Science.gov

Sample records for 3d electric resistivity

  1. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  2. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  3. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  4. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  5. Internal Structure of Periglacial Landforms: Assessment using 3D Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Emmert, Adrian; Kneisel, Christof

    2015-04-01

    The occurrence of internal heterogeneities within periglacial landforms (e.g. frost table topography or varying ice content) is in most cases not inferable from the surface. Hence, to develop an enhanced understanding of the interaction between surface and subsurface processes, it is necessary to analyse the internal structure of different periglacial landforms and landform elements. The assessment of the internal structure is provided by the application of three-dimensional Electrical Resistivity Imaging (ERI). ERI is the technique of merging datum points from several parallel and perpendicular performed two-dimensional ERT (Electrical Resistivity Tomography) measurements and inverting the data set with a 3D inversion algorithm (sometimes also referred to as quasi-3D ERT). The application of this method has proven to be a valuable tool for mapping the spatial extent of isolated permafrost bodies and associated subsurface conditions. In this contribution, we present results from four ERI measurements, carried out in summer 2014 at different investigation sites in the Swiss Alps: Three measurements were performed on pebbly rockglaciers of different size and topographical position and one measurement was performed on a solifluction slope. Each of the 3D survey grids consists of 17 to 32 single 2D ERT surveys (Dipol-Dipol or Wenner-Schlumberger array) and covers an area of between 6000 m² and 7000 m², depending on the specific survey grid set-up. The inversions of the data sets were performed using the two different inversion algorithms of the software products "RES3DINV" and "BERT" (Boundless Electrical Resistivity Tomography) for a comparative analysis and to further support the geomorphological interpretation of the geophysical models. Each of the resulting resistivity models shows strong small-scale spatial heterogeneities between the investigated landforms but also within landform elements. For the investigated rockglacier sites, these structures include

  6. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  7. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  8. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.

  9. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  10. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  11. Towards improved 3D cross-borehole electrical resistivity imaging of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Johnson, T. J.; Ntarlagiannis, D.; Lacombe, P.; Johnson, C. D.; Tiedeman, C. R.; Goode, D.; Day-Lewis, F. D.; Shapiro, A. M.; Lane, J. W.

    2012-12-01

    There is a need to better characterize discrete fractures in contaminated bedrock aquifers to determine the migration of injected remediation amendments away from boreholes. A synthetic cross-borehole electrical resistivity study was conducted assuming a discrete fracture model of an existing contaminated site with known fracture locations. Four boreholes and two discrete fracture zones, assumed to be the dominant electrical and hydraulically conductive pathways, were explicitly modeled within an unstructured tetrahedral finite-element mesh. To simulate field conditions, 5% random Gaussian noise was added to all synthetic datasets. We first evaluated different regularization constraints starting with an uninformed smoothness-constrained inversion, to which a priori information was incrementally added. We found major improvements when (1) smoothness regularization constraints were relaxed (or disconnected) along boreholes and fractures, (2) a homogeneous conductivity was assumed along boreholes, and (3) borehole conductivity constraints, which could be determined from a fluid specific-conductance log, were applied. We also evaluated the effect of including borehole packers on the fracture-zone model recovery. We found the estimated fracture-zone conductivities with the inclusion of packers were comparable to similar trials excluding the use of packers regardless of electrical potential changes. The misplacement of fracture regularization disconnects easily can be misinterpreted as actual fracture locations. Conductivities within misplaced disconnects were near the starting model value and removing smoothing between boreholes and assumed fracture locations helped in identifying incorrectly located fracture regularization disconnects. Model sensitivity structure improved when regularization disconnects were (1) applied along the boreholes and fracture zones, and (2) fracture-zone regularization disconnects were placed where actual fractures existed. A field study

  12. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  13. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam

    2014-09-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath

  14. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  15. L- and Corner-arryas for 3D electric resistivity tomography: An alternative for geophysical surveys in urban zones

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Tejero-Andrade, A.; Delgado-Solorzano, C.; Cifuentes-Nava, G.; Hernández-Quintero, E.

    2011-12-01

    3D Electric Resitivity Tomography methods carried out on heavily urbanized areas become a difficult task, since buildings, houses or other type of obstacles do not allow parallel ERT arrays to be deployed. Therefore, insufficient information from the subsoil could be obtained. The present paper presents two new techniques, which allow acquiring information beneath a construction by simply surrounding the building or buildings to be studied by a series of ERT profiles. Apparent resistivities are obtained from L-shaped profiles, where alternations between current and potential electrodes along this array are carried out in an automatic way. Four L-arrays and four Corner-arrays are needed to cover the subsurface beneath the studied area. A field test was carried out on a small University of Mexico main Campus garden, where trees and other anthropogenic structures were the so called 'obstacles'. Geophysical work was performed employing parallel arrays (traditional methodology) and compared with this new method presented. Results show that the new method has a poor resolution towards the central portion of the area, mainly from anomalies produced by shallow structures as compared with the traditional grid method. However, the L- and Corner- arrays are more sensitive to anomalies produced by deeper objects, which cannot be observed in the traditional method. The final goal is to apply this method to study habitational complexes built on top of the ancient lake of Mexico City, where buildings are in constant risk due to fracturing and subsidence.

  16. Tri-Dimensional Electric Resistivity Tomography (ERT-3D) Technique, an Efficient Tool to Unveil the Subsoil of Archaeological Structures

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Vargas, D.; Cifuentes-Nava, G.; HernaNdez-Quintero, J. E.; Tejero, A.

    2014-12-01

    Three-Dimensional Electrical Resistivity Tomography techniques (ERT-3D) have demonstrated to be an efficient tool to study the subsurface of areas of archaeological interest by special arrays designed to 'illuminate' the subsoil beneath the structure under study. 'L'- and 'Corner'-arrays are applied to design alternative electrode geometries, which attempt to cover the subsurface with enough resistivity observations underneath the studied target. Two examples are presented where novel geometries can be applied to investigate the subsoil of two important pyramids in Mexico. First, the archaeological site of Cuicuilco is studied. The area is found towards the southern portion of the Mexican Basin. This pyramid presents a circular structure of 110 m in diameter and a total height of 25 m. The region is partially covered by the lava flows that came from an eruptive event form the Xitle Volcano 1500 years ago. The geophysical study was carried out at the base of the pyramid. 48 electrodes were deployed along a circular transect, with an electrode separation of 5.4 m. A total of 1716 apparent resistivity observations were measured. The inverted model computed is obtained with an investigation depth of 30 m, approximately (Figure 1, in color). A resistive anomaly can be observed towards the central portion of the model. This anomaly can be associated to a burial chamber, excavated by the archaeologists. The second example corresponds to the pyiramid El Castillo, located in the archaeological site of Chichen Itza, in the southern lowlands of Mexico, within the Yucatan Peninsula. Previous GPR studies carried out within the pyramid's Plaza provided evidences of a buried tunnel excavated within the limestone rocks. Such feature seemed to run beneath the eastern flank of the pyramide. The geophysical study was carried out by employing 96 flat-surface electrodes, which surrounded the edifice forming a square geometry. A total of 5,350 apparent resistivity observations were

  17. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  18. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  19. Soil-plant-atmosphere water balance via time-lapse 3D Electrical Resistivity Tomography and Eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Consoli, S.; Papa, R.; Cassiani, G.

    2013-12-01

    The understanding of mass and energy exchanges between soil, plants and atmosphere (SPA) is a key component for the characterization of the critical zone, housing a number of important mechanisms controlling hydrology, biota and climate. This understanding requires reliable methods for the quantification of these mass and energy exchanges encompassing possibly all three major components, i.e. soil, plants and atmosphere. In this work we present an attempt to characterize jointly the soil state changes and the energy and mass fluxes above a heterogeneous canopy, both mediated by the plant activity from roots to foliage. The experiments have been conducted within an orange orchard located in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, has been characterized using a time-lapse non-invasive 3D micro-electrical tomography (ERT) setup. We designed, built and installed a 3D electrical tomography apparatus consisting of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, as well as laboratory characterization of the soil electrical properties as a function of moisture content and pore water electrical conductivity. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In terms of energy and mass fluxes, we used the Eddy Covariance (EC) technique to directly measure both the sensible and latent heat fluxes exchanged between the plant-atmosphere continuum. The EC method was integrated with the surface energy balance of the SPA system. The joint availability of state changes and fluxes allows for a quantitative analysis of mass balance in the soil-plant-atmosphere system. The

  20. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun

    2014-10-01

    Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.

  1. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    Apuani, T.; Giani, G. P.; d'Attoli, M.; Fischanger, F.; Morelli, G.; Ranieri, G.; Santarato, G.

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  2. The Anatomy of a Fumarole inferred from a 3-D High-Resolution Electrical Resistivity Image of Solfatara Hydrothermal System (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Gresse, M.; Vandemeulebrouck, J.; Chiodini, G.; Byrdina, S.; Lebourg, T.; Johnson, T. C.

    2015-12-01

    Solfatara, the most active crater in the Phlegrean Fields volcanic complex, shows since ten years a remarkable renewal of activity characterized by an increase of CO2 total degassing from 1500 up to 3000 tons/day, associated with a large ground uplift (Chiodini et al., 2015). In order to precisely image the structure of the shallow hydrothermal system, we performed an extended electrical DC resistivity survey at Solfatara, with about 40 2-D profiles of length up to 1 km, as well as soil temperature and CO2 flux measurements over the area. We then realized a 3-D inversion from the ~40 000 resistivity data points, using E4D code (Johnson et al., 2010). At large scale, results clearly delineate two contrasted structures: - A very conductive body (resistivity < 5 Ohm.m) located beneath the Fangaia mud pools, and likely associated to a mineralized liquid rich plume. - An elongated more resistive body (20-30 Ohm.m) connected to the main fumarolic area and interpreted as the gas reservoir feeding the fumaroles. At smaller scale, our resistivity model originally highlights the 3-D anatomy of a fumarole and the interactions between condensate layers and gas chimneys. This high-resolution image of the shallow hydrothermal structure is a new step for the modeling of this system.

  3. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  4. 2-D and 3-D joint inversion of loop-loop electromagnetic and electrical data for resistivity and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Yi, Myeong-Jong; Sasaki, Yutaka

    2015-11-01

    Frequency-domain loop-loop electromagnetic (EM) methods are sensitive to the magnetic susceptibility of the Earth as well as its resistivity. Thus, inversion techniques have been used to simultaneously reconstruct both resistivity and susceptibility models from EM data. However, to take full advantage of inversion methods, calibration errors must be assessed and removed because ignoring them can result in misleading models. We present a multidimensional inversion method that jointly inverts EM and direct current (DC) resistivity data to derive offset errors as well as resistivity and susceptibility models, assuming that calibration errors can be represented by in-phase and quadrature offsets at each frequency. Addition of independent data such as DC data is effective for more accurately estimating the offsets, resulting in more reliable subsurface models. Synthetic examples involving small-loop EM data show that simultaneous inversion for resistivity and susceptibility is not stable, because of strong correlations between in-phase offset parameters and background susceptibility, but that the offsets are well determined when the data misfit is reduced rapidly in the early iteration step. Improvements achieved by joint inversion are mainly on the resistivity model. For airborne electromagnetic (AEM) data, the inversion process is stable, because AEM data are acquired using more loop-loop geometries and a wider range of frequencies. As a result, both the resistivity and susceptibility models are significantly improved by joint inversion.

  5. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  6. River flood events as natural tracers for investigating the hydrological dynamics of a coupled river-aquifer system: preliminary results from 3D crosshole electrical resistivity monitoring

    NASA Astrophysics Data System (ADS)

    Coscia, I.; Greenhalgh, S. A.; Linde, N.; Doetsch, J.; Vogt, T.; Green, A. G.

    2009-12-01

    This research, on geoelectric monitoring of changing aquifer conditions associated with flood events of the River Thur in Switzerland, forms part of the much wider RECORD (REstored CORridor Dynamics) project. Major precipitation and snow-melt events cause rapid undamped fluctuations of discharge along the entire length of the river. River water that infiltrates the neighbouring aquifer normally has higher electrical resistivity than that of the groundwater during the early stages of flood events. This enables us to use infiltration during such events as a natural tracer in 3D time-lapse electrical resistivity tomography (ERT) experiments. Over a 10 x 15 m areal array, we have installed eighteen 12-m-deep monitoring boreholes spaced 3.5 m apart that completely penetrate the underlying 7-m-thick aquifer. Each borehole has been instrumented with ten 0.7-m-spaced electrodes that span the thickness of the aquifer. A multichannel resistivity meter, programmed to cycle through various 4-point electrode configurations of the 180 electrodes in a rolling sub-sequence, allows the collection of a 15,000-measurement data set every ~7 hours. Fourteen of these boreholes are also equipped with STS sensors that provide time-series of water-table depth and water temperature and electrical conductivity. Three-dimensional static ERT inversion at stable hydrological conditions was performed to investigate the resolving capability of our measuring sequence and to define the main lithological structures within the aquifer. Preliminary analyses of the ERT time series collected during a major flooding event this past summer suggest that the data are sensitive to three factors: water-level fluctuations in the aquifer, water-temperature variations, and electrical conductivity changes associated with changing salinity of the groundwater. The total changes in apparent resistivity are of the order of 20%. Since our primary interest is in the salinity effect that might be used to delineate

  7. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  8. Electric dipole transitions for 3d64s-3d64p in Mn I

    NASA Astrophysics Data System (ADS)

    Kabakçı, Selda; Özdemir, Leyla; Usta, Betül Karaçoban

    2015-10-01

    We have calculated the logarithmic weighted oscillator strengths and transition probabilities (or rates) for 3d64s-3d64p electric dipole transitions in neutral manganese (Mn I, Z=25) by using two configuration interaction methods (the multiconfiguration Hartree-Fock (MCHF) method within the framework of Breit-Pauli relativistic corrections developed by Fischer and Cowan's relativistic Hartree-Fock (HFR) method). Results obtained have been compared with other calculations and experiments.

  9. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  10. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  11. Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling

    NASA Astrophysics Data System (ADS)

    Ichihara, Hiroshi; Mogi, Toru; Tanimoto, Kengo; Yamaya, Yusuke; Hashimoto, Takeshi; Uyeshima, Makoto; Ogawa, Yasuo

    2016-04-01

    The Hidaka collision zone, where the Kurile and northeastern (NE) Japan arcs collide, provides a useful study area for elucidating the processes of arc-continent evolution and inland earthquakes. To produce an image of the collision structure and elucidate the mechanisms of anomalously deep inland earthquakes such as the 1970 Hidaka earthquake (M6.7), we conducted magnetotelluric observations and generated a three-dimensional resistivity distribution in the southern part of the Hidaka collision zone. The modeled resistivity was characterized by a high resistivity area in the upper crust of the Kurile arc corresponding to metamorphic rocks. The model also showed conductive zones beneath the center of the collision zone. The boundary between the resistive and conductive areas corresponds geometrically to the Hidaka main thrust, which is regarded as the arc-arc boundary. The correspondence supports the collision model that the upper-middle part of crust in the Kurile arc is obducting over the NE Japan arc. The conductive areas were interpreted as fluid-filled zones associated with collision processes and upwelling of dehydrated fluid from the subducting Pacific slab. The fluid flow possibly contributes to over-pressurized conduction that produces deep inland earthquakes. We also observed a significant conductive anomaly beneath the area of Horoman peridotite, which may be related to the uplift of mantle materials to the surface.

  12. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  13. Assist feature printability prediction by 3-D resist profile reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    properties may then be used to optimize the printability vs. efficacy of an SRAF either prior to or during an Optical Proximity Correction (OPC) run. The process models that are used during OPC have never been able to reliably predict which SRAFs will print. This appears to be due to the fact that OPC process models are generally created using data that does not include printed subresolution patterns. An enhancement to compact modeling capability to predict Assist Features (AF) printability is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to bottom. Such a 3-D resist profile is an extrapolation of a well calibrated traditional OPC model without any additional information. Assist features are detected at either top of resist (dark field) or bottom of resist (bright field). Such detection can be done by just extracting top or bottom resist models from our 3-D resist model. There is no measurement of assist features needed when we build AF but it can be included if interested but focusing on resist calibration to account for both exposure dosage and focus change sensitivities. This approach significantly increases resist model's capability for predicting printed SRAF accuracy. And we don't need to calibrate an SRAF model in addition to the OPC model. Without increase in computation time, this compact model can draw assist feature contour with real placement and size at any vertical plane. The result is compared and validated with 3-D rigorous modeling as well as SEM images. Since this method does not change any form of compact modeling, it can be integrated into current MBAF solutions without any additional work.

  14. 3D electrical tomographic imaging using vertical arrays of electrodes

    NASA Astrophysics Data System (ADS)

    Murphy, S. C.; Stanley, S. J.; Rhodes, D.; York, T. A.

    2006-11-01

    Linear arrays of electrodes in conjunction with electrical impedance tomography have been used to spatially interrogate industrial processes that have only limited access for sensor placement. This paper explores the compromises that are to be expected when using a small number of vertically positioned linear arrays to facilitate 3D imaging using electrical tomography. A configuration with three arrays is found to give reasonable results when compared with a 'conventional' arrangement of circumferential electrodes. A single array yields highly localized sensitivity that struggles to image the whole space. Strategies have been tested on a small-scale version of a sludge settling application that is of relevance to the industrial sponsor. A new electrode excitation strategy, referred to here as 'planar cross drive', is found to give superior results to an extended version of the adjacent electrodes technique due to the improved uniformity of the sensitivity across the domain. Recommendations are suggested for parameters to inform the scale-up to industrial vessels.

  15. Modeling Electric Current Flow in 3D Fractured Media

    NASA Astrophysics Data System (ADS)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  16. 3D Characterization and Time-Lapse Imaging of the Desiccation Treatability Test at the Hanford BC-Cribs and Trenches Site using High Performance Computing applied to Electrical Resistivity Imaging - 12271

    SciTech Connect

    Johnson, Tim; Greenwood, Jason; Strickland, Chris; Truex, Mike; Freedman, Vicky; Chronister, Glen; Rucker, Dale

    2012-07-01

    Contaminated vadose zone materials are a potential source of long-term groundwater contamination at many sites across the Department of Energy (DOE) complex. Deep vadose zone contamination presents a particularly challenging remedial problem due to the difficultly of locating contaminants and the expense of access and ex situ treatment. In situ remediation techniques, whereby remedial amendments must be delivered to contaminated soils, have been identified as a potential alternative. However, amendment delivery is typically uncertain and post delivery remedial performance is often not well understood due to limited information available from sparsely spaced boreholes. Recent advancements in electrical resistivity tomography (ERT) are being used to address these challenges at the Hanford site by providing remote, three-dimensional images of contaminant distribution and four-dimensional (three spatial dimensions plus the time dimension) images of in-situ vadose zone remediation processes. These capabilities were recently demonstrated with a large scale surface characterization effort and during a smaller scale desiccation treatability test at the Hanford BC-Cribs area. The results of these efforts demonstrate the utility of leveraging high-performance computing resources to process ERT data for 3D reconnaissance mapping of subsurface contaminants and for detailed 3D monitoring of vadose zone remediation efforts. Two examples of ERT imaging at a former waste disposal facility have been demonstrated at different scales; a large scale reconnaissance survey spanning many hundreds of meters and a detailed monitoring application spanning a few tens of meters. Although ERT is applicable at many scales, resolution is generally governed by proximity to electrodes. For instance, the BCCT reconnaissance survey demonstrated herein lost resolution with depth (i.e. away from surface electrodes), and was unable to detect a high conductivity anomaly at approximately 75 m below

  17. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process. PMID:24663563

  18. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  19. Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

    NASA Astrophysics Data System (ADS)

    Sigala, R.; Smerieri, A.; Schüz, A.; Camorani, P.; Erokhin, V.

    2013-10-01

    Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

  20. Arbitrary and Parallel Nanofabrication of 3D Metal Structures with Polymer Brush Resists.

    PubMed

    Chen, Chaojian; Xie, Zhuang; Wei, Xiaoling; Zheng, Zijian

    2015-12-01

    3D polymer brushes are reported for the first time as ideal resists for the alignment-free nanofabrication of complex 3D metal structures with sub-100 nm lateral resolution and sub-10 nm vertical resolution. Since 3D polymer brushes can be serially fabricated in parallel, this method is effective to generate arbitrary 3D metal structures over a large area at a high throughput. PMID:26439441

  1. An improved virtual aberration model to simulate mask 3D and resist effects

    NASA Astrophysics Data System (ADS)

    Kanaya, Reiji; Fujii, Koichi; Imai, Motokatsu; Matsuyama, Tomoyuki; Tsuzuki, Takao; Lin, Qun Ying

    2015-03-01

    As shrinkage of design features progresses, the difference in best focus positions among different patterns is becoming a fatal issue, especially when many patterns co-exist in a layer. The problem arises from three major factors: aberrations of projection optics, mask 3D topography effects, and resist thickness effects. Aberrations in projection optics have already been thoroughly investigated, but mask 3D topography effects and resist thickness effects are still under study. It is well known that mask 3D topography effects can be simulated by various Electro-magnetic Field (EMF) analysis methods. However, it is almost impossible to use them for full chip modeling because all of these methods are extremely computationally intensive. Consequently, they usually apply only to a limited range of mask patterns which are about tens of square micro meters in area. Resist thickness effects on best focus positions are rarely treated as a topic of lithography investigations. Resist 3D effects are treated mostly for resist profile prediction, which also requires an intensive EMF analysis when one needs to predict it accurately. In this paper, we present a simplified Virtual Aberration (VA) model to simulate both mask 3D induced effects and resist thickness effects. A conventional simulator, when applied with this simplified method, can factor in both mask 3D topography effects and resist thickness effects. Thus it can be used to model inter-pattern Best Focus Difference (BFD) issues with the least amount of rigorous EMF analysis.

  2. AF printability check with a full-chip 3D resist profile model

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-En R.; Chang, Jason; Song, Hua; Shiely, James

    2013-09-01

    A single compact resist model capable of predicting 3D resist profile is strongly demanded for the advanced technology nodes to avoid the potential hotspots due to imperfect resist pattern shape and its lack of resistance in the subsequent etch process. In this work, we propose a resist 3D (R3D) compact model that takes acidz-diffusion effect into account. The chemical reaction between acid and base along z-direction is treated as second order effect that is absorbed into the anisotropic diffusion length as a fitting parameter. Meanwhile, the resist model in the x-y wafer plane is still kept in general by applying the compact solution of 2D reaction-diffusion equation. In order to have the 2D contour predictability at arbitrary resist height, calibration from entire 3D data (CDs at several heights) areconducted simultaneously witha single cost function so that the R3D compact model is described by a common set of resist free parameters and threshold for all resist heights. With the low energy approximation, the acid z-diffusion effect is equivalent to a z-diffused TCC that takes the form of linear combination of pure optical TCCs sampled at discrete image-depth which can be pre-calculated. With this benefit, the R3D compact model offers a more physical approach but adds no runtime concern on the OPC and verification applications. The predicted resist cross-section profiles from our test patterns are compared those computed with rigorous lithography simulator SLITHO and show very good matching results between them. The demonstration of the AF printability check from the predicted cross-section profile at AF indicates the success of our R3D compact model.

  3. The upper crustal 3-D resistivity structure of the Kristineberg area, Skellefte district, northern Sweden revealed by magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hübert, Juliane; Juanatey, María de los Ángeles García; Malehmir, Alireza; Tryggvason, Ari; Pedersen, Laust B.

    2013-02-01

    A 3-D model of the crustal electrical resistivity was constructed from the inversion of magnetotelluric data in the Kristineberg area, Skellefte district, the location of one of Sweden's most successful mining activities. Forward modelling of vertical magnetic transfer data supports our model which was derived from the magnetotelluric impedance only. The dominant features in the 3-D model are the strong conductors at various depth levels and resistive bodies of variable thickness occurring in the shallower subsurface. The deepest conductor, previously associated with the Skellefte crustal conductivity anomaly, is imaged in the southern part of the area as a north-dipping feature starting at ˜4 km depth. Several shallow conductors are attributed to graphite in the black shales defining the contact between the metasedimentary rocks and the underlying metavolcanic rocks. Furthermore, an elongated intermediate depth conductor is possibly associated with alteration zones in the metavolcanic rocks that host the ore occurrences. The most prominent crustal resistors occur in the southern and northern part of the area, where their lateral extent on the surface coincides with the late-orogenic Revsund type intrusions. To the east, a resistive feature can be correlated to the early-orogenic Viterliden intrusion. The 3-D model is compared with two previous 2-D inversion models along two perpendicular profiles. The main electrical features are confirmed with the new model and previous uncertainties regarding 3-D effects, caused by off-profile conductors, can be better assessed in 3-D, although the resolution is lower due to a coarser model discretization. The comparison with seismic sections along two north-south profiles reveals structural correspondence between electrical features, zones of different reflectivity and geological units.

  4. Study of Multi-level Characteristics for 3D Vertical Resistive Switching Memory

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-01-01

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >1010 endurance cycles, >104 s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation. PMID:25047906

  5. Study of multi-level characteristics for 3D vertical resistive switching memory.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wu, Riga; Zhang, Ye; Deng, Ning; Yu, Zhiping; Qian, He

    2014-01-01

    Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance (e.g. >1000X HRS/LRS windows, >10(10) endurance cycles, >10(4) s retention times at 125°C). Meanwhile, four level MLC is demonstrated with two operation strategies, current controlled scheme (CCS) and voltage controlled scheme (VCS). The switching mechanism of 3D vertical RRAM cells is studied based on temperature-dependent transport characteristics. Furthermore, the applicability of CCS and VCS in 3D vertical RRAM array is compared using resistor network circuit simulation. PMID:25047906

  6. Residual resistance of 2D and 3D structures and Joule heat release.

    PubMed

    Gurevich, V L; Kozub, V I

    2011-06-22

    We consider a residual resistance and Joule heat release in 2D nanostructures as well as in ordinary 3D conductors. We assume that elastic scattering of conduction electrons by lattice defects is predominant. Within a rather intricate situation in such systems we discuss in detail two cases. (1) The elastic scattering alone (i.e. without regard of inelastic mechanisms of scattering) leads to a transition of the mechanical energy (stored by the electrons under the action of an electric field) into heat in a traditional way. This process can be described by the Boltzmann equation where it is possible to do the configuration averaging over defect positions in the electron-impurity collision term. The corresponding conditions are usually met in metals. (2) The elastic scattering can be considered with the help of the standard electron-impurity collision integral only in combination with some additional averaging procedure (possibly including inelastic scattering or some mechanisms of electron wavefunction phase destruction). This situation is typical for degenerate semiconductors with a high concentration of dopants and conduction electrons. Quite often, heat release can be observed via transfer of heat to the lattice, i.e. via inelastic processes of electron-phonon collisions and can take place at distances much larger than the size of the device. However, a direct heating of the electron system can be registered too by, for instance, local measurements of the current noise or direct measurement of an electron distribution function. PMID:21628783

  7. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  8. 3D Kinetic Simulations of Topography-Induced Electric Fields at Itokawa Asteroid

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.

