Science.gov

Sample records for 3d electron microscopy

  1. 3D electron microscopy of biological nanomachines: principles and applications.

    PubMed

    Sorzano, C O S; Jonic, S; Cottevieille, M; Larquet, E; Boisset, N; Marco, S

    2007-11-01

    Transmission electron microscopy is a powerful technique for studying the three-dimensional (3D) structure of a wide range of biological specimens. Knowledge of this structure is crucial for fully understanding complex relationships among macromolecular complexes and organelles in living cells. In this paper, we present the principles and main application domains of 3D transmission electron microscopy in structural biology. Moreover, we survey current developments needed in this field, and discuss the close relationship of 3D transmission electron microscopy with other experimental techniques aimed at obtaining structural and dynamical information from the scale of whole living cells to atomic structure of macromolecular complexes.

  2. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  3. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    PubMed

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. PMID:26185247

  4. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  5. Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Gasser, Philippe; Lucas, Falk; Wepf, Roger

    2012-01-01

    The rationale of correlative light and electron microscopy (CLEM) is to collect data on different information levels--ideally from an identical area on the same sample--with the aim of combining datasets at different levels of resolution to achieve a more holistic view of the hierarchical structural organization of cells and tissues. Modern three-dimensional (3D) imaging techniques in light and electron microscopy opened up new possibilities to expand morphological studies into the third dimension at the nanometer scale and over various volume dimensions. Here, we present two alternative approaches to correlate 3D light microscopy (LM) data with scanning electron microscopy (SEM) volume data. An adapted sample preparation method based on high-pressure freezing for structure preservation, followed by freeze-substitution for multimodal en-bloc imaging or serial-section imaging is described. The advantages and potential applications are exemplarily shown on various biological samples, such as cells, individual organisms, human tissue, as well as plant tissue. The two CLEM approaches presented here are per se not mutually exclusive, but have their distinct advantages. Confocal laser scanning microscopy (CLSM) and focused ion beam-SEM (FIB-SEM) is most suitable for targeted 3D correlation of small volumes, whereas serial-section LM and SEM imaging has its strength in large-area or -volume screening and correlation. The second method can be combined with immunocytochemical methods. Both methods, however, have the potential to extract statistically relevant data of structural details for systems biology.

  6. Computer-aided microtomography with true 3-D display in electron microscopy.

    PubMed

    Nelson, A C

    1986-01-01

    A novel research system has been designed to permit three-dimensional (3-D) viewing of high resolution image data from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The system consists of front-end primary data acquisition devices, such as TEM and SEM machines, which are equipped with computer-controlled specimen tilt stages. The output from these machines is in analogue form, where a video camera attached to the TEM provides the sequential analogue image output while the SEM direct video output is utilized. A 10 MHz digitizer transforms the video image to a digital array of 512 X 512 pixel units of 8 bits deep-stored in a frame buffer. Digital images from multiple projections are reconstructed into 3-D image boxes in a dedicated computer. Attached to the computer is a powerful true 3-D display device which has hardware for graphic manipulations including tilt and rotate on any axis and for probing the image with a 3-D cursor. Data editing and automatic contouring functions are used to enhance areas of interest, and specialized software is available for measurement of numbers, distances, areas, and volumes. With proper archiving of reconstructed image sequences, a dynamic 3-D presentation is possible. The microtomography system is highly versatile and can process image data on-line or from remote sites from which data records would typically be transported on computer tape, video tape, or floppy disk. PMID:3753610

  7. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy.

    PubMed

    Rennie, Monique Y; Gahan, Curran G; López, Claudia S; Thornburg, Kent L; Rugonyi, Sandra

    2014-08-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three-dimensional (3D), high-resolution imaging. Focused ion beam scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a FIB, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy. Up to 1,100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800-1,500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall.

  8. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell

    PubMed Central

    Bohórquez, Diego; Haque, Fariha; Medicetty, Satish; Liddle, Rodger A.

    2015-01-01

    Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue. PMID:26273796

  9. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  10. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization.

    PubMed

    Kaushik, Madhu; Basu, Kaustuv; Benoit, Charles; Cirtiu, Ciprian M; Vali, Hojatollah; Moores, Audrey

    2015-05-20

    Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.

  11. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es. PMID:27108186

  12. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es.

  13. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  14. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle.

    PubMed

    Franzini-Armstrong, Clara

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  15. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  16. 3D Imaging of Diatoms with Ion-abrasion Scanning Electron Microscopy

    PubMed Central

    Hildebrand, Mark; Kim, Sang; Shi, Dan; Scott, Keana; Subramaniam, Sriram

    2009-01-01

    Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at ~ 30 nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the “hard” (siliceous) and “soft” (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system. PMID:19269330

  17. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    PubMed

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples. PMID:25433274

  18. Computational 3D reconstructions by optimization for cryo-electron microscopy

    NASA Astrophysics Data System (ADS)

    Yin, Zhye; Zheng, Yili; Doerschuk, Peter C.; Johnson, John E.

    2003-06-01

    An algorithm for the simultaneous 3-D reconstruction of several types of object, where each type of object may possibly have a rotational symmetry, from 2-D projection images, where for each image the type of object imaged, the projection orientation used to create the image, and the location of the object in the image are unknown, is described. The motivating application is the determination of the 3-D structure of small spherical viruses from cryo electron microscopy images. The algorithm is a maximum likelihood estimator which is computed by expectation maximization (EM). Due to the structure of the statistical model, the maximization step of EM can be easily computed but the expectation step requires 5-D numerical quadrature. The computational burden of the quadratures necessitates parallel computation and three different implementations of two different types of parallelism have been developed using pthreads (for shared memory processors) and MPI (for distributed memory processors). An example applying one of the MPI implementations, running on a 32 node PC cluster, to experimental images of Flock House Virus with comparison to the x-ray crystal diffraction structure of the virus is described.

  19. Scanning transmission and computer-aided volumic electron microscopy: 3-D modeling of entire cells by electronic imaging

    NASA Astrophysics Data System (ADS)

    Bron, Christophe; Gremillet, Philip; Launay, D.; Jourlin, Michel; Gautschi, H. P.; Baechi, Thomas; Schuepbach, Joerg

    1990-05-01

    The digital processing of electron microscopic images from serial sections containing laser-induced topographical references allows a 3-D reconstruction at a depth resolution of 30 to 40 nm of entire cells by the use of image analysis methods, as already demonstrated for Transmission Electron Microscopy (TEM) coupled with a video camera. We decided to use a Scanning Transmission Electron Microscope (STEM) to get higher contrast and better resolution at medium magnification. The scanning of our specimens at video frequencies is an attractive and easy way to link a STEM with an image processing system but the hysteresis of the electronic spools responsible for the magnetic deviation of the scanning electron beam induces deformations of images which have to be modelized and corrected before registration. Computer algorithms developed for image analysis and treatment correct the artifacts caused by the use of STEM and by serial sectioning to automatically reconstruct the third dimension of the cells. They permit the normalization of the images through logarithmic processing of the original grey level infonnation. The automatic extraction of cell limits allows to link the image analysis and treatments with image synthesis methods by minimal human intervention. The surface representation and the registered images provide an ultrastructural data base from which quantitative 3-D morphological parameters, as well as otherwise impossible visualizations, can be computed. This 3-D image processing named C.A.V.U.M. for Computer Aided Volumic Ultra-Microscopy offers a new tool for the documentation and analysis of cell ultrastructure and for 3-D morphometric studies at EM magnifications. Further, a virtual observer can be computed in such a way as to simulate a visit of the reconstructed object.

  20. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  1. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  2. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  3. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples.

  4. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    -scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d

  5. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. PMID:26930005

  6. Isolation, Electron Microscopy and 3D Reconstruction of Invertebrate Muscle Myofilaments

    PubMed Central

    Craig, Roger

    2011-01-01

    Understanding the molecular mechanism of muscle contraction and its regulation has been greatly influenced and aided by studies of myofilament structure in invertebrate muscles. Invertebrates are easily obtained and cover a broad spectrum of species and functional specializations. The thick (myosin-containing) filaments from some invertebrates are especially stable and simple in structure and thus much more amenable to structural analysis than those of vertebrates. Comparative studies of invertebrate filaments by electron microscopy and image processing have provided important generalizations of muscle molecular structure and function. This article reviews methods for preparing thick and thin filaments from invertebrate muscle, for imaging filaments by electron microscopy, and for determining their three dimensional structure by image processing. It also highlights some of the key insights into filament function that have come from these studies. PMID:22155190

  7. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB☆

    PubMed Central

    Lagerstedt, Ingvar; Moore, William J.; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R.; Kleywegt, Gerard J.

    2013-01-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed. PMID:24113529

  8. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB.

    PubMed

    Lagerstedt, Ingvar; Moore, William J; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R; Kleywegt, Gerard J

    2013-11-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.

  9. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGES

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D.; Fraser, James S.

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  10. 3D Plant cell architecture of Arabidopsis thaliana (Brassicaceae) using focused ion beam–scanning electron microscopy1

    PubMed Central

    Bhawana; Miller, Joyce L.; Cahoon, A. Bruce

    2014-01-01

    • Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM) combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. • Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. • Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. • Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies. PMID:25202629

  11. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy.

    PubMed

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-02-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin.

  12. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.

    PubMed

    Bohórquez, Diego V; Samsa, Leigh A; Roholt, Andrew; Medicetty, Satish; Chandra, Rashmi; Liddle, Rodger A

    2014-01-01

    The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells. PMID:24587096

  13. An Enteroendocrine Cell – Enteric Glia Connection Revealed by 3D Electron Microscopy

    PubMed Central

    Bohórquez, Diego V.; Samsa, Leigh A.; Roholt, Andrew; Medicetty, Satish; Chandra, Rashmi; Liddle, Rodger A.

    2014-01-01

    The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY – both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia – the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells. PMID:24587096

  14. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  15. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-12-03

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.

  16. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-01-01

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications. PMID:26633469

  17. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  18. PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

    PubMed Central

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-01-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  19. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  20. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  1. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  2. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  3. 3DSEM: A 3D microscopy dataset

    PubMed Central

    Tafti, Ahmad P.; Kirkpatrick, Andrew B.; Holz, Jessica D.; Owen, Heather A.; Yu, Zeyun

    2015-01-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  4. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  5. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    PubMed

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale.

  6. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    PubMed

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  7. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.

  8. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties. PMID:17481354

  9. Web-based volume slicer for 3D electron-microscopy data from EMDB

    PubMed Central

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J.; Patwardhan, Ardan

    2016-01-01

    We describe the functionality and design of the Volume slicer – a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  10. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    PubMed Central

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  11. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with

  12. Structure-function studies of blood and air capillaries in chicken lung using 3D electron microscopy.

    PubMed

    West, John B; Fu, Zhenxing; Deerinck, Thomas J; Mackey, Mason R; Obayashi, James T; Ellisman, Mark H

    2010-02-28

    Avian pulmonary capillaries differ from those of mammals in three important ways. The blood-gas barrier is much thinner, it is more uniform in thickness, and the capillaries are far more rigid when their transmural pressure is altered. The thinness of the barrier is surprising because it predisposes the capillaries to stress failure. A possible mechanism for these differences is that avian pulmonary capillaries, unlike mammalian, are supported from the outside by air capillaries, but the details of the support are poorly understood. To clarify this we studied the blood and air capillaries in chicken lung using transmission electron microscopy (EM) and two relatively new techniques that allow 3D visualization: electron tomography and serial block-face scanning EM. These studies show that the pulmonary capillaries are flanked by epithelial bridges composed of two extremely thin epithelial cells with large surface areas. The junctions of the bridges with the capillary walls show thickening of the epithelial cells and an accumulation of extracellular matrix. Collapse of the pulmonary capillaries when the pressure outside them is increased is apparently prevented by the guy wire-like action of the epithelial bridges. The enlarged junctions between the bridges and the walls could provide a mechanism that limits the hoop stress in the capillary walls when the pressure inside them is increased. The support of the pulmonary capillaries may also be explained by an interdependence mechanism whereby the capillaries are linked to a rigid assemblage of air capillaries. These EM studies show the supporting structures in greater detail than has previously been possible, particularly in 3D, and they allow a more complete analysis of the mechanical forces affecting avian pulmonary capillaries. PMID:20038456

  13. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape1

    PubMed Central

    Landis, Jacob B.; Ventura, Kayla L.; Soltis, Douglas E.; Soltis, Pamela S.; Oppenheimer, David G.

    2015-01-01

    Premise of the study: Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Methods: Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. Results: This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. Conclusions: This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM. PMID:25909040

  14. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography.

