications Warehouse

    Manheim, Frank T.; Krantz, David E.; Bratton, John F.

    2004-01-01

    Fresh ground water is widely distributed in subsurface sediments below the coastal bays of the Delmarva Peninsula (Delaware, Mary