    2015-12-01

    Results from a new 3D kinetic simulation code will be presented, showing how Itokawa's interaction with the solar wind plasma creates an ever-evolving electric field structure as the asteroid rotates. The simulations combine (1) a realistic surface shape model of Itokawa, (2) a careful and self-consistent accounting of surface charging processes, and (3) the freely-available FMMLib3d code library implementing the fast multipole method for electric field calculations. Fine details of the surface potential and electric grounding conditions, as revealed by this new code, could provide critical inputs into planning for a future asteroid retrieval mission in which extended, direct contact with the asteroid could occur.

  9. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  10. Role of 3D photo-resist simulation for advanced technology nodes

    NASA Astrophysics Data System (ADS)

    Narayana Samy, Aravind; Seltmann, Rolf; Kahlenberg, Frank; Schramm, Jessy; Küchler, Bernd; Klostermann, Ulrich

    2013-04-01

    3D Resist Models are gaining significant interest for advanced technology node development. Correct prediction of resist profiles, resist top-loss and top-rounding are acquiring higher importance in ORC hotspot verification due to impact on etch resistance and post etch results. We would like to highlight the specific calibration procedure to calibrate a rigorous 3D model. Special focus is on the importance of high quality metrology data for both a successful calibration and for allowing a reduction of the number of data points used for calibration [1]. In a productive application the calibration could be performed using a subset of 20 features measured through dose and focus and model validation was done with 500 features through dose and focus. This data reduction minimized the actual calibration effort of the 3D resist model and enabled calibration run times of less than one hour. The successful validation with the complete data set showed that the data reduction did not cause over- fitting of the model. The model is applied and verified at hotspots showing defects such as bottom bridging or top loss that would not be visible in a 2D resist model. The model performance is also evaluated with a conventional CD error metric where CD at Bottom of simulation and measurement are compared. We could achieve excellent results for both metrics using SEM CD, SEM images, AFM measurements and wafer cross sections. Additional modeling criterion is resist model portability. A prerequisite is the separability of resist model and optical model, i.e. the resist model shall characterize the resist only and should not lump characteristics from the optical model. This is a requirement to port the resist model to different optical setups such as another illumination source without the need of re-calibration. Resist model portability is shown by validation and application of the model to a second process with significantly different optical settings. The resist model can predict hot

  11. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  12. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  13. Automatic extraction of insulators from 3D LiDAR data of an electrical substation

    NASA Astrophysics Data System (ADS)

    Arastounia, M.; Lichti, D. D.

    2013-10-01

    A considerable percentage of power outages are caused by animals that come into contact with conductive elements of electrical substations. These can be prevented by insulating conductive electrical objects, for which a 3D as-built plan of the substation is crucial. This research aims to create such a 3D as-built plan using terrestrial LiDAR data while in this paper the aim is to extract insulators, which are key objects in electrical substations. This paper proposes a segmentation method based on a new approach of finding the principle direction of points' distribution. This is done by forming and analysing the distribution matrix whose elements are the range of points in 9 different directions in 3D space. Comparison of the computational performance of our method with PCA (principal component analysis) shows that our approach is 25% faster since it utilizes zero-order moments while PCA computes the first- and second-order moments, which is more time-consuming. A knowledge-based approach has been developed to automatically recognize points on insulators. The method utilizes known insulator properties such as diameter and the number and the spacing of their rings. The results achieved indicate that 24 out of 27 insulators could be recognized while the 3 un-recognized ones were highly occluded. Check point analysis was performed by manually cropping all points on insulators. The results of check point analysis show that the accuracy, precision and recall of insulator recognition are 98%, 86% and 81%, respectively. It is concluded that automatic object extraction from electrical substations using only LiDAR data is not only possible but also promising. Moreover, our developed approach to determine the directional distribution of points is computationally more efficient for segmentation of objects in electrical substations compared to PCA. Finally our knowledge-based method is promising to recognize points on electrical objects as it was successfully applied for

  14. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT. PMID:27203154

  15. Label-free detection of multidrug resistance in K562 cells through isolated 3D-electrode dielectrophoresis.

    PubMed

    Demircan, Yağmur; Koyuncuoğlu, Aziz; Erdem, Murat; Özgür, Ebru; Gündüz, Ufuk; Külah, Haluk

    2015-05-01

    Dielectrophoresis (DEP), a technique used to separate particles based on different sizes and/or dielectric properties under nonuniform electric field, is a promising method to be applied in label-free, rapid, and effective cell manipulation and separation. In this study, a microelectromechanical systems-based, isolated 3D-electrode DEP device has been designed and implemented for the label-free detection of multidrug resistance in K562 leukemia cells, based on the differences in their cytoplasmic conductivities. Cells were hydrodynamically focused to the 3D-electrode arrays, placed on the side walls of the microchannel, through V-shaped parylene-C obstacles. 3D-electrodes extruded along the z-direction provide uniformly distributed DEP force through channel depth. Cell suspension containing resistant and sensitive cancer cells with 1:100 ratio was continuously flown through the channel at a rate of 10 μL/min. Detection was realized at 48.64 MHz, the cross-over frequency of sensitive K562 cells, at which sensitive cells flow with the fluid, while the resistant ones are trapped by positive DEP force. Device can be operated at considerably low voltages (<9 Vpp ). This is achieved by means of a very thin (0.5 μm) parylene coating on electrodes, providing the advantages offered by the isolation of electrodes from the sample, while the working voltage can still be kept low. Results prove that the presented DEP device can provide an efficient platform for the detection of multidrug resistance in leukemia, in a label-free manner. PMID:25781271

  16. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  17. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  18. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  19. Rehand: Realistic electric prosthetic hand created with a 3D printer.

    PubMed

    Yoshikawa, Masahiro; Sato, Ryo; Higashihara, Takanori; Ogasawara, Tsukasa; Kawashima, Noritaka

    2015-08-01

    Myoelectric prosthetic hands provide an appearance with five fingers and a grasping function to forearm amputees. However, they have problems in weight, appearance, and cost. This paper reports on the Rehand, a realistic electric prosthetic hand created with a 3D printer. It provides a realistic appearance that is same as the cosmetic prosthetic hand and a grasping function. A simple link mechanism with one linear actuator for grasping and 3D printed parts achieve low cost, light weight, and ease of maintenance. An operating system based on a distance sensor provides a natural operability equivalent to the myoelectric control system. A supporter socket allows them to wear the prosthetic hand easily. An evaluation using the Southampton Hand Assessment Procedure (SHAP) demonstrated that an amputee was able to operate various objects and do everyday activities with the Rehand. PMID:26736794

  20. Fracture Resistance of Non-Metallic Molar Crowns Manufactured with CEREC 3D

    NASA Astrophysics Data System (ADS)

    Madani, Dalia A.

    Objectives. To compare fracture strength and fatigue resistance of ceramic (ProCAD, Ivoclar-Vivadent) (C) and resin composite (Paradigm MZ100, 3M/ ESPE) (R) crowns made with CEREC-3D. Methods. A prepared ivorine molar tooth was duplicated to produce 40 identical prepared specimens made of epoxy resin (Viade). Twenty (C) crowns and 20 (R) were cemented to their dies using resin cement. Ten of each group were subjected to compressive loading to fracture. The remaining 10 of each group were subjected to mechanical cyclic loading for 500,000 cycles. The survivors were subjected to compressive loading to fracture. Results. No significant difference in mean fracture load was found between the two materials. However, only 30% of the (C) crowns vs. 100% of the (R) crowns survived the cyclic loading test. Conclusions. (R) crowns demonstrated higher fatigue Resistance than (C) crowns in-vitro and might better resist cracking in-vivo.

  1. Application of 3D electrical capacitance tomography in probing anomalous blocks in water

    NASA Astrophysics Data System (ADS)

    Liao, Aimin; Zhou, Qiyou; Zhang, Yun

    2015-06-01

    Water usually acts as a high-permittivity dielectric in many fields such as geophysics, hydrology, hydrogeology, aquaculture, etc. Thus, it may be of significance to adapt ECT to the fields with a high permittivity in which the conventional ECT is scarcely involved. To achieve this objective, a simplified 3D-ECT system was constructed with a high-precision inductance capacitance resistance meter and programmable logic controllers. In the aspect of sensing unit of the system, two geometries (i.e. cylinder and cube) of 3D sensors were constructed to probe anomalous blocks in water. Numerical simulations and physical experiments for both the sensors were performed to test the effectiveness of the constructed system to probe anomalous blocks in water. Furthermore, to justify the availability of this system in some possible fields, two experiments associated with applications of the 3D-ECT system were performed to measure the distribution of a plant root system in water, and to monitor the infiltration of water in soil in field. The experimental results demonstrate that the ECT system is capable of probing the location and rough size of anomalous blocks in water with both the sensors, determining the distribution of a plant root system in water, and monitoring the infiltration process of water in soil.

  2. 3D resistivity model of the Solfatara crater by AudioMT data

    NASA Astrophysics Data System (ADS)

    Siniscalchi, Agata; Carlucci, Michela; D'Auria, Luca; Nichilo, Giuseppe; Petrillo, Zaccaria; Romano, Gerardo

    2014-05-01

    In the framework of the MED-SUV project an electromagnetic survey is scheduled to define a high-resolution 3D resistivity structure both at shallow and intermediate depths on a target area covering the Solfatara-Pisciarelli-Agnano fumaroles. The aims were i) the investigation of structural link between the distinct fumarolic areas, ii) the recognition of the water table and iii) the structure of the hydrothermal field. In particular, the Solfatara crater is located almost in the centre of the Phlegrean Fields caldera and several studies demonstrated a clear link between the change of its hydrotermal system and the ground movements of the whole Phlegrean Fields known as bradyseismic phenomena. An areal AudioMagnetoTelluric (AMT) survey was performed until now restricted in the Solfatara crater: it consists of 21 soundings in the frequency range 10 Hz - 100 kHz. This investigation permitted us to obtain: - a preliminary 3D resistivity model of the Solfatara and - a key-point recommendation for the ongoing survey of the whole area that will be ended in February. The main features of the 3D resistivity model that fit the data are: - an high shallow very conductive area, overlying a resistive zone, associated to the fumarole outcrop due to clay and relatively higher temperature; - the presence at about 100 m below ground surface of a very conductive zone in the south-eastern part of the crater; - the presence of a sub-vertical conductive alignment that resembles a NW-SE fault bordering the crater at West. During the modelling and inversion of the collected data we evidenced that the adopted frequency range, typical of AMT band, is unable to give a good resolution at intermediate depths everywhere due to the very low resistivity (about 1 Ohm.m) characterizing the shallow fumarole's areas. This forced us to plan a wider frequency range for impedance estimation that will be extended to frequency as low as 0.1 Hz during a new ongoing survey in the whole target area

  3. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  4. Monitoring a CO2 plume using time-lapse 3D magnetotellurics, DC resistivity, and induced polarization

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.; Vincent, P.

    2014-12-01

    When CO2 is injected into a deep saline aquifer, the combination of fluid displacement and chemical interaction with groundwater and minerals results in changes to the electrical properties of the storage formation. Geophysical methods that are sensitive to the electrical resistivity and chargeability of the rocks and fluids are used to monitor a modeled CO2 plume. The arrival of supercritical CO2 appears as a resistive pulse as the CO2 displaces water while rising buoyantly. Groundwater becomes carbonated and undergoes a rapid drop in pH. Formation conductivity increases as acidic fluid mobilizes ions in the surrounding rock. A surge of increased conductivity is seen at the plume front as easily-mobilized ions enter the fluid. As the injection proceeds and groundwater flows, this high-conductivity plume front migrates, leaving behind an aquifer largely depleted of highly-mobile ions, with only slightly elevated conductivity. Meanwhile, the dissolution of minerals reduces surface area along the fluid-mineral interface. This causes pore throat widening and reduction of sites where electric charge can build up, thereby reducing the polarizability in the parts of the formation that have encountered the plume. This study looks at monitoring methods that are sensitive to all of these changes in electrical properties at various depths within the earth. These methods include magnetotellurics (MT) and combined DC resistivity and induced polarization (IP). MT is useful for showing large-scale structure using an array that is moveable to cover an arbitrarily large area as the plume expands far beyond initial monitoring locations. MT also allows for phase tensor analysis to clearly show deep resistivity gradients and changes in dimensionality. The active-source nature of DC and IP makes them effective at clearly showing the plume's extent in the region within a few km of the injection well. All methods are modeled in 3D using the planned Kevin Dome carbon storage site in

  5. Complex Structures in Sediments Overlying Sinkholes: 3D-GPR and Azimuthal Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Kruse, S.; Kiflu, H. G.; Ammar, A. I., Sr.; Karashay, P., III; Marshall, A. M.; McNiff, C. M.

    2014-12-01

    3D GPR surveys in the covered karst terrain of west-central Florida, USA, reveal surprising geometries of surficial sediments. Several meters of surficial sands overlie progressively more clay-rich sediments, which in turn overlie weathered limestone. The top of a clay-rich horizon produces an exceptionally clear GPR reflector visible from depths between 0.5 and ~8 meters. On length scales of 10-20 meters, the geometry of this horizon as it drapes over underlying weathered limestone suggests that depressions are not conical, but instead more complex troughs that surround domed stratigraphic highs. Azimuthal semi-variograms of the clay horizon depth show greatest correlation in directions that are aligned with the direction of elevated resistivities at depths to 10-14 meters. One possible interpretation is that dissolution in underlying limestone is concentrated in elongated zones rather than in columnar or spherical voids. Elongated sand-filled depressions in the clay layer produce azimuthal resistivity highs in the direction of the elongation. This direction in turn corresponds to the major axis of depressions in the clay-rich GPR reflecting horizon. Groundwater recharge in this area is concentrated into conduits that breach the clay-rich units that overlie the limestone aquifer. This study suggests that the conduits themselves may be elongated features rather than cylindrical in form. Recharge flow paths may be more complex than previously recognized. The high-resolution GPR images require 3D surveys with 250 MHz and 500 MHz antennas, with 10-cm line spacings, careful corrections for antenna positions and 3D migrations of the data.

  6. 3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.

    NASA Astrophysics Data System (ADS)

    Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung

    2016-04-01

    Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.

  7. Development of mRPCs Using 3D Printed Resistive Plate Stacks

    NASA Astrophysics Data System (ADS)

    See Toh, Jun Hui

    2015-10-01

    ePHENIX will be an experiment at the future Electron-Ion Collider (EIC) to study nucleon spin structure and nuclear effects in nucleon structure. The spin dependent quark-flavor structure of the proton will be studied through semi-inclusive deep inelastic scattering with identified hadrons. These measurements will require superior particle identification capabilities. The EIC group at UIUC aims to develop multi-gap resistive plate chambers (mRPCs) with 10 ps timing resolution for a Time-of-Flight (TOF) detector at EIC. To create a cost efficient detector, mRPCs using 3D printed resistive plate stacks have been constructed and are being evaluated. An mRPC prototype consisting of two stacks of 5 layers of 300 μm gas gaps had been printed using stereolithographic technique. The printed stacks were then sandwiched between printed circuit board plates, which contain pickup electrodes for signal readout and will be connected to high voltage. The presentation will discuss details of the construction of the 3D printed mRPC prototype and will provide first results on efficiency and timing resolution.

  8. Electrical conductivity of the Iapetus Suture Zone Scotland, revisited with 3D inversion

    NASA Astrophysics Data System (ADS)

    Weckmann, U.; Toelg, D.; Ritter, O.

    2012-12-01

    The electrical conductivity structure of the crust beneath the Southern Uplands of Scotland has been investigated with electromagnetic and magneto-variational studies since the early 1970ies. The Southern Uplands formed in Ordovician and Silurian times as an accretionary prism on the Laurentian margin of the Iapetus Ocean as overthrusted wedges of sediments bounded by thrust faults. A pronounced zone of high electrical conductivity extending in northeast to southwest direction for at least 150 km was a common feature of many of these studies. The anomaly follows major structural trends of the Caledonian orogeny, such as the Southern Uplands Fault, the Orlock Bridge Fault and the Moniave Shear Zone. Graphite enrichment at mid-crustal levels trapped during the closure of the Iapetus Ocean or in detachment zones was discussed as possible causes for the high conductivity. In 1997, a high resolution MT experiment was conducted in southwestern Scotland across the most prominent faults. The station distribution, with an average spacing of 1-2km, concentrated on three parallel NW-SE profiles perpendicular to the tectonic structures and a strike parallel profile. Strike and dimensionality analyses indicated three-dimensional subsurface structures which also became evident in phases exceeding 90°. Nevertheless, 2D inversion of a sub-set of data revealed good spatial correlation of conductive zones and surface expressions of known faults. The 2D inversion results supported a mid-crustal detachment zone. However, some of the smaller profiles as well as the strike parallel profile could not be interpreted adequately with a 2D approach. Since 3D inversion algorithms are now available, we present a re-interpretation of the MT data set. We reprocessed the time series to improve estimates of the full impedance tensor for subsequent 3D inversion. 3D inversion reproduces the main features found along the published profiles. However, significant deviation from a 2D subsurface can be

  9. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  10. Recent development of 3D imaging laser sensor in Mitsubishi Electric Corporation

    NASA Astrophysics Data System (ADS)

    Imaki, M.; Kotake, N.; Tsuji, H.; Hirai, A.; Kameyama, S.

    2013-09-01

    We have been developing 3-D imaging laser sensors for several years, because they can acquire the additional information of the scene, i.e. the range data. It enhances the potential to detect unwanted people and objects, the sensors can be utilized for applications such as safety control and security surveillance, and so forth. In this paper, we focus on two types of our sensors, which are high-frame-rate type and compact-type. To realize the high-frame-rate type system, we have developed two key devices: the linear array receiver which has 256 single InAlAs-APD detectors and the read-out IC (ROIC) array which is fabricated in SiGe-BiCMOS process, and they are connected electrically to each other. Each ROIC measures not only the intensity, but also the distance to the scene by high-speed analog signal processing. In addition, by scanning the mirror mechanically in perpendicular direction to the linear image receiver, we have realized the high speed operation, in which the frame rate is over 30 Hz and the number of pixels is 256 x 256. In the compact-type 3-D imaging laser sensor development, we have succeeded in downsizing the transmitter by scanning only the laser beam with a two-dimensional MEMS scanner. To obtain wide fieldof- view image, as well as the angle of the MEMS scanner, the receiving optical system and the large area receiver are needed. We have developed the large detecting area receiver that consists of 32 rectangular detectors, where the output signals of each detector are summed up. In this phase, our original circuit evaluates each signal level, removes the low-level signals, and sums them, in order to improve the signalto- noise ratio. In the following paper, we describe the system configurations and the recent experimental results of the two types of our 3-D imaging laser sensors.

  11. 3-D Measurement and Visualization of Electrical Propagation on Heart Surface

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Wikswo, John P.

    1997-11-01

    Optical recording of the cardiac transmembrane potential (Vm) has recently become a powerful tool to reveal patterns of electrical wave front dynamics on the heart surface. The optical mapping techniques have been previously applied to observe a portion of the heart due to its 3-D geometry. We extended our 2-D optical mapping technique to include one front view and two back mirror views for measuring and visualizing the transmembrane potential distribution simultaneously over entire surface of an isolated rabbit heart. The heart was illuminated with an argon laser delivered through an optical fiber bundle consisting of seven 1-mm fibers. These fibers were positioned around the heart to induce a near-uniform fluorescence intensity distribution on the heart surface. A single high-speed CCD camera with a long depth of field recorded the laser-stimulated epifluorescence from all three views in a single frame. Sequences of 100 to 600 frames of 12-bit/pixel digital images were recorded during regular pacing or induced ventricular fibrillation at 335 frames/second. Image processing then yielded the Vm distribution at a resolution of 128x64 pixels/frame. The propagating wave front images were obtained by subtracting two subsequent Vm images. The geometry of the heart was obtained by profilometry. The wave front information obtained from image processing could be texture-mapped to the heart geometry for visualization. Our 3-D imaging technique provides simultaneous, dynamic information of wave front activation and propagation over entire heart surface, and thereby can offer a more complete knowledge of wave front dynamics in a whole heart model. Future work involves automatic procedure for digitizing the heart shape and measuring the wave front dimensions using the 3-D geometry.

  12. Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1994-01-01

    The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.

  13. SERS spectroscopy, electrical recording and intracellular injection in neuronal networks with 3D plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Caprettini, Valeria; Messina, Gabriele C.; Dipalo, Michele; La Rocca, Rosanna; Cerea, Andrea; De Angelis, Francesco

    2016-03-01

    We developed a platform based on 3D plasmonic nanoantennas able to perform different functions with applications in the biological research area. In particular it will be shown how the peculiar geometry of the system plays a fundamental role, leading to a tight interaction with the cellular membrane. Such configuration allows on one side the investigation of extracellular features through enhanced vibrational spectroscopy and electrical recording, and on the other the possibility of intracellular injection by optoporation. In this regard it will be demonstrated how the characteristics of the laser pulse used for exciting the antenna establish the kind of involved phenomena. A dependence of these properties on the metal coating the antenna will be also shown.

  14. 3-D resistivity imaging of buried concrete infrastructure with application to unknown bridge foundation depth determination

    NASA Astrophysics Data System (ADS)

    Everett, M. E.; Arjwech, R.; Briaud, J.; Hurlebaus, S.; Medina-Cetina, Z.; Tucker, S.; Yousefpour, N.

    2010-12-01

    Bridges are always vulnerable to scour and those mainly older ones with unknown foundations constitute a significant risk to public safety. Geophysical testing of bridge foundations using 3-D resistivity imaging is a promising non-destructive technology but its execution and reliable interpretation remains a challenging task. A major difficulty to diagnosing foundation depth is that a single linear electrode profile generally does not provide adequate 3—D illumination to provide a useful image of the bottom of the foundation. To further explore the capabilities of resistivity tomography, we conducted a 3—D resistivity survey at a geotechnical test area which includes groups of buried, steel—reinforced concrete structures, such as slabs and piles, with cylindrical and square cross—sections that serve as proxies for bridge foundations. By constructing a number of 3—D tomograms using selected data subsets and comparing the resulting images, we have identified efficient combinations of data acquired in the vicinity of a given foundation which enable the most cost-effective and reliable depth determination. The numerous issues that are involved in adapting this methodology to actual bridge sites is discussed.

  15. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  16. Observations of 3-D Electric Fields and Waves Associated With Reconnection at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.

  17. Cone-based electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Pidlisecky, Adam

    Determining the 3-D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, I have developed a minimally invasive technology that provides information about the 3-D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), integrates the existing technologies of resistivity cone penetration testing (RCPT) with electrical resistivity tomography. Development of this tool included the creation of new software and modeling algorithms, the design of field equipment, field testing, and processing and interpretation of the resulting data. I present a 2.5-D forward modeling algorithm that incorporates an effective correction for the errors caused by boundary effects and source singularities. The algorithm includes an optimization technique for acquiring the Fourier coefficients required for the solution. A 3-D inversion algorithm is presented that has two major improvements over existing algorithms. First, it includes a 3-D version of the boundary correction/source singularity correction developed for the 2.5-D problem. Second, the algorithm can handle any type of acquisition geometry; this was a requirement for the development of C-bert. C-bert involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer and at the surface to measure the resultant potential field. In addition to these measurements, we obtain the standard suite of RCPT data, including high resolution resistivity logs. The RCPT data can be used to generate a realistic

  18. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  19. Reducing Uncertainty in the Distribution of Hydrogeologic Units within Volcanic Composite Units of Pahute Mesa Using High-Resolution 3-D Resistivity Methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.

    2010-01-01

    Pahute Mesa within the Calico Hills zeolitic volcanic composite unit (VCU), an important hydrostratigraphic unit in Area 20. The resistivity response was evaluated and compared with existing well data and hydrogeologic unit tops from the current Pahute Mesa framework model. In 2008, the USGS processed and inverted the magnetotelluric data into a 3-D resistivity model. We interpreted nine depth slices and four west-east profile cross sections of the 3-D resistivity inversion model. This report documents the geologic interpretation of the 3-D resistivity model. Expectations are that spatial variations in the electrical properties of the Calico Hills zeolitic VCU can be detected and mapped with 3-D resistivity, and that these changes correlate to differences in rock permeability. With regard to LFA and TCU, electrical resistivity and permeability are typically related. Tuff confining units will typically have low electrical resistivity and low permeability, whereas LFA will have higher electrical resistivity and zones of higher fracture-related permeability. If expectations are shown to be correct, the method can be utilized by the UGTA scientists to refine the hydrostratigraphic unit (HSU) framework in an effort to more accurately predict radionuclide transport away from test areas on Pahute and Rainier Mesas.

  20. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  1. Proteomic comparison of 3D and 2D glioma models reveals increased HLA-E expression in 3D models is associated with resistance to NK cell-mediated cytotoxicity.

    PubMed

    He, Weiqi; Kuang, Yongqin; Xing, Xuemin; Simpson, Richard J; Huang, Haidong; Yang, Tao; Chen, Jingmin; Yang, Libin; Liu, Enyu; He, Weifeng; Gu, Jianwen

    2014-05-01

    Three-dimensional cell culture techniques can better reflect the in vivo characteristics of tumor cells compared with traditional monolayer cultures. Compared with their 2D counterparts, 3D-cultured tumor cells showed enhanced resistance to the cytotoxic T cell-mediated immune response. However, it remains unclear whether 3D-cultured tumor cells have an enhanced resistance to NK cell cytotoxicity. In this study, a total of 363 differentially expressed proteins were identified between the 2D- and 3D-cultured U251 cells by comparative proteomics, and an immune-associated protein-protein interaction (PPI) network based on these differential proteins was constructed by bioinformatics. Within the network, HLA-E, as a molecule for inhibiting NK cell activation, was significantly up-regulated in the 3D-cultured tumor cells. Then, we found that the 3D-cultured U251 cells exhibited potent resistance to NK cell cytotoxicity in vitro and were prone to tumor formation in vivo. The resistance of the 3D-cultured tumor cells to NK cell lysis was mediated by the HLA-E/NKG2A interaction because the administration of antibodies that block either HLA-E or NKG2A completely eliminated this resistance and significantly decreased tumor formation. Taken together, our findings indicate that HLA-E up-regulation in 3D-cultured cells may result in enhanced tumor resistance to NK cell-mediated immune response. PMID:24742303

  2. Microfabrication of 3D neural probes with combined electrical and chemical interfaces

    NASA Astrophysics Data System (ADS)

    John, Jessin; Li, Yuefa; Zhang, Jinsheng; Loeb, Jeffrey A.; Xu, Yong

    2011-10-01

    This paper reports a novel neural probe technology for the manufacture of 3D arrays of electrodes with integrated microchannels. This new technology is based on a silicon island structure and a simple folding procedure. This method simplifies the assembly or packaging process of 3D neural probes, leading to higher yield and lower cost. Prototypes with 3D arrays of electrodes have been successfully developed. Microchannels have been successfully integrated into the 3D neural probes via isotropic XeF2 gas phase etching and a parylene resealing process. The probes have been characterized by scanning electron microscopy imaging, optical imaging, impedance analysis, and atomic force microscopy characterization of the electrode surface. Preliminary animal tests have been carried out to demonstrate the recording functionality of the probes. Flow characteristics of the microchannels were also preliminarily measured.