    PubMed

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-11-01

    IntroductionMesoporous silica, SBA-15, is one of the best candidate for the supporting material of catalytic nanoparticles because of its relative large and controllable pore size and large specific surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for catalytic application [2]. The size of nanoparticles supported inside SBA-15 is restricted by that of the pore, and they are usually ranging from 2 nm and 50 nm in space.It is necessary to anchor the nanoparticles within pores to avoid segregation / sintering of them. However, it is difficult to anchor them within pores in the case of use of deposition-precipitation method due to extreme low iso-electric point (IEP) of silica (∼2). Therefore, TiO2 nanocrystals (IEP 6-8) were then introduced to anchor AuNPs [3].In this study, EFTEM tomography was applied to examine the effectiveness of TiO2 for AuNPs. Materials and methodAu/TiO2-SBA-15 was embedded into epoxy resin for electron microscopy and microtomed to about 30 nm thickness. EFTEM-tomography was operated at 120 kV and using Ti-L ionization edge via three-window method. Prior to EFTEM, STEM-HAADF tomography was also carried out for visualizing AuNPs and for comparison. Result and discussionFigure 1 shows 3D-volume of AuNPs and TiO2 nanocrystals from EFTEM-tomography. TiO2 nanocrystals in the porous material were successfully visualized using EFTEM -tomography, and local relationship between AuNPs and TiO2 nanocrystals were revealed. A large number of TiO2 nanocrystals were randomly distributed in the SBA-15. It was found that most AuNPs were directly on the exposed TiO2 nanocrystals. It implies that TiO2 nanocrystals were exposed on the surface of the pore and anchored AuNPs inside the pores.jmicro;63/suppl_1/i27/DFU081F1F1DFU081F1Fig. 1.3D volume of AuNPs and TiO2 nanocrystals.

  15. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  16. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  17. FT3D: three-dimensional Fourier analysis on small Unix workstations for electron microscopy and tomographic studies.

    PubMed

    Lanzavecchia, S; Bellon, P L; Tosoni, L

    1993-12-01

    FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.

  18. 3D microscopy - new powerful tools in geomaterials characterization

    NASA Astrophysics Data System (ADS)

    Mauko Pranjić, Alenka; Mladenovič, Ana; Turk, Janez; Šajna, Aljoša; Čretnik, Janko

    2016-04-01

    Microtomography (microCT) is becoming more and more widely recognized in geological sciences as a powerful tool for the spatial characterization of rock and other geological materials. Together with 3D image analysis and other complementary techniques, it has the characteristics of an innovative and non-destructive 3D microscopical technique. On the other hand its main disadvantages are low availability (only a few geological laboratories are equipped with high resolution tomographs), the relatively high prices of testing connected with the use of an xray source, technical limitations connected to the resolution and imaging of certain materials, as well as timeconsuming and complex 3D image analysis, necessary for quantification of 3D tomographic data sets. In this work three examples are presented of optimal 3D microscopy analysis of geomaterials in construction such as porosity characterization of impregnated sandstone, aerated concrete and marble prone to bowing. Studies include processes of microCT imaging, 3D data analysis and fitting of data with complementary analysis, such as confocal microscopy, mercury porosimetry, gas sorption, optical/fluorescent microscopy and scanning electron microscopy. Present work has been done in the frame of national research project 3D and 4D microscopy development of new powerful tools in geosciences (ARRS J1-7148) funded by Slovenian Research Agency.

  19. Visualising the 3D Structure of Fine-Grained Estuarine Sediments; Preliminary Interpretations of a Novel Dataset Obtained via Volume Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Spencer, Kate; Carr, Simon

    2014-05-01

    Accurate measurement of the physical characteristics of sediment are critical to determining sediment transport behaviour and the stability of settled deposits. The properties (e.g. particle size, density, and settling velocity) of coarse-grained sediments (> 63 μm φ) can be easily characterised, hence their behaviour is relatively simple to predict and model. However, due to their small size and tendency to interact with their surrounding medium, the characteristics of fine sediments (< 63 μm φ) and their behaviour during transportation, deposition and consolidation is poorly understood. Recent studies have used correlative microscopy, a multi-method technique combining scanning confocal laser microscopy (SCLM), conventional optical microscopy (COM), and transmission electron microscopy (TEM), to characterise fine sediments at both the gross (> 1 μm) and sub-micron scale (Droppo et al., 1996). Whilst this technique has proven insightful, the measurement of geometric properties (e.g. the shape of primary particles and their spatial arrangement) can only be achieved by three-dimensional (3D) analysis and the scale of observation for e.g. TEM does not overlap with those techniques used to characterise sediments at larger scales (100s to 1000s microns) (e.g. video analysis). Volume electron microscopy [or focused ion beam scanning electron microscopy (FIB-SEM)] provides 3D analysis at scales of 10s to 1000s microns and though widely used in cell biology, has not been used to observe sediment. FIB-SEM requires samples that are vacuum stable and a key challenge will be to capture fragile, hydrated sediment samples whilst preserving their structural integrity. The aims of this work are therefore: 1) to modify preparation techniques currently used in cell biology for the stabilization of sedimentary materials; 2) to acquire 3D datasets for both fragile suspended sediments (flocs) and consolidated bed sediments and 3) to interpret the 3D structure of these samples. In

  20. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer

  1. Do's and Don'ts of Cryo-electron Microscopy: A Primer on Sample Preparation and High Quality Data Collection for Macromolecular 3D Reconstruction

    PubMed Central

    Cabra, Vanessa; Samsó, Montserrat

    2015-01-01

    Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level. PMID:25651412

  2. 3D microscopy for microfabrication quality control

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; De Jean, Paul D.

    2015-03-01

    A novel stereo microscope adapter, the SweptVue, has been developed to rapidly perform quantitative 3D microscopy for cost-effective microfabrication quality control. The SweptVue adapter uses the left and right stereo channels of an Olympus SZX7 stereo microscope for sample illumination and detection, respectively. By adjusting the temporal synchronization between the illumination lines projected from a Texas Instruments DLP LightCrafter and the rolling shutter on a Point Grey Flea3 CMOS camera, micrometer-scale depth features can be easily and rapidly measured at up to 5 μm resolution on a variety of microfabricated samples. In this study, the build performance of an industrial-grade Stratasys Object 300 Connex 3D printer was examined. Ten identical parts were 3D printed with a lateral and depth resolution of 42 μm and 30 μm, respectively, using both a rigid and flexible Stratasys PolyJet material. Surface elevation precision and accuracy was examined over multiple regions of interest on plateau and hemispherical surfaces. In general, the dimensions of the examined features were reproducible across the parts built using both materials. However, significant systemic lateral and height build errors were discovered, such as: decreased heights when approaching the edges of plateaus, inaccurate height steps, and poor tolerances on channel width. For 3D printed parts to be used in functional applications requiring micro-scale tolerances, they need to conform to specification. Despite appearing identical, our 3D printed parts were found to have a variety of defects that the SweptVue adapter quickly revealed.

  3. Deconvolution in 3-D optical microscopy.

    PubMed

    Shaw, P

    1994-09-01

    Fluorescent probes are becoming ever more widely used in the study of subcellular structure, and determination of their three-dimensional distributions has become very important. Confocal microscopy is now a common technique for overcoming the problem of out-of-focus flare in fluorescence imaging, but an alternative method uses digital image processing of conventional fluorescence images--a technique often termed 'deconvolution' or 'restoration'. This review attempts to explain image deconvolution in a non-technical manner. It is also applicable to 3-D confocal images, and can provide a further significant improvement in clarity and interpretability of such images. Some examples of the application of image deconvolution to both conventional and confocal fluorescence images are shown.

  4. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  5. Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture.

    PubMed

    Schroeder-Reiter, Elizabeth; Pérez-Willard, Fabián; Zeile, Ulrike; Wanner, Gerhard

    2009-02-01

    Focused ion beam (FIB) milling in combination with field emission scanning electron microscopy (FESEM) was applied to investigations of metaphase barley chromosomes, providing new insight into the chromatin packaging in the chromosome interior and 3D distribution of histone variants in the centromeric region. Whole mount chromosomes were sectioned with FIB with thicknesses in the range of 7-20nm, resulting in up to 2000 sections, which allow high resolution three-dimensional reconstruction. For the first time, it could be shown that the chromosome interior is characterized by a network of interconnected cavities, with openings to the chromosome surface. In combination with immunogold labeling, the centromere-correlated distribution of histone variants (phosphorylated histone H3, CENH3) could be investigated with FIB in three dimensions. Limitations of classical SEM analysis of whole mount chromosomes with back-scattered electrons requiring higher accelerating voltages, e.g. faint and blurred interior signals, could be overcome with FIB milling: from within the chromosome even very small labels in the range of 10nm could be precisely visualized. This allowed direct quantification of marker molecules in a three-dimensional context. Distribution of DNA in the chromosome interior could be directly analyzed after staining with a DNA-specific platinorganic compound Platinum Blue. Higher resolution visualization of DNA distribution could be performed by preparation of FIB lamellae with the in situ lift-out technique followed by investigation in dark field with a scanning transmission electron detector (STEM) at 30kV. PMID:19059341

  6. 3D differential phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-03-01

    We demonstrate three-dimensional (3D) optical phase and amplitude reconstruction based on coded source illumination using a programmable LED array. Multiple stacks of images along the optical axis are computed from recorded intensities captured by multiple images under off-axis illumination. Based on the first Born approximation, a linear differential phase contrast (DPC) model is built between 3D complex index of refraction and the intensity stacks. Therefore, 3D volume reconstruction can be achieved via a fast inversion method, without the intermediate 2D phase retrieval step. Our system employs spatially partially coherent illumination, so the transverse resolution achieves twice the NA of coherent systems, while axial resolution is also improved 2× as compared to holographic imaging.

  7. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  8. A new type of 3-D peripheral ultrastructure in Glaucocystis (Glaucocystales, Glaucophyta) as revealed by ultra-high voltage electron microscopy.

    PubMed

    Takahashi, Toshiyuki; Nishida, Tomoki; Saito, Chieko; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-06-01

    The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed. PMID:27273537

  9. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  10. Microscopy in 3D: a biologist’s toolbox

    PubMed Central

    Fischer, Robert S.; Wu, Yicong; Kanchanawong, Pakorn; Shroff, Hari; Waterman, Clare M.

    2012-01-01

    The power of fluorescence microscopy to study cellular structures and macromolecular complexes spans a wide range of size scales, from studies of cell behavior and function in physiological, three-dimensional (3D) environments, to understanding the molecular architecture of organelles. At each length scale, the challenge in 3D imaging is to extract the most spatial and temporal resolution possible while limiting photodamage/bleaching to living cells. A number of advancements in 3D fluorescence microscopy now offer higher resolution, improved speed, and reduced photobleaching relative to traditional point-scanning microscopy methods. Here, we discuss a few specific microscopy modalities that we believe will be particularly advantageous in imaging cells and subcellular structures in physiologically relevant 3D environments. PMID:22047760

  11. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  12. Fringe projection 3D microscopy with the general imaging model.

    PubMed

    Yin, Yongkai; Wang, Meng; Gao, Bruce Z; Liu, Xiaoli; Peng, Xiang

    2015-03-01

    Three-dimensional (3D) imaging and metrology of microstructures is a critical task for the design, fabrication, and inspection of microelements. Newly developed fringe projection 3D microscopy is presented in this paper. The system is configured according to camera-projector layout and long working distance lenses. The Scheimpflug principle is employed to make full use of the limited depth of field. For such a specific system, the general imaging model is introduced to reach a full 3D reconstruction. A dedicated calibration procedure is developed to realize quantitative 3D imaging. Experiments with a prototype demonstrate the accessibility of the proposed configuration, model, and calibration approach.

  13. Resolution improvement by 3D particle averaging in localization microscopy

    PubMed Central

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P.J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-01-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on three-dimensional super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision. PMID:25866640

  14. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.

  15. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. PMID:26820619

  16. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  17. 3D super-resolution microscopy of bacterial division machinery

    NASA Astrophysics Data System (ADS)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.

    2016-08-01

    Super-resolution microscopy is a promising tool for the field of microbiology, as bacteria sizes are comparable to the resolution limit of light microscopy. Bacterial division machinery and FtsZ protein in particular attract much attention of scientists who use different super-resolution microscopy techniques, but most of the available data on FtsZ structures was obtained using two-dimensional (2D) super-resolution microscopy. Using 3D single-molecule localization microscopy (SMLM, namely dSTORM) to visualize FtsZ, we demonstrate that this approach allows more accurate interpretation of super-resolution images and provides new opportunities for the study of complex structures like bacterial divisome.

  18. A new method of 3D reconstruction and restoration in electron microscopy: Least squares method combined with projection onto convex sets (LSPOCS)

    SciTech Connect

    Zhang, N.

    1992-01-01

    This dissertation applies the least squares method (LS) to electron microscopy in order to reconstruct an image from incomplete view data. An iteration scheme following projection onto convex sets (POCS) using the null space projector with other constraints has been developed to restore the image reconstructed by LS. The LS algorithm with POCS (LSPOCS), which is implemented in real space without using Fourier transforms, achieves both the reconstruction and the restoration of the image. A matrix H, designed to represent the relationship between the measured data and the actual image in electron microscopy, is the basis of this study. The matrix H is degraded, but not circulant. The singular value decomposition algorithm is employed to obtain the pseudoinverse of the degradation matrix H. The cutoff value of eigenvalues in singular value decomposition has also been defined. How the cutoff value effects the reconstructions and the restorations of noise data is of particular interest. A range space projector and a null space projector can be constructed, after the pseudoinverse of H is found. The convexities of the range space and the null space associated with H have been proved. The convexity of the null space projector guarantees the existence of the solution of LSPOCS. To test the new algorithm, a simulation model has been degraded by the degradation matrix and corrupted by different levels of noise. Pseudoimages of the degraded data are obtained by the pseudoinverse of the degradation matrix both in the presence and the absence of noise. The restoration is iterated by LSPOCS starting from the pseudoimage. The pseudoimage of experimental data for 50S ribosomal subunit has been reconstructed using an intermediate matrix of smaller size without losing the quality of the image reconstructed using the original degradation matrix H. The complete restoration was not obtainable because of the current limits of the computer system and the mathematical software system IMSL.