  3. 3-D Resistivity Structure of La Soufrière Volcano (Guadeloupe): New Insights into the Hydrothermal System and Associated Hazards

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Nicollin, F.; Komorowski, J. C.; Gibert, D.; Deroussi, S.

    2015-12-01

    The 3-D electrical resistivity model of the dome of La Soufrière of Guadeloupe volcano was obtained by inverting more than 23000 electrical resistivity tomography (ERT) and mise-a-la-masse data points. Data acquisition involved 2-D and 3-D protocols, including several pairs of injection electrodes located on opposite sides of the volcano. For the mise-a-la-masse measurements, the contact with a conductive mass was achieved by immersing one of the current electrodes in the Tarissan acid pond (~25 Siemens/m) located in the volcano's summit. The 3-D inversion was performed using a deterministic smoothness-constrained least-squares algorithm with unstructured grid modeling to accurately account for topography. Resistivity contrasts of more than 4 orders of magnitude are observed. A thick and high-angle conductive structure is located in the volcano's southern flank. It extends from the Tarissan Crater's acid pond on the summit to a hot spring region located close to the dome's southern base. This suggests that a large hydrothermal reservoir is located below the southern base of the dome, and connected to the acid pond of the summit's main crater. Therefore, the steep southern flanks of the volcano could be resting on a low-strength, high-angle discontinuity saturated with circulating and possibly pressurized hydrothermal fluids. This could favor partial edifice collapse and lateral directed explosions as shown recurrently in the volcano's history. The resistivity model also reveals smaller hydrothermal reservoirs in the south-east and northern flanks that are linked to the main historical eruptive fractures and to ancient collapse structures such as the Cratère Amic structure. We discuss the main resistivity structures in relation with the geometry of observed faults, historical eruptive fractures, the dynamics of the near surface hydrothermal system manifestations on the dome and the potential implications for future hazards scenarios .

  4. Electrical Resistance Tomography imaging of concrete

    SciTech Connect

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-15

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  5. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  6. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  7. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  8. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  9. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  10. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model.

    PubMed

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  11. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model

    PubMed Central

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity. PMID:20228625

  12. A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures

    NASA Astrophysics Data System (ADS)

    Marescot, Laurent; Rigobert, Stéphane; Palma Lopes, Sérgio; Lagabrielle, Richard; Chapellier, Dominique

    2006-09-01

    This paper presents a general and comprehensive way to evaluate the geometric factors used for the computation of apparent resistivities in the context of DC resistivity mapping and non-destructive investigations, in laboratory or in the field. This technique enables one to consider 3-dimensional objects with arbitrary shape. The expression of the geometric factor results from the early definition of apparent resistivitiy. It is expressed as the ratio of the resistances obtained from measurements to the resistances induced in the medium with unitary resistivity considering the same object geometry and electrode set-up. In this work, a finite element code is used for the computation of the geometric factor. In this code, the electrodes do not need to be located on the nodes of the mesh. This option makes the finite element mesh generation task easier. A first synthetical example illustrates how the present approach could be applied to apparent resistivity mapping in an environment with a complex underground topography. A second example, based on real data in a water tank, illustrates the simulation of a resistivity survey on a structure with finite extent, e.g. a laboratory sample. In both examples, topographic artefacts and effects of material sample shapes are successfully taken into account and reliable apparent resistivity descriptions of the structures are obtained. The effectiveness of the method for the detection of heterogeneities in apparent resistivity maps is highlighted.

  13. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  14. Discontinuities detection using transmission electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Boyle, Alistair; Grychtol, Bartłomiej; Adler, Andy

    2015-04-01

    In the context of nuclear waste storage, low permeability clays are investigated as potential geological barrier. Discontinuities in such formations might facilitate the radionuclide transport to the environment. The underground platform of Tournemire (Aveyron, France) presents the opportunity to perform in-situ experiments to evaluate the potential of geophysical methods to detect and characterize the presence of discontinuities in the sub-surface. In this work, we apply transmission electrical resistivity tomography to image the medium surrounding a regional fault. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault. The objective of a such geometry is to acquire data in transmission across the massif in addition to classical protocol such as Schlumberger or dipole-dipole in order to better cover the sounded medium. 3D models considering the gallery geometry, the topography and the injection of current in transmission through the massif were developed for the analysis of such particular data sets. For the reconstruction of the medium electrical resistivity, the parametrization of the inverse problem was adapted to the geometry of the experience in a scope to reduce the inversion under-determination. The resulting image obtained with classical protocols and transmission current injection is compared to an image obtained using only classical protocols to better highlight the interest of a transmission experiment in terms of resolution and penetration depth. The addition of protocols in transmission allows a better coverage of the sounded medium so the resulting image presents a better resolution at higher depths than the image resulting from a single profile of electrodes. The proposed configuration of electrical resistivity measurements in transmission is then promising for hydrogeophysical studies, in particular for

  15. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.

    PubMed

    Chamakuri, Nagaiah; Kunisch, Karl; Plank, Gernot

    2016-04-01

    A computational study of an optimal control approach for cardiac defibrillation in a 3D geometry is presented. The cardiac bioelectric activity at the tissue and bath volumes is modeled by the bidomain model equations. The model includes intramural fiber rotation, axially symmetric around the fiber direction, and anisotropic conductivity coefficients, which are extracted from a histological image. The dynamics of the ionic currents are based on the regularized Mitchell-Schaeffer model. The controls enter in the form of electrodes, which are placed at the boundary of the bath volume with the goal of dampening undesired arrhythmias. The numerical optimization is based on Newton techniques. We demonstrated the parallel architecture environment for the computation of potentials on multidomains and for the higher order optimization techniques. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26249168

  16. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  17. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography

    NASA Astrophysics Data System (ADS)

    Karaoulis, M.; Revil, A.; Tsourlos, P.; Werkema, D. D.; Minsley, B. J.

    2013-04-01

    We propose a 2D/3D forward modelling and inversion package to invert direct current (DC)-resistivity, time-domain induced polarization (TDIP), and frequency-domain induced polarization (FDIP) data. Each cell used for the discretization of the 2D/3D problems is characterized by a DC-resistivity value and a chargeability or complex conductivity for TDIP/FDIP problems, respectively. The governing elliptic partial differential equations are solved with the finite element method, which can be applied for both real and complex numbers. The inversion can be performed either for a single snapshot of data or for a sequence of snapshots in order to monitor a dynamic process such as a salt tracer test. For the time-lapse inversion, we have developed an active time constrained (ATC) approach that is very efficient in filtering out noise in the data that is not correlated over time. The forward algorithm is benchmarked with simple analytical solutions. The inversion package IP4DI is benchmarked with three tests, two including simple geometries. The last one corresponds to a time-lapse resistivity problem for cross-well tomography during enhanced oil recovery. The algorithms are based on MATLAB® code package and a graphical user interface (GUI).

  18. Calculation of the potentials and 3D electric fields in a proton decay detector

    SciTech Connect

    Lari, R.J.; Dawson, J.W.; Turner, L.R.

    1987-01-01

    An electrostatic detector for measuring the lifetime of the proton has been modeled in three dimensions. Linear hexahedral finite elements were used and the potential obtained at all nodes. The three components of the electric field were calculated and used to determine field lines, calculate drift fields and drift times. Effective aperture calculations agreed with the measurements.

  19. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  20. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    NASA Astrophysics Data System (ADS)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  1. A 3-D RBF-FD elliptic solver for irregular boundaries: modeling the atmospheric global electric circuit with topography

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-04-01

    A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD) is developed for simulating the Global Electric Circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile), the right hand side forcing term of the PDE (i.e. distribution of current sources) or the geometry of the lower boundary.

  2. Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study*

    PubMed Central

    Gao, Nuo; Zhu, Shan-an; He, Bin

    2005-01-01

    We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. PMID:15822161

  3. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  4. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  5. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  6. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  7. Simulations of 3D Magnetic Merging: Resistive Scalings for Null Point and QSL Reconnection

    NASA Astrophysics Data System (ADS)

    Effenberger, Frederic; Craig, I. J. D.

    2016-01-01

    Starting from an exact, steady-state, force-free solution of the magnetohydrodynamic (MHD) equations, we investigate how resistive current layers are induced by perturbing line-tied three-dimensional magnetic equilibria. This is achieved by the superposition of a weak perturbation field in the domain, in contrast to studies where the boundary is driven by slow motions, like those present in photospheric active regions. Our aim is to quantify how the current structures are altered by the contribution of so-called quasi-separatrix layers (QSLs) as the null point is shifted outside the computational domain. Previous studies based on magneto-frictional relaxation have indicated that despite the severe field line gradients of the QSL, the presence of a null is vital in maintaining fast reconnection. Here, we explore this notion using highly resolved simulations of the full MHD evolution. We show that for the null-point configuration, the resistive scaling of the peak current density is close to J˜η^{-1}, while the scaling is much weaker, i.e. J˜η^{-0.4}, when only the QSL connectivity gradients provide a site for the current accumulation.

  8. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  9. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  10. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D.

    PubMed

    Li, Q; Chen, X M; Wang, M N; Jing, J X

    2011-01-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype 'PI 181434', originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype 'Avocet Susceptible'. Adult plants of 103 F(2) progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F(2) and F(3) were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F(2) plants and their derived F(3) lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single

  11. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  12. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  13. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    PubMed

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS. PMID:25973637

  14. Influence of electrical stimulation on 3D-cultures of adipose tissue derived progenitor cells (ATDPCs) behavior.

    PubMed

    Castells-Sala, C; Sanchez, B; Recha-Sancho, L; Puig, V; Bragos, R; Semino, C E

    2012-01-01

    Tissue engineering has a fundamental role in regenerative medicine. Still today, the major motivation for cardiac regeneration is to design a platform that enables the complete tissue structure and physiological function regeneration of injured myocardium areas. Although tissue engineering approaches have been generally developed for two-dimensional (2D) culture systems, three-dimensional (3D) systems are being spotlighted as the means to mimic better in vivo cellular conditions. This manuscript examines the influence of electrical stimulation on 3D cultures of adipose tissue-derived progenitor cells (ATDPCs). ATDPCs cells were encapsulated into a self-assembling peptide nanoscaffold (RAD16-I) and continuously electro stimulated during 14-20 days with 2-ms pulses of 50mV/cm at a frequency of 1 Hz. Good cellular network formation and construct diameter reduction was observed in electro stimulated samples. Importantly, the process of electro stimulation does not disrupt cell viability or connectivity. As a future outlook, differentiation studies to cardiomyocytes-like cells will be performed analyzing gene profile and protein expression. PMID:23367213

  15. Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10 metallic glass by using laminated 3D micro-electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wu, Xiao-yu; Ma, Jiang; Liang, Xiong; Lei, Jian-guo; Wu, Bo; Ruan, Shuang-chen; Wang, Zhen-long

    2016-03-01

    For obtaining 3D micro-molds with better surface quality (slight ridges) and mechanical properties, in this paper 3D micro-electrodes were fabricated and applied to micro-electrical discharge machining (micro-EDM) to process Pd40Cu30P20Ni10 metallic glass. First, 100 μm-thick Cu foil was cut to obtain multilayer 2D micro-structures and these were connected to fit 3D micro-electrodes (with feature sizes of less than 1 mm). Second, under the voltage of 80 V, pulse frequency of 0.2MHZ, pulse width of 800 ns and pulse interval of 4200 ns, the 3D micro-electrodes were applied to micro-EDM for processing Pd40Cu30P20Ni10 metallic glass. The 3D micro-molds with feature within 1 mm were obtained. Third, scanning electron microscope, energy dispersive spectroscopy and x-ray diffraction analysis were carried out on the processed results. The analysis results indicate that with an increase in the depth of micro-EDM, carbon on the processed surface gradually increased from 0.5% to 5.8%, and the processed surface contained new phases (Ni12P5 and Cu3P).

  16. An integrated 3D constant offset GPR and resistivity survey on a sealed landfill — Ilhavo, NW Portugal

    NASA Astrophysics Data System (ADS)

    Hermozilha, H.; Grangeia, C.; Matias, M. Senos

    2010-01-01

    Owing to their nature landfills are challenging targets for high resolution Near Surface Geophysics. Herein it is described an integrated high resolution geophysical survey over the Ilhavo landfill sealed about a decade ago. The first aim of the survey is to investigate the time evolution of the contamination plume of the landfill since operations stopped and sealing took place. The second, and main objective, is the study of the landfill itself, that is, to carry out a high resolution 3D geophysical survey over it in order to investigate the thickness and effectiveness of the top cover, the thickness and sealing conditions of the landfill bottom and, finally, to investigate its internal structure. To fulfill these objectives an integrated 3D constant offset GPR and resistivity survey was designed. The interpretation of the geophysical data was carried out together with local borehole and hydrogeological information, so that, the ambiguity and uncertainty of the interpretation was reduced considerably and the usefulness of the methods were assessed.

  17. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    ERIC Educational Resources Information Center

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  18. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  19. Modeling electric fields inside the LUX detector in 3D using 83mKr calibration data

    NASA Astrophysics Data System (ADS)

    Tvrznikova, Lucie; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) experiment is a 350 kg two-phase liquid/gas xenon time projection chamber designed for the direct detection of weakly interacting massive particles, a leading dark matter candidate. LUX operates on the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. Weekly calibrations using a homogeneous injection of a monoenergetic 83mKr source enable us to monitor xenon within the active region. For this project, a 3D model of the electric fields inside the LUX detector was created using COMSOL Multiphysics software. A simulation of electrons drifting in the detector then produces a set of computational predictions. These are then reconciled with the 83mKr data to confirm the accuracy of the field model. The result of this work is a more accurate understanding of the electric field inside the active region. This model, in conjuction with these methods, may now be used to study other phenomena such as possible surface charge buildup in detector materials.

  20. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    PubMed

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications. PMID:25714129

  1. Particle-vortex duality of 2d Dirac fermion from electric-magnetic duality of 3d topological insulators

    NASA Astrophysics Data System (ADS)

    Metlitski, Max; Vishwanath, Ashvin

    Particle-vortex duality is a powerful theoretical tool that has been used to study systems of bosons. In arXiv:1505.05142, we propose an analogous duality for Dirac fermions in 2+1 dimensions. The physics of a single Dirac cone is proposed to be described by a dual theory, QED3 with a dual Dirac fermion coupled to a u(1) gauge field. This duality is established by considering two alternate descriptions of the 3d topological insulator (TI) surface. The first description is the usual Dirac cone surface state. The second description is accessed via an electric-magnetic duality of the bulk TI coupled to a gauge field, which maps it to a gauged topological superconductor. This alternate description ultimately leads to a new surface theory - dual QED3. The dual theory provides an explicit derivation of the T-Pfaffian state, a proposed surface topological order of the TI, which is simply the paired superfluid state of the dual fermions. The roles of time reversal and particle-hole symmetry are exchanged by the duality, which connects some of our results to a recent conjecture by Son on particle-hole symmetric quantum Hall states at ν = 1 / 2 .

  2. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  3. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  4. Electrical Resistive Heaters for Magnetically Sensitive Instruments

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2014-05-01

    US Patent 8,138,760 ``Temperature System with Magnetic Field Suppression'' describes design concepts and examples for development of electrical resistive heaters and temperature detectors suitable for temperature control of the alkali vapor cells of magnetically sensitive atomic instruments such as spin-exchange relaxation free (SERF) magnetometers. This is achieved through careful manipulation of electromagnetic multi-pole moments in the design of these resistive heaters for substantial self-cancellation of electrically generated magnetic fields. The magnetic performance of electrical resistive heaters produced according to these design principles and directly attached to a rubidium vapor cell has been demonstrated to cause no measurable degradation of the performance of a SERF magnetometer exhibiting noise below 2 femto-Tesla per square root Hz.

  5. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  6. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  7. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    NASA Astrophysics Data System (ADS)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized

  8. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D.

    PubMed

    Rhodes, Christopher P; Long, Jeffrey W; Pettigrew, Katherine A; Stroud, Rhonda M; Rolison, Debra R

    2011-04-01

    We describe fabrication of three-dimensional (3D) multifunctional nanoarchitectures in which the three critical components of a battery--cathode, separator/electrolyte, and anode--are internally assembled as tricontinuous nanoscopic phases. The architecture is initiated using sol-gel chemistry and processing to erect a 3D self-wired nanoparticulate scaffold of manganese oxide (>200 m(2) g(-1)) with a continuous, open, and mesoporous void volume. The integrated 3D system is generated by exhaustive coverage of the oxide network by an ultrathin, conformal layer of insulating polymer that forms via self-limiting electrodeposition of poly(phenylene oxide). The remaining interconnected void volume is then wired with RuO(2) nanowebs using subambient thermal decomposition of RuO(4). Transmission electron microscopy demonstrates that the three nanoscopic charge-transfer functional components--manganese oxide, polymer separator/cation conductor, and RuO(2)--exhibit the stratified, tricontinuous design of the phase-by-phase construction. This architecture contains all three components required for a solid-state energy storage device within a void volume sized at tens of nanometres such that nanometre-thick distances are established between the opposing electrodes. We have now demonstrated the ability to assemble multifunctional energy-storage nanoarchitectures on the nanoscale and in three dimensions. PMID:21327256

  9. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  10. Pedotransfer functions in soil electrical resistivity estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  11. Temperature dependent electrical resistivity of liquid Sn

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.

    2016-05-01

    The present paper deals with the effect of temperature variation on the electrical resistivity (ρ) of liquid Sn(Tin). We have used a new parameter free pseudopotential along with screening Taylor et al and Farid et al local field correction functions. The Percus-Yevick Hard Sphere (PYHS) reference system is used to describe structural information. Zeeman formula has been used for finding resistivity with the variation of temperature. The balanced harmonies between present data and experimental data have been achieved with a minimal deviation. So, we concluded that our newly constructed model potential is an effective one to produce the data of electrical resistivity of liquid Sn(Tin) as a function of temperature.

  12. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  13. On equivalent resistance of electrical circuits

    NASA Astrophysics Data System (ADS)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  14. 3-D Resistivity Tomography for Cliff Stability Study at the D-Day Pointe du Hoc Historic Site in Normandy, France

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Everett, M. E.; Guenther, T.; Warden, R. R.

    2007-12-01

    The D-Day invasion site at Pointe du Hoc in Normandy, France is one of the most important World War II battlefields. The site remains today a valuable historic cultural resource. However the site is vulnerable to cliff collapses that could endanger the observation post building and U.S. Ranger memorial located just landward of the sea stack, and an anti-aircraft gun emplacement, Col. Rudder's command post, located on the cliff edge about 200 m east of the observation post. A 3-D resistivity tomography incorporating extreme topography is used in this study to provide a detailed site stability assessment with special attention to these two buildings. Multi-electrode resistivity measurements were made across the cliff face and along the top of the cliff around the two at-risk buildings to map major subsurface fracture zones and void spaces that could indicate possible accumulations and pathways of groundwater. The ingress of acidic groundwater through the underlying carbonate formations enlarges pre-existing tectonic fractures via limestone dissolution and weakens the overall structural integrity of the cliff. The achieved 3-D resistivity tomograms provide diagnostic subsurface resistivity distributions. Resistive zones associated with subsurface void spaces have been located. These void spaces constitute a stability geohazard as they become significant drainage routes during and after periods of heavy rainfalls.

  15. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  16. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape

  17. Electrical Resistivity Imaging and Depression Focused Recharge

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Hayashi, M.; Berthold, S.

    2003-12-01

    Seasonal wetlands and small depressions play a fundamental role in recharging regional aquifers in the northern glaciated planes. Water from snowmelt collects in the depressions in the spring and infiltrates into the ground after the soil unfreezes. Infiltrating water leaches salts from the soil beneath depressions. The majority of the infiltrating water moves to the local uplands where it leaves the ground through ET leaving behind zones of evaporitically concentrated salts. A small percentage infiltrates down to the regional aquifer. Leaching and concentrating salts effect the electrical resistivity distribution of the subsurface. Three-dimensional electrical resistivity imaging (ERI) was combined with groundwater and soil measurements to generate a conceptual model of three dimensional fluid flow at San Denis, Saskatchewan. Water chemistry was used to generate a conceptual model of different geochemical zones which could be distinguished by the electrical conductivity of pore water. The Waxman-Smits equation was used to link groundwater electrical conductivity to in situ bulk resistivity. Electrical resisistivity from ERI was then used to map geochemical zones in the subsurface. ERI and chemistry show that infiltrating water reaches a regional aquifer at 20 meters depth. Seasonal wetlands have large zones of high resistivity that reach to the regional water table indicating that salts have been leached out of the tills to the depth of the regional aquifer. Small local depressions also have zones of leached soil beneath them indicating that they contribute to regional groundwater recharge. Since there are millions of small depressions, they may play a fundamental role in groundwater recharge and must be considered in land management. The images show a complex distribution of salts. Most of the salt is located in the upper weathered zone in the glacial tills and the horizontal distribution is controled by the locations of wetlands, steepness of slopes and the

  18. 3D printing in chemistry: past, present and future

    NASA Astrophysics Data System (ADS)

    Shatford, Ryan; Karanassios, Vassili

    2016-05-01

    During the last years, 3d printing for rapid prototyping using additive manufacturing has been receiving increased attention in the technical and scientific literature including some Chemistry-related journals. Furthermore, 3D printing technology (defining size and resolution of 3D objects) and properties of printed materials (e.g., strength, resistance to chemical attack, electrical insulation) proved to be important for chemistry-related applications. In this paper these are discussed in detail. In addition, application of 3D printing for development of Micro Plasma Devices (MPDs) is discussed and 2d-profilometry data of a 3D printed surfaces is reported. And, past and present chemistry and bio-related applications of 3D printing are reviewed and possible future directions are postulated.

  19. New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data

    SciTech Connect

    Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

    2006-06-14

    Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

  20. Model Simulations of the Diurnal and Seasonal Variations of the Global Electric Circuit Using a Consistent 3D Model Framework

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Bayona, V.; Flyer, N.; Baumgaertner, A. J. G.; Thayer, J. P.

    2014-12-01

    We introduce a new numeric solver for the partial differential equations of the Global Electric Circuit (GEC). The model is applied to derive the ionospheric potential with respect to the Earth, as well as the current distribution and electric fields throughout the atmosphere. We will discuss its advantages to previously published approaches, and introduce the model's application within a larger model framework that consistently describes the thunderstorm/electrified cloud current source distribution and conductivity. The new source and conductivity distributions will be utilized in the new numeric GEC solver to demonstrate the effect that temporal and spatial variability of these inputs have on electric fields and currents throughout the domain.

  1. Electric transport in 3D photonic crystal intermediate reflectors for micromorph thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Lee, S.; Knez, M.; Carius, R.; Wehrspohn, R. B.

    2009-08-01

    The progress of 3D photonic intermediate reflectors for micromorph silicon tandem cells towards a first prototype cell is presented. Intermediate reflectors enhance the absorption of spectrally-selected light in the top cell and decrease the current mismatch between both junctions. A numerical method to predict filter properties for optimal current matching is presented. Our device is an inverted opal structure made of ZnO and fabricated using self-organized nanoparticles and atomic layer deposition for conformal coating. In particular, the influence of ZnO-doping and replicated cracks during drying of the opal is discussed with respect to conductivity and optical properties. A first prototype is compared to a state-of-the-art reference cell.

  2. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  3. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  4. Delineation of graves using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.

    2016-03-01

    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  5. mr-PosEBR: a novel positive tone resist for high resolution electron beam lithography and 3D surface patterning

    NASA Astrophysics Data System (ADS)

    Pfirrmann, Stefan; Kirchner, Robert; Lohse, Olga; Guzenko, Vitaliy A.; Voigt, Anja; Harder, Irina; Kolander, Anett; Schift, Helmut; Grützner, Gabi

    2016-03-01

    In this contribution, we present the results of a systematic material variation for the development of a resist material for high resolution positive tone electron beam lithography (EBL). Several acrylic copolymer materials with different compositions, that is varying mass fractions of the comonomers and different molecular weights, were synthesized and - as resist solutions - evaluated in terms of EBL performance at acceleration voltages of 30 kV and 100 kV. The resist material exhibiting the best combination of the desired properties, named mr-PosEBR, is two times more sensitive than PMMA 495k and performs comparably to the known high resolution resist ZEP520A at 30 kV. For example, a grating pattern with 29 nm wide lines with a period of 100 nm could be lithographically generated in films of mr-PosEBR with an area dose of 100 μC/cm2. In terms of resolution, single lines of only 35 nm width could be fabricated via metal liftoff. Furthermore, the dry etch stability of mr-PosEBR in a CF4/SF6 process is similar to the one of ZEP520A. Consequently, via dry etching nano patterns in mr-PosEBR could be smoothly transferred into the underlying Si substrate with high fidelity. Moreover, mr-PosEBR was evaluated as electron beam grayscale patterning and reflow resist. It was shown that the resist exhibits a good grayscale and reflow performance very similar to PMMA 120k and ZEP520A. Via these well controllable processes the generation of a wide variety of features and applications is possible.

  6. Rational Experimental Design for Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R.

    2008-12-01

    Over the past several decades advances in the acquisition and processing of electrical resistivity data, through multi-channel acquisition systems and new inversion algorithms, have greatly increased the value of these data to near-surface environmental and hydrological problems. There has, however, been relatively little advancement in the design of actual surveys. Data acquisition still typically involves using a small number of traditional arrays (e.g. Wenner, Schlumberger) despite a demonstrated improvement in data quality from the use of non-standard arrays. While optimized experimental design has been widely studied in applied mathematics and the physical and biological sciences, it is rarely implemented for non-linear problems, such as electrical resistivity imaging (ERI). We focus specifically on using ERI in the field for monitoring changes in the subsurface electrical resistivity structure. For this application we seek an experimental design method that can be used in the field to modify the data acquisition scheme (spatial and temporal sampling) based on prior knowledge of the site and/or knowledge gained during the imaging experiment. Some recent studies have investigated optimized design of electrical resistivity surveys by linearizing the problem or with computationally-intensive search algorithms. We propose a method for rational experimental design based on the concept of informed imaging, the use of prior information regarding subsurface properties and processes to develop problem-specific data acquisition and inversion schemes. Specifically, we use realistic subsurface resistivity models to aid in choosing source configurations that maximize the information content of our data. Our approach is based on first assessing the current density within a region of interest, in order to provide sufficient energy to the region of interest to overcome a noise threshold, and then evaluating the direction of current vectors, in order to maximize the

  7. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  8. A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-10-01

    A numerical model based on radial basis function-generated finite differences (RBF-FD) is developed for simulating the global electric circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic partial differential equation (PDE) in a spherically shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space and, related to this, (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e., the conductivity profile), the right hand side forcing term of the PDE (i.e., distribution of current sources) or the geometry of the lower boundary.

  9. On the photoemission from 3-D quantum well boxes of nonlinear optical materials in the presence of crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghatak, Kamakhya P.

    1990-08-01

    An attempt is made to study the photoemission :eron 3D quantum well boxes (QWBs) of nonlinear optical materials in the presence of crossed electric and magnetic fields, taking ternary chalcopyrite semiconductors as an example. Consi3ering the anisotropic crystal potential in the Harniltonian, we have formulated the generalized electron energy spectrum taking into account the anisotropies of the 0ther energy band par arne ter s, within the fr sine work of theory. We have then derlved.the photoernission from 3D QWBs of ternary chalCopyrite compounds by using the modified dispersion law under cross field configuration in the said material. It is found, taking 3D QWBs of n-CdGeAs2 as an example, that the photoernission exhibits ladder like dependence with incident photon energy as found in quanturn Hall effect and the corresponding results for three and two-band Kane models together with that of parabolic energy bands have been obtained from the present generalized exjressions as special cases. The photoeinission decreases with increasing magnetic field and decreasing electron concentration respectively. The oscillations in accordance with the present generalized model show up much more significantly and are in agreement with the experimental results as given elsewhere.

  10. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  11. Electromechanical wave imaging for noninvasive mapping of the 3D electrical activation sequence in canines and humans in vivo

    PubMed Central

    Konofagou, Elisa E.; Provost, Jean

    2014-01-01

    Cardiovascular diseases rank as America’s primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT angiography and echocardiography with limitations in speed of application and reliability, respectively. It has been established that the mechanical and electrical properties of the myocardium change dramatically as a result of ischemia, infarction or arrhythmia; both at their onset and after survival. Despite these findings, no imaging technique currently exists that is routinely used in the clinic and can provide reliable, non-invasive, quantitative mapping of the regional, mechanical and electrical function of the myocardium. Electromechanical Wave Imaging (EWI) is an ultrasound-based technique that utilizes the electromechanical coupling and its associated resulting strain to infer to the underlying electrical function of the myocardium. The methodology of EWI is first described and its fundamental performance is presented. Subsequent in vivo canine and human applications are provided that demonstrate the applicability of Electromechanical Wave Imaging in differentiating between sinus rhythm and induced pacing schemes as well as mapping arrhythmias. Preliminary validation with catheter mapping is also provided and transthoracic electromechanical mapping in all four chambers of the human heart is also presented demonstrating the potential of this novel methodology to noninvasively infer to both the normal and pathological electrical conduction of the heart. PMID:22284425

  12. Electrical manipulation of biological samples in glass-based electrofluidics fabricated by 3D femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    Electrical manipulation of biological samples using glass-based electrofluidics fabricated by femtosecond laser, in which the microfluidic structures are integrated with microelectric components, is presented. Electro-orientation of movement of living cells with asymmetric shapes such as Euglena gracilis of aquatic microorganisms in microfluidic channels is demonstrated using the fabricated electrofluidics. By integrating the properly designed microelectrodes into microfluidic channels, the orientation direction of Euglena cells can be well controlled.

  13. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units.

    PubMed

    Garcia-Molla, V M; Liberos, A; Vidal, A; Guillem, M S; Millet, J; Gonzalez, A; Martinez-Zaldivar, F J; Climent, A M

    2014-01-01

    In this paper we studied the implementation and performance of adaptive step methods for large systems of ordinary differential equations systems in graphics processing units, focusing on the simulation of three-dimensional electric cardiac activity. The Rush-Larsen method was applied in all the implemented solvers to improve efficiency. We compared the adaptive methods with the fixed step methods, and we found that the fixed step methods can be faster while the adaptive step methods are better in terms of accuracy and robustness. PMID:24377685

  14. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  15. 3D-stacked carbon composites employing networked electrical intra-pathways for direct-printable, extremely stretchable conductors.

    PubMed

    Chae, Changju; Seo, Yeong-Hui; Jo, Yejin; Kim, Ki Woong; Song, Wooseok; An, Ki-Seok; Choi, Sungho; Choi, Youngmin; Lee, Sun Sook; Jeong, Sunho

    2015-02-25

    The newly designed materials for stretchable conductors meeting the demands for both electrical and mechanical stability upon morphological elongation have recently been of paramount interest in the applications of stretchable, wearable electronics. To date, carbon nanotube-elastomeric polymer mixtures have been mainly developed; however, the method of preparing such CNT-polymer mixtures as stretchable conductors has been limited to an ionic liquid-mediated approach. In this study, we suggest a simple wet-chemical method for producing newly designed, three-dimensionally stacked carbon composite materials that facilitate the stable morphological elongation up to a strain of 300% with normalized conductivity variation of only 0.34 under a strain of 300%. Through a comparative study with other control samples, it is demonstrated that the intraconnected electrical pathways in hierarchically structured composite materials enable the generation of highly stretchable conductors. Their direct patternability is also evaluated by printing on demand using a programmable disperser without the use of prepatterned masks. PMID:25647807

  16. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  17. Tank leak detection using electrical resistance methods

    SciTech Connect

    Ramirez, A.; Daily, W.; Binley, A.; LaBrecque, D.

    1996-01-01

    Large volumes of hazardous liquids and high-level radioactive wastes are stored worldwide in surface and underground tanks. Frequently these tanks are found to leak, thereby resulting in not only a loss of stored inventory, but in contamination to soils and groundwater. It is important to develop a reliable method of detecting leaks before large quantities are emitted into the environment surround the tanks. Two field experiments were performed to evaluate the performance of electrical resistance tomography (ERT) as a leak detection method under metal underground storage tanks (UST). This paper provides a summary of the field experiments performed under a 15 m diameter steel tank mockup located at the Hanford Reservation.

  18. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'.

    PubMed

    Lloris-Garcerá, Pilar; Slusky, Joanna S G; Seppälä, Susanna; Prieß, Marten; Schäfer, Lars V; von Heijne, Gunnar

    2013-11-15

    The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE. PMID:23920359

  19. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  20. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  1. A Multi-channel Semicircular Canal Neural Prosthesis Using Electrical Stimulation to Restore 3D Vestibular Sensation

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.

    2009-01-01

    Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the 3 semicircular canals in a normal ear, such a device should at least transduce 3 orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multi-channel vestibular prosthesis that encodes head movement in 3 dimensions as pulse-frequency-modulated electrical stimulation of 3 or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocular reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode’s targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior. PMID:17554821

  2. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  3. A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment

    PubMed Central

    Amadi, Ovid C.; Steinhauser, Matthew L.; Nishi, Yuichi; Chung, Seok; Kamm, Roger D.; McMahon, Andrew P.

    2011-01-01

    The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix. PMID:20661647

  4. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    PubMed Central

    2012-01-01

    Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920

  5. In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography.

    PubMed

    Dowrick, T; Blochet, C; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes with applied constant currents of 50-150 μA at 2 kHz. Impedance changes in the largest 10% of electrode combinations were  -12.8%  ±  12.0% over the first 10 min for haemorrhage and  +46.1%  ±  37.2% over one hour for ischaemic stroke (mean  ±  SD, n  =  7 in each group). The volume of the pathologies, assessed by tissue section and histology post-mortem, was 12.6 μl  ±  17.6 μl and 12.6 μl  ±  17.6 μl for haemorrhage and ischaemia respectively. In time difference EIT images, there was a correspondence with the pathology in 3/7 cases of haemorrhage and none of the ischaemic strokes. Although the net impedance changes were physiologically reasonable and consistent with expectations from the literature, it was disappointing that it was not possible to obtain reliable EIT images. The reason for this are not clear, but probably include confounding effects of secondary ischaemia for haemorrhage and tissue and cerebrospinal fluid shifts for the stroke model. With this method, it does not appear that EIT with scalp electrodes is yet ready for clinical use. PMID:27200510

  6. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  7. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens.

    PubMed

    Jeong, Hyeong-jun; Yoo, Hongki; Gweon, DaeGab

    2016-02-22

    We propose a new structure of confocal imaging system based on a direct-view confocal microscope (DVCM) with an electrically tunable lens (ETL). Since it has no mechanical moving parts to scan both the lateral (x-y) and axial (z) directions, the DVCM with an ETL allows for high-speed 3-dimensional (3-D) imaging. Axial response and signal intensity of the DVCM were analyzed theoretically according to the pinhole characteristics. The system was designed to have an isotropic spatial resolution of 20 µm in both lateral and axial direction with a large field of view (FOV) of 10 × 10 mm. The FOV was maintained according to the various focal shifts as a result of an integrated design of an objective lens with the ETL. The developed system was calibrated to have linear focal shift over a range of 9 mm with an applied current to the ETL. The system performance of 3-D volume imaging was demonstrated using standard height specimens and a dental plaster. PMID:26907034

  8. Determination of electrical resistivity of dry coke beds

    SciTech Connect

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  9. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs.

    PubMed

    Yang, Zehong; Zhao, Xiaojun

    2011-01-01

    RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D) cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell-nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology. PMID:21383855

  10. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D Structural Model of Aspergillus fumigatus CYP51A protein.

    PubMed

    Liu, Musang; Zheng, Nan; Li, Dongmei; Zheng, Hailin; Zhang, Lili; Ge, Hu; Liu, Weida

    2016-05-01

    Mutations of CYP51A protein (Cytochrome P450 14-α Sterol demethylase) play a central role in the azole resistance of Aspergillus fumigatus The available structural models of CYP51A protein ofA. fumigatus are built based on that of Homo sapiens and that of Mycobacterium tuberculosis, of which the amino acid homology is only 38% and 29% compared with CYP51A protein ofA. fumigatus, respectively. In the present study, we constructed a new 3D structural model ofA. fumigatus CYP51A protein based on a recently resolved crystal structure of the homologous protein in the fungus S. cerevisiae, which shares 50% amino acid homology with A. fumigatus CYP51A protein. Three azole molecules, itraconazole, voriconazole, and posaconazole, were docked to the wild-type and the mutant A. fumigatus CYP51A protein models, respectively, to illustrate the impact of cyp51A mutations to azole-resistance. We found the mutations that occurred at L98, M220, and Y431 positions would decrease the binding affinity of azoles to the CYP51A protein and therefore would reduce their inhibitory effects. Additionally, the mutations of L98 and G432 would reduce the stability of the protein, which might lead to conformational change of its binding pocket and eventually the resistance to azoles. PMID:26768370

  11. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation

    PubMed Central

    Carraro, Ugo; Edmunds, Kyle J.

    2015-01-01

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  12. Three-dimensional electrical resistivity model of a nuclear waste disposal site

    SciTech Connect

    Rucker, Dale F.; Levitt, Marc T.; Greenwood, William J.

    2009-12-11

    A three-dimensional (3D) modeling study was completed on a very large electrical resistivity survey conducted at a nuclear waste site in eastern Washington. The acquisition included 47 pole-pole two dimensional (2D) resistivity profiles collected along parallel and orthogonal lines over an area of 850 m×570 m. The data were geo-referenced and inverted using EarthImager3D (EI3D). EI3D runs on a Microsoft 32-bit operating system (e.g. WIN-2K, XP) with a maximum usable memory of 2 GB. The memory limits the size of the domain for the inversion model to 200 m×200 m, based on the survey electrode density. Therefore, a series of increasing overlapping models were run to evaluate the effectiveness of dividing the survey area into smaller subdomains. The results of the smaller subdomains were compared to the inversion results of a single domain over a larger area using an upgraded form of EI3D that incorporates multi-processing capabilities and 32 GB of RAM memory. The contours from the smaller subdomains showed discontinuity at the boundaries between the adjacent models, which do not match the hydrogeologic expectations given the nature of disposal at the site. At several boundaries, the contours of the low resistivity areas close, leaving the appearance of disconnected plumes or open contours at boundaries are not met with a continuance of the low resistivity plume into the adjacent subdomain. The model results of the single large domain show a continuous monolithic plume within the central and western portion of the site, directly beneath the elongated trenches. It is recommended that where possible, the domain not be subdivided, but instead include as much of the domain as possible given the memory of available computing resources.

  13. 3D Magnetotelluric characterization of the COSO GeothermalField

    SciTech Connect

    Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

    2005-01-01

    Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

  14. TUTORIAL: Electrical resistance: an atomistic view

    NASA Astrophysics Data System (ADS)

    Datta, Supriyo

    2004-07-01

    This tutorial article presents a 'bottom-up' view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remarkably, no serious quantum mechanics is needed to understand electrical conduction through something really small, except for unusual things like the Kondo effect that are seen only for a special range of parameters. This article starts with energy level diagrams (section 2), shows that the broadening that accompanies coupling limits the conductance to a maximum of q2/h per level (sections 3, 4), describes how a change in the shape of the self-consistent potential profile can turn a symmetric current-voltage characteristic into a rectifying one (sections 5, 6), shows that many interesting effects in molecular electronics can be understood in terms of a simple model (section 7), introduces the non-equilibrium Green function (NEGF) formalism as a sophisticated version of this simple model with ordinary numbers replaced by appropriate matrices (section 8) and ends with a personal view of unsolved problems in the field of nanoscale electron transport (section 9). Appendix A discusses the Coulomb blockade regime of transport, while appendix B presents a formal derivation of the NEGF equations. MATLAB codes for numerical examples are listed in appendix C. (The appendices are available in the online version only.)

  15. DFT+U study of electrical levels and migration barriers of early 3 d and 4 d transition metals in silicon

    NASA Astrophysics Data System (ADS)

    Marinopoulos, A. G.; Santos, P.; Coutinho, J.

    2015-08-01

    Owing to their strong interaction with carriers, early 3 d -row (Ti, V, and Cr) and 4 d -row (Zr, Nb, and Mo) transition metals (TMs) are undesired contaminants in solar- and electronic-grade Si. The increasing stringent control of contamination levels is urging an accurate picture of their electronic structure. In the present work, the electrical levels and migration energies of these TMs are determined by means of standard density-functional theory (DFT) and a rotationally invariant formulation of DFT+U . The latter approach improves on the treatment of electronic correlations at the TM sites and relies on on-site Hubbard Coulomb and Hund's exchange parameters U and J , respectively. These are calculated self-consistently from linear-response theory without fitting to experimental data. The effect of correlation was found more pronounced for Ti and V, with a strong impact on the location of their electrical levels. In most cases, the agreement with the experimental data is satisfactory allowing the identification of the type and character of the levels. For Cr and Mo in particular, the results resolve longstanding controversies concerning the type and position of the levels. The obtained migration barriers display moderate charge-state and correlation dependency. High barriers were found for all metals studied, with the exception of Cr, confirming them as slow diffusers in silicon among the whole TM family.

  16. Electrical resistivity imaging for unknown bridge foundation depth determination

    NASA Astrophysics Data System (ADS)

    Arjwech, Rungroj

    Unknown bridge foundations pose a significant safety risk due to stream scour and erosion. Records from older structures may be non-existent, incomplete, or incorrect. Nondestructive and inexpensive geophysical methods have been identified as suitable to investigate unknown bridge foundations. The objective of the present study is to apply advanced 2D electrical resistivity imaging (ERI) in order to identify depth of unknown bridge foundations. A survey procedure is carried out in mixed terrain water and land environments with rough topography. A conventional resistivity survey procedure is used with the electrodes installed on the stream banks. However, some electrodes must be adapted for underwater use. Tests were conducted in one laboratory experimentation and at five field experimentations located at three roadway bridges, a geotechnical test site, and a railway bridge. The first experimentation was at the bridges with the smallest foundations, later working up in size to larger drilled shafts and spread footings. Both known to unknown foundations were investigated. The geotechnical test site is used as an experimental site for 2D and 3D ERI. The data acquisition is carried out along 2D profile with a linear array in the dipole-dipole configuration. The data collections have been carried out using electrodes deployed directly across smaller foundations. Electrodes are deployed in proximity to larger foundations to image them from the side. The 2D ERI can detect the presence of a bridge foundation but is unable to resolve its precise shape and depth. Increasing the spatial extent of the foundation permits better image of its shape and depth. Using electrode < 1 m to detect a slender foundation < 1 m in diameter is not feasible. The 2D ERI method that has been widely used for land surface surveys presently can be adapted effectively in water-covered environments. The method is the most appropriate geophysical method for determination of unknown bridge foundations

  17. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Observation of infiltration experiments with time lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Altfelder, Sven; Günther, Thomas; Duijnisveld, Wilhelmus; Grissemann, Christoph

    2010-05-01

    Recent progress in the development of resistivity equipment enables the real time observation of infiltration processes through the vadose zone. In order to study the advantages and limitations of the method infiltration experiments are carried out for different soil types at various locations. All sites are subsequently excavated and investigated in detail. For an improved verification of the resistivity data the most recent experiment is conducted using a colour tracer. Two infiltration experiments are carried out in sandy soil. The location is Fuhrberg, close to Hannover, Germany. The area has been intensively studied for soil research purposes for more than 30 years. During both infiltration experiments water (110 l/80 l) is infiltrated for a period of 4.5 h and 8 h, respectively, and the infiltration process is observed by ERT. The resistivity measurements are conducted using a 3D-dipole-dipole configuration with electrode distances of 20 cm in the centre of the infiltration field. The whole resistivity array consists of 200 and 300 electrodes, respectively. The second experiment uses increased electrode spacing in the border area in order to enable the resolution of the deeper groundwater table (3.5 m during the second experiment compared to about 1.2 m for the first experiment). Immediately after completion of the resistivity measurements TDR and tensiometer measurements are carried out in 5-8 slices of the excavated infiltration area over a period of several days. The colour tracer used during the second experiment clearly outlines the infiltration plume with sharp outer limits. The ERT inversion depicts the shape of the plume successfully. Time lapse ERT interpretation reveals the development of the plume in time. The combination of ERT interpretation and TDR measurements enables the construction of the relationship between water content and resistivity as reconstructed by ERT using an Archie approach. By using this function water content changes can be

  19. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. T...

  20. Soil spatial heterogeneity effect on soil electrical resistivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) is growing in popularity due to its ease of use and because of its non-invasive techniques, which are used to reveal and map soil heterogeneity. The objective of this work was to evaluate how differing soil properties affect the electric resistivity and to observe these e...

  1. Can we quantify local groundwater recharge using electrical resistivity tomography?

    NASA Astrophysics Data System (ADS)

    Noell, U.; Günther, T.; Ganz, C.; Lamparter, A.

    2012-04-01

    Electrical resistivity tomography (ERT) has become a common tool to observe flow processes within the saturated/unsaturated zones. While it is still doubtful whether the method can reliably yield quantitative results the qualitative success has been shown in "numerous" examples. To quantify the rate of rainfall which reaches the groundwater table is still a problematic venture due to a sad combination of several physical and mathematical obstacles that may lead to huge errors. In 2007 an infiltration experiment was performed and observed using 3D array ERT. The site is located close to Hannover, Germany, on a well studied sandy soil. The groundwater table at this site was at a depth of about 1.3 m. The inversion results of the ERT data yield reliably looking pictures of the infiltration process. Later experiments nearby using tracer fluid and combined TDR and resistivity measurements in the subsurface strongly supported the assumption that the resistivity pictures indeed depict the water distributions during infiltration reliably. The quantitative interpretation shows that two days after infiltration about 40% of the water has reached the groundwater. However, the question remains how reliable this quantitative interpretation actually is. The first obstacle: The inversion of the ERT data gives one possible resistivity distribution within the subsurface that can explain the data. It is not necessarily the right one and the result depends on the error model and the inversion parameters and method. For these measurements we assume the same error for every single quadrupole (3%), applied the Gauss-Newton method and minimum length constraints in order to reduce the smoothing to a minimum (very small lambda). Numerical experiments showed little smoothing using this approach, and smoothing must be suppressed if preferential flow is to be seen. The inversion showed artefacts of minor amplitude compared with other inversion parameter settings. The second obstacle: The

  2. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration. PMID:25630631

  3. Novel 3D resist shaping process via e-beam lithography, with application for the formation of blased planar waveguide gratings and planar lenses on GaAs

    NASA Astrophysics Data System (ADS)

    Poli, Louis C.; Kondek, Christine A.; Novembre, Anthony E.; McLane, George F.

    1995-06-01

    saw tooth ramp. Successive features of increasing dose will build an increasingly thicker ramp of resist. Images are developed in ethanol, a first rinse in methanol and a final rinse in IPA/H2O. Planar lenses may also be attempted in this way by again doing a piece-wise construction of the shape, using a varying dose. The processed 3-D resist pattern is then transferred to the wafer by a magnetron RIE dry etch in an argon and boron trichloride atmosphere. Etching of the resist pattern and the wafer is performed so that protected areas of the wafer receive the least etch and the smallest relief. Etching selectivity may in part be set by choosing an appropriate mix in the etching atmosphere.

  4. Impact of device size and thickness of Al2O 3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application.

    PubMed

    Panja, Rajeswar; Roy, Sourav; Jana, Debanjan; Maikap, Siddheswar

    2014-12-01

    Impact of the device size and thickness of Al2O3 film on the Cu pillars and resistive switching memory characteristics of the Al/Cu/Al2O3/TiN structures have been investigated for the first time. The memory device size and thickness of Al2O3 of 18 nm are observed by transmission electron microscope image. The 20-nm-thick Al2O3 films have been used for the Cu pillar formation (i.e., stronger Cu filaments) in the Al/Cu/Al2O3/TiN structures, which can be used for three-dimensional (3D) cross-point architecture as reported previously Nanoscale Res. Lett.9:366, 2014. Fifty randomly picked devices with sizes ranging from 8 × 8 to 0.4 × 0.4 μm(2) have been measured. The 8-μm devices show 100% yield of Cu pillars, whereas only 74% successful is observed for the 0.4-μm devices, because smaller size devices have higher Joule heating effect and larger size devices show long read endurance of 10(5) cycles at a high read voltage of -1.5 V. On the other hand, the resistive switching memory characteristics of the 0.4-μm devices with a 2-nm-thick Al2O3 film show superior as compared to those of both the larger device sizes and thicker (10 nm) Al2O3 film, owing to higher Cu diffusion rate for the larger size and thicker Al2O3 film. In consequence, higher device-to-device uniformity of 88% and lower average RESET current of approximately 328 μA are observed for the 0.4-μm devices with a 2-nm-thick Al2O3 film. Data retention capability of our memory device of >48 h makes it a promising one for future nanoscale nonvolatile application. This conductive bridging resistive random access memory (CBRAM) device is forming free at a current compliance (CC) of 30 μA (even at a lowest CC of 0.1 μA) and operation voltage of ±3 V at a high resistance ratio of >10(4). PMID:26088986

  5. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  6. Iron aluminide useful as electrical resistance heating elements

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1999-11-02

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {le}1% Cr and either {ge}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {ge}0.1% oxide dispersoid particles. The alloy can contain 14--32% Al, {le}2% Ti, {le}2% Mo, {le}1% Zr, {le}1% C, {le}0.1% B, {le}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {le}1% rare earth metal, {le}1% oxygen, {le}3% Cu, balance Fe.

  7. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  8. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  9. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  10. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  11. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  12. Characterization and monitoring of subsurface processes using parallel computing and electrical resistivity imaging

    SciTech Connect

    Johnson, Timothy C.; Truex, Michael J.; Wellman, Dawn M.; Marble, Justin

    2011-12-01

    This newsletter discusses recent advancement in subsurface resistivity characterization and monitoring capabilities. The BC Cribs field desiccation treatability test resistivity monitoring data is use an example to demonstrate near-real time 3D subsurface imaging capabilities. Electrical resistivity tomography (ERT) is a method of imaging the electrical resistivity distribution of the subsurface. An ERT data collection system consists of an array of electrodes, deployed on the ground surface or within boreholes, that are connected to a control unit which can access each electrode independently (Figure 1). A single measurement is collected by injecting current across a pair of current injection electrodes (source and sink), and measuring the resulting potential generated across a pair of potential measurement electrodes (positive and negative). An ERT data set is generated by collecting many such measurements using strategically selected current and potential electrode pairs. This data set is then processed using an inversion algorithm, which reconstructs an estimate (or image) of the electrical conductivity (i.e. the inverse of resistivity) distribution that gave rise to the measured data.

  13. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  14. Predicting and tracking spatiotemporal moments in electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J.; Bai, L.

    2015-12-01

    Visualisation is an invaluable tool in the study of near sub-surface processes, whether by mathematical modelling or by geophysical imaging. Quantitative analysis can further assist interpretation of the ongoing physical processes, and it is clear that any reliable model should take direct observations into account. Using electrical resistivity tomography (ERT), localised areas can be surveyed to produce 2-D and 3-D time-lapse images. This study investigates combining quantitative results obtained via ERT with spatio-temporal motion models in tracer experiments to interpret and predict fluid flow. As with any indirect imaging technique, ERT suffers specific issues with resolution and smoothness as a result of its inversion process. In addition, artefacts are typical in the resulting volumes. Mathematical models are also a source of uncertainty - and in combining these with ERT images, a trade-off must be made between the theoretical and the observed. Using computational imaging, distinct regions of stable resistivity can be directly extracted from a time-slice of an ERT volume. The automated nature, as well the potential for more than one region-of-interest, means that multiple regions can be detected. Using Kalman filters, it is possible to convert the detections into a process state, taking into account pre-defined models and predicting progression. In consecutive time-steps, newly detected features are assigned, where possible, to existing predictions to create tracks that match the tracer model. Preliminary studies looked at a simple motion model, tracking the centre of mass of a tracer plume with assumed constant velocity and mean resistivity. Extending the model to factor in spatial distribution of the plume, an oriented semi-axis is used to represent the centralised second-order moment, with an increasing factor of magnitude to represent the plume dispersion. Initial results demonstrate the efficacy of the approach, significantly improving reliability as the

  15. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    SciTech Connect

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-27

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950 deg. C. The lowest resistances were obtained mainly from MWNTs grown at 900 deg. C. The MWNT resistance is larger on average at lower (800 deg. C) and higher (950 deg. C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  16. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-01

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950°C. The lowest resistances were obtained mainly from MWNTs grown at 900°C. The MWNT resistance is larger on average at lower (800°C) and higher (950°C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  17. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  19. Electro-dewatering of activated sludge: Electrical resistance analysis.