  19. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  20. Applied 3D printing for microscopy in health science research

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Zareinia, Kourosh; Stys, Peter

    2015-03-01

    The rapid prototyping capability offered by 3D printing is considered advantageous for commercial applications. However, the ability to quickly produce precision custom devices is highly beneficial in the research laboratory setting as well. Biological laboratories require the manipulation and analysis of delicate living samples, thus the ability to create custom holders, support equipment, and adapters allow the extension of existing laboratory machines. Applications include camera adapters and stage sample holders for microscopes, surgical guides for tissue preparation, and small precision tools customized to unique specifications. Where high precision is needed, especially the reproduction of fine features, a printer with a high resolution is needed. However, the introduction of cheaper, lower resolution commercial printers have been shown to be more than adequate for less demanding projects. For direct manipulation of delicate samples, biocompatible raw materials are often required, complicating the printing process. This paper will examine some examples of 3D-printed objects for laboratory use, and provide an overview of the requirements for 3D printing for this application. Materials, printing resolution, production, and ease of use will all be reviewed with an eye to producing better printers and techniques for laboratory applications. Specific case studies will highlight applications for 3D-printed devices in live animal imaging for both microscopy and Magnetic Resonance Imaging.

  1. Shaping Field for 3D Laser Scanning Microscopy

    PubMed Central

    Colon, Jorge; Lim, Hyungsik

    2015-01-01

    Imaging deep tissue can be extremely inefficient when the region of interest is non-planar and buried in a thick sample, yielding a severely limited effective field of view (FOV). Here we describe a novel technique, namely adaptive field microscopy, which improves the efficiency of 3D imaging by controlling the image plane. The plane of scanning laser focus is continuously reshaped in situ to match the conformation of the sample. The practicality is demonstrated for ophthalmic imaging, where a large area of the corneal epithelium of intact mouse eye is captured in a single frame with subcellular resolution. PMID:26176454

  2. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  3. Sample drift correction in 3D fluorescence photoactivation localization microscopy

    NASA Astrophysics Data System (ADS)

    Mlodzianoski, Michael J.; Schreiner, John M.; Callahan, Steven P.; Smolková, Katarina; Dlasková, Andrea; Šantorová, Jitka; Ježek, Petr; Bewersdorf, Joerg

    2011-08-01

    The recent development of diffraction-unlimited far-field fluorescence microscopy has overcome the classical resolution limit of ~250 nm of conventional light microscopy by about a factor of ten. The improved resolution, however, reveals not only biological structures at an unprecedented resolution, but is also susceptible to sample drift on a much finer scale than previously relevant. Without correction, sample drift leads to smeared images with decreased resolution, and in the worst case to misinterpretation of the imaged structures. This poses a problem especially for techniques such as Fluorescence Photoactivation Localization Microscopy (FPALM/PALM) or Stochastic Optical Reconstruction Microscopy (STORM), which often require minutes recording time. Here we discuss an approach that corrects for three-dimensional (3D) drift in images of fixed samples without the requirement for fiduciary markers or instrument modifications. Drift is determined by calculating the spatial cross-correlation function between subsets of localized particles imaged at different times. Correction down to ~5 nm precision is achieved despite the fact that different molecules are imaged in each frame. We demonstrate the performance of our drift correction algorithm with different simulated structures and analyze its dependence on particle density and localization precision. By imaging mitochondria with Biplane FPALM we show our algorithm's feasibility in a practical application.

  4. Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy

    PubMed Central

    Changou, Chun A.; Wolfson, Deanna L.; Ahluwalia, Balpreet Singh; Bold, Richard J.; Kung, Hsing-Jien; Chuang, Frank Y.S.

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine1. This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)1,10. Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)1,2,3. Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation4,5. Although the essential components of this pathway are well-characterized6,7,8,9, many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy11,12. Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early stages of

  5. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  6. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  7. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  8. Spatially varying regularization of deconvolution in 3D microscopy.

    PubMed

    Seo, J; Hwang, S; Lee, J-M; Park, H

    2014-08-01

    Confocal microscopy has become an essential tool to explore biospecimens in 3D. Confocal microcopy images are still degraded by out-of-focus blur and Poisson noise. Many deconvolution methods including the Richardson-Lucy (RL) method, Tikhonov method and split-gradient (SG) method have been well received. The RL deconvolution method results in enhanced image quality, especially for Poisson noise. Tikhonov deconvolution method improves the RL method by imposing a prior model of spatial regularization, which encourages adjacent voxels to appear similar. The SG method also contains spatial regularization and is capable of incorporating many edge-preserving priors resulting in improved image quality. The strength of spatial regularization is fixed regardless of spatial location for the Tikhonov and SG method. The Tikhonov and the SG deconvolution methods are improved upon in this study by allowing the strength of spatial regularization to differ for different spatial locations in a given image. The novel method shows improved image quality. The method was tested on phantom data for which ground truth and the point spread function are known. A Kullback-Leibler (KL) divergence value of 0.097 is obtained with applying spatially variable regularization to the SG method, whereas KL value of 0.409 is obtained with the Tikhonov method. In tests on a real data, for which the ground truth is unknown, the reconstructed data show improved noise characteristics while maintaining the important image features such as edges.

  9. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  10. 3-D stimulated emission depletion microscopy with programmable aberration correction.

    PubMed

    Lenz, Martin O; Sinclair, Hugo G; Savell, Alexander; Clegg, James H; Brown, Alice C N; Davis, Daniel M; Dunsby, Chris; Neil, Mark A A; French, Paul M W

    2014-01-01

    We present a stimulated emission depletion (STED) microscope that provides 3-D super resolution by simultaneous depletion using beams with both a helical phase profile for enhanced lateral resolution and an annular phase profile to enhance axial resolution. The 3-D depletion point spread function is realised using a single spatial light modulator that can also be programmed to compensate for aberrations in the microscope and the sample. We apply it to demonstrate the first 3-D super-resolved imaging of an immunological synapse between a Natural Killer cell and its target cell.

  11. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  12. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  13. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall.

  14. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  15. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  16. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  17. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  18. Virtual 3D microscopy using multiplane whole slide images in diagnostic pathology.

    PubMed

    Kalinski, Thomas; Zwönitzer, Ralf; Sel, Saadettin; Evert, Matthias; Guenther, Thomas; Hofmann, Harald; Bernarding, Johannes; Roessner, Albert

    2008-08-01

    To reproduce focusing in virtual microscopy, it is necessary to construct 3-dimensional (3D) virtual slides composed of whole slide images with different focuses. As focusing is frequently used for the assessment of Helicobacter pylori colonization in diagnostic pathology, we prepared virtual 3D slides with up to 9 focus planes from 144 gastric biopsy specimens with or without H pylori gastritis. The biopsy specimens were diagnosed in a blinded manner by 3 pathologists according to the updated Sydney classification using conventional microscopy, virtual microscopy with a single focus plane, and virtual 3D microscopy with 5 and 9 focus planes enabling virtual focusing. Regarding the classification of H pylori, we found a positive correlation between the number of focus planes used in virtual microscopy and the number of correct diagnoses as determined by conventional microscopy. Concerning H pylori positivity, the specificity and sensitivity of virtual 3D microscopy using virtual slides with 9 focus planes achieved a minimum of 0.95 each, which was approximately the same as in conventional microscopy. We consider virtual 3D microscopy appropriate for primary diagnosis of H pylori gastritis and equivalent to conventional microscopy.

  19. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  20. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging.

    PubMed

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-06-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.

  1. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  2. Correlated electron pseudopotentials for 3d-transition metals

    SciTech Connect

    Trail, J. R. Needs, R. J.

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  3. 3D Observation of GEMS by Electron Tomography

    NASA Technical Reports Server (NTRS)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  4. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging.

    PubMed

    Winterflood, Christian M; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-07-01

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color.

  5. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-01

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  6. Computation in electron microscopy.

    PubMed

    Kirkland, Earl J

    2016-01-01

    Some uses of the computer and computation in high-resolution transmission electron microscopy are reviewed. The theory of image calculation using Bloch wave and multislice methods with and without aberration correction is reviewed and some applications are discussed. The inverse problem of reconstructing the specimen structure from an experimentally measured electron microscope image is discussed. Some future directions of software development are given. PMID:26697863

  7. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  8. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  9. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  10. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  11. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  12. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  13. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery.

  14. Recent progress in printed 2/3D electronic devices

    NASA Astrophysics Data System (ADS)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  15. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction.

    PubMed

    Min, Junhong; Holden, Seamus J; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2014-11-01

    Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well demonstrated in two-dimensional imaging. However, three-dimensional (3D) localization of high-density data remains challenging since PSFs are far more similar along the axial dimension than the lateral dimensions. Here, we present a new, high-density 3D imaging system and algorithm. The hybrid system is implemented by combining astigmatic and biplane imaging. The proposed 3D reconstruction algorithm is extended from our state-of-the art 2D high-density localization algorithm. Using mutual coherence analysis of model PSFs, we validated that the hybrid system is more suitable than astigmatic or biplane imaging alone for 3D localization of high-density data. The efficacy of the proposed method was confirmed via simulation and real data of microtubules. Furthermore, we also successfully demonstrated fluorescent-protein-based live cell 3D localization microscopy with a temporal resolution of just 3 seconds, capturing fast dynamics of the endoplasmic recticulum.

  16. Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Beiderman, Yevgeny; Amsel, Avigail; Tzadka, Yaniv; Fixler, Dror; Teicher, Mina; Micó, Vicente; Garcí, Javier; Javidi, Bahram; DaneshPanah, Mehdi; Moon, Inkyu; Zalevsky, Zeev

    In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat's cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns on top of the sample and by proper decoding exceeding the diffraction as well as the geometrical-related lateral resolution limitation. In the final part of the chapter, we overview applications of digital holographic microscopy (DHM) for real-time non-invasive 3-D sensing, tracking, and recognition of living microorganisms such as single- or multiple-cell organisms and bacteria.

  17. 3D imaging of the cleared intact murine colon with light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Zufiria, B.; Bocancea, D. I.; Gómez-Gaviro, M. V.; Vaquero, J. J.; Desco, M.; Fresno, M.; Ripoll, J.; Arranz, A.

    2016-03-01

    We here show 3D light sheet microscopy images of fixed and cleared murine colon tissue in-toto, which offer relevant cellular information without the need for physically sectioning the tissue. We have applied the recently developed CUBIC protocol (Susaki et al. Cell 157:726, 2014) for colon tissues and have found that this clearing protocol enables imaging all the way to the central part of the lumen with cellular resolution, thus opening new ways for 3D imaging of colon samples.

  18. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    NASA Astrophysics Data System (ADS)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  19. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  20. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  1. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  2. Electron microscopy and forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  3. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  4. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  5. Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Netti, Paolo A.; Coppola, Giuseppe; Ferraro, Pietro

    2013-04-01

    We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

  6. 3D print customized sample holders for live light sheet microscopy.

    PubMed

    Jeandupeux, Emeric; Lobjois, Valérie; Ducommun, Bernard

    2015-08-01

    A major hurdle to the widespread application of light sheet microscopy is the lack of versatile and non-intrusive sample holders that are adaptable to a variety of biological samples for live imaging. To overcome this limitation, we present herein the application of 3D printing to the fabrication of a fully customizable casting kit. 3D printing enables facile preparation of hydrogel sample holders adaptable to any shape and number of specimen. As an example, we present the use of this device to produce a four-sample holder adapted to parallel live monitoring of multicellular tumor spheroid growth. To share our solution with the light sheet microscopy community, all files necessary to produce or customize sample holders are freely available online.

  7. 3D single molecule tracking in thick cellular specimens using multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Ram, Sripad; Ward, E. Sally; Ober, Raimund J.

    2011-03-01

    One of the major challenges in single molecule microscopy concerns 3D tracking of single molecules in cellular specimens. This has been a major impediment to study many fundamental cellular processes, such as protein transport across thick cellular specimens (e.g. a cell-monolayer). Here we show that multifocal plane microscopy (MUM), an imaging modality developed by our group, provides the much needed solution to this longstanding problem. While MUM was previously used for 3D single molecule tracking at shallow depths (~ 1 micron) in live-cells, the question arises if MUM can also live up to the significant challenge of tracking single molecules in thick samples. Here by substantially expanding the capabilities of MUM, we demonstrate 3D tracking of quantum-dot labeled molecules in a ~ 10 micron thick cell monolayer. In this way we have reconstructed the complete 3D intracellular trafficking itinerary of single molecules at high spatial and temporal precision in a thick cell-sample. Funding support: NIH and the National MS Society.