    PubMed

    Conrardy, Jean-Baptiste; Vaxelaire, Jean; Olivier, Jérémy

    2016-09-01

    The significant risk of ohmic heating and the high electric energy consumption at terminal stages of the dewatering are two problems that hamper the development of the electro-dewatering (EDW) technology. In the future prospect of studying these two issues, it is important to provide and analyse quantitative data relative to the behavior of the electric resistance in EDW. It was the main goal of this study. It showed that the electric resistance of the complete system (cake + filter cloth) depended on the cake dryness. It increased sharply when the solids content exceeded around 45%.The solids loading also influenced the apparent resistance at the beginning of the process. The electric resistance of the filter cloth represented about 20% of the total resistance. It remained relatively constant over the process except at the terminal stage where it generally increased sharply. The use of conductive filter, such as metallic cloth, enabled to decrease the electric resistance and reduce the energy consumption of the process. The electric resistance decreased across the cake from the anode to the cathode. This behavior may be explained by several phenomena such as the ions migration and their interaction with the solid, the decrease of dry solids content from the anode to the cathode and the gas presence at the anode (due to electrolysis reaction). PMID:27192354

  20. Determination of anisotropic karst features in the Biscayne Aquifer using multi electrical resistivity imaging techniques

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, A.; Whitman, D.

    2012-12-01

    The Biscayne Aquifer of Southeast Florida is characterized by limestone cavities and solution hole features that are often beneath the surface and are difficult to detect and quantify accurately. Electrical resistivity imaging (ERI) is often used to image the subsurface for detection of cavities and other karst features. A recent regional study of electrical anisotropy derived from rotated square array measurements measured coefficients of anisotropy of 1.12 or less. At one particular site however, the coefficient of anisotropy was found to be as high as 1.36 with the average minimum resistivity direction trending 105°. The highest values of anisotropy are found at squares array sizes equivalent to effective depths of 4-9m. The cause of this higher anisotropy and its associated orientation was investigated using a combination of azimuthal 2-D profiles and a 3-D tomography survey using a mixed dipole gradient array. Results indicate a low resistivity zone at a depth of 5-10 m in the saturated zone (10-40Ωm) trending 109° in the 2-D profiles and the presence of low resistivity zone (14-43Ωm) trending 90-105° in the 3-D model. This observed lower resistivity zone is at least 50% lower than the surrounding resistivity. Although further geophysical studies are planned at the site, the primary analysis from these three contrasting ERI techniques indicates that the cause of higher anisotropy might be due to the presence of a solution cavity oriented in the E-SE direction.

  1. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  2. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  3. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  4. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  5. Marine permafrost detection using galvanic electrical resistivity methods

    SciTech Connect

    Corwin, R.F.

    1983-05-01

    Because of the high electrical resistivity contrast between ice-bonded sediments (permafrost) and the same sediments in an unfrozen state, galvanic (direct-current) electrical resistivity measurements are capable of determining the depth below the sea floor of marine permafrost layers. Unlike the seismic refraction method usually used for offshore permafrost surveying, resistivity measurements can determine the thickness as well as the depth of a permafrost layer. Also, the resistivity method is usable in acoustic anomaly areas where seismic data cannot be obtained and in shallow water where air gun sources are not effective. Marine resistivity measurements may be made through the sea ice in the winter or from a stationary or moving boat in the summer. The results of field trials conducted in the Prudhoe Bay area indicated that marine permafrost depths and thicknesses determined from resistivity measurements agreed well with those obtained from borehole data.

  6. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing. PMID:25380249

  7. COMPLEX ELECTRICAL RESISTIVITY FOR MONITORING DNAPL CONTAMINATION

    EPA Science Inventory

    We propose to develop new practical complex resistivity field measurement techniques for pollution characterization and monitoring. For this purpose we will document the detectability of clay-organic interactions with geophysical measurements in the laboratory, develop further un...

  8. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  9. The data preprocessing in apparent resistivity pesudo-section construction of two-dimensional electrical resistivity tomography survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.

    2015-12-01

    Although three-dimensional (3-D) electrical resistivity tomography (ERT) survey has become a popular practice in the site characterization and process monitoring, the two-dimensional (2-D) ERT survey is still often used in the field. This is because that the 2-D ERT survey is relatively easy to do and the focus of site characterization is on the information of 2-D cross section, not necessarily of the 3-D subsurface structure. Examples of such practice include tunnel line and crossing fault survey. In these cases, depending on the property of surface soil to be surveyed, the 2-D ERT survey with pole-pole array may occasionally make us obtain quality good data, however it often gives us a suit of data set both with real and erroneous ones that incorporated the effects of electrode contact and not far enough far electrodes. Without preprocessing, the apparent resistivity pseudo-section constructed from this kind of data set may quite deviate from the real one and the information obtained from it may be misleading and even completely incorrect. In this study, we developed a method of far electrode dynamic correction that is appropriate for raw data preprocessing from 2-D pole-pole array ERT survey. Based on this method, we not only can find and delete the abnormal data points easily, but also can position the coordinates of far electrodes actually working in the field, thus delete the far electrode effects and make best use of the looked strange data points. The method also makes us to be able to judge the effects of electrode contact and avoid using such data points in the following apparent resistivity pseudo-section construction. With this preprocessing to the data set, the constructed apparent resistivity pseudo-section is demonstrated to be more approximate to the real one. This makes the following reversion calculation more robust. We'll introduce this far electrode dynamic correction method and show application examples in the meeting.

  10. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  11. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    PubMed

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF. PMID:26258358

  12. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  13. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  14. Detection of Old Mine Tunnels in Mexico City Highlands by Electric Resistivity Image Methods

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Tejero, A.; Cifuentes-Nava, G.; HernaNdez-Quintero, J.

    2013-12-01

    Electrical Resistivity Tomography (ERT) methods have been applied to study cavities or subsurface subsidence threatening urbanized areas. Unfortunately, ERT-3D techniques carried out on heavily urbanized areas become a difficult task, since parallel ERT arrays cannot be deployed. Then, a conventional regular grid cannot be carried out. We present a subsidence problem located in a densely populated portion of Mexico City highlands. Since the damaged houses are in the middle of a highly populated low-class neighborhood, an unconventional ERT array had to be applied. At first, a ';T'-array formed by two perpendicular transects was applied, deployed within a small alley, that stretched from the house entrance. This study determined a tubular structure beneath the houses following an irregular path at depth. Finally, houses were demolished due to the extensive damaged in their foundations. This made possible to carry out a second ERT-3D study, which included a dipolar array called ';L' and ';Corner' arrays. Such a new work defined a similar tubular structure. The cavity entrance was discovered, when excavations were made, although its precise shape could not be defined. The ERT-3D interpretation contributed to locate and accurately determine the geometrical characteristics of the geological feature that caused the collapse of dwellings.

  15. Identification of leachate from livestock mortality burial using electrical resistivity and small-loop EM survey: case history

    NASA Astrophysics Data System (ADS)

    Song, Sung-Ho; Cho, In-Ky; Choi, Kwang-Jun

    2015-01-01

    Leachate from livestock mortality burial is harmful to the soil and groundwater environment and adequate assessment approaches are necessary to manage burial sites. Among the methods used to detect leachate, geophysical surveys, including electrical resistivity and electromagnetic (EM) techniques, are used in many engineering approaches to environmental problems, such as identifying contaminant plumes and evaluating hydrogeological conditions. Electrical resistivity, with a small-loop EM survey, was used in this study as a reconnaissance technique to identify the burial shape and distribution of leachate from livestock mortality burial in five small separate zones. We conducted a multi-frequency small-loop EM survey using lattice nets and acquired apparent conductivity values along several parallel and perpendicular lines over a burial site. We also compared geophysical results to the geochemical analysis of samples from both a leachate collection well and a downstream observation well within the study area. Depth slices of apparent conductivities at each frequency (obtained from the small-loop EM survey data) clearly identified the subsurface structure of the burial shape and the extent of leachate transport. Low-resistivity zones, identified from two-dimensional (2D) electrical resistivity imaging results, were matched to the five burial zones (within a depth of 5 m), as well as high electrical conductivity of the leachate obtained from leachate collection wells, and depth slices of the apparent conductivity distribution obtained from the small-loop EM survey. A three-dimensional (3D) inversion of resistivity data provided a detailed 3D structure of the overall burial site and leachate pathways. Moreover, these zones were widely spread over the burial site, indicating that leachate potentially extended through damaged regions of the composite liner to a depth of 10 m along the downstream groundwater flow. Both the small-loop EM method and the electrical

  16. Electrical Resistivity of Liquid Alkali Na-based Binary Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-11-01

    The study of the electrical resistivity rL of alkali Na-based binary alloys Na1-xLix, Na1-xKx, Na1-xRbx and Na1-xCsx have been made by well-recognized model potential of Gajjar et al. The most recent exchange and correlation functions due to Farid et al (F) and Sarkar et al (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results, due to the inclusion of Sarkar et al's local field correction function, are found superior to those obtained due to Farid et al's local field correction function. Electrical resistivity of Na-based binary alloys compare well with the experimental data available in the literature.

  17. Electrical resistivity study of Magnetite under high pressure

    NASA Astrophysics Data System (ADS)

    Muramatsu, Takaki; Struzhkin, Viktor; Gasparov, Lev

    2014-03-01

    Magnetite is known as one of the oldest magnetic materials and crystallizes in the inversed spinel structure. At about 120 K magnetite undergoes a structural phase transition called Verway transition where electrical resistivity abruptly increases with decreasing temperature. Pressure effects of Verway transition studied by magnetic susceptibility and electrical resistivity by several groups revealed Verway transition decreased with pressure and the precise pressure effects depend on the pressure condition i.e., pressure transmitting media. In this work, electrical resistivity measurements were made to revisit the property of magnetite under pressure. Both metallization observed in precedent work using cubic anvil press and the higher pressure properties beyond metallization are examined by diamond anvil cell.

  18. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  19. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  20. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  1. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  2. Resistivity of flame plasma in an electric field

    NASA Astrophysics Data System (ADS)

    Ikuta, Kazunari

    1989-03-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The resistivity of flame plasma is reduced by the particle source, which suggests the injection of premixed combustible fuel into the arc plasma as the particle source in order to reduce the arc voltage. Reduction of the voltage in the arc is desirable to reduce the damage of electrodes in EML since the electric field in the arc plasma energizes charged particles which can bombard the electrodes.

  3. Electrical resistivity of Au-ZnO nanocomposite films

    SciTech Connect

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V.

    2013-04-14

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (f{sub c} = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 {mu}{Omega} cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  4. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  5. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  6. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  7. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  8. Resistivity of flame plasma in an electric field

    NASA Astrophysics Data System (ADS)

    Ikuta, Kazunari

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML.

  9. Electrical resistivity measurements in the Neillsville area, Wisconsin

    USGS Publications Warehouse

    Spicer, H. Cecil; Edwards, George J.

    1955-01-01

    Sixty-eight electrical depth profiles were completed in the vicinity of Neillsville, Wis. to obtain information on the water-bearing beds in the glacial moraine and consolidated sedimentary rocks in the area. No productive aquifers were found but the best areas for test drilling are described. The basic theory and interpretation procedures, together with a short description of field methods on electrical resistivity measurements are also presented.

  10. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  11. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  12. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  14. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  15. Nondestructive evaluation of composite materials by electrical resistance measurement

    NASA Astrophysics Data System (ADS)

    Mei, Zhen

    This dissertation investigates electrical resistance measurement for nondestructive evaluation of carbon fiber (CF) reinforced polymer matrix composites. The method involves measuring the DC electrical resistance in either the longitudinal or through thickness direction. The thermal history and thermal properties of thermoplastic/CF composites were studied by longitudinal and through-thickness resistance measurements. The resistance results were consistent with differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) results. The resistance measurements gave more information on the melting of the polymer matrix than TMA. They were more sensitive to the glass transition of the polymer matrix than DSC. The through-thickness resistance decreased as autohesion progressed. The activation energy of autohesion was 21.2 kJ/mol for both nylon-6 and polyphenylene sulfide (PPS)/CF composites. Adhesive bonding and debonding were monitored in real-time by measurement of the through-thickness resistance between the adherends in an adhesive joint during heating and subsequent cooling. Debonding occurred during cooling when the pressure or temperature during prior bonding was not sufficiently high. A long heating time below the melting temperature (T m) was found to be detrimental to subsequent PPS adhesive joint development above Tm, due to curing reactions below Tm and consequent reduced mass flow response above Tm. A high heating rate (small heating time) enhanced the bonding more than a high pressure. The longitudinal resistance measurement was used to investigate the effects of temperature and stress on the interface between a concrete substrate and its epoxy/CF composite retrofit. The resistance of the retrofit was increased by bond degradation, whether the degradation was due to heat or stress. The degradation was reversible. Irreversible disturbance in the fiber arrangement occurred slightly as thermal or load cycling occurred, as indicated by the

  16. Resistance of a pulsed electrical breakdown channel in ionic crystals

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Kulikov, V. D.; Cholakh, S. O.

    2014-04-01

    A technique for estimating the resistance of the electrical breakdown channel in ionic crystals is proposed. This technique is based on measuring the channel velocity in a sample when a ballast resistor is connected to the circuit of a needle anode and on using the theoretical dependence of the channel velocity on the channel conductivity. The breakdown channel resistance at a voltage of 140 kV is about 6.5 kΩ in KCl and about 6.1 kΩ in KBr. These resistances are shown to characterize a gas phase. The gas-phase resistance is found to be nonuniform along the breakdown channel. The head part ˜1 mm long has the maximum resistance. This head region is concluded to contain dielectric substance clusters, which then decompose into metal and halogen ions. The cluster lifetime is ˜10-9 s.

  17. Image-guided inversion of electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Revil, A.; Karaoulis, M.; Hale, D.; Doetsch, J.; Cuttler, S.

    2014-04-01

    Electrical resistivity tomography (ERT) is based on solving a Poisson equation for the electrical potential and is characterized by a good sensitivity only in the vicinity of the electrodes used to gather the data. To provide more information to ERT, we propose an image-guided or structure-constrained inversion of the apparent resistivity data. This approach uses structural information obtained directly from a guiding image. This guiding image can be drawn from a high resolution geophysical method based on the propagation equation (e.g. migrated seismic or ground penetrating radar images) or possibly from a geological cross-section of the subsurface based on some prior geological expertise. The locations and orientations of the structural features can be extracted by image processing methods to determine the structure tensor and the semblances of the guiding image at a set of pixel. Then, we introduce these structural constraints into the inversion of the apparent resistivity data by weighting the four-direction smoothing matrix to smooth along, but not across, structural features. This approach allows preserving both discontinuities and coherences in the inversion of the resistivity data. The image-guided inversion is also combined with an image-guided interpolation approach used to focus a smooth resistivity image. This yields structurally-appealing resistivity tomograms, while the whole process remains computationally efficient. Such a procedure generates a more realistic resistivity distribution (closer to the true ones), which can be, in turn, used quantitatively using appropriate petrophysical transforms, to obtain parameters of interest such as porosity and saturation. We check the validity of this approach using two synthetic case studies as well as two real datasets. For the field data, the image used to guide the inversion of the electrical resistivity data is a GPR section in the first case and a combination of seismic and structural information in the

  18. Electrical resistance sensors for soil water tension estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter, in a book to be published by the International Atomic Energy Agency/FAO Joint Division, provides detailed information on how to sense soil water tension with electrical resistance sensors. It provides insight into problems commonly encountered in using these sensors. Guidance on data r...

  19. Electrical Resistivity Changes in Saturated Rock under Stress.

    PubMed

    Brace, W F; Orange, A S

    1966-09-23

    Electrical resistivity of water-saturated crystalline rock such as granite, diabase, dunite, or quartzite changes by an order of magnitude prior to fracture of the rock in compression. The effect observed even under high confining pressure is due to formation of open cracks which first appear at one-third to two-thirds the fracture stress. PMID:17749731

  20. Using electrical resistance probes for moisture determination in switchgrass windrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...

  1. Rolling resistance of electric-vehicle tires from track tests

    SciTech Connect

    Dustin, M.O.; Slavik, R.J.

    1982-06-01

    Two sets of low-rolling-resistance tires were track tested to obtain realistic tire characteristics for use in programming the Road Load Simulator, a special dynamometer facility located at the NASA Lewis Research Center. One set was specially made by Goodyear Tire and Rubber Company for DOE's ETV-1 electric vehicle, and the other was a set of standard commercial automotive tires. The tests were conducted over an ambient temperature range of 15/sup 0/ to 32/sup 0/C (59/sup 0/ to 89/sup 0/F) and with tire pressures of 207 and 276 kPa (30 and 40 psi). Both sets of tires had very low rolling resistance. The commercial tires, which were manufactured approximately 3 years after the electric vehicle tires, exhibited lower rolling resistance than the electric vehicle tires. This is a result of the continuing effort by the tire manufacturers to reduce rolling resistance in order to improve fuel economy. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 207 kPa (30 psi), the resistance of the electric vehicle tires was 0.0102 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 276 kPa (40 psi), the resistance of the electric vehicle tires was 0.009 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0074 kilogram per kilogram of vehicle weight. The average time for the tires to reach an equilibrium temperature after startup was 20 minutes for the constant-speed tests regardless of vehicle speed and 27 minutes for the SAE J227a Schedule D driving cycle tests. The average change in rolling resistance from startup to final equilibrium value was 5% for all tests. There was very little heating of the tires from velocity-dependent losses. The predominant heating source for these tires was radiation heating from the Sun.

  2. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  3. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Wilkinson, P. B.; Penn, S.; Meldrum, P. I.; Kuras, O.; Loke, M. H.; Gunn, D. A.

    2013-06-01

    We describe the application of 3D electrical resistivity tomography (ERT) to the characterisation and reserve estimation of an economic fluvial sand and gravel deposit. Due to the smoothness constraints used to regularise the inversion, it can be difficult to accurately determine the geometry of sharp interfaces. We have therefore considered two approaches to interface detection that we have applied to the 3D ERT results in an attempt to provide an accurate and objective assessment of the bedrock surface elevation. The first is a gradient-based approach, in which the steepest gradient of the vertical resistivity profile is assumed to correspond to the elevation of the mineral/bedrock interface. The second method uses an intrusive sample point to identify the interface resistivity at a location within the model, from which an iso-resistivity surface is identified that is assumed to define the interface. Validation of these methods has been achieved through direct comparison with observed bedrock surface elevations that were measured using real-time-kinematic GPS subsequent to the 3D ERT survey when quarrying exposed the bedrock surface. The gradient-based edge detector severely underestimated the depth to bedrock in this case, whereas the interface resistivity method produced bedrock surface elevations that were in close agreement with the GPS-derived surface. The failure of the gradient-based method is attributed to insufficient model sensitivity in the region of the bedrock surface, whereas the success of the interface resistivity method is a consequence of the homogeneity of the mineral and bedrock, resulting in a consistent interface resistivity. These results highlight the need for some intrusive data for model validation and for edge detection approaches to be chosen on the basis of local geological conditions.

  4. Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Nilsson, H.; Kuras, O.; Bai, L.

    2016-05-01

    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention.

  5. Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu8Sn6S24](z-) Clusters.

    PubMed

    Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang

    2015-06-01

    Two compounds with the formulas of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O were synthesized via flux (with thiourea as reactive flux) and hydrothermal method, respectively. The black crystals of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O both crystallize in the cubic space group of Fm3̅c with the cell constants a = 17.921(2) Å and a = 18.0559(6) Å, respectively. The crystal structures feature a 3D open-framework with the unique [Cu8Sn6S24](z-) (z = 13 for Na4Cu32Sn12S48·4H2O; z = 14.75 for K11Cu32Sn12S48·4H2O) clusters acting as building blocks. The [Cu8Sn6S24](z-) cluster of the Th symmetry is built up by eight [CuS3] triangles and six [SnS4] tetrahedra. The powder samples were investigated by X-ray diffraction and optical absorption measurements. Both phase-pure compounds show multiabsorption character with a main absorption edge (2.0 eV for Na4Cu32Sn12S48·4H2O and 1.9 eV for K11Cu32Sn12S48·4H2O) and an additional absorption peak (1.61 eV for Na4Cu32Sn12S48·4H2O and 1.52 eV for K11Cu32Sn12S48·4H2O), which are perfectly consistent with the first-principle calculation results. The analyses of the density of states further reveal that the two optical absorption bands in each compound are attributed to the two transitions of Cu-3d-S-3p → Sn-5s. The multiband nature of two compounds also enhances photocatalytic activity under visible light irradiation, with which the degradation of methyl blue over Na4Cu32Sn12S48·4H2O reached 100% in 3 h. The 3D open-framework features also facilitate the ionic conductivity nature of the Na4Cu32Sn12S48·4H2O compound, which achieved ∼10(-5) S/cm at room temperature. PMID:25955506

  6. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  7. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  8. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  9. Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Petrovic, Ljubica; Massdodi, Iqbal; Rizvi, Imran; Hasan, Tayyaba

    2013-03-01

    The dismal survival statistics for pancreatic cancer are due in large part to the notoriously poor response of these tumors to conventional therapies. Here we examine the ability of photodynamic therapy (PDT), using the photosensitizer verteporfin to enhance of the efficacy of traditional chemotherapy agents and/or eradicate populations that are nonresponsive to these agents. Using an in vitro 3D tumor model of pancreatic cancer combined with an imaging-based methodology for quantifying therapeutic response, we specifically examine PDT combination treatments with gemcitabine and oxaliplatin. We show that our 3D cell culture model recapitulates a more clinically-relevant dose response to gemcitabine, with minimal cytotoxic response even at high doses. The same cultures exhibit modest response to PDT treatments, but are also less responsive to this modality relative to our previous reports of monolayer dose response in the same cells. In combination we found no evidence of any enhancement in efficacy of either PDT or gemcitabine treatment regardless of dose or sequence (PDT before gemcitabine, or gemcitabine before PDT). However, when oxaliplatin chemotherapy was administered immediately after treatment with 2.5J/cm2 verteporfin PDT, there was an observable enhancement in response that appears to exceed the additive combination of either treatment alone and suggesting there may be a synergistic interaction. This observation is consistent with previous reports of enhanced efficacy in combinations of PDT with platinum-based chemotherapy. The contrast in results between the combinations examined here underscores the need for rational design of mechanism-based PDT combinations.

  10. Electrical resistivity response due to elastic-plastic deformations

    SciTech Connect

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs.

  11. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  12. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  13. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    PubMed

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. PMID:24033332

  14. Design and fabrication of a 3D-structured gold film with nanopores for local electric field enhancement in the pore

    NASA Astrophysics Data System (ADS)

    Grant-Jacob, James A.; Zin Oo, Swe; Carpignano, Francesca; Boden, Stuart A.; Brocklesby, William S.; Charlton, Martin D. B.; Melvin, Tracy

    2016-02-01

    Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.

  15. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  16. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  17. Feature enhancement from electrical resistivity data in an archaeological survey: the Sapelos hillfort experiment (Boticas, Portugal)

    NASA Astrophysics Data System (ADS)

    Alves, Mafalda; Bernardes, Paulo; Fontes, Luís.; Martins, Manuela; Madeira, Joaquim

    2015-06-01

    The PoPaTERVA project is developing applied research regarding the comprehension of the multi-layered cultural background of the Terva Valley Archaeological Park, in Boticas, Portugal. One of the main aspects focused on the project is the appliance of remote sensing techniques to enhance non visible archaeological features. An earth resistance tomography (ERT) survey was carried out at the Sapelos hillfort, by the specialized SINERGEO geophysicist's team, using a Wenner-Schlumberger array. The resulting data was analyzed by the authors in order to extract and verify valid archaeological features regarding the settlement's structures. There are several adequate systems that can be used to visualize the surveyed data (x, y, z, Ω). However, the authors preferred the open source Visualization Toolkit (VTK) from Kitware Inc., since it supports several visualization and modelling techniques that are useful for interpretation purposes in archaeological contexts: for instance, it is possible to represent the archaeological site as a virtual scale model, which can be freely manipulated. For the Sapelos hillfort, two distinct visualizations were developed to represent the acquired electrical resistivity data. The first one is used to create a comprehensive volume from the surveyed data, which is imported as structured 3D points and mapped into a 3D volume. However, this representation does not provide the necessary insight for analysis purposes, so a second visualization is needed to cluster the relevant data for archaeological research. This visualization is based on contouring algorithms that generate isosurfaces from scalar resistivity values (Ω), therefore enhancing the features with potential archaeological interest.

  18. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  19. A cylindrical electrical resistivity tomography array for three-dimensional monitoring of hydrate formation and dissociation.

    PubMed

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Rücker, Carsten; Schicks, Judith M

    2013-10-01

    The LArge Reservoir Simulator (LARS) was developed to investigate various processes during gas hydrate formation and dissociation under simulated in situ conditions of relatively high pressure and low temperature (close to natural conditions). To monitor the spatial hydrate distribution during hydrate formation and the mobility of the free gas phase generated during hydrate dissociation, a cylindrical Electrical Resistivity Tomography (ERT) array was implemented into LARS. The ERT contains 375 electrodes, arranged in 25 circular rings featuring 15 electrodes each. The electrodes were attached to a neoprene jacket surrounding the sediment sample. Circular (2D) dipole-dipole measurements are performed which can be extended with additional 3D cross measurements to provide supplemental data. The data quality is satisfactory, with the mean standard deviation due to permanent background noise and data scattering found to be in the order of 2.12%. The measured data are processed using the inversion software tool Boundless Electrical Resistivity Tomography to solve the inverse problem. Here, we use data recorded in LARS to demonstrate the data quality, sensitivity, and spatial resolution that can be obtained with this ERT array. PMID:24182137

  20. Instructive Conductive 3D Silk Foam-Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation.

    PubMed

    Hardy, John G; Geissler, Sydney A; Aguilar, David; Villancio-Wolter, Maria K; Mouser, David J; Sukhavasi, Rushi C; Cornelison, R Chase; Tien, Lee W; Preda, R Carmen; Hayden, Rebecca S; Chow, Jacqueline K; Nguy, Lindsey; Kaplan, David L; Schmidt, Christine E

    2015-11-01

    Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes. PMID:26033953

  1. Electrical resistivity of K-based liquid binaries

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2006-08-01

    The study of the electrical resistivity of alkali K-based liquid binaries, viz, K 1-x Na x, K 1-x Rb x, and K 1-x Cs x have been made by well recognized model potential. The most recent local field correction functions due to Farid et al. (F) and Sarkar et al. (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results due to the inclusion of Sarkar et al.’s local field correction function are found superior to those obtained due to Farid et al.’s local field correction function. The present results compare well the experimental data.

  2. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  3. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  4. Electrical resistivity structure of the Great Slave Lake shear zone, northwest Canada: implications for tectonic history

    NASA Astrophysics Data System (ADS)

    Yin, Yaotian; Unsworth, Martyn; Liddell, Mitch; Pana, Dinu; Craven, James A.

    2014-10-01

    Three magnetotelluric (MT) profiles in northwestern Canada cross the central and western segments of Great Slave Lake shear zone (GSLsz), a continental scale strike-slip structure active during the Slave-Rae collision in the Proterozoic. Dimensionality analysis indicates that (i) the resistivity structure is approximately 2-D with a geoelectric strike direction close to the dominant geological strike of N45°E and that (ii) electrical anisotropy may be present in the crust beneath the two southernmost profiles. Isotropic and anisotropic 2-D inversion and isotropic 3-D inversions show different resistivity structures on different segments of the shear zone. The GSLsz is imaged as a high resistivity zone (>5000 Ω m) that is at least 20 km wide and extends to a depth of at least 50 km on the northern profile. On the southern two profiles, the resistive zone is confined to the upper crust and pierces an east-dipping crustal conductor. Inversions show that this dipping conductor may be anisotropic, likely caused by conductive materials filling a network of fractures with a preferred spatial orientation. These conductive regions would have been disrupted by strike-slip, ductile deformation on the GSLsz that formed granulite to greenschist facies mylonite belts. The pre-dominantly granulite facies mylonites are resistive and explain why the GSLsz appears as a resistive structure piercing the east-dipping anisotropic layer. The absence of a dipping anisotropic/conductive layer on the northern MT profile, located on the central segment of the GSLsz, is consistent with the lack of subduction at this location as predicted by geological and tectonic models.

  5. Electrical resistivity of V-Cr-Ti alloys

    SciTech Connect

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  6. Negative differential electrical resistance of a rotational organic nanomotor

    PubMed Central

    Sadeghi, Hatef; Sangtarash, Sara; Al-Galiby, Qusiy; Sparks, Rachel

    2015-01-01

    Summary A robust, nanoelectromechanical switch is proposed based upon an asymmetric pendant moiety anchored to an organic backbone between two C60 fullerenes, which in turn are connected to gold electrodes. Ab initio density functional calculations are used to demonstrate that an electric field induces rotation of the pendant group, leading to a nonlinear current–voltage relation. The nonlinearity is strong enough to lead to negative differential resistance at modest source–drain voltages. PMID:26734524

  7. Three-dimensional electrical resistivity image of the South-Central Chilean subduction zone

    NASA Astrophysics Data System (ADS)

    Kapinos, Gerhard; Montahaei, Mansoureh; Meqbel, Naser; Brasse, Heinrich

    2016-01-01

    Based on isotropic 3-D inversion, we re-interpret long-period magnetotelluric data collected across the geotectonic structures of the South-Central Chilean continental margin at latitudes 38°-41°S and summarize results of long-period magnetotelluric (MT) investigations performed between 2000 and 2005. The new 3-D conductivity image of the South-Central Chilean subduction zone basically confirms former 2-D inversion models along three profiles and complete the previous results. The models show good electrical conductors in the tip of the continental crustal beneath the Pacific Ocean, the frequently observed forearc conductor at mid-crustal levels, a highly-conductive zone at similar levels slightly offset from the volcanic arc and a - not well-resolved - conductor in the Argentinian backarc. The subducted Nazca Plate generally appears as a resistive but discontinuous feature. Unlike before, we are now able to resolve upper crustal conductors (interpreted as magma reservoirs) beneath active Lonquimay, Villarrica, and Llaima volcanoes which were obscured in 2-D inversion. Data fit is rather satisfactory but not perfect; we attribute this to large-scale crustal anisotropy particularly beneath the Coastal Cordillera, which we cannot include into our solution for the time being.

  8. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.

    PubMed

    Mackey, Jon; Dynys, Frederick; Sehirlioglu, Alp

    2014-08-01

    This work establishes the level of uncertainty for electrical measurements commonly made on thermoelectric samples. The analysis targets measurement systems based on the four probe method. Sources of uncertainty for both electrical resistivity and Seebeck coefficient were identified and evaluated. Included are reasonable estimates on the magnitude of each source, and cumulative propagation of error. Uncertainty for the Seebeck coefficient includes the cold-finger effect which has been quantified with thermal finite element analysis. The cold-finger effect, which is a result of parasitic heat transfer down the thermocouple probes, leads to an asymmetric over-estimation of the Seebeck coefficient. A silicon germanium thermoelectric sample has been characterized to provide an understanding of the total measurement uncertainty. The electrical resistivity was determined to contain uncertainty of ±7.0% across any measurement temperature. The Seebeck coefficient of the system is +1.0%/-13.1% at high temperature and ±1.0% near room temperature. The power factor has a combined uncertainty of +7.3%/-27.0% at high temperature and ±7.5% near room temperature. These ranges are calculated to be typical values for a general four probe Seebeck and resistivity measurement configuration. PMID:25173324

  9. Complex electrical resistance tomography of a subsurface PCE plume

    SciTech Connect

    Ramirez, A.; Daily, W,; LeBrecque, D.

    1996-01-01

    A controlled experiment was conducted to evaluate the performance of complex electrical resistivity tomography (CERT) for detecting and delineating free product dense non-aqueous phase liquid (DNAPL) in the subsurface. One hundred ninety liters of PCE were released at a rate of 2 liters per hour from a point 0.5 m below ground surface. The spill was conducted within a double walled tank where saturated layers of sand, bentonite and a sand/bentonite mixture were installed. Complex electrical resistance measurements were performed. Data were taken before the release, several times during, and then after the PCE was released. Magnitude and phase were measured at 1 and 64 Hz. Data from before the release were compared with those during the release for the purpose of imaging the changes in conductivity resulting from the plume. Conductivity difference tomographs showed a decrease in electrical conductivity as the DNAPL penetrated the soil. A pancake-shaped anomaly developed on the top of a bentonite layer at 2 m depth. The anomaly grew in magnitude and extent during the release and borehole television surveys data confirmed the anomaly to be free-product PCE whose downward migration was stopped by the low permeability clay. The tomographs clearly delineated the plume as a resistive anomaly.

  10. Design, Synthesis, and Preclinical Evaluation of 4-Substituted-5-methyl-furo[2,3-d]pyrimidines as Microtubule Targeting Agents That Are Effective against Multidrug Resistant Cancer Cells.

    PubMed

    Devambatla, Ravi Kumar Vyas; Namjoshi, Ojas A; Choudhary, Shruti; Hamel, Ernest; Shaffer, Corena V; Rohena, Cristina C; Mooberry, Susan L; Gangjee, Aleem

    2016-06-23

    The design, synthesis, and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-d]pyrimidines are reported. Synthesis involved N(4)-alkylation of N-aryl-5-methylfuro[2,3-d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-d]pyrimidine and appropriate aryl iodides. Compounds 3, 4, and 9 showed potent microtubule depolymerizing activities, while compounds 6-8 had slightly lower potency. Compounds 4, 6, 7, and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-4). Compounds 3, 4, and 6-9 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that can limit the efficacy of paclitaxel, docetaxel, and the vinca alkaloids. In the NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with antitumor activity. PMID:27213719

  11. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  12. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  13. Electrical resistivity tomography investigations on a paleoseismological trenching study

    NASA Astrophysics Data System (ADS)

    Berge, Meriç Aziz

    2014-10-01

    Two-dimensional electrical resistivity tomography (ERT) investigation was performed in a paleoseismological trenching study. Data acquisition strategies such as the selection of electrode configuration and electrode intervals of ERT application were investigated in this paper. The ERT results showed that the Wenner and Wenner-Schlumberger arrays yielded similar results for subsurface characteristics whereas the DD array provided slightly different results. The combined usage of these arrays produced satisfactory images of the subsurface resistivity distribution. In addition, the electrode spacing tests revealed that a suitable interpretation of subsurface geology can be obtained from a 5 m electrode interval. However, a suitable trenching location defined by successful 2D resistivity models was obtained for 1 m electrode spacing. Therefore, the comparison of the trench and ERT results was also possible. The results of trenching and ERT studies substantially support each other.

  14. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  15. Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography.

    PubMed

    Buchner, H; Fuchs, M; Wischmann, H A; Dössel, O; Ludwig, I; Knepper, A; Berg, P

    1994-01-01

    At the current state of technology, multichannel simultaneous recording of combined electric potentials and magnetic fields should constitute the most powerful tool for separation and localization of focal brain activity. We performed an explorative study of multichannel simultaneous electric SEPs and magnetically recorded SEFs. MEG only sees tangentially oriented sources, while EEG signals include the entire activity of the brain. These characteristics were found to be very useful in separating multiple sources with overlap of activity in time. The electrically recorded SEPs were adequately modelled by three equivalent dipoles located: (1) in the region of the brainstem, modelling the P14 peak at the scalp, (2) a tangentially oriented dipole, modelling the N20-P20 and N30-P30 peaks, and part of the P45, and (3) a radially oriented dipole, modelling the P22 peak and part of the P45, both located in the region of the somatosensory cortex. Magnetically recorded SEFs were adequately modelled by a single equivalent dipole, modelling the N20-P20 and N30-P30 peaks, located close to the posterior bank of the central sulcus, in area 3b (mean deviation: 3 mm). The tangential sources in the electrical data were located 6 mm on average from the area 3b. MEG and EEG was able to locate the sources of finger stimulated SEFs in accordance with the somatotopic arrangement along the central fissure. A combined analysis demonstrated that MEG can provide constraints to the orientation and location of sources and helps to stabilize the inverse solution in a multiple-source model of the EEG. PMID:7946929

  16. Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields

    SciTech Connect

    Langerman, M.A.

    1990-09-01

    Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

  17. Assessment of contamination by intensive cattle activity through electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sainato, Claudia M.; Losinno, Beatriz N.; Malleville, Horacio J.

    2012-01-01

    The intensive animal production is considered highly risky for groundwater and soil because of high mobility of some contaminants from animal wastes. The aim of this work was to obtain an electrical conductivity image of unsaturated and saturated zones at a feedlot (cattle feeding field) at the surroundings of Buenos Aires city (Argentina) in order to detect the most critical sectors of the field, with regard to contamination by animal wastes. Dipole-dipole electrical soundings (electrical resistivity tomography) were performed at the corral zone and the surroundings. 2D and 3D models of conductivity were obtained. Even if there is a calcareous plate below some parts of the corrals and soil compaction is high, vertical infiltration or subsurface runoff may have occurred since these sites, with high animal charge, show soil conductivities higher than the surroundings. The models showed higher conductivities of saturated zone increasing in the direction of groundwater flow. These results were taken into account for further designs of soil and groundwater sampling. Groundwater conductivity was three times greater downgradient from the corrals with high concentrations of nitrates and phosphorous. A zone of high conductivity was found below a small channel of effluents from the corrals.

  18. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  19. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  20. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  1. Electrical Resistivity Tomography of the Karstic Aquifer of Bittit spring (Middle Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Qarqori, Kh.; Rouai, M.; Moreau, F.; Saracco, G.; Hermitte, D.; Boualoul, M.; Dauteuil, O.; Biessy, G.; Sahbi, H.

    2009-04-01

    3D picture of the fracture system has been drawn showing a mini-graben structure. Geophysical scans and interpreted fractures were displayed with Gocad software leading to geometric construction of aquifer units and to 3D modelling of subsurface architecture. Several horizontal electrical resistivity profiles and electromagnetic VLF profiles were also performed in order to discriminate between dry and favourable hydrological fractures. ERT appears to be an appropriate geophysical method in this issue, especially by improving understanding of fracture geometry. This study initiates a hydrogeophysical research in the Middle Atlas karst in order to improve water resources management and reducing aquifer vulnerability in the region.

  2. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips

    NASA Astrophysics Data System (ADS)

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.

  3. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data. PMID:21832617

  4. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  5. 3D conductive nanocomposite scaffold for bone tissue engineering.

    PubMed

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  6. MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE

    NASA Technical Reports Server (NTRS)

    Shaeffer, J. F.

    1994-01-01

    MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and

  7. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.

  8. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  9. Manipulating the magnetic anisotropy of 3d transition-metal films on Cu(001) and their alloys on Rh(001) by electric field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Zhang, Yun; Cao, Juexian

    2013-08-01

    The mechanism of electric field (EF) effects on the magnetocrystalline anisotropy (MCA) in metallic films is investigated by first-principles calculations. Start with a simple system of Fe, Co and Ni monolayer on Cu(001) substrate, we show that the key factor for a large EF-induced MCA modification is that the energy bands cross of d and d (or d and d) is close to the Fermi level. In order to enhance the MCA modification by EF, 4d metal substrates (Rh, Pd) are also discussed. In particular, we find that the magnetization direction can be switched from out-of-plane to in-plane by a small EF for Fe1-xCox alloy films on Rh(001) substrate with x=0.5.

  10. Case histories of electrical resistivity and controlled-source magnetotelluric surveys for the site investigation of tunnel construction

    SciTech Connect

    Kwon, H.S.; Song, Y.; Yi, M.J.; Chung, H.J.; Kim, K.S.

    2006-12-15

    In tunnel construction, the information regarding rock mass quality and the distribution of weak zones is crucial for economical tunnel design and to ensure safety. Usually, the rock mass grade is estimated by observing recovered cores obtained by drilling or by physical parameters calculated in a laboratory using core samples. However, the high drilling cost limits the number of boreholes; furthermore, rough terrains can reduce the access of drilling machines to the survey sites. In such situations, surface geophysical methods such as electrical resistivity or controlled-source magnetotelluric (CSMT) can provide a rough estimate of the rock mass condition over the planned tunnel route. These methods can also map weak zones (faults, fractures, coal bearing zones, and cavities), which are characterized by a lower resistivity than the surrounding fresh rock mass. We present two successful applications of the electrical resistivity and CSMT methods to the site investigation of tunnel construction over a rough terrain. The first example demonstrates that the boundary of the bedrock and weak zones related to the distribution of coaly shale and coal seams were estimated to extend beyond a few hundred meters below the rough surface. The second example shows that the developing direction and depth of cavities, which are mainly related to the weak zones in limestone, were successfully interpreted by a three-dimensional (3-D) electrical resistivity survey with the aid of borehole test results.

  11. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  12. Connection equation and shaly-sand correction for electrical resistivity

    USGS Publications Warehouse

    Lee, Myung W.

    2011-01-01

    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  13. Modelling the electrical resistivity response to CO2 plumes generated in a laboratory, cylindrical sandbox

    NASA Astrophysics Data System (ADS)

    Kremer, T.; Maineult, A. J.; Binley, A.; Vieira, C.; Zamora, M.

    2012-12-01

    CO2 capture and storage into deep geological formations is one of the main solutions proposed to reduce the concentration of anthropic CO2 in the atmosphere. The monitoring of injection sites is a crucial issue to assess for the long term viability of CO2 storage. With the intention of detecting potential leakages, we are investigating the possibility of using electrical resistivity tomography (ERT) techniques to detect CO2 transfers in the shallow sub-surface. ERT measurements were performed during a CO2 injection in a cylindrical tank filled with Fontainebleau sand and saturated with water. Several measurements protocols were tested. The inversion of the resistances measured with the software R3T (Binley and Kemna (2005)) clearly showed that the CO2 injection induces significant changes in the resistivity distribution of the medium, and that ERT has a promising potential for the detection and survey of CO2 transfers through unconsolidated saturated media. We modeled this experiment using Matlab by building a 3D cellular automaton that describes the CO2 spreading, following the geometric and stochastic approach described by Selker et al. (2007). The CO2 circulation is described as independents, circular and continuous gas channels whose horizontal spread depends on a Gaussian probability law. From the channel distribution we define the corresponding gas concentration distribution and calculate the resistivity of the medium by applying Archie's law for unsaturated conditions. The forward modelling was performed with the software R3T to convert the resistivity distribution into resistances values, each corresponding to one of the electrode arrays used in the experimental measurements. Modelled and measured resistances show a good correlation, except for the electrode arrays located at the top or the bottom of the tank. We improved the precision of the model by considering the effects due to CO2 dissolution in the water which increases the conductivity of the

  14. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  16. 3D Magnetron simulation with CST STUDIO SUITE

    SciTech Connect

    Balk, Monika C.

    2011-07-01

    The modeling of magnetrons compared to other tubes is more difficult since it requires 3D modeling rather than a 2D investigation. This is not only due to the geometry which can include complicated details to be modeled in 3D but also due to the interaction process itself. The electric field, magnetic field and particle movement span a 3D space. In this paper 3D simulations of a strapped magnetron with CSTSTUDIO SUITE{sup TM} are presented. (author)

  17. Particle Acceleration in 3D Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2015-12-01

    Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.

  18. Reservoir characterization combining elastic velocities and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Gomez, Carmen Teresa

    2009-12-01

    The elastic and electric parameters of rocks that can be obtained from seismic and electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, seismic data seldom allow us to accurately quantify hydrocarbon saturation. On the other hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), resistivity strongly depends on porosity and saturation. Therefore, the recent progress of controlled-source-electromagnetic (CSEM) methods opens new possibilities in identifying and quantifying potential hydrocarbon reservoirs, although its resolution is much lower than that of seismic data. Hence, a combination of seismic and CSEM data arguably offers a powerful means of finally resolving the problem of remote sensing of saturation. The question is how to combine the two data sources (elastic data and electrical resistivity data) to better characterize a reservoir. To address this question, we introduce the concept of P-wave impedance and resistivity templates as a tool to estimate porosity and saturation from well log data. Adequate elastic and resistivity models, according to the lithology, cementation, fluid properties must be chosen to construct these templates. These templates can be upscaled to seismic and CSEM scale using Backus average for seismic data, and total resistance for CSEM data. We also measured velocity and resistivity in Fontainebleau samples in the laboratory. Fontainebleau formation corresponds to clean sandstones (i.e., low clay content). We derived an empirical relation between these P-wave velocity and resistivity at 40MPa effective pressure, which is around 3 km depth at normal pressure gradients. We were not able to test if this relation could be used at well or field data scales (once appropriate upscaling was applied), since we did not have a field dataset over a stiff sandstone reservoir. A relationship between velocity and resistivity laboratory data was also found for a set of carbonates. This expression

  19. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  20. A fully automated precise electrical resistance measurement system

    SciTech Connect

    Marhas, M.K.; Balakrishnan, K.; Ganesan, V.; Srinivasan, R.

    1996-08-01

    A fully automated precise electrical resistance measurement system for more than one sample has been constructed. Conventional four-probe measurements with van der Pauw and Montgomery configurations are possible with this system. Resistance measurements in the range of a few {mu}{Omega} to a few G{Omega} are possible for six samples at a time from room temperature down to liquid-helium or liquid-nitrogen temperatures with a temperature control accuracy of better than 10 mK. The design features of the system with special reference to the low-noise switching methods of currents and voltages are described in detail. Precision of the results thus obtained using this system are highlighted for a few superconducting and semiconducting samples. {copyright} {ital 1996 American Institute of Physics.}

  1. Optical device with low electrical and thermal resistance Bragg reflectors

    SciTech Connect

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  2. Optical device with low electrical and thermal resistance bragg reflectors

    SciTech Connect

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  3. Electrical Resistivity and Negative Magnetoresistance in (SNBry)x Crystal

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Sasa, Shigehiko; Yoshino, Katsumi; Inuishi, Yoshio

    1980-11-01

    Electrical resistivity, magnetoresistance and their temperature dependences in (SNBry)x are measured for various quantity of y. By bromination, negative magnetoresistance is enhanced at 4.2 K and also appears even at 77 K, at which temperature negative magnetoresistance is not observed in undoped (SN)x. These features are remarkable for the samples heavily doped and just after doping, and are abated by pumping bromine from (SNBry)x for a few days. The possible origins for the anomalous negative magnetoresistance are discussed taking the surface state of fiber bundles or crystal due to adsorped bromine into consideration.

  4. Building Better Electrodes for Electrical Resistivity and Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Adkins, P. L.; La Brecque, D. J.

    2007-12-01

    In the third year of a project to understand and mitigate the systematic noise in resistivity and induced polarization measurements, we put a significant effort into understanding and developing better electrodes. The simple metal electrodes commonly used for both transmitting and receiving of electrical geophysical data are likely the Achilles" heal of the resistivity method. Even stainless steel, a commonly used electrode material because of its durability, showed only average results in laboratory tests for electrode noise. Better results have been found with non-polarizing metal-metal salt electrodes, which are widely used as surface electrodes and in IP surveys. But although they produce small measurement errors, they are not durable enough for in-situ borehole resistivity surveys, and often contain compounds that are toxic to the environment. They are also very seldom used as transmitters. In laboratory studies, we are exploring other materials and configurations for low-noise compound electrodes that will be nontoxic, inexpensive, and durable and can be used as both transmitters and receivers. Testing of the electrical noise levels of electrodes is an arduous task involving repeated measurements under varying conditions at field scales. Thus it is important to find methods of sorting out likely candidates from the mass of possible electrode configurations and construction methods. Testing of electrode impedance versus current density appears to provide simple criteria for predicting the suitability of electrodes. The best electrodes show relatively low overall contact impedance, relatively small changes in impedance with increased current density, and relatively small changes in impedance with time. Furthermore it can be shown that resistivity and induced polarization performance of electrodes is strongly correlated, so that methods of finding electrodes with low impedance and good direct current performance usually provide better quality induced

  5. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried

  6. Laser nanolithography and chemical metalization for the manufacturing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Jonavičius, Tomas; RekštytÄ--, Sima; Žukauskas, Albertas; Malinauskas, Mangirdas

    2014-03-01

    We present a developed method based on direct laser writing (DLW) and chemical metallization (CM) for microfabrication of three-dimensional (3D) metallic structures. Such approach enables manufacturing of free­-form electro conductive interconnects which can be used in integrated electric circuits such micro-opto-electro mechanical systems (MOEMS). The proposed technique employing ultrafast high repetition rate laser enables efficient fabrication of 3D microstructures on dielectric as well as conductive substrates. The produced polymer links out of organic-inorganic composite matrix after CM serve as interconnects of separate metallic contacts, their dimensions are: height 15μm, width 5μm, length 35-45 μm and could provide 300 nΩm resistivity measured in a macroscopic way. This proves the techniques potential for creating integrated 3D electric circuits at microscale.

  7. Final Report, FY 2001 200 East Vadose Test Site Hanford Washington Electrical Resistance Tomography

    SciTech Connect

    Ramirez, A.; Daily, W.; Binley, A.

    2001-06-30

    This report covers the electrical resistance tomography (ERT) work performed at the Hanford Reservation, 200 East Area Vadose test (Sisson and Lu) site during the period March 23 through May 5,2001. The purposes of the ERT work were to: (1) Compare and contrast the development of the highly concentrated sodium thiosulfate plume (FY 01 work) with the fresh river water plume observed during FY 00. (2) Use the resistance images to infer the dynamics of the plume during two or three of the sodium thio-sulfate releases and during the water ''chaser'' release. (3) Determine the influence of the site's steel casings on the ability to construct reliable ERT images. (4) Determine if the steel casings at the site can be used as long electrodes to provide useful images of at least one release. (5) Develop quantitative estimates of the noise in the data and its effect on reconstructed images. Eleven electrode arrays (nine electrodes arrays available for the FY00 work), each with 15 electrodes, were installed at the site. These were used to perform 3D surveys before, during, and after 3 different spills.

  8. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  9. Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Qi You; Shimada, Jun; Sato, Akira

    2001-02-01

    In this paper, we propose a noninvasive method for monitoring three-dimensional (3-D) spatial and temporal variations of soil water content in the field, soil moisture tomography. The basic idea of the method originates from Archie's relationship between soil resistivity and water content. Initially, 88 electrodes were densely buried within a 3.5 m×3.5 m square area, and potentials at the electrodes were measured by pole-pole and Wenner array methods at given time intervals. An inversion calculation of the 3-D soil resistivity was then conducted based on these potential data. Next, 46 soil samples were taken at representative positions in the square, and the parameters in the Archie's relationship were measured in the laboratory. Then, the 3-D distributions of the parameters were obtained by a distance weight interpolation method. Finally, based on Archie's relationship and the 3-D distribution of the soil resistivity and the related parameters, 3-D distributions of soil water content were calculated. To evaluate the obtained water content, the calculated water contents were compared with those measured by heat-probe-type soil moisture sensors, and a comparison between the spatial distribution patterns of calculated water content and soil bulk dry density was conducted. The 3-D variations of the calculated water content during a rainfall event were also analyzed. The results show that there are ±0.10 cm3/cm3 errors in the calculated water content, but between the calculated and the measured water content there exists a good linear relationship. It is possible to use the calculated water content to analyze the very general 3-D distribution characteristics of the soil moisture and investigate the 3-D rainfall infiltration process, the redistribution of soil water after rain, and other hydrological processes in the field. The proposed method is preferred for porous media where the water resistivity is relatively stable.

  10. 3D finite element analysis of electrostatic deflection and shielding of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: II. Rectangular shaped cantilevers with asymmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    This paper deals with an application of 3D finite element analysis to the electrostatic interaction between (i) a commercial rectangular shaped cantilever (with an integrated anisotropic pyramidal tip) and a conductive sample, when a voltage difference is applied between them, and (ii) a focused ion beam (FIB) modified cantilever in order to realize a probe with reduced parasitic electrostatic force. The 3D modelling of their electrostatic deflection was realized by using multiphysics finite element analysis software and applied to the real geometry of the cantilevers and probes as used in conventional electric and Kelvin force microscopy to evaluate the contribution of the various part of a cantilever to the total force, and derive practical criteria to optimize the probe performances. We report also on the simulation of electrostatic shielding of nanometric features, in order to quantitatively evaluate an alternative way of reducing the systematic error caused by the cantilever-to-sample capacitive coupling. Finally, a quantitative comparison between the performances of rectangular and triangular cantilevers (part I of this work) is reported. PMID:21832618

  11. Imaging Nuclear Waste Plumes at the Hanford Site using Large Domain 3D High Resolution Resistivity Methods and the New Parallel-Processing EarthImager3DCL Program

    NASA Astrophysics Data System (ADS)

    Greenwood, J.; Rucker, D.; Levitt, M.; Yang, X.; Lagmanson, M.