  8. Infrared differential interference contrast microscopy for 3D interconnect overlay metrology.

    PubMed

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-08-12

    One of the main challenges for 3D interconnect metrology of bonded wafers is measuring through opaque silicon wafers using conventional optical microscopy. We demonstrate here the use infrared microscopy, enhanced by implementing the differential interference contrast (DIC) technique, to measure the wafer bonding overlay. A pair of two dimensional symmetric overlay marks were processed at both the front and back sides of thinned wafers to evaluate the bonding overlay. A self-developed analysis algorithm and theoretical fitting model was used to map the overlay error between the bonded wafers and the interconnect structures. The measurement accuracy was found to be better than 1.0 micron.

  9. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  10. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  11. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  12. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    NASA Astrophysics Data System (ADS)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  13. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data.

    PubMed

    Besseling, T H; Hermes, M; Kuijk, A; de Nijs, B; Deng, T-S; Dijkstra, M; Imhof, A; van Blaaderen, A

    2015-05-20

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level. PMID:25922931

  14. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis.

    PubMed

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-11-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

  15. 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Tserevelakis, George J.; Murić, Branka D.; Filippidis, George; Pantelić, Dejan V.

    2013-05-01

    In this work, nonlinear laser scanning microscopy was employed for the characterization and three-dimensional (3D) imaging of microlenses and microlens arrays. Third-harmonic generation and two-photon excitation fluorescence (TPEF) signals were recorded and the obtained data were further processed in order to generate 3D reconstructions of the examined samples. Femtosecond laser pulses (1028 nm) were utilized for excitation. Microlenses were manufactured on Tot'hema and eosin sensitized gelatin layers using a green (532 nm) continuous wave laser beam using the direct laser writing method. The profiles of the microlens surface were obtained from the radial cross-sections, using a triple-Gaussian fit. The analytical shapes of the profiles were also used for ray tracing. Furthermore, the volumes of the microlenses were determined with high precision. The TPEF signal arising from the volume of the material was recorded and the respective 3D spatial fluorescence distribution of the samples was mapped. Nonlinear microscopy modalities have been shown to be a powerful diagnostic tool for microlens characterization as they enable in-depth investigations of the structural properties of the samples, in a nondestructive manner.

  16. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

    PubMed Central

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-01-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity. PMID:26429501

  17. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  18. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques.

  19. Computational optical-sectioning microscopy for 3D quantization of cell motion: results and challenges

    NASA Astrophysics Data System (ADS)

    McNally, James G.

    1994-09-01

    How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the

  20. Simultaneous multiplane imaging for 3D confocal microscopy using high-speed z-scanning multiplexing

    NASA Astrophysics Data System (ADS)

    Duocastella, Marti; Vicidomini, Giuseppe; Diaspro, Alberto

    2015-03-01

    One of the key frontiers in optical imaging is to maximize the spatial information retrieved from a sample while minimizing acquisition time. Confocal laser scanning microscopy is a powerful imaging modality that allows real-time and high-resolution acquisition of two-dimensional (2D) sections. However, in order to obtain information from threedimensional (3D) volumes it is currently limited by a stepwise process that consists of acquiring multiple 2D sections from different focal planes by slow z-focus translation. Here, we present a novel method that enables the capture of an entire 3D sample in a single step. Our approach is based on an acoustically-driven varifocal lens integrated in a commercial confocal system that enables axial focus scanning at speeds of 140 kHz or above. Such high-speed allows for one or multiple focus sweeps on a pixel by pixel basis. By using a fast acquisition card, we can assign the photons detected at each pixel to their corresponding focal plane allowing simultaneous multiplane imaging. We exemplify this novel 3D confocal microscopy technique by imaging different biological fluorescent samples and comparing them with those obtained using traditional z-scanners. Based on these results, we find that image quality in this novel approach is similar to that obtained with traditional confocal methods, while speed is only limited by signal-to-noise-ratio. As the sensitivity of photodetectors increases and more efficient fluorescent labeling is developed, this novel 3D method can result in significant reduction in acquisition time allowing the study of new fundamental processes in science.

  1. Cell cycle phase classification in 3D in vivo microscopy of Drosophila embryogenesis

    PubMed Central

    2011-01-01

    Background Cell divisions play critical roles in disease and development. The analysis of cell division phenotypes in high content image-based screening and time-lapse microscopy relies on automated nuclear segmentation and classification of cell cycle phases. Automated identification of the cell cycle phase helps biologists quantify the effect of genetic perturbations and drug treatments. Most existing studies have dealt with 2D images of cultured cells. Few, if any, studies have addressed the problem of cell cycle classification in 3D image stacks of intact tissues. Results We developed a workflow for the automated cell cycle phase classification in 3D time-series image datasets of live Drosophila embryos expressing the chromatin marker histone-GFP. Upon image acquisition by laser scanning confocal microscopy and 3D nuclear segmentation, we extracted 3D intensity, shape and texture features from interphase nuclei and mitotic chromosomes. We trained different classifiers, including support vector machines (SVM) and neural networks, to distinguish between 5 cell cycles phases (Interphase and 4 mitotic phases) and achieved over 90% accuracy. As the different phases occur at different frequencies (58% of samples correspond to interphase), we devised a strategy to improve the identification of classes with low representation. To investigate which features are required for accurate classification, we performed feature reduction and selection. We were able to reduce the feature set from 42 to 9 without affecting classifier performance. We observed a dramatic decrease of classification performance when the training and testing samples were derived from two different developmental stages, the nuclear divisions of the syncytial blastoderm and the cell divisions during gastrulation. Combining samples from both developmental stages produced a more robust and accurate classifier. Conclusions Our study demonstrates that automated cell cycle phase classification, besides 2D

  2. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  3. 3D structure tensor analysis of light microscopy data for validating diffusion MRI.

    PubMed

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D

    2015-05-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that

  4. 3D structure tensor analysis of light microscopy data for validating diffusion MRI

    PubMed Central

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A.; Kohama, Steven G.; Jespersen, Sune Nørhøj; Kroenke, Christopher D.

    2015-01-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations

  5. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products. PMID:25550155

  6. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  7. Note: An improved 3D imaging system for electron-electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-01

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  8. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  9. A one-piece 3D printed flexure translation stage for open-source microscopy.

    PubMed

    Sharkey, James P; Foo, Darryl C W; Kabla, Alexandre; Baumberg, Jeremy J; Bowman, Richard W

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

  10. A one-piece 3D printed flexure translation stage for open-source microscopy

    NASA Astrophysics Data System (ADS)

    Sharkey, James P.; Foo, Darryl C. W.; Kabla, Alexandre; Baumberg, Jeremy J.; Bowman, Richard W.

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

  11. A one-piece 3D printed flexure translation stage for open-source microscopy.

    PubMed

    Sharkey, James P; Foo, Darryl C W; Kabla, Alexandre; Baumberg, Jeremy J; Bowman, Richard W

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond. PMID:26931888

  12. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  13. The use of Interferometric Microscopy to assess 3D modifications of deteriorated medieval glass.

    NASA Astrophysics Data System (ADS)

    Gentaz, L.; Lombardo, T.; Chabas, A.

    2012-04-01

    Due to low durability, Northern European medieval glass undergoes the action of the atmospheric environment leading in some cases to a state of dramatic deterioration. Modification features varies from a simple loss of transparency to a severe material loss. In order to understand the underlying mechanisms and preserve this heritage, fundamental research is necessary too. In this optic, field exposure of analogues and original stained glass was carried out to study the early stages of the glass weathering. Model glass and original stained glass (after removal of deterioration products) were exposed in real conditions in an urban site (Paris) for 48 months. A regular withdrawal of samples allowed a follow-up of short-term glass evolution. Morphological modifications of the exposed samples were investigated through conventional and non destructive microscopy, using respectively a Scanning Electron Microscope (SEM) and an Interferometric Microscope (IM). This latter allows a 3D quantification of the object with no sample preparation. For all glasses, both surface recession and build-up of deposit were observed as a consequence of a leaching process (interdiffusion of protons and glass cations). The build-up of a deposit comes from the reaction between the extracted glass cations and atmospheric gases. Instead, surface recession is due mainly to the formation of brittle layer of altered glass at the sub-surface, where a fracture network can appear, leading to the scaling of parts of this modified glass. Finally, dissolution of the glass takes place, inducing the formation of pits and craters. The arithmetic roughness (Ra) was used as an indicator of weathering increase, in order to evaluate the deterioration state. For instance, the Ra grew from few tens of nm for pristine glass to thousands of nm for scaled areas. This technique also allowed a precise quantification of dimensions (height, depth and width) of deposits and pits, and the estimation of their overall

  14. Soil microstructure and electron microscopy

    NASA Technical Reports Server (NTRS)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  15. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    PubMed

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components.

  16. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  17. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis.

    PubMed

    Nield, J; Orlova, E V; Morris, E P; Gowen, B; van Heel, M; Barber, J

    2000-01-01

    Here we describe the first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy. This large multisubunit membrane protein complex functions to absorb light energy and catalyze the oxidation of water and reduction of plastoquinone. The resolution of the 3D structure is 24 A and emphasizes the dimeric nature of the supercomplex. The extrinsic proteins of the oxygen-evolving complex (OEC) are readily observed as a tetrameric cluster bound to the lumenal surface. By considering higher resolution data, obtained from electron crystallography, it has been possible to relate the binding sites of the OEC proteins with the underlying intrinsic membrane subunits of the photochemical reaction center core. The model suggests that the 33 kDa OEC protein is located towards the CP47/D2 side of the reaction center but is also positioned over the C-terminal helices of the D1 protein including its CD lumenal loop. In contrast, the model predicts that the 23/17 kDa OEC proteins are positioned at the N-terminus of the D1 protein incorporating the AB lumenal loop of this protein and two other unidentified transmembrane helices. Overall the 3D model represents a significant step forward in revealing the structure of the photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on our planet.

  18. Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy.

    PubMed

    Arnold, Jan; Mahamid, Julia; Lucic, Vladan; de Marco, Alex; Fernandez, Jose-Jesus; Laugks, Tim; Mayer, Tobias; Hyman, Anthony A; Baumeister, Wolfgang; Plitzko, Jürgen M

    2016-02-23

    The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy.

  19. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  20. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  1. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  2. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  3. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays

    PubMed Central

    Dubrovin, E. V.; Presnova, G. V.; Rubtsova, M. Yu.; Egorov, A. M.; Grigorenko, V. G.; Yaminsky, I. V.

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles. PMID:26085952

  4. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    PubMed Central

    Torrano, Adriano A

    2014-01-01

    Summary Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division. PMID:25383274

  5. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    NASA Astrophysics Data System (ADS)

    Zeng, P.; Inkson, B. J.; Rainforth, W. M.; Stewart, T.

    2008-08-01

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  7. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2014-01-01

    Determining the structure of a protein complex using electron microscopy requires the calculation of a 3D density map from 2D images of single particles. Since the individual images are taken at low electron dose to avoid radiation damage, they are noisy and difficult to align with each other. This can result in incorrect maps, making validation essential. Pairs of electron micrographs taken at known angles to each other (tilt-pairs) can be used to measure the accuracy of assigned projection orientations and verify the soundness of calculated maps. Here we establish a statistical framework for evaluating images and density maps using tilt-pairs. The directional distribution of such angular data is modelled using a Fisher distribution on the unit sphere. This provides a simple, quantitative and easily comparable metric, the concentration parameter κ, for evaluating the quality of datasets and density maps that is independent of the data collection and analysis methods. A large κ is indicative of good agreement between the particle images and the 3D density map. For structure validation, we recommend κ>10 and a p-value <0.01. The statistical framework herein allows one to objectively answer the question: Is a reconstructed density map correct within a particular confidence interval? PMID:25016098

  8. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM).

    PubMed

    Turnbull, Lynne; Strauss, Michael P; Liew, Andrew T F; Monahan, Leigh G; Whitchurch, Cynthia B; Harry, Elizabeth J

    2014-01-01

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques - stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.

  9. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM).

    PubMed

    Turnbull, Lynne; Strauss, Michael P; Liew, Andrew T F; Monahan, Leigh G; Whitchurch, Cynthia B; Harry, Elizabeth J

    2014-01-01

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques - stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide. PMID:25286090

  10. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  11. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    PubMed

    Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf

    2014-01-01

    Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  12. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  13. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  14. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  15. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. PMID:27463670

  16. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  17. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  18. 3D Reconstruction of the Glycocalyx Structure in Mammalian Capillaries using Electron Tomography

    PubMed Central

    Arkill, KP; Neal, CR; Mantell, JM; Michel, CC; Qvortrup, K; Bates, DO; Knupp, C; Squire, JM

    2013-01-01

    Visualising the molecular strands making up the glycocalyx in the lumen of small blood vessels has proved to be difficult using conventional transmission electron microscopy techniques. Images obtained from tissue stained in a variety of ways have revealed a regularity in the organisation of the proteoglycan components of the glycocalyx layer (fundamental spacing about 20 nm), but require a large sample number. Attempts to visualise the glycocalyx face-on (i.e. in a direction perpendicular to the endothelial cell layer in the lumen and directly applicable for permeability modelling) has had limited success (e.g. freeze fracture). A new approach is therefore needed. Here we demonstrate the effectiveness of using the relatively novel electron microscopy technique of 3D electron tomography on two differently stained preparations to reveal details of the architecture of the glycocalyx just above the endothelial cell layer. One preparation uses the novel staining technique using Lanthanum Dysprosium Glycosamino Glycan adhesion (the LaDy GAGa method). PMID:22324320

  19. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-10-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  20. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  1. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060

  2. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2016-07-12

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  3. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  4. The 3d International Workshop on Computational Electronics

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen M.

    1994-09-01

    The Third International Workshop on Computational Electronics (IWCE) was held at the Benson Hotel in downtown Portland, Oregon, on May 18, 19, and 20, 1994. The workshop was devoted to a broad range of topics in computational electronics related to the simulation of electronic transport in semiconductors and semiconductor devices, particularly those which use large computational resources. The workshop was supported by the National Science Foundation (NSF), the Office of Naval Research and the Army Research Office, as well as local support from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology Education. There were over 100 participants in the Portland workshop, of which more than one quarter represented research groups outside of the United States from Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the United Kingdom. There were a total 81 papers presented at the workshop, 9 invited talks, 26 oral presentations and 46 poster presentations. The emphasis of the contributions reflected the interdisciplinary nature of computational electronics with researchers from the Chemistry, Computer Science, Mathematics, Engineering, and Physics communities participating in the workshop.

  5. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  6. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  7. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  8. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions. PMID:26567131

  9. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  10. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented. PMID:27046601

  11. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions.

  12. Blind deconvolution of 3D fluorescence microscopy using depth-variant asymmetric PSF.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2016-06-01

    The 3D wide-field fluorescence microscopy suffers from depth-variant asymmetric blur. The depth-variance and axial asymmetry are due to refractive index mismatch between the immersion and the specimen layer. The radial asymmetry is due to lens imperfections and local refractive index inhomogeneities in the specimen. To obtain the PSF that has these characteristics, there were PSF premeasurement trials. However, they are useless since imaging conditions such as camera position and refractive index of the specimen are changed between the premeasurement and actual imaging. In this article, we focus on removing unknown depth-variant asymmetric blur in such an optical system under the assumption of refractive index homogeneities in the specimen. We propose finding few parameters in the mathematical PSF model from observed images in which the PSF model has a depth-variant asymmetric shape. After generating an initial PSF from the analysis of intensities in the observed image, the parameters are estimated based on a maximum likelihood estimator. Using the estimated PSF, we implement an accelerated GEM algorithm for image deconvolution. Deconvolution result shows the superiority of our algorithm in terms of accuracy, which quantitatively evaluated by FWHM, relative contrast, standard deviation values of intensity peaks and FWHM. Microsc. Res. Tech. 79:480-494, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062314

  13. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy.

    PubMed

    Latour, Gaël; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2012-10-22

    We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale. PMID:23187225

  14. Jamming of a soft granular system of hollow elastic shells in 3D using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2014-03-01

    We introduce a new system for jammed matter research consisting of monodisperse, fluorescent, hollow deformable shells, dispersed in an index matched solvent. The interesting fact about these elastic shells is that they undergo buckling: in each contact one of the shells receives an indentation from its neighbor under compressive stress. This kind of deformation is different from the soft granular systems experimentally studied so far like photo elastic disks, emulsions and foams, where the particles are flattened in the region of contact and conserve their volume. Using confocal microscopy and image analysis routines (ImageJ software) we identified the 3D position of the particles with sub pixel resolution. The force law to find the contact forces between pairs of particle is derived from the theory of elasticity of thin shells, where force is proportional to the square root of indentation depth. The distribution of normalized contact forces showed a similar trend like other jammed systems with a peak around the mean and a tail that decayed faster than exponential away from jamming threshold. Further, we also investigated the structure of the jammed packings and contact number distribution with distance to jamming.

  15. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging

    PubMed Central

    Grover, Ginni; Quirin, Sean; Fiedler, Callie; Piestun, Rafael

    2011-01-01

    We present a double-helix point spread function (DH-PSF) based three-dimensional (3D) microscope with efficient photon collection using a phase mask fabricated by gray-level lithography. The system using the phase mask more than doubles the efficiency of current liquid crystal spatial light modulator implementations. We demonstrate the phase mask DH-PSF microscope for 3D photo-activation localization microscopy (PM-DH-PALM) over an extended axial range. PMID:22076263

  16. 3D imaging of sea quarks and gluons at an electron-ion collider

    SciTech Connect

    Vadim Guzey

    2011-11-01

    We outline key objectives and capabilities of an Electron-Ion Collider (EIC) — a high-energy and high-luminosity electron-proton/nucleus collider with polarized electron and proton beams. One of goals of a future EIC is to map the 3D (in configuration and momentum spaces) structure of sea quarks and gluons in the nucleon and nuclei. We briefly present and discuss key observables and measurements pertaining to the program of 3D imaging at an EIC.

  17. Analytic 3D imaging of mammalian nucleus at nanoscale using coherent x-rays and optical fluorescence microscopy.

    PubMed

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-09-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens.

  18. Examination of heterogeneous crossing sequences between toner and rollerball pen strokes by digital microscopy and 3-D laser profilometry.

    PubMed

    Montani, Isabelle; Mazzella, Williams; Guichard, Marion; Marquis, Raymond

    2012-07-01

    The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. PMID:22390180

  19. Metallothioneins for correlative light and electron microscopy.

    PubMed

    Fernández de Castro, Isabel; Sanz-Sánchez, Laura; Risco, Cristina

    2014-01-01

    Structural biologists have been working for decades on new strategies to identify proteins in cells unambiguously. We recently explored the possibilities of using the small metal-binding protein, metallothionein (MT), as a tag to detect proteins in transmission electron microscopy. It had been reported that, when fused with a protein of interest and treated in vitro with gold salts, a single MT tag will build an electron-dense gold cluster ~1 nm in diameter; we provided proof of this principle by demonstrating that MT can be used to detect intracellular proteins in bacteria and eukaryotic cells. The method, which is compatible with a variety of sample processing techniques, allows specific detection of proteins in cells with exceptional sensitivity. We illustrated the applicability of the technique in a series of studies to visualize the intracellular distribution of bacterial and viral proteins. Immunogold labeling was fundamental to confirm the specificity of the MT-gold method. When proteins were double-tagged with green fluorescent protein and MT, direct correlative light and electron microscopy allowed visualization of the same macromolecular complexes with different spatial resolutions. MT-gold tagging might also become a useful tool for mapping proteins into the 3D-density maps produced by (cryo)-electron tomography. New protocols will be needed for double or multiple labeling of proteins, using different versions of MT with fluorophores of different colors. Further research is also necessary to render the MT-gold labeling procedure compatible with immunogold labeling on Tokuyasu cryosections and with cryo-electron microscopy of vitreous sections.

  20. Immunogold Labeling for Scanning Electron Microscopy.

    PubMed

    Goldberg, Martin W; Fišerová, Jindřiška

    2016-01-01

    Scanning electron microscopes are useful biological tools that can be used to image the surface of whole organisms, tissues, cells, cellular components, and macromolecules. Processes and structures that exist at surfaces can be imaged in pseudo, or real 3D at magnifications ranging from about 10× to 1,000,000×. Therefore a whole multicellular organism, such as a fly, or a single protein embedded in one of its cell membranes can be visualized. In order to identify that protein at high resolution, or to see and quantify its distribution at lower magnifications, samples can be labeled with antibodies. Any surface that can be exposed can potentially be studied in this way. Presented here is a generic method for immunogold labeling for scanning electron microscopy, using two examples of specimens: isolated nuclear envelopes and the cytoskeleton of mammalian culture cells. Various parameters for sample preparation, fixation, immunogold labeling, drying, metal coating, and imaging are discussed so that the best immunogold scanning electron microscopy results can be obtained from different types of specimens. PMID:27515090

  1. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  2. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  3. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  4. Electron microscopy of frozen hydrated eukaryotic flagella.

    PubMed

    Murray, J M

    1986-01-01

    Resting and active sea urchin sperm flagella have been examined by low-dose electron microscopy of frozen hydrated specimens. The flagella are unfixed, unstained, completely intact, and able to swim vigorously after going through the entire preparative procedure. The most prominent features of the image arise from the edges of the axonemal doublets and central-pair microtubules seen in projection. By comparison with these longitudinal markings, transverse features are less easy to discern, being camouflaged by superposition. However, Fourier transforms of digitized micrographs reveal a remarkable degree of crystalline order in quiescent flagella. Filtered images derived from these Fourier transforms show clearly features arising from the central-pair complex and radial spokes that were obscured in the original data. Potentially complicating effects of specimen thickness are shown to be quantitatively insignificant in the formation of images of unstained frozen hydrated flagella. Determination of native flagellar structure by 3-D reconstruction from multiple-tilted views appears to be feasible.

  5. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  6. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  7. Synthetic incoherence for electron microscopy.

    PubMed

    Levine, Zachary H; Dunstan, Robyn M

    2007-08-01

    Tomographic studies of submicrometer samples in materials science using electron microscopy have been inhibited by diffraction effects. In the present work, we describe a practical method for ameliorating these effects. First, we find an analytic expression for the mutual coherence function for hollow-cone illumination. Then, we use this analytic expression to propose a Gaussian weighting of hollow-cone illumination, which we name tapered solid-cone illumination, and present an analytic expression for its mutual coherence function. Finally, we investigate numerically an n-ring approximation to tapered solid-cone illumination. The results suggest a method for removing diffraction effects and hence enabling tomography.

  8. Three-dimensional electronic unpacking of packed bags using 3-D CT images

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Crawford, Carl R.; Boyd, Douglas P.

    2009-02-01

    We present a 3-D electronic unpacking technique for airport security images based on volume rendering techniques developed for medical applications. Two electronic unpacking techniques are presented: (1) object-based unpacking and (2) unpacking by bag-slicing. Both techniques provide photo-realistic 3-D views of contents inside a packed bag with clearly marked threats. For the object-based unpacking, the 3-D objects within packed bags are unpacked (or isolated) though object selection tools that cut away undesired regions to isolates the 3-D object from the background clutter. With this selection tool, the operator is able to electronically unpack various 3-D objects and manipulate (rotate and zoom) the 3-D photo-realistic views for the immediate classification of the suspect object. The unpacking by bag-slicing technique places arbitrary cut planes to show the content beyond the cut plane that can be stepped forward or backward electronically. The methods may be used to reduce the need for manual unpacking of suitcases.

  9. Liquid Cell Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  10. Electron microscopy of pharmaceutical systems.

    PubMed

    Klang, Victoria; Valenta, Claudia; Matsko, Nadejda B

    2013-01-01

    During the last decades, the focus of research in pharmaceutical technology has steadily shifted towards the development and optimisation of nano-scale drug delivery systems. As a result, electron microscopic methods are increasingly employed for the characterisation of pharmaceutical systems such as nanoparticles and microparticles, nanoemulsions, microemulsions, solid lipid nanoparticles, different types of vesicles, nanofibres and many more. Knowledge of the basic properties of these systems is essential for an adequate microscopic analysis. Classical transmission and scanning electron microscopic techniques frequently have to be adapted for an accurate analysis of formulation morphology, especially in case of hydrated colloidal systems. Specific techniques such as environmental scanning microscopy or cryo preparation are required for their investigation. Analytical electron microscopic techniques such as electron energy-loss spectroscopy or energy-dispersive X-ray spectroscopy are additional assets to determine the elemental composition of the systems, but are not yet standard tools in pharmaceutical research. This review provides an overview of pharmaceutical systems of interest in current research and strategies for their successful electron microscopic analysis. Advantages and limitations of the different methodological approaches are discussed and recent findings of interest are presented. PMID:22921788

  11. Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-27

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  12. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  13. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  14. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  15. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

    PubMed Central

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L.; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-01-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  16. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Meunier, Michel

    2015-05-01

    We present a new hyperspectral reflected light microscopy system with a scanned broadband supercontinuum light source. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. The presented system can be used for real-time 3D NP tracking as spectral sensors, thus providing new avenues in the spatio-temporal characterization and detection of bioanalytes. 3D image of the distribution of functionalized AuNPs attached to CD44-expressing MDA-MB-231 human cancer cells. PMID:24961507

  17. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  18. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy.

    PubMed

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-07-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  19. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  20. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  1. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  2. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1[S

    PubMed Central

    Yu, Yadong; Kuang, Yu-Lin; Lei, Dongsheng; Zhai, Xiaobo; Zhang, Meng; Krauss, Ronald M.; Ren, Gang

    2016-01-01

    Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed an unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis. PMID:27538822

  3. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ∼50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core–shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  4. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ˜50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  5. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy

    PubMed Central

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A.; Bunday, Benjamin; Vartanian, Victor

    2016-01-01

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  6. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy.

    PubMed

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A; Bunday, Benjamin; Vartanian, Victor

    2016-07-25

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  7. Simple 3D images from fossil and recent micromaterial using light microscopy.