    2007-12-01

    High Resolution Resistivity data is currently used by hydroGEOPHYSICS, Inc to detect and characterize the distribution of suspected contaminant plumes beneath leaking tanks and disposal sites within the U.S. Department of Energy Hanford Site, in Eastern Washington State. The success of the characterization effort has led to resistivity data acquisition in extremely large survey areas exceeding 0.6 km2 and containing over 6,000 electrodes. Optimal data processing results are achieved by utilizing 105 data points within a single finite difference or finite element model domain. The large number of measurements and electrodes and high resolution of the modeling domain requires a model mesh of over 106 nodes. Existing commercially available resistivity inversion software could not support the domain size due to software and hardware limitations. hydroGEOPHYSICS, Inc teamed with Advanced Geosciences, Inc to advance the existing EarthImager3D inversion software to allow for parallel-processing and large memory support under a 64 bit operating system. The basis for the selection of EarthImager3D is demonstrated with a series of verification tests and benchmark comparisons using synthetic test models, field scale experiments and 6 months of intensive modeling using an array of multi-processor servers. The results of benchmark testing show equivalence to other industry standard inversion codes that perform the same function on significantly smaller domain models. hydroGEOPHYSICS, Inc included the use of 214 steel-cased monitoring wells as "long electrodes", 6000 surface electrodes and 8 buried point source electrodes. Advanced Geosciences, Inc. implemented a long electrode modeling function to support the Hanford Site well casing data. This utility is unique to commercial resistivity inversion software, and was evaluated through a series of laboratory and field scale tests using engineered subsurface plumes. The Hanford site is an ideal proving ground for these methods due

  12. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors

    PubMed Central

    Sarisozen, Can; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2014-01-01

    Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with Transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for evaluation of co-delivery of anticancer compounds in targeted micelles. PMID:25016976

  13. MOM3D method of moments code theory manual

    NASA Astrophysics Data System (ADS)

    Shaeffer, John F.

    1992-03-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  14. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  15. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

  16. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  17. Three-dimensional resistivity characterization of a coastal area: Application of Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) survey data from Kujukuri Beach, Japan

    NASA Astrophysics Data System (ADS)

    Abd Allah, Sabry; Mogi, Toru; Ito, Hisatoshi; Jomori, Akira; Yuuki, Youichi; Fomenko, Elena; Kiho, Kenzo; Kaieda, Hideshi; Suzuki, Koichi; Tsukuda, Kazuhiro

    2013-12-01

    An airborne electromagnetic (AEM) survey using the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) system was conducted over the Kujukuri coastal plain in southeast Japan to assess the system's ability to accurately describe the geological structure beneath shallow seawater. To obtain high-quality data with an optimized signal-to-noise ratio, a series of data processing techniques were used to obtain the final transient response curves from the field survey data. These steps included movement correction, coordinate transformation, the removal of local noise, data stacking, and signal portion extraction. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model from the GREATEM data. This model was developed from an initial one-dimensional (1D) resistivity structure that was also inverted from the GREATEM field survey data. We modified a 3D electromagnetic forward-modeling scheme based on a finite-difference staggered-grid method and used it to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of the magnetic-transient responses between field data and the 3D forward-model computed data, the latter of which were convolved with the measured system responses of the corresponding data set. The inverted 3D resistivity structures showed that the GREATEM system has the capability to map resistivity structures as far as 800 m offshore and as deep as 300-350 m underground in coastal areas of relatively shallow seawater depth (5-10 m).

  18. THE VARIATION OF ELECTRICAL RESISTANCE WITH APPLIED POTENTIAL

    PubMed Central

    Blinks, L. R.

    1930-01-01

    Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and

  19. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  20. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  1. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  2. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  3. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  4. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous

  5. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  6. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    PubMed Central

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A.

    2012-01-01

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages. PMID:23443085

  7. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    USGS Publications Warehouse

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  8. Preparation for a 3D Electromagnetic inversion-Application to GREATEM data

    NASA Astrophysics Data System (ADS)

    Abd allah, S.; Mogi, T.; Kim, H.; Fomenko, E.

    2013-12-01

    Previous studies conducted by the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) have shown that, this system is a promising method for modelling 3D resistivity structures in coastal areas. To expand the application of the GREATEM system in the future for studying hazardous wastes, sea water incursion and hydrocarbon exploration, a 3D-resistivity modelling that considers large lateral resistivity variations is required in case of large resistivity contrasts between land and sea in surveys of coastal areas where 1D resistivity model that assumes a horizontally layered structure might be inaccurate. In this abstract we present the preparation for developing a consistent three dimensional electromagnetic inversion algorithm to calculate the EM response over arbitrary 3D conductivity structure using GREATEM system. In forward modelling the second order partial differential equations for scalar and vector potential are discretized on a staggered-grid using the finite difference method (Fomenko and Mogi, 2002, Mogi et al., 2011). In the inversion method the 3D model discretized into a large number of rectangular cells of constant conductivity and the final solution is obtained by minimizing a global objective function composed of the model objective function and data misfit. To deal with a huge number of grids and wide range of frequencies in air borne data sets, a method for approximating sensitivities is introduced for the efficient 3-D inversion. Approximate sensitivities are derived by replacing adjoint secondary electric fields with those computed in the previous iteration. These sensitivities can reduce the computation time, without significant loss of accuracy when constructing a full sensitivity matrix for 3-D inversion, based on the Gauss-Newton method (N. Han et al., 2008). Now, we tested the algorithm in the frequency domain electromagnetic response of synthetic model considering a 3D conductor. Frequency-domain computation is executed

  9. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  10. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    NASA Astrophysics Data System (ADS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y. L.

    2013-03-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range -10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete.

  11. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  12. Angular description for 3D scattering centers

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Raynal, Ann Marie; Ling, Hao; Moore, John; Velten, Vincent J.

    2006-05-01

    The electromagnetic scattered field from an electrically large target can often be well modeled as if it is emanating from a discrete set of scattering centers (see Fig. 1). In the scattering center extraction tool we developed previously based on the shooting and bouncing ray technique, no correspondence is maintained amongst the 3D scattering center extracted at adjacent angles. In this paper we present a multi-dimensional clustering algorithm to track the angular and spatial behaviors of 3D scattering centers and group them into features. The extracted features for the Slicy and backhoe targets are presented. We also describe two metrics for measuring the angular persistence and spatial mobility of the 3D scattering centers that make up these features in order to gather insights into target physics and feature stability. We find that features that are most persistent are also the most mobile and discuss implications for optimal SAR imaging.

  13. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  14. Time-lapse Measurements of Electrical Resistivities to Characterise Snowmelt Infiltration Patterns

    NASA Astrophysics Data System (ADS)

    French, H. K.; Du Saire, M.; Binley, A.; Baker, J.

    2006-12-01

    During snowmelt Oslo airport has on repeated occations experienced the formation of large meltwater ponds due to impermeable ice forming below the snowcover. The airport is situated on a large glacial outwash plane with coarse sandy gravely sediments, hence the area normaly has a high infiltration capacity. Focussed infiltration can cause fast transport of contaminants to the groundwater, hence improved understanding of the processes determining where and how the focussed infiltration takes place is important. Previously the melting process has been monitored successfully on a small scale (4 m2) using a two dimensional grid of permanently installed electrodes (French and Binley, 2004). In the present work snowmelt infiltration was monitored by time-lapse measurements of electrical resistivity using grounded electrodes on 4 and 20 m2 plots and a capacitively coupled resistivity system (Ohmmapper, Geometrics) on a larger scale. While the smaller scale systems provide 3D images the capacitively coupled system was used to monitor changes in two dimensional vertical sections in a retention pond adjacent to one of the runways. The area covered by 4 lines was 170 m by 340 m. The initial data were collected late in the spring (2006) during the final stages of the snowmelt. The lines were repeated later in the year when the soil profile was dryer. The lines show good consistency in the description of the general geology of the subsurface and the time-lapse changes describe the infiltration pattern that occurred during snowmelt and subsequent drainage. The surveys provide useful information about the differences in spatial distribution of snowmelt infiltration at different scales. And there are good indications that capacitively coupled resistivity surveys can be used to describe infiltration processes at relatively large spacio-temporal scales. References French, H. and A. Binley, 2004, Snowmelt infiltration: monitoring temporal and spatial variability using time- lapse

  15. Resistive graphene humidity sensors with rapid and direct electrical readout

    NASA Astrophysics Data System (ADS)

    Smith, Anderson D.; Elgammal, Karim; Niklaus, Frank; Delin, Anna; Fischer, Andreas C.; Vaziri, Sam; Forsberg, Fredrik; Råsander, Mikael; Hugosson, Håkan; Bergqvist, Lars; Schröder, Stephan; Kataria, Satender; Östling, Mikael; Lemme, Max C.

    2015-11-01

    We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further

  16. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C.; Kirby, Kevin K.; Gregoire, Daniel J.

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  17. Material morphology and electrical resistivity differences in EPDM rubbers.

    SciTech Connect

    Yang, Nancy Y. C.; Domeier, Linda A.

    2008-03-01

    Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.

  18. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (<1000 Ohm.m) below 2 to 5 meter depths and higher resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this

  19. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1993-07-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  20. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D. ); Nicol, T.H. )

    1993-01-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  1. Monitoring Permeable Reactive Barriers using Electrical Resistance Tomography

    SciTech Connect

    Ramirez, A; Bratton, W; Maresca, J; Daily, W; Dickerson, W

    2003-12-08

    An electrical resistivity tomography (ERT) method is being evaluated as a measurement tool to determine the integrity of permeable reactive barriers (PRBs) during and after construction of the barrier and as a monitoring tool to determine the long-term operational health of the barrier. The method is novel because it inserts the electrodes directly into the barrier itself. Numerical modeling calculations indicate that the ERT method can detect flaws (voids) in the barrier as small as 0.11 m{sup 2} (0.33 m x 0.33 m) when the aspect ratio of the electrodes are 2:1. Laboratory measurements indicate that the change in resistance over time of the iron-filling mixture used to create the PRB is sufficient for ERT to monitor the long-term health of the barrier. The use of this ERT method allows for the cost-effective installation of the barrier, especially when the vadose zone is large, because borehole installation methods, rather than trenching methods, can be used.

  2. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines

    NASA Astrophysics Data System (ADS)

    Fikos, I.; Vargemezis, G.; Zlotnicki, J.; Puertollano, J. R.; Alanis, P. B.; Pigtain, R. C.; Villacorte, E. U.; Malipot, G. A.; Sasai, Y.

    2012-10-01

    Taal volcano (311 m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250 m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261-266, 2005; Zlotnicki et al. Bull Volcanol 71:29-49, 2009a, Phys Chem Earth 34:294-408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.

  3. Investigations of discontinuous permafrost using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni

    2016-04-01

    We have used electrical resistivity tomography (ERT) extensively over the past five years to examine frozen ground characteristics at natural and disturbed sites within the discontinuous permafrost zones of northern Canada. Examples of pure research include investigations to delimit permafrost patch size, to examine changes in permafrost conditions at altitudinal treeline, and to assess permafrost thickness in palsa bogs. Applied research has included hazard mapping where ERT, in association with boreholes, has been used to characterize permafrost conditions in different terrain units at Yukon communities as part of planning for climate change adaptation. ERT has also been used to examine temporal change through repeated surveys at sites equipped with permanent arrays. Rapid change is occurring at sites which were subject to recent forest fire in the Northwest Territories. Gradual reductions in average resistivity at sites along the Alaska Highway in Yukon and northern British Columbia indicate progressive increases in unfrozen moisture while ground temperatures at the same sites have increased only very slightly. We conclude that ERT should become a standard technique for the investigation of discontinuous permafrost sites and should be incorporated as a monitoring technique within international programs such as the Global Terrestrial Network for Permafrost.

  4. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  5. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  6. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  7. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  8. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  9. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  10. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  11. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  12. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  14. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  15. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Caldwell, T. Grant; Bibby, Hugh M.; Bennie, Stewart L.

    2010-05-01

    Magmatic activity in regions of continental extension may result in huge (>400 km3) explosive eruptions of viscous, gas-rich silicic-magma. Geochemical and geological data suggest that the large volumes of magma erupted are produced by extracting interstitial liquid from a long-lived ‘mush zone’ (a mixture of solid crystals and liquid melt) that accumulates in liquid-dominated lenses at the top of a much thicker region of lower melt-fraction mush. Such lenses will be highly electrically conductive compared with normal mid-crustal rocks. Here we use results of 220 magnetotelluric (MT) soundings to construct a 3-D electrical resistivity image of the northern (silicic) part of New Zealand's Taupo Volcanic Zone, a young continental rift associated with very high heat flow and intense silicic volcanism. The electrical resistivity image shows a plume-like structure of high conductivity, interpreted to be a zone of interconnected melt, rising from depths >35 km beneath the axis of extension.

  19. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    , telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  20. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  1. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  2. 3D electromagnetic modelling of a TTI medium and TTI effects in inversion

    NASA Astrophysics Data System (ADS)

    Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien

    2016-04-01

    We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.

  3. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  4. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  5. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Hadzick, Z. L.; Garzio, A.; Pachepsky, Y. A.; Hill, R. L.; Rowland, R. A.; Golovko, L. A.

    2008-12-01

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. The studied soil had the sandy loam texture. The 20x20-m study plot was located at the ARS Beltsville OPE3 site. Relationship between ER, bulk density, and soil water contents was first studied in disturbed 80-cm3 soil samples taken at 10 depths with 20 cm increment. Soil water contents were brought to 6 predefined levels in each sample and were in the range from air dry to 0.27g g-1. Soil bulk density varied in the range from 1.28 to 1.45 g cm-3. The ER in soil samples decreased as the gravimetric water content increased. The ER decrease became more pronounced as bulk density decreased. Next, soil samples were taken at field water contents from 10 depths at 12 locations. Particle size distributions, pH, water content and ER were measured in each sample. Bulk density values in part of the soil profiles below 80 cm ranged from 1.5 to 1.8 g cm- 3 and no dependence between ER and water content could be established in this soil layer where the lowest values of ER were recorded. The increased conductivity of the soil solid phase could be a possible reason for that since soil in this part of the profile had pH values two or more units less than in the upper part. The lowest sand contents corresponded to highest ER values in this soil layer. Finally, the vertical electrical sounding (LandMapper ERM-02) was used to infer spatial distribution of soil resistivity along a 9-m transect for different dates when soil was dry and when it was relatively uniformly wetted with long low- intensity rain. The Wenner-Shlumberger array with 31-electrodes spaced 30-cm apart was used. Soil temperature and water content with multisensor capacitance probes (SENTEC) were monitored at 10 depths down

  6. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI

  7. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGESBeta

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed

  8. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a

  9. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  10. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  11. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  12. Single-stage application of a novel decellularized dermis for treatment-resistant lower limb ulcers: positive outcomes assessed by SIAscopy, laser perfusion, and 3D imaging, with sequential timed histological analysis.

    PubMed

    Greaves, Nicholas S; Benatar, Brian; Baguneid, Mohamed; Bayat, Ardeshir

    2013-01-01

    We present results of an original clinical study investigating efficacy of a decellularized dermal skin substitute (DCD) as part of a one-stage therapeutic strategy for recalcitrant leg ulcers. Twenty patients with treatment-resistant ulcers underwent hydrosurgical debridement, after which DCD was applied and covered with negative pressure dressings for 1 week. Participants were reviewed on seven occasions over 6 months. 3D photography, full-field laser perfusion imaging, spectrophotometric intracutaneous analysis, and sequential biopsies were used to monitor healing. Mean ulcer duration and surface area prior to DCD placement were 4.76 years (range 0.25-40 years) and 13.11 cm(2) (range 1.06-40.75 cm(2)), respectively. Seventy percent of ulcers were venous. Surface area decreased in all patients after treatment (range 23-100%). Mean reduction was 87% after 6 months, and 60% of patients healed completely. Wound bed hemoglobin flux increased significantly 6 weeks after treatment (p = 0.005). Histological and immunohistochemical analysis confirmed progressive DCD integration with colonization by host fibroblasts, lymphocytes, and neutrophils, resulting in fibroplasia, reepithelialisation, and angiogenesis, with correlating raised CD31, collagen I, and collagen III levels. Subgroup analysis showed differing cellular behavior depending on wound duration, with delayed angiogenesis, reduced collagen deposition, and smaller reductions in surface area in ulcers present for over 1 year. The stain intensities of immunohistochemical markers including fibronectin, collagen, and CD31 differed depending on depth from the wound surface and presence of intact epithelium. DCD safely produced significant improvement in treatment-resistant leg ulcers. With no requirement for hospital admission, anesthetic, or autogenic skin grafting, this treatment could be administered in hospital and community settings. PMID:24134424

  13. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-01

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices. PMID:24634978

  14. Rubber Impact on 3D Textile Composites

    NASA Astrophysics Data System (ADS)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  15. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests. PMID:25427774

  16. Research on nonlinear feature of electrical resistance of acupuncture points.

    PubMed

    Wei, Jianzi; Mao, Huijuan; Zhou, Yu; Wang, Lina; Liu, Sheng; Shen, Xueyong

    2012-01-01

    A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P < 0.01). The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P < 0.05 ~ P < 0.001). And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P < 0.05 ~ P < 0.001), while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P < 0.05 ~ P < 0.01). These results show that the phenomenon of low skin resistance does not exist to all acupuncture points. PMID:23346191

  17. Measuring turbulence in a flotation cell using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Xie, Weiguo; Runge, Kym; Bradshaw, Dee

    2015-11-01

    Measuring turbulence in an industrial flotation environment has long been problematic due to the opaque, aggressive, and abrasive three-phase environment in a flotation cell. One of the promising measurement techniques is electrical resistance tomography (ERT). By measuring the conductivity distribution across a measurement area, ERT has been adopted by many researchers to monitor and investigate many processes involving multiphase flows. In the research outlined in this paper, a compact ERT probe was built and then used to measure the conductivity distribution within a 60 l flotation cell operated with water and air. Two approaches were then developed to process the ERT data and estimate turbulence-related parameters. One is a conductivity variance method and the other is based on the Green-Kubo relations. Both rely on and use the fluctuation in the ERT measurement caused by bubbles moving through the measurement area changing the density of the fluid. The results from both approaches were validated by comparing the results produced by the ERT probe in a 60l flotation cell operated at different air rates and impeller speeds to that measured using an alternative turbulence measurement device. The second approach is considered superior to the first as the first requires the development of auxiliary information which would not usually be known for a new system.

  18. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  19. Visualizing Moisture Storage in Basin Lysimeters Using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Schnabel, W.; Munk, J.; Lee, W.

    2010-12-01

    Electrical resistivity tomography (ERT) was utilized to evaluate soil moisture in two large (10m x 20m x 2m) basin lysimeters over a four-year period in Anchorage, Alaska. The lysimeters were intended to test the efficacy of two competing landfill cover designs, thus water balance information was collected over the entire experimental period. The first lysimeter contained a thin (0.5m) layer of compacted soil within its 2m depth and was planted with local grasses. The second lysimeter contained no compacted soil layer and was planted with deep-rooting woody vegetation to maximize moisture removal via evapotranspiration. After four years of observation, 291mm of moisture percolated through the compacted soil lysimeter compared to 201mm in the evapotranspiration lysimeter. This presentation describes the observed water balance results, discusses efficacy of utilizing compacted soils versus evapotranspiration as the primary means of minimizing infiltration into engineered soil systems, and demonstrates the use of ERT as a technique for visualizing soil moisture storage.

  20. Sinkhole detection using electrical resistivity tomography in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Youssef, Ahmed M.; El-Kaliouby, Hesham; Zabramawi, Yasser A.

    2012-12-01

    Karst phenomena exist in different areas in the Kingdom of Saudi Arabia, causing serious environmental problems that affect urban development and infrastructure (buildings, roads and highways). One of the most important problems are sinkholes, which most of the time consist of unfilled voids. These sinkholes are formed as a result of the chemical leaching of carbonate and evaporite formations by percolating water. Field investigations show that there are many surface expressions of sinkholes in the area; some appear on the ground surface and others are hidden in the subsurface. Geophysical data were collected at the study area using two-dimensional electrical resistivity tomography (ERT) with different electrode spacings to delineate buried sinkholes and associated subsurface cavities. Our findings indicated that the dipole-dipole method using an electrode spacing of 1 m was successful in detecting a known subsurface sinkhole. According to the ERT method the detected sinkhole depth ranges from 2 to 4 m, its height ranges from 2 to 4 m, and its width ranges from 5 to 7 m. Field observation has verified the geophysical data, especially along the profile A-A\\. Finally, closely spaced ERT profiles were successful in determining the three-dimensional volume of the subsurface sinkhole.

  1. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration. PMID:16961484

  2. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  3. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  4. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  5. Pattern based 3D image Steganography

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.

    2013-03-01

    This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.

  6. 3-D inversion of magnetotelluric Phase Tensor

    NASA Astrophysics Data System (ADS)

    Patro, Prasanta; Uyeshima, Makoto

    2010-05-01

    Three-dimensional (3-D) inversion of the magnetotelluric (MT) has become a routine practice among the MT community due to progress of algorithms for 3-D inverse problems (e.g. Mackie and Madden, 1993; Siripunvaraporn et al., 2005). While availability of such 3-D inversion codes have increased the resolving power of the MT data and improved the interpretation, on the other hand, still the galvanic effects poses difficulties in interpretation of resistivity structure obtained from the MT data. In order to tackle the galvanic distortion of MT data, Caldwell et al., (2004) introduced the concept of phase tensor. They demonstrated how the regional phase information can be retrieved from the observed impedance tensor without any assumptions for structural dimension, where both the near surface inhomogeneity and the regional conductivity structures can be 3-D. We made an attempt to modify a 3-D inversion code (Siripunvaraporn et al., 2005) to directly invert the phase tensor elements. We present here the main modification done in the sensitivity calculation and then show a few synthetic studies and its application to the real data. The synthetic model study suggests that the prior model (m_0) setting is important in retrieving the true model. This is because estimation of correct induction scale length lacks in the phase tensor inversion process. Comparison between results from conventional impedance inversion and new phase tensor inversion suggests that, in spite of presence of the galvanic distortion (due to near surface checkerboard anomalies in our case), the new inverion algorithm retrieves the regional conductivitity structure reliably. We applied the new inversion to the real data from the Indian sub continent and compared with the results from conventional impedance inversion.

  7. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  8. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  10. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  11. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-01-01

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  12. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  13. Thermal Expansion and Electrical Resistivity Studies of Nickel and ARMCO Iron at High Temperatures

    NASA Astrophysics Data System (ADS)

    Palchaev, D. K.; Murlieva, Zh. Kh.; Gadzhimagomedov, S. H.; Iskhakov, M. E.; Rabadanov, M. Kh.; Abdulagatov, I. M.

    2015-11-01

    The electrical resistance, ρ (T), and thermal expansion coefficient, β (T), of nickel and ARMCO iron have been simultaneously measured over a wide temperature range from (300 to 1100) K. The well-known standard four-probe potentiometric method was used for measurements of the electrical resistance. The thermal expansion coefficient was measured using the quartz dilatometer technique. Both techniques were combined in the same apparatus for simultaneous measurements of the electrical resistance and TEC for the same specimen. The combined expanded uncertainty of the electrical resistance and thermal expansion coefficient measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.5 % and (1.5 to 4.0) %, respectively. The distinct ρ (T) scattering contribution (phonon ρ _{ph}, magnetic ρ m, and residual ρ S) terms were separated and extracted from the measured total resistivity. The physical nature and details of the temperature dependence of the electrical resistance of solid materials and correct estimations of the contributions of various scattering mechanisms to the measured total resistivity were discussed in terms of the anharmonic effect. We experimentally found simple, universal, physically based, semiempirical linear correlations between the kinetic coefficient (electrical resistance) and a thermodynamic (equilibrium) property, the thermal expansion coefficient, of solid materials. The developed, physically based, correlation model has been successfully applied for nanoscale materials (ferromagnetic nickel nanowire). A new s-d-exchange interaction energy determination technique has been proposed.

  14. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  15. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    DOEpatents

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  16. Electrical resistivity of some Zintl phase and the precursors

    SciTech Connect

    Wolfe, L.

    1990-09-21

    Resistivity measurements have been performed for electric characterization of the compounds Ba{sub 5}Sb{sub 3} and Ba{sub 5}Sb{sub 3}Cl, both with the Mn{sub 5}Si{sub 3} structure type, along with Ca{sub 5}Bi{sub 3} and Ca{sub 5}Bi{sub 3}F, both with the {beta}-Yb{sub 5}Sb{sub 3} structure type. These measurements were taken as a function of temperature using the four probe method on pressed polycrystalline pellets of the compounds. A sealed apparatus was developed for containing these air-sensitive compounds throughout the experiments. By a simple electron count, one extra electron in both Ba{sub 5}Sb{sub 3} and Ca{sub 5}Bi{sub 3} should occupy a conduction band, giving these compounds a metallic character. In the cases of Ba{sub 5}Sb{sub 3}Cl and Ca{sub 5}Bi{sub 3}F, the extra electron should bond to the halide, both filling the valence band and giving rise to semiconducting character. Ca{sub 5}Bi{sub 3}, Ca{sub 5}Bi{sub 3}F, and Ba{sub 5}Sb{sub 3}Cl were found to comply with the electron count prediction. Ba{sub 5}Sb{sub 3}, however, was found to be a semiconductor (E{sub g} = 0.30 eV) with a larger band gap than its corresponding chloride (E{sub g} = 0.09 eV).

  17. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    -distributions of σb. These, in turn, may be translated to many σw values by applying the σw-σb-θ calibration relationship obtained in the laboratory by using the TDR probes. A field experiment was conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari - Italy). The experiment consisted of three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped by a dripper irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii) an ERT apparatus in the Wenner configuration array. Overall, 17 measurement campaigns were carried out. Monitoring along transects also allowed to evaluate the role of different smaller and larger scale heterogeneities on the electrical conductivity measured by the two different sensors. Because of the different variability patterns and structure of the ERT and TDR data due to the different observation windows, a site-by-site comparison of the corresponding readings may not reveal the actual correlation between the σb values deduced by ERT measurements on one side and the TDR data on the other. In order to make TDR and ERT data actually comparable, we analyzed the effect of the different observation windows of the two sensors on the different spatial and temporal variability observed in the two data series. Specifically, the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.

  18. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  19. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  20. Measurement and modelling of moisture-electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy

    NASA Astrophysics Data System (ADS)

    Merritt, A. J.; Chambers, J. E.; Wilkinson, P. B.; West, L. J.; Murphy, W.; Gunn, D.; Uhlemann, S.

    2016-01-01

    A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content. Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples. However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances. The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes. Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman-Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The

  1. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  2. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  3. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  4. Dissipation mechanism in 3D magnetic reconnection

    SciTech Connect

    Fujimoto, Keizo

    2011-11-15

    Dissipation processes responsible for fast magnetic reconnection in collisionless plasmas are investigated using 3D electromagnetic particle-in-cell simulations. The present study revisits the two simulation runs performed in the previous study (Fujimoto, Phys. Plasmas 16, 042103 (2009)); one with small system size in the current density direction, and the other with larger system size. In the case with small system size, the reconnection processes are almost the same as those in 2D reconnection, while in the other case a kink mode evolves along the current density and deforms the current sheet structure drastically. Although fast reconnection is achieved in both the cases, the dissipation mechanism is very different between them. In the case without kink mode, the electrons transit the electron diffusion region without thermalization, so that the magnetic dissipation is supported by the inertia resistivity alone. On the other hand, in the kinked current sheet, the electrons are not only accelerated in bulk, but they are also partly scattered and thermalized by the kink mode, which results in the anomalous resistivity in addition to the inertia resistivity. It is demonstrated that in 3D reconnection the thickness of the electron current sheet becomes larger than the local electron inertia length, consistent with the theoretical prediction in Fujimoto and Sydora (Phys. Plasmas 16, 112309 (2009)).