    PubMed

    Haug, J T; Haug, C; Maas, A; Fayers, S R; Trewin, N H; Waloszek, D

    2009-01-01

    Abstract We present a technique for extracting 3D information from small-scale fossil and Recent material and give a summary of other contemporary techniques for 3D methods of investigation. The only hardware needed for the here-presented technique is a microscope that can perform dark field and/or differential interference contrast with a mounted digital camera and a computer. Serial images are taken while the focus is successively shifted from the uppermost end of the specimen to the lowermost end, resulting in about 200 photographs. The data are then processed almost completely automatically by successive use of three freely available programs. Firstly, the stack of images is aligned by the use of CombineZM, which is used to produce a combined image with a high depth of field. Secondly, the aligned images are cropped and sharp edges extracted with the aid of ImageJ. Thirdly, although ImageJ is also capable of producing 3D representations, we preferred to process the image stack further using osirix as it has the facility to export various formats. One of the interesting export formats is a virtual Quicktime movie file (QTVR), which can be used for documentation, and stereo images can also be produced from this Quicktime VR. This method is easy to apply and can be used for documenting specimens in 3D (at least some aspects) without having to prepare them. Therefore, it is particularly useful as a safe method for documenting limited material, before using methods that may destroy the specimen of interest, or to investigate type material that cannot be treated with any preparatory technique. As light microscopes are available in most labs and free computer programs are easily accessible, this method can be readily applied. PMID:19196416

  8. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    SciTech Connect

    Classen, I. G. J. Bogomolov, A. V.; Domier, C. W.; Luhmann, N. C.; Suttrop, W.; Boom, J. E.; Tobias, B. J.; Donné, A. J. H.

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  9. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade.

    PubMed

    Classen, I G J; Domier, C W; Luhmann, N C; Bogomolov, A V; Suttrop, W; Boom, J E; Tobias, B J; Donné, A J H

    2014-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments. PMID:25430246

  10. Electron microscopy of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  11. The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.

    PubMed

    Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai

    2016-04-28

    DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices. PMID:27004750

  12. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  13. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  14. Sample holder for axial rotation of specimens in 3D microscopy.

    PubMed

    Bruns, T; Schickinger, S; Schneckenburger, H

    2015-10-01

    In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results.

  15. Multi-modal digital holographic microscopy for wide-field fluorescence and 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Xia, Peng; Matoba, Osamu; Nitta, Koichi; Awatsuji, Yasuhiro

    2016-03-01

    Multi-modal digital holographic microscopy is a combination of epifluorescence microscopy and digital holographic microscopy, the main function of which is to obtain images from fluorescence intensity and quantified phase contrasts, simultaneously. The proposed system is mostly beneficial to biological studies, with the reason that often the studies are depending on fluorescent labeling techniques to detect certain intracellular molecules, while phase information reflecting properties of unstained transparent elements. This paper is presenting our latest researches on applications such as randomly moving micro-fluorescent beads and living cells of Physcomitrella patens. The experiments are succeeded on obtaining a succession of wide-field fluorescent images and holograms from micro-beads, and different depths focusing is realized via numerical reconstruction. Living cells of Physcomitrella patens are recorded in the static manner, the reconstruction distance indicates thickness of cellular structure. These results are implementing practical applications toward many biomedical science researches.

  16. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  17. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  18. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  19. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  20. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    PubMed Central

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2016-01-01

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. PMID:26182412

  1. BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images.

    PubMed

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A

    2015-07-15

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

  2. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  3. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.

  4. Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy

    NASA Astrophysics Data System (ADS)

    Grathoff, Georg H.; Peltz, Markus; Enzmann, Frieder; Kaufhold, Stephan

    2016-07-01

    The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both mid-Jurassic organic-rich Posidonia shales from Hils area, central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was focused ion beam (FIB) microscopy coupled with scanning electron microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3-D FIB based images and permeability was simulated by a Navier Stokes-Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (≥ 40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples. Both samples have no continuous connectivity of pore clusters along the axes in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the total organic carbon (TOC) in the samples. Organic matter does show axis connectivity in the x, y, and z directions. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with mercury intrusion porosimetry (MIP) data. Differences between both methods are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organic matter with a

  5. A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics

    NASA Astrophysics Data System (ADS)

    Gowthaman, Swaminathan; Chidambaram, Gowri Shankar; Rao, Dilli Babu Govardhana; Subramya, Hemakumar Vyudhayagiri; Chandrasekhar, Udhayagiri

    2016-06-01

    Embedding of energy harvesting systems into wearable health and environment monitoring systems, like integration of smart piezoelectric fibers into soldier fabric structures opens up avenues in generating electricity from natural mechanical movements for self-powering of wearable electronics. Emergence of multitudinous of materials and manufacturing technologies has enabled realization of various energy harvesting systems from mechanical movements. The materials and manufacturing related to 3D printing of energy harvesting fabrics are reviewed in this paper. State-of-the-art energy harvesting sources are briefly described following which an in-depth analysis on the materials and 3D printing techniques for energy harvesting fabrics are presented. While tremendous motivation and opportunity exists for wider-scale adoption of 3D printing for this niche area, the success depends on efficient design of three critical factors namely materials, process and structure. The present review discusses on the complex issues of materials selection, modelling and processing of 3D printed fabrics. The paper culminates by presenting a discussion on how future advancements in 3D printing technology might be useful for development of wearable electronics.

  6. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  7. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  8. PLS photoemission electron microscopy beamline

    NASA Astrophysics Data System (ADS)

    Kang, Tai-Hee; Kim, Ki-jeong; Hwang, C. C.; Rah, S.; Park, C. Y.; Kim, Bongsoo

    2001-07-01

    The performance of a recently commissioned beamline at the Pohang Light Source (PLS) is described. The beamline, which is located at 4B1 at PLS, is a Varied Line Spacing (VLS) Plane Grating Monochromator (PGM) beamline. VLS PGM has become very popular because of the simple scanning mechanism and the fixed exit slit. The beamline which takes 3 mrad horizontal beam fan from bending magnet, covers the energy range 200-1000 eV for Photoemission Electron Microscopy (PEEM), X-ray Photoelectron Spectroscopy (XPS) and Magnetic Circular Dichroism (MCD) experiments. Simplicity of the optics and high flux with medium resolution were the design goals for these applications. The beamline consists of a horizontal focusing mirror, a vertical focusing mirror, VLS plane grating and exit slit. The source of PLS could be used as a virtual entrance slit because of its small size and stability. The flux and the resolution of the beamline at the experimental station have been measured using an ion chamber and a calibrated photodiode. Test images of PEEM from a standard sample were taken to illustrate the further performance of the beamline and PEEM station.

  9. On 3D world perception: towards a definition of a cognitive map based electronic travel aid.

    PubMed

    Pissaloux, E E; Velazquez, R; Maingreaud, F

    2004-01-01

    This paper addresses a 3D world perception principle and their usage for cognitive map building by visually impaired people. These bases are applied to define a new electronic travel aid named intelligent glasses system (IGS), a wearable system. IGS provides to blind people an information on their nearest 3D environment structure, and especially a tactile stimulating cognitive map of the obstacles located in user's peri-personal space. This paper outlines briefly the IG system, and presents first results on the validation of the proposed representation via psycho-physiological experiments.

  10. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  11. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  12. Dynamics of electron emission in double photoionization processes near the krypton 3d threshold

    NASA Astrophysics Data System (ADS)

    Penent, F.; Sheinerman, S.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Becker, U.; Braune, M.; Viefhaus, J.; Eland, J. H. D.

    2008-02-01

    Two-electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time-of-flight spectrometer allow us to observe the complete double photo ionization (DPI) continua of selected Kr2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: (A) Auger decay of the inner 3d vacancy with the associated post-collision interaction (PCI) effects, (B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and (C) valence shell DPI. The dominant process for each Kr2+(4p-2) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p-2(3P) and 4p-2(1D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD.

  13. Resonant structure of the 3d electron`s angular distribution in a free Mn{sup +}Ion

    SciTech Connect

    Amusia, M.Y.; Dolmatov, V.K.

    1995-08-01

    The 3d-electron angular anisotropy parameter of the free Mn{sup +} ion is calculated using the {open_quotes}spin-polarized{close_quotes} random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p {yields} 3d discrete excitation. The effect of the 3p {yields} 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published.

  14. TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images

    PubMed Central

    2012-01-01

    Background Further advances in modern microscopy are leading to teravoxel-sized tiled 3D images at high resolution, thus increasing the dimension of the stitching problem of at least two orders of magnitude. The existing software solutions do not seem adequate to address the additional requirements arising from these datasets, such as the minimization of memory usage and the need to process just a small portion of data. Results We propose a free and fully automated 3D Stitching tool designed to match the special requirements coming out of teravoxel-sized tiled microscopy images that is able to stitch them in a reasonable time even on workstations with limited resources. The tool was tested on teravoxel-sized whole mouse brain images with micrometer resolution and it was also compared with the state-of-the-art stitching tools on megavoxel-sized publicy available datasets. This comparison confirmed that the solutions we adopted are suited for stitching very large images and also perform well on datasets with different characteristics. Indeed, some of the algorithms embedded in other stitching tools could be easily integrated in our framework if they turned out to be more effective on other classes of images. To this purpose, we designed a software architecture which separates the strategies that use efficiently memory resources from the algorithms which may depend on the characteristics of the acquired images. Conclusions TeraStitcher is a free tool that enables the stitching of Teravoxel-sized tiled microscopy images even on workstations with relatively limited resources of memory (<8 GB) and processing power. It exploits the knowledge of approximate tile positions and uses ad-hoc strategies and algorithms designed for such very large datasets. The produced images can be saved into a multiresolution representation to be efficiently retrieved and processed. We provide TeraStitcher both as standalone application and as plugin of the free software Vaa3D. PMID:23181553

  15. A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    PubMed Central

    Weiße, Sebastian; Heddergott, Niko; Heydt, Matthias; Pflästerer, Daniel; Maier, Timo; Haraszti, Tamás; Grunze, Michael; Engstler, Markus; Rosenhahn, Axel

    2012-01-01

    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming. PMID:22629379

  16. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field.

  17. Image reconstruction for 3D light microscopy with a regularized linear method incorporating a smoothness prior

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; Miller, Michael I.; Conchello, Jose-Angel

    1993-07-01

    We have shown that the linear least-squares (LLS) estimate of the intensities of a 3-D object obtained from a set of optical sections is unstable due to the inversion of small and zero-valued eigenvalues of the point-spread function (PSF) operator. The LLS solution was regularized by constraining it to lie in a subspace spanned by the eigenvectors corresponding to a selected number of the largest eigenvalues. In this paper we extend the regularized LLS solution to a maximum a posteriori (MAP) solution induced by a prior formed from a 'Good's like' smoothness penalty. This approach also yields a regularized linear estimator which reduces noise as well as edge artifacts in the reconstruction. The advantage of the linear MAP (LMAP) estimate over the current regularized LLS (RLLS) is its ability to regularize the inverse problem by smoothly penalizing components in the image associated with small eigenvalues. Computer simulations were performed using a theoretical PSF and a simple phantom to compare the two regularization techniques. It is shown that the reconstructions using the smoothness prior, give superior variance and bias results compared to the RLLS reconstructions. Encouraging reconstructions obtained with the LMAP method from real microscopical images of a 10 micrometers fluorescent bead, and a four-cell Volvox embryo are shown.

  18. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field. PMID:25640426

  19. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    PubMed Central

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-01-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach. PMID:24309385

  20. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-12-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.

  1. Evaluation of collagen gel microstructure by scanning electron microscopy.

    PubMed

    Pogorelov, A G; Selezneva, I I

    2010-12-01

    We performed qualitative comparison of freeze drying and chemical drying as methods of preparing 3D wet specimens for scanning electron microscopy. Human fibroblasts immobilized in collagen gel were used as a model system. Specimens fixed with glutaraldehyde were frozen in liquid nitrogen and freeze-dried at low temperature in high vacuum. In parallel experiments, glutaraldehyde-fixed samples were dehydrated in ascending ethanol solutions, absolute ethanol, and 100% hexamethyldisilazane and then dried at room temperature. Scanning electron microscopy microphotographs of collagen fibers and cells were characterized by high resolution and the absence of collapsed or deformed structures even at high magnification (×50,000) for both chemical drying and high-vacuum freeze drying. However, high-vacuum freeze drying is superior to chemical drying for the investigation of the internal space of 3D scaffolds, because sample fracture can be prepared directly in liquid nitrogen. These techniques are a part of the sample preparation process for scanning electron microscopy and can also be used for studies of cell adhesion, morphology, and arrangement in wet specimens (3D gels and flexible tissue engineering scaffolds). PMID:21161075

  2. Electronic spectroscopy and electronic structure of the smallest metal clusters: the diatomic 3D transition metal aluminides

    NASA Astrophysics Data System (ADS)

    Behm, Jane M.; Morse, Michael D.

    1994-06-01

    A systematic study of the electronic spectroscopy, electronic structure, and chemical bonding has been initiated for the 3d series of diatomic transition metal aluminides. This report provides a review of the progress to date, with specific emphasis on AlCa, AlV, AlCr, AlMn, AlCo, AlNi, AlCu, and AlZn.

  3. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  4. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  5. 3D super-resolved in vitro multiphoton microscopy by saturation of excitation.

    PubMed

    Nguyen, Anh Dung; Duport, François; Bouwens, Arno; Vanholsbeeck, Frédérique; Egrise, Dominique; Van Simaeys, Gaetan; Emplit, Philippe; Goldman, Serge; Gorza, Simon-Pierre

    2015-08-24

    We demonstrate a significant resolution enhancement beyond the conventional limit in multiphoton microscopy (MPM) using saturated excitation of fluorescence. Our technique achieves super-resolved imaging by temporally modulating the excitation laser-intensity and demodulating the higher harmonics from the saturated fluorescence signal. The improvement of the lateral and axial resolutions is measured on a sample of fluorescent microspheres. While the third harmonic already provides an enhanced resolution, we show that a further improvement can be obtained with an appropriate linear combination of the demodulated harmonics. Finally, we present in vitro imaging of fluorescent microspheres incorporated in HeLa cells to show that this technique performs well in biological samples. PMID:26368235

  6. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGES

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  7. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  8. Simulation of 3-D Magnetic Reconnection by Gyrokinetic Electron and Fully Kinetic Ion Particle Model

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lin, Y.; Chen, L.

    2015-12-01

    3-D collisionless magnetic reconnection is investigated using the gyrokinetic electron and fully-kinetic ion (GeFi) particle simulation model. The simulation is carried out for cases with various finite guide field BG in a current sheet as occurring in space and laboratory plasmas. Turbulence power spectrum of magenetic field is found in the reconnection current sheet, with a clear k-5/3 dependence. The wave properties are analyzed. The anomalous resistivity in the electron diffusion region is estimated. The Dependence of the reconnection physics on the ion-to-electron mass ratio mi/me, beta values, and the half-width of the current sheet are also investigated.

  9. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  10. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators.

    PubMed

    Zou, Wei; Fisher, Ted; Zhang, Miao; Kim, Leonard; Chen, Ting; Narra, Venkat; Swann, Beth; Singh, Rachana; Siderit, Richard; Yin, Lingshu; Teo, Boon-Keng Kevin; McKenna, Michael; McDonough, James; Ning, Yue J

    2015-05-08

    In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.

  11. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  12. 3-D Raman Imagery and Atomic Force Microscopy of Ancient Microscopic Fossils

    NASA Astrophysics Data System (ADS)

    Schopf, J.

    2003-12-01

    Investigations of the Precambrian (~540- to ~3,500-Ma-old) fossil record depend critically on identification of authentic microbial fossils. Combined with standard paleontologic studies (e.g., of paleoecologic setting, population structure, cellular morphology, preservational variants), two techniques recently introduced to such studies -- Raman imagery and atomic force microscopy -- can help meet this need. Laser-Raman imagery is a non-intrusive, non-destructive technique that can be used to demonstrate a micron-scale one-to-one correlation between optically discernable morphology and the organic (kerogenous) composition of individual microbial fossils(1,2), a prime indicator of biogencity. Such analyses can be used to characterize the molecular-structural makeup of organic-walled microscopic fossils both in acid-resistant residues and in petrographic thin sections, and whether the fossils analyzed are exposed at the upper surface of, or are embedded within (to depths >65 microns), the section studied. By providing means to map chemically, in three dimensions, whole fossils or parts of such fossils(3), Raman imagery can also show the presence of cell lumina, interior cellular cavities, another prime indicator of biogenicity. Atomic force microscopy (AFM) has been used to visualize the nanometer-scale structure of the kerogenous components of single Precambrian microscopic fossils(4). Capable of analyzing minute fragments of ancient organic matter exposed at the upper surface of thin sections (or of kerogen particles deposited on flat surfaces), such analyses hold promise not only for discriminating between biotic and abiotic micro-objects but for elucidation of the domain size -- and, thus, the degree of graphitization -- of the graphene subunits of the carbonaceous matter analyzed. These techniques -- both new to paleobiology -- can provide useful insight into the biogenicity and geochemical maturity of ancient organic matter. References: (1) Kudryavtsev, A.B. et

  13. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  14. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale.

  15. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    SciTech Connect

    Rasmussen, K; Corbett, M; Pelletier, C; Huang, Z; Feng, Y; Jung, J

    2015-06-15

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes were analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.

  16. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    SciTech Connect

    Khoromskij, B.N. Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-09-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h{sup 3}) convergence in the grid-size h=O(n{sup -1}). Moreover, this requires O(3rn+r{sup 3}) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH{sub 4} molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10{sup -6} hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  17. Fast electron microscopy via compressive sensing

    SciTech Connect

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  18. Comparisons of Runaway Electron Production in DIII--D with the CQL3D Model

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.; Evans, T. E.; Whyte, D. G.; Rosenbluth, M. N.

    1997-11-01

    The time-dependent CQL3D relativistic, bounce-averaged Fokker-Planck code is well suited to modeling the electron runaway generation by ``tail slideaway'' and ``knockon'' processes associated with rapid plasma temperature drop as occurs during plasma disruption and pellet injection. ``Rapid temperure drop'' means in a time short compared to the resistive time thus leading to large inductive electric field; and also short compared to tail electron slowing down time thereby providing a significant number of high velocity electrons. The tail electrons find themselves beyond the critical velocity for runaway. During DIII--D pellet injection experiments, in the plasma interior we calculate nearly 100 percent of the plasma current is transferred to runaway electrons by tail slideaway. This effect diminishes towards the plasma edge, where the knockon process can become dominant on a longer time scale. These computational results will be benchmarked against the experimental results.

  19. The future of electron microscopy

    SciTech Connect

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifies to the importance of modern microscopy.

  20. The future of electron microscopy

    DOE PAGES

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  1. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    PubMed

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  2. Correlative super-resolution fluorescence and metal replica transmission electron microscopy

    PubMed Central

    Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.

    2014-01-01

    Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288

  3. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  4. Synthesizing a 3D auditory scene for use in an electronic travel aid for the blind

    NASA Astrophysics Data System (ADS)

    Bujacz, Michał; Strumiłło, Paweł

    2008-01-01

    A system for auditory presentation of 3D scenes to the blind is presented, with the focus of the paper on the synthesis of sound codes suitable to carry important scene information. First, a short review of existing electronic travel aids for the blind (ETAs) is provided. Second, the project of the wearable ETA device, currently under development at the Technical University of Lodz, is outlined, along with the system modules: 3D scene reconstruction, object (obstacle) selection, synthesis of the sound code and the application of head related transfer functions (HRTFs) for generating spatialized sound. The importance of psychoacoustics, especially Bregman's theory of sound streams, is analyzed and proposed methods of sound code synthesis are presented, along with the software used for their verification.

  5. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization.

    PubMed

    Holden, Seamus J; Pengo, Thomas; Meibom, Karin L; Fernandez Fernandez, Carmen; Collier, Justine; Manley, Suliana

    2014-03-25

    We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.

  6. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGES

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-05-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  7. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  8. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  9. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    SciTech Connect

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  10. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  11. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  12. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  13. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    PubMed Central

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-01-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632

  14. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-06-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.

  15. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability.

    PubMed

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-16

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa(-1)) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. PMID:27250529

  16. Dipole approximation in the L2,3 electron excited spectra in 3d transition metals

    NASA Astrophysics Data System (ADS)

    Nuroh, K.

    2008-12-01

    A theoretical model based on the autoionization and characteristic decay processes following electron impact ionization of a core electron in solids that has previously been used in calculating electron-energy-loss spectra of transition metals near the 3p -excitation edge has been extended to the 2p -excitation edge for S21c through N27i as well. In the first set of calculations, magnetic effects were ignored and the relative scattering intensity was formulated in terms of the electrostatic interaction U(p,d) between the 3p and 3d electrons of the intermediate resonant configuration state p5dn+1 , using many-body perturbation theory that led to a generalized Fano-type formula for the intensity profiles. In the second set of calculations in which magnetic effects were included as well, an analysis based on the Bethe-Born formalism of inelastic scattering of electrons on atoms was used. The nature of the relative magnitudes of U(p,d) and the spin-orbit parameters ς3p and ς3d and the localized nature of the 3p state necessitated the diagonalization of the intermediate configuration state p5dn+1 to determine the multiplet splitting and their corresponding intensities in the LS -coupling limit using fractional parentage scheme. The nonrelativistic multiconfiguration Hartree-Fock (MCHF) code was used in determining the ground and continuum state wave functions, and the itinerant 3d states in the solid were approximated with an atomic MCHF-wave function. The outline above is applied to the 2p -excitation edge, except that because of the relative magnitudes of U(p,d) , ς2p , and ς3d , it is found that LK coupling is suitable for Sc, Ti, and V, while jK coupling is appropriate for Cr to Ni when it comes to the diagonalization of the configuration p5dn+1 to determine the multiplet splitting and their associated scattering intensities. In the dipole approximation, the scattering intensities separate into two distinct manifolds that arise from the p3/2 and p1/2 states. The

  17. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches.

    PubMed

    Schmid, G; Zeitvogel, F; Hao, L; Ingino, P; Floetenmeyer, M; Stierhof, Y-D; Schroeppel, B; Burkhardt, C J; Kappler, A; Obst, M

    2014-07-01

    The formation of cell-(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2-D microscopy techniques, the 3-D and internal structure remain obscure. In this study, we examined the 3-D structure of cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3-D microscopy techniques. We obtained 3-D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4-200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike- or platelet-shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell-(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell-(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3-D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X-ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a

  18. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.

    PubMed

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications.

  19. 3D inclusion trail geometry determination within individual porphyroblasts using reflected light optical microscopy of oriented blocks

    NASA Astrophysics Data System (ADS)

    Munro, Mark; Bowden, Douglas; Ord, Alison; Hobbs, Bruce

    2015-04-01

    It is vital to interpret porphyroblast microstructures accurately relative to both one another and to external matrix structures when using them to reconstruct the tectono-metamorphic evolution of orogenic terranes. Mis-interpretation may have profound implications for either the deformation component or the inferred metamorphic reactions resulting in erroneous Pressure-Temperature-time-Deformation (P-T-t-D) trajectories. A number of well-established approaches have been devised for measuring porphyroblast inclusion trails including pitch and strike measurement, 'FitPitch' best-fit plane assignment, and the radial asymmetry method. A long-standing limitation of these methods is that they generally permit only a single measurement to be extracted from each individual porphyroblast, and therefore provide mean 3D orientation data for an entire population. Alternatively, High-Resolution X-ray Computed Tomography (HRXCT) facilitates the imaging of 3D internal geometries within individuals. However, at present significant operating costs render it unviable for routine application to large numbers of samples required for extracting meaningful tectonic interpretations. Here, a new method is presented for the determination of 3D geometries within porphyroblasts using reflected light examination of polished schist material. Reflected light microscopy yields good quality representation of inclusion trails preserved within porphyroblasts. Sectioning oriented samples into small, oriented blocks allows multiple intersections through porphyroblasts (generally >5mm) to be measured via mechanical stage and amalgamated to reconstruct the plane in 3D. The method represents an accessible alternative to HRXCT, which is applicable to any porphyroblastic phase of adequate size to permit at least two intersections. The technique is demonstrated on garnets from the Mesoproterozoic Mount Barren Group, southern Albany-Fraser orogen of S. W. Australia. Porphyroblasts within a structural

  20. Advanced electron microscopy characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna Raj

    synthesis and growth mechanism of highly monodispersed Cu-Pt nanoclusters. The advance electron microscopy of microanalysis allowed us to study the distribution of Cu and Pt with atomistic resolution. The microanalysis revealed that Pt is embedded randomly in the Cu lattice. A novel grand canonical - Langevin dynamics simulation showed the formation of alloy structures in good agreement with the experimental evidence. Finally, we demonstrated the synthesis of AgPd-Pt trimetallic nanoparticles with two different morphologies: multiply twinned core-shell, and hollow particles. We also investigated the growth mechanism of the nanoparticles using grand canonical-Monte Carlo simulations. We found that the Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process and presenting very good agreement between the simulated structures and those observed experimentally. Similarly, we also investigated AuCu/Pt core-shell trimetallic nanoparticles, presenting new way to control the nanoparticles morphologies due to the presence of third metal (Pt). Where, we observed the Pt layers are overgrowth on the as prepared AuCu core by Frank-van der Merwe (FM) and Stranski-Krastanov (SK) growth modes. In addition, these nanostructure presents high index facet surfaces with {211} and (321} families, that are highly open structure surfaces and interesting for the catalytic applications. The results of these studies will be useful for the future applications and the design of advanced functional nanomaterials.

  1. Multiphotonic Confocal Microscopy 3D imaging: Application to mantle sulfides in sub-arc environment (Avacha Volcano, Kamchatka)

    NASA Astrophysics Data System (ADS)

    Antoine, Bénard; Luc-Serge, Doucet; Sabine, Palle; Dmitri A., Ionov

    2010-05-01

    Petrogenetic relations in igneous rocks are usually studied in natural samples using classical optical microscopy and subsequent geochemical data acquisition. Multiphotonic Laser Scanning Confocal Microscopy (MLSCM) can be a powerful tool to section geological materials optically with sub-micrometric resolution and then generate a three-dimensional (3D) reconstruction (ca. 106 μm3 stack). MLSCM is used here to investigate textural relations of Monosulfide Solid Solution (MSS) with silicate phases in fresh spinel harzburgite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia). The xenoliths contain MSS disseminated in olivine and orthopyroxene (opx) neoblasts as well as MSS-rich quenched magmatic opx veins [1]. First, Reflection Mode (RM) was tested on vein sulfides in resin-impregnated thick (120 μm) polished rock sections. Then we used a combination of Differential Interference Contrast (DIC) with a transmitted light detector, two photons-excited fluorescence (2PEF) and Second Harmonic Generation (SHG). Sequential imaging feature of the Leica TCS-SP2 software was applied. The excitation laser used for 2PEF was a COHERENT MIRA 900 with a 76Hz repetition rate and 800nm wavelength. Image stacks were analysed using ImageJ software [2]. The aim of the tests was to try to discriminate sulfides in silicate matrix as a tool for a better assessment of equilibrium conditions between the two phases. Preliminary results show that Fe-Ni rich MSS from vein and host rock have a strong auto-fluorescence in the Near UV-VIS domain (392-715 nm) whereas silicate matrix is only revealed through DIC. SHG is obtained only from dense nanocentrosymmetrical structures such as embedded medium (organic matter like glue and resin). The three images were recorded sequentially enabling efficient discrimination between the different components of the rock slices. RM permits reconstruction of the complete 3D structure of the rock slice. High resolution (ca. 0.2 μm along X-Y axis vs

  2. Electron enrichment in 3d transition metal oxide hetero-nanostructures.

    PubMed

    Kronawitter, Coleman X; Bakke, Jonathan R; Wheeler, Damon A; Wang, Wei-Cheng; Chang, Chinglin; Antoun, Bonnie R; Zhang, Jin Z; Guo, Jinghua; Bent, Stacey F; Mao, Samuel S; Vayssieres, Lionel

    2011-09-14

    Direct experimental observation of spontaneous electron enrichment of metal d orbitals in a new transition metal oxide heterostructure with nanoscale dimensionality is reported. Aqueous chemical synthesis and vapor phase deposition are combined to fabricate oriented arrays of high-interfacial-area hetero-nanostructures comprised of titanium oxide and iron oxide nanomaterials. Synchrotron-based soft X-ray spectroscopy techniques with high spectral resolution are utilized to directly probe the titanium and oxygen orbital character of the interfacial region's occupied and unoccupied densities of states. These data demonstrate the interface to possess electrons in Ti 3d bands and an emergent degree of orbital hybridization that is absent in parent oxide reference crystals. The carrier dynamics of the hetero-nanostructures are studied by ultrafast transient absorption spectroscopy, which reveals the presence of a dense manifold of states, the relaxations from which exhibit multiple exponential decays whose magnitudes depend on their energetic positions within the electronic structure.

  3. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  4. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    SciTech Connect

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-04-02

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

  5. Digital detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Cattermole, D. M.

    2002-02-01

    Film has traditionally been used for recording images in transmission electron microscopes but there is an essential need for computer-interfaced electronic detectors. Cooled-CCD detectors, developed over the past few years, though not ideal, are increasingly used as the preferred detection system in a number of applications. We describe briefly the design of CCD-based detectors, along with their main properties, which have been used in electron crystallography. A newer detector design with a much bigger sensitive area, incorporating a 2×2 tiled array of CCDs with tapered fibre optics will overcome some of the limitations of existing CCD detectors. We also describe some preliminary results for 8 keV imaging, from (direct detection) silicon hybrid pixel detectors, which offer advantages over CCDs in terms of better spatial resolution, faster readout with minimal noise.

  6. 3-D wave propagation solution of a stable resonator, free-electron laser

    NASA Astrophysics Data System (ADS)

    Bhowmik, A.; Cover, R. A.; Labbe, R. H.

    1983-11-01

    Rigorous numerical solutions of a stable resonator, free-electron laser are obtained using 3-D wave propagation algorithms in the presence of a radially and azimuthally varying gain. Assumptions of this time-independent formulation of the loaded-resonator cavity are discussed. Wave propagation in the cavity is performed by computing numerically the Fresnel-Kirchoff diffraction integral by the Gardner-Fresnel-Kirchoff algorithm. Results of steady-state numerical iterative solutions, in which both the gain and the optical fields achieve self-consistency throughout the resonator, are presented. These consist of: (1) mode pattern and (2) variations in gain with variations in the resonator parameters.

  7. 3D Distribution of the Coronal Electron Density and its Evolution with Solar Cycle

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Reginald, Nelson Leslie; Davila, Joseph M.; St. Cyr, Orville Chris

    2016-05-01

    The variability of the solar white-light corona and its connection to the solar activity has been studied for more than a half century. It is widely accepted that the temporal variation of the total radiance of the K-corona follows the solar cycle pattern (e.g., correlated with sunspot number). However, the origin of this variation and its relationships with regard to coronal mass ejections and the solar wind are yet to be clearly understood. We know that the COR1-A and –B instruments onboard the STEREO spacecraft have continued to perform high-cadence (5 min) polarized brightness measurements from two different vantage points over a long period of time that encompasses the solar minimum of Solar Cycle 23 to the solar maximum of Solar Cycle 24. This extended period of polarized brightness measurements can now be used to reconstruct 3D electron density distributions of the corona between the heliocentric heights of 1.5-4.0 solar radii. In this study we have constructed the 3D coronal density models for 100 Carrington rotations (CRs) from 2007 to 2014 using the spherically symmetric inversion (SSI) method. The validity of these 3D density models is verified by comparing with similar 3D density models created by other means such as tomography, MHD modeling, and 2D density distributions inverted from the polarized brightness images from LASCO/C2 instrument onboard the SOHO spacecraft. When examining the causes for the temporal variation of the global electron content we find that its increase from the solar minimum to maximum depends on changes to both the total area and mean density of coronal streamers. We also find that the global and hemispheric electron contents show quasi-periodic variations with a period of 8-9 CRs during the ascending and maximum phases of Solar Cycle 24 through wavelet analysis. In addition, we also explore any obvious relationships between temporal variation of the global electron content with the photospheric magnetic flux, total mass of

  8. Low voltage transmission electron microscopy of graphene.

    PubMed

    Bachmatiuk, Alicja; Zhao, Jiong; Gorantla, Sandeep Madhukar; Martinez, Ignacio Guillermo Gonzalez; Wiedermann, Jerzy; Lee, Changgu; Eckert, Juergen; Rummeli, Mark Hermann

    2015-02-01

    The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented.

  9. Electron microscopy at atomic resolution

    SciTech Connect

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  10. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The

  11. Electron microscopy of Paramecium (Ciliata).

    PubMed

    Hausmann, Klaus; Allen, Richard D

    2010-01-01

    Paramecium may be the best known single-celled organism in existence (Hausmann et al., 2003). Today its image often appears on television programs where the producers use it to illustrate a stereotypic microorganism, be it pathogenic or nonpathogenic, prokaryotic or eukaryotic. Paramecium was probably one of the first single-celled organisms observed with a light microscope by the Dutch cloth vendor and amateur lens maker Antoni van Leuwenhoek (1632-1723) (Dobell, 1932), and it is still being investigated in the 21st century in the days of the modern electron microscopes.

  12. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  13. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography.

    PubMed

    Nicastro, Daniela; McIntosh, J Richard; Baumeister, Wolfgang

    2005-11-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  14. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  15. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography.

    PubMed

    Nicastro, Daniela; McIntosh, J Richard; Baumeister, Wolfgang

    2005-11-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ.

  16. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  17. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  18. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  19. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.

  20. Predicting the Electronic Properties of 3D, Million-atom Semiconductor nanostructure Architectures

    SciTech Connect

    Jack Dongarra; Stanimire Tomov

    2012-03-15

    This final report describes the work done by Jack Dongarra (University Distinguished Professor) and Stanimire Tomov (Research Scientist) related to the DOE project entitled Predicting the Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures. In this project we addressed the mathematical methodology required to calculate the electronic and transport properties of large nanostructures with comparable accuracy and reliability to that of current ab initio methods. This capability is critical for further developing the field, yet it is missing in all the existing computational methods. Additionally, quantitative comparisons with experiments are often needed for a qualitative understanding of the physics, and for guiding the design of new nanostructures. We focused on the mathematical challenges of the project, in particular on solvers and preconditioners for large scale eigenvalue problems that occur in the computation of electronic states of large nanosystems. Usually, the states of interest lie in the interior of the spectrum and their computation poses great difficulties for existing algorithms. The electronic properties of a semiconductor nanostructure architecture can be predicted/determined by computing its band structure. Of particular importance are the 'band edge states' (electronic states near the energy gap) which can be computed from a properly defined interior eigenvalue problem. Our primary mathematics and computational challenge here has been to develop an efficient solution methodology for finding these interior states for very large systems. Our work has produced excellent results in terms of developing both new and extending current state-of-the-art techniques.

  1. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges

    PubMed Central

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-01-01

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  2. Three-dimensional scanning transmission electron microscopy of biological specimens.

    PubMed

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M; Pennycook, Stephen J

    2010-02-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.

  3. Three-dimensional scanning transmission electron microscopy of biological specimens

    SciTech Connect

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian; Pennycook, Stephen J

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2 - 3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original data set. The precision of the height determination was 0.2 nm. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy (TEM). However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved data set.

  4. Electron Microscopy of the Cell

    PubMed Central

    Leeson, T. S.

    1965-01-01

    The use of the electron microscope has added much to our knowledge of the cell. The fine structure of the component parts of the nucleus and the cytoplasm is described, and their functions are indicated. The nature and structural modifications of the plasma membrane are illustrated with particular reference to function. To illustrate the interrelationships of the nucleus and cytoplasm, the theory of protein secretion is discussed, the secretion of a particular protein or polypeptide being determined by a particular nucleotide sequence in the desoxyribonucleic acid of a chromosome, that is, by a gene. This information is transferred from nucleus to cytoplasm. It is in the cytoplasm that the majority of the work is performed while the nucleus directs the work of the cell. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:5829410

  5. Electron Microscopy of Retinal Photoreceptors

    PubMed Central

    Lasansky, Arnaldo; de Robertis, Eduardo

    1960-01-01

    The fine structure of the cone and rod outer segments of the toad was studied under the electron microscope after fixation in osmium tetroxide and fixation in formaldehyde followed by chromation. In the OsO4-fixed specimens, the rod outer segment appears to be built of a stack of lobulated flattened sacs, each of which is made of two membranes of about 40 A separated by an innerspace of about 30 A. The distance between the rod sacs is about 50 A. The sacs in the cone outer segment are originated by the folding of a continuous membrane. The thickness of the membranes and width of the spaces between the cone sacs is the same as in rod, but the sac innerspace is slightly narrower in the cone (∼ 20 A). After fixation in formaldehyde and chromation, two different dense lines (l1 and l2) separated by spaces of less density appear. One of the lines, l1, has a thickness of 70 A and is less dense than the other, l2, which is 30 A thick. The correlation of the patterns obtained with both fixatives is considered and two possible interpretations are given. The possibility that l2 is related to a soluble phospholipid component is discussed. It is suggested that the outer segments have a paracrystallin organization similar to that found in myelin. PMID:14414323

  6. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.

    PubMed

    Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise

    2010-04-15

    Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.

  7. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  8. Lateral error reduction in the 3D characterization of deep MOEMS devices using white light interference microscopy

    NASA Astrophysics Data System (ADS)

    Montgomery, Paul C.; Montaner, Denis; Manzardo, Omar; Herzig, Hans-Peter

    2004-08-01

    White light scanning interference microscopy, with its high axial resolution, is particularly useful for the rapid 3D characterization of MOEMS micro-systems. Although this technique can be used for submicron critical dimension measurement on micron high microelectronic structures, recent tests using a standard system have revealed errors of up to 3 μm in the measurement of lateral position of deep square steps. Thus the 2 μm wide, 75 μm deep teeth of an electrostatic comb structure in a FT MOEMS spectrometer were measured to be nearly 7 μm wide using a Mirau interference objective with the aperture diaphragm of the illumination system fully open in white light. Tests under different conditions show that the error is greatest for the Mirau objective, with the aperture diaphragm fully open at longer wavelengths. In addition, the location of the centre of such structures can vary by up to 1 μm depending on the degree of reference mirror tilt. Investigations of the XZ images of square steps have revealed the presence of "ghost" fringes resulting from diffraction and the conical illumination used. The errors in edge position can be reduced using a Linnik type objective with the aperture diaphragm closed down using shorter wavelength light.

  9. Neuronal nuclei localization in 3D using level set and watershed segmentation from laser scanning microscopy images

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Olson, Eric; Subramanian, Arun; Feiglin, David; Varshney, Pramod K.; Krol, Andrzej

    2008-03-01

    Abnormalities of the number and location of cells are hallmarks of both developmental and degenerative neurological diseases. However, standard stereological methods are impractical for assigning each cell's nucleus position within a large volume of brain tissue. We propose an automated approach for segmentation and localization of the brain cell nuclei in laser scanning microscopy (LSM) embryonic mouse brain images. The nuclei in these images are first segmented by using the level set (LS) and watershed methods in each optical plane. The segmentation results are further refined by application of information from adjacent optical planes and prior knowledge of nuclear shape. Segmentation is then followed with an algorithm for 3D localization of the centroid of nucleus (CN). Each volume of tissue is thus