  5. The effect of irrigation frequency on water depletion by bell pepper: the added value of electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Garré, Sarah; Assouline, Shmuel; Furman, Alex

    2014-05-01

    The dynamics of root uptake, and its relation to soil moisture, is a very important component in the terrestrial water balance and may determine water resources management, ecology and agriculture. In this research we explore the spatial and temporal distribution of soil water under different irrigation schemes in high resolution using electrical resistivity tomography (ERT). Bell pepper was planted in containers and irrigated in two different schemes, differing only in irrigation frequency. The daily dose remains the same for both treatments. This irrigation difference results in different spatio-temporal distribution of the soil water in the root zone, which in turn implies spatio-temporal differences in root uptake. The experiment was conducted under very high evapotranspiration (ET) conditions. The resistivity surveys, using 96 electrodes placed around the growth chamber were taken over 10 times daily. Plants subjected to high frequency irrigation generally were faster in growth and matured about a week earlier. This is primarily attributed to the higher water content that exists in the root zone, and primarily during the high ET periods at noon. The 3-D resistivity distributions provide an interesting insight into the water depletion by the crop in space and time. However, the ERT survey also encountered some challenges related to time-varying error levels and electrode contact changes during wetting and drying cycles.

  6. The effect of irrigation frequency on water depletion by bell pepper: the added value of electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Garre, S.; Assouline, S.; Furman, A.

    2013-12-01

    The dynamics of root uptake, and its relation to soil water content, are still insufficiently understood. Nevertheless, it is a very important component in the terrestrial water balance and may determine water resources management, ecology and agriculture. In this research we explore the spatial and temporal distribution of soil water under different irrigation schemes in high resolution using electrical resistivity tomography (ERT). Bell peppers were planted in a chamber and irrigated in two different schemes, differing only in irrigation frequency. The daily dose remains the same for both treatments. This irrigation difference results in different spatio-temporal distribution of the soil water in the root zone, which in turn implies spatio-temporal differences in root uptake. The experiment was conducted under very high evapotranspiration (ET) conditions. The resistivity surveys, using 96 electrodes placed around the growth chamber were taken over 10 times daily. Plants subjected to high frequency irrigation generally were faster in growth and matured about a week earlier. This is primarily attributed to the higher water content that exists in the root zone, and primarily during the high ET periods at noon. The 3-D resistivity distributions provide an interesting insight into the water depletion by the crop in space and time. However, the ERT survey also encountered some challenges related to time-varying error levels and electrode contact changes during wetting and drying cycles.

  7. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  8. An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    SciTech Connect

    LaBrecque, Douglas J; Adkins, Paula L

    2008-12-09

    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at

  9. Experimental Study of Electrothermal 3D Mixing using 3D microPIV

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul; Loire, Sophie; Meinhart, Carl; Mezic, Igor

    2012-11-01

    Mixing is a keystep which can greatly accelerate bio-reactions. For thirty years, dynamical system theory has predicted that chaotic mixing must involve at least 3 dimensions (either time dependent 2D flows or 3D flows). So far, 3D embedded chaotic mixing has been scarcely studied at microscale. In that regard, electrokinetics has emerged as an efficient embedded actuation to drive microflows. Physiological mediums can be driven by electrothermal flows generated by the interaction of an electric field with conductivity and permittivity gradients induced by Joule heating We present original electrothermal time dependant 3D (3D+1) mixing in microwells. The key point of our chaotic mixer is to generate overlapping asymmetric vortices, which switch periodically. When the two vortex configurations blink, flows stretch and fold, thereby generating chaotic advection. Each flow configuration is characterized by an original 3D PIV (3 Components / 3 Dimensions) based on the decomposition of the flows by Proper Orthogonal Decomposition. Velocity field distribution are then compared to COMSOL simulation and discussed. Mixing efficiency of low diffusive particles is studied using the mix-variance coefficient and shows a dramatic increase of mixing efficiency compared to steady flow.

  10. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  11. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  12. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  13. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  14. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  15. Remote-Controlled Electrical Resistivity Tomography and Concurrent Ground-Penetrating Radar Laboratory

    NASA Astrophysics Data System (ADS)

    Kruger, A.; Daniels, J. J.; Yeh, T. J.; Zhu, J.; Niemeier, J. J.; Mansheim, T. J.; Hart, T. R.; Shaelek, K. S.; Illman, W. A.; Craig, A. J.

    2008-12-01

    A team of researchers at The University of Iowa, Ohio State University, and the University of Arizona have developed an over-the-internet experimental setup that enables researchers and educators at remote locations to make concurrent electrical resistivity tomography (ERT) and ground penetrating radar (GPR) measurements. The setup is comprised of a carefully constructed sandbox with known layers of sand with embedded wells and ERT electrodes. A GPR transmitter and receiver are mounted on an xy-traverse scanner. Computers control all the components. Computer software and communications interfaces allow remote users to perform concurrent ERT and GPR measurements and retrieve the measured results in real- time over the internet. A camera enables each internet user to view the active experiment. The users can then apply various inversion- and post-processing algorithms to the data, fuse their results, interpret the data, and adjust the data collection for additional data runs. The system allows for flexible and rapid ERT measurements by researchers developing inversion algorithms, and near real-time 3D images of dielectric constant variations (moisture and water concentrations) in the model. It also has utility in geophysics education, enabling real-time demonstration of ERT and GPR measurements. The distributed arrangement allows institutions at different locations to collaborate and leverage their individual strengths: experimental and cyberinfrastructure knowledge, ERT expertise, and GPR expertise. Large subsystems in the laboratory were designed as stand-alone equipment without any network capability, and this posed major technical obstacles. Our plans include extending the system to interface with pumps and pressure transducers to facilitate hydrologic tomography experiments and possibly offer the research setup to other investigators who do not have access to a laboratory system.

  16. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  17. 3D plasmonic nanoantennas integrated with MEA biosensors

    NASA Astrophysics Data System (ADS)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic

  18. Electrical Resistivity Imaging for Studying Dynamics of Vadose Zone Processes

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R. J.

    2010-12-01

    Determining the spatial distribution of subsurface hydrologic properties is critical to developing efficient groundwater management strategies. Electrical resistivity imaging (ERI) provides continuous maps of the subsurface electrical conductivity, which can be related to water content, making it particularly useful to groundwater studies. We present an application of ERI to monitoring infiltration in the top 20 m of the subsurface at the Harkins Slough Recharge Pond, located in an agricultural region on the northern California coast. The purpose of the recharge pond is two-fold: to store diverted storm-flow run-off to meet groundwater delivery demands and to replenish underlying aquifers, which have been overdrawn for several decades, allowing saltwater intrusion. Operators of the pond have rights to divert 2.5e6 m3 of surface water to the pond each year, but decreasing infiltration rates during diversion reduces the operational efficiency, only allowing infiltration of ~1e6 m3 each year. It is hypothesized that deposition of fine-sediments from diverted water, run-off from adjacent fields, and/or microbial activity reduce the hydraulic conductivity over time by clogging pore spaces. As part of an effort to better understand the hydrologic processes controlling infiltration to improve operational efficiency of the recharge pond we conducted time-lapse ERI experiments to monitor infiltration processes beneath the pond during the winters of 2008-2009 and 2009-2010. Each year measurements were made using four 3-m long permanent probes installed in the base of the pond in a T-shape configuration, with 20 m between each probe. The probes allow for monitoring of the conductivity profile to a depth of 2 m; the top meter of each probe monitors bulk conductivity of the pond water. In addition, a number of surface electrodes were laid out in lines between the four probes. In 2008-2009, 20-m lines were used. In 2009-2010, three lines of lengths 10 m, 65 m, and 75 m were

  19. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  20. Fracture network characterisation of a landslide by electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Szalai, S.; Szokoli, K.; Novák, A.; Tóth, Á.; Metwaly, M.; Prácser, E.

    2014-06-01

    In contrary to most of the landslide studies which concentrate to the sliding surface in this paper the fracture system of a loess landslide is investigated. The continuity and geometry, orientation and dip of the major fractures are crucial parameters for assessing rock stability and landslide evolution. Rain infiltrating moreover easily into the rock mass through fractures providing lubrication for the material to slide, and increases the self-mass of the material increasing the slumping rate. Fracture maps enable beside of the characterisation of the fractured area the delineation of the endangered area of slow-moving landslides in due time and getting information about its inner structure. For constructing such maps Electrical Resistivity Tomography (ERT) measurements have been carried out using different geoelectric configurations. In spite of the high density of the fractures and their changing physical parameters in function of their water content - which make the interpretation rather difficult - a number of fractures have been detected and more or less well localised. On the basis of the present research the application of the Schlumberger and the Pole-Dipole arrays is recommended to fulfil the aim of the study. The optimised Stummer array is at the same time the only array which presents conductive anomalies (supposedly water filled fractures), as well, and indicates that fractures elongate deep downwards. Because these features seem to be realistic based on field observations or theoretical considerations the Stummer array may be a very good tool for completing e.g. P-Dp measurements. The study area could have been divided by all arrays into differently fractured zones, which assists a lot in understanding the landslide structure and evolution. It was shown, moreover, that in the still passive area there are thick fractures, too, verifying its dangerousness, as well. The ERT results enabled localising the rupture surfaces of future slumps which proved to

  1. Composite Materials with Distinctive Behaviors under High Electric Fields: I - Material Switches to 'High Resistive' State

    NASA Technical Reports Server (NTRS)

    Javadi, H.

    1994-01-01

    Electrically conductive silver filled epoxy ECF-563 preform, sandwiched between gold contact pads exhibits intermittent current-voltage characteristics with switching to 'high resistive' state under applied bias voltage.

  2. Temperature dependence of electrical resistivity measurements: A useful infiltration tracer?

    NASA Astrophysics Data System (ADS)

    Pidlisecky, A.; Knight, R.

    2008-12-01

    As part of an ongoing monitoring project, three resistivity probes were installed to a depth of 2m below a seasonal infiltration pond on the central coast of California. The probes were instrumented with 35 resistivity electrodes and 5 temperature loggers. They were designed to monitor the change in bulk resistivity beneath the pond during infiltration. The pond was filled in January 2008 and resistivity measurements were made on each probe every hour for a period of 4 months. In addition to changes in bulk resistivity, we observed diurnal fluctuations in the apparent resistivity signal due to the temperature dependence of in-situ resistivity. By processing the resistivity data, using a band pass filter, we can recover a time-depth section of pseudo- temperature data. We refer to these data as pseudo-temperature because they can be treated as a surrogate for temperature in terms of phase but not amplitude. These pseudo-temperature sections can be used as a tracer to calculate 1D infiltration rates. When compared with in-situ temperature loggers, we see good agreement. Moreover, we note that the resistivity fluctuations correspond to temperature variations that are less than one degree Celsius. The use of the temperature dependence of measured resistivity is a promising field technique. The pseudo-temperature data may prove more robust than using traditional temperature probes given that the larger sampling volume of the resistivity measurement will limit the influence local flow path perturbations caused by probe installation. Future research will involve extending this approach to 2D tomography in hopes of providing us with a technique for obtaining spatially exhaustive estimates of near-surface infiltration rates.

  3. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  4. Effects of Contact Resistance on Electrical Conductivity Measurements of SiC-Based Materials

    SciTech Connect

    Youngblood, Gerald E.; Thomsen, Edwin C.; Henager, Charles H.

    2012-04-17

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from RT to ~700°C. The specific contact resistance values (Rc) behaved similarly for each type of metallic electrode: Rc >~1000 Ω-cm2 at RT, decreasing continuously to ~1-10 Ω-cm2 at 700°C. The temperature dependence of the inverse Rc indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ~0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by ~1/2.

  5. Modeling the electrical resistivity of deformation processed metal-metal composites

    SciTech Connect

    Tian, Liang; Anderson, Iver; Riedemann, Trevor; Russell, Alan

    2014-09-01

    Deformation processed metal–metal (matrix–reinforcement) composites (DMMCs) are high-strength, high-conductivity in situ composites produced by severe plastic deformation. The electrical resistivity of DMMCs is rarely investigated mechanistically and tends to be slightly higher than the rule-of-mixtures prediction. In this paper, we analyze several possible physical mechanisms (i.e. phonons, interfaces, mutual solution, grain boundaries, dislocations) responsible for the electrical resistivity of DMMC systems and how these mechanisms could be affected by processing conditions (i.e. temperature, deformation processing). As an innovation, we identified and assembled the major scattering mechanisms for specific DMMC systems and modeled their electrical resistivity in combination. From this analysis, it appears that filament coarsening rather than dislocation annihilation is primarily responsible for the resistivity drop observed in these materials after annealing and that grain boundary scattering contributes to the resistivity at least at the same magnitude as does interface scattering.

  6. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  7. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  8. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  9. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  10. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  11. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  12. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  13. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  14. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  15. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  16. Change Of Electrical Resistivity Depending On Water Saturation Of The Concrete Samples

    NASA Astrophysics Data System (ADS)

    Sabbaǧ, Nevbahar; Uyanık, Osman

    2016-04-01

    In this study, the changes of electrical apparent resistivity values depending on the water saturation of cubic concrete samples which designed according to different strength were investigated. For this purpose, 3 different concrete design as poor, middle and good strength 150x150x150mm dimensions 9 for each design cubic samples were prepared. After measuring the weight of the prepared samples, in oven were dried at 105 ° C for 24 hours and then the dry weights were measured. Then the samples were placed into the curing pool and saturated weight of the samples were measured in specific time periods during the 90 day take out from the curing pool and the water content were calculated at each stage of these processes. The water content of the samples were obtained during 90 days specific points in time and as well as electrical apparent resistivity method of the different surfaces of the samples the potential difference measurements made by electrical resistivity method and electrical apparent resistivity values of the samples were calculated. Depending on time obtained from this study with respect to time curves of the water content and the apparent resistivity values were constructed. Results showed that the electrical apparent resistivity values increased depends on the water content. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete, cubic sample, Resistivity, water content, time

  17. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  18. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  19. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  20. Process for 3D chip stacking

    DOEpatents

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  1. Process for 3D chip stacking

    DOEpatents

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  2. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Steven B.; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Karaoulis, Marios; Graham, Wendy D.

    2014-03-01

    Groundwater flow in karst includes exchange of water between large fractures, conduits, and the surrounding porous matrix, which impacts both water quality and quantity. Electrical resistivity tomography combined with end-member mixing analysis (EMMA) and numerical flow and transport modeling was used to study mixing of karst conduit and matrix waters to understand spatial and temporal patterns of mixing during high flow and base flow conditions. To our knowledge, this is the first time EMMA and synthetic geophysical simulations have been combined. Here we interpret an 8 week time-lapse electrical resistivity data set to assess groundwater-surface mixing. We simulate flow between the karst conduits and the porous matrix to determine fractions of water recharged to conduits that has mixed with groundwater stored in the pore space of the matrix using a flow and transport model in a synthetic time-lapse resistivity inversion. Comparing the field and synthetic inversions, our results enable us to estimate exchange dynamics, spatial mixing, and flow conditions. Results showed that mixing occurred at a volumetric flux of 56 m3/d with a dispersivity around 1.69 m during the geophysical experiment. For these conditions, it was determined that conduit water composition ranged from 75% groundwater during base flow conditions to less than 50% groundwater in high flow conditions. Though subject to some uncertainties, the time-lapse inversion process provides a means to predict changing hydrologic conditions, leading to mixing of surface water and ground water and thus changes to water quantity and quality, as well as potential for water-rock reactions, in a semiconfined, sink-rise system.

  3. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  4. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  5. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  6. Highly compressible 3D periodic graphene aerogel microlattices.

    PubMed

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  7. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  8. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  9. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  10. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens.

    PubMed

    Campana, L G; Cesari, M; Dughiero, F; Forzan, M; Rastrelli, M; Rossi, C R; Sieni, E; Tosi, A L

    2016-05-01

    This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50-100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy. PMID:26324245

  11. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  12. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  13. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  14. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  15. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-04-28

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  16. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  17. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways. PMID:27550050

  18. Resistance and internal electric field in cloud-to-ground lightning channel

    SciTech Connect

    Cen, Jianyong; Yuan, Ping Xue, Simin; Wang, Xuejuan

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  19. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  20. Capacitance extraction from complex 3D interconnect structures

    SciTech Connect

    Cartwright, D.; Csanak, G.; George, D.; Walker, R.; Kuprat, A.; Dengi, A.; Grobman, W.

    1999-06-01

    A new tool has been developed for calculating the capacitance matrix for complex 3D interconnect structures involving multiple layers of irregularly shaped interconnect, imbedded in different dielectric materials. This method utilizes a new 3D adaptive unstructured grid capability, and a linear finite element algorithm. The capacitance is determined from the minimum in the total system energy as the nodes are varied to minimize the error in the electric field in the dielectric(s).

  1. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  2. Relating permeability and electrical resistivity in fractures using random resistor network models

    NASA Astrophysics Data System (ADS)

    Kirkby, Alison; Heinson, Graham; Krieger, Lars

    2016-03-01

    We use random resistor network models to explore the relationship between electrical resistivity and permeability in a fracture filled with an electrically conductive fluid. Fluid flow and current are controlled by both the distribution and the volume of pore space. Therefore, the aperture distribution of fractures must be accurately modeled in order to realistically represent their hydraulic and electrical properties. We have constructed fracture surface pairs based on characteristics measured on rock samples. We use these to construct resistor networks with variable hydraulic and electrical resistance in order to investigate the changes in both properties as a fault is opened. At small apertures, electrical conductivity and permeability increase moderately with aperture until the fault reaches its percolation threshold. Above this point, the permeability increases by 4 orders of magnitude over a change in mean aperture of less than 0.1 mm, while the resistivity decreases by up to a factor of 10 over this aperture change. Because permeability increases at a greater rate than matrix to fracture resistivity ratio, the percolation threshold can also be defined in terms of the matrix to fracture resistivity ratio, M. The value of M at the percolation threshold, MPT, varies with the ratio of rock to fluid resistivity, the fault spacing, and the fault offset. However, MPT is almost always less than 10. Greater M values are associated with fractures above their percolation threshold. Therefore, if such M values are observed over fluid-filled fractures, it is likely that they are open for fluid flow.

  3. 3-D magnetic field calculations for wiggglers using MAGNUS-3D

    SciTech Connect

    Pissanetzky, S.; Tompkins, P.

    1988-01-01

    The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.

  4. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  5. Cross-section electrical resistance tomography of La Soufrière of Guadeloupe lava dome

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Grychtol, Bartłomiej; Gibert, Dominique; Komorowski, Jean-Christophe; Adler, Andy

    2014-06-01

    The electrical resistivity distribution at the base of La Soufrière of Guadeloupe lava dome is reconstructed by using transmission electrical resistivity data obtained by injecting an electrical current between two electrodes located on opposite sides of the volcano. Several pairs of injection electrodes are used in order to constitute a data set spanning the whole range of azimuths, and the electrical potential is measured along a cable covering an angular sector of ≈120° along the basis of the dome. The data are inverted to perform a slice electrical resistivity tomography (SERT) with specific functions implemented in the EIDORS open source package dedicated to electrical impedance tomography applied to medicine and geophysics. The resulting image shows the presence of highly conductive regions separated by resistive ridges. The conductive regions correspond to unconsolidated material saturated by hydrothermal fluids. Two of them are associated with partial flank collapses and may represent large reservoirs that could have played an important role during past eruptive events. The resistive ridges may represent massive andesite and are expected to constitute hydraulic barriers.

  6. Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia.

    NASA Astrophysics Data System (ADS)

    Kvon, Dina; Vladimir, Shevnin; Boris, Nikulin; Albert, Ryjov; Alexey, Skobelev

    2013-04-01

    Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia. Kvon D. A.(1)*, Shevnin V.A.(1), Nikulin B. A.(1), Ryjov A. A.(2), Skobelev A. O.(1) (1)Geophysical dept., Faculty of Geology, Moscow state university; (2)VSEGINGEO Due to acute shortage of fresh drinking water near Anapa town (not far from the Black Sea), geophysical investigations were performed for searching and mapping aquifers in the area, where, according to rare wells exist probability to find fresh underground water. Geophysical explorations were carried out by Electrical resistivity tomography (ERT) method and water resistivity measurements. The resistivity of fresh groundwater is 15 Ohm.m, its salinity is 0.4 g/l. The structure of the area has been obtained by previous geological and hydrogeological studies and boreholes drilling. Geological structure of the area consists of two parts: the upper part of cross-section presented by loose lacustrine-alluvial sediments of Upper Pleistocene - Holocene, the lower part presented by hard rocs of carbonate-flysch formation of Upper Cretaceous age consisted of marl and limestone. Prospective areas to find underground water are: water-bearing horizon of upper Pleistocene-Holocene sediments, which is presented by gravel layer (base layer of modern lacustrine-alluvial sediments), and fractured zones in hard rocks of the carbonate-flysch formation of Maastricht age (Supseh formation). Analysis of rocks' resistivity obtained from Electrical resistivity tomography followed by calculation of rock resistivity on known petrophysical parameters (in Petrowin program created by A. A. Ryjov) [Shevnin et al., 2007]. The calculation showed that there is low clay content in carbonate rocks of the studied area, and the rock is limestone, not marl. Measurement of rock samples with X-ray radiometric method showed high calcium content (30-35%) or 75-87.5% limestone. This fact shows that flysch formation of the area is mainly

  7. Electrical Resistivity Tomography for the Detection of Subsurface Cavities in the Hofuf area of Eastern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ahmed, H. R.; Kaka, S. I.; Al-Mulhim, A.

    2012-04-01

    The Hofuf area in Eastern Saudi Arabia is marked by numerous karstic features including sinkholes, solution cavities and caves. These features have always been a hazard to the stability of the flyover bridges being built in the area. Recent development projects in the area included the construction of two flyover bridges at most heavily trafficked intersections in Hofuf city. Several investigations were attempted including conventional geotechnical investigations using boreholes, however, these did not furnish necessary information to visualize the subsurface cavities. Consequently, an electrical resistivity tomography (ERT) survey was carried out to map the shallow subsurface strata at two proposed sites for future flyover bridges with the aims to detect and map the subsurface cavities. ABEM LUND Imaging System (http://abem.se/products/sas4000/sas4000.php) consisting of Terrameter with an automatic electrode selector was used to acquire apparent resistivity data during the survey. Cables with 2 to 5m electrode take-out spacing were adopted with a total of 160 to 400 m layout using Wenner-Schlumberger configuration. During the data acquisition process, connectivity and grounding at all electrodes were verified. Due to extreme dry surface condition, bentonite slurry was used for proper grounding of the electrodes. Windows based software, RES2DINV and RES3DINV developed by Geotomo Software (http://www.geoelectrical.com/index.php) were used for the inverse modeling of the acquired apparent resistivity data resulting in 2-D and 3-D absolute / true resistivity models of the subsurface conditions. The results show the presence of small to large isolated cavities at various depths which were subsequently verified by drilling boreholes. This study enables us to make a number of recommendations for the design and construction of safe foundation systems for the proposed flyover bridges.

  8. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  9. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Ng, M. Z.; Anantha, P.; Lin, Y. D.; Li, Z. G.; Gan, C. L.; Tan, C. S.

    2016-06-01

    An enhanced copper paste, formulated by copper micro- and nano-particles mixture, is reported to prevent paste cracking and obtain an improved packing density. The particle mixture of two different sizes enables reduction in porosity of the micro-paste and resolves the cracking issue in the nano-paste. In-situ temperature and resistance measurements indicate that the mixed paste has a lower densification temperature. Electrical study also shows a ˜12× lower sheet resistance of 0.27 Ω/sq. In addition, scanning electron microscope image analysis confirms a ˜50% lower porosity, which is consistent with the thermal and electrical results. The 3:1 (micro:nano, wt. %) mixed paste is found to have the strongest synergistic effect. This phenomenon is discussed further. Consequently, the mixed paste is a promising material for potential low temperature 3D interconnects fabrication.

  10. Design and performance of low-thermal-resistance, high-electrical-isolation heat intercept connections

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Gonczy, J. D.; Phelan, P. E.; Nicol, T. H.

    Electrical conductors often require the removal of heat produced by normal operation. The heat can be removed by mechanical connection of the conductor to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Fabrication of these connections should be straightforward, and performance must be reliable and independent of operating temperature. The connection method described here involves clamping (by thermal interference fit) an electrically insulating cylinder between an outer metallic ring and an inner metallic disc. Material candidates for insulating cylinders include composites, e.g. epoxy/fibreglass, and ceramics, e.g. alumina. Design factors, including geometry, materials and thermal contact resistance are discussed. The design, construction experience and performance measurements of a heat intercept connection in a high-temperature superconducting lead assembly is presented.

  11. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  12. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  13. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  14. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  15. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  16. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  17. High definition cross-well electrical resistivity imaging using seismoelectric focusing and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Sava, P.; Revil, A.; Karaoulis, M.

    2014-08-01

    We propose a new, simple and efficient method to image electrical resistivity between a set of wells. Our procedure consists of two steps: first, we map the interfaces between various subsurface formations using seismoelectric conversions; second, we derive the formation resistivity using image-guided cross-well electric tomography. In the first step, we focus seismic energy at a set of points located on a regular grid between wells, which enables us to map the geological formations in terms of heterogeneities in electrical, hydraulic and/or seismic properties. The density of the scanning points (i.e. the seismoelectric image resolution) is related to the wavelength of the seismic impulse used to scan the formations. Each time the seismic energy is focused at a point, the resulting electrical potential burst (equivalent to the one generated by a volumetric seismic source) is recorded remotely at a set of electrodes positioned in wells (the reference electrode can be located on the ground surface or far enough to be considered at infinity). We construct a high-resolution `seismoelectric' image by assigning the electrical potential simulated at these fixed electrodes to the location of the seismic focus. In a follow-up step, the structure of this image is used in image-guided inversion to improve electrical resistivity tomography between the two wells. The structural information from the seismoelectric image is used to impose constraints on the model covariance matrix used in the inversion of the electrical resistivity data. This approach offers new perspectives in recovering fine structure of resistivity (high definition resistivity tomography) between the wells, which cannot be resolved through conventional cross-well resistivity or from seismic tomography alone.

  18. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  19. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  20. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  1. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  2. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  3. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  4. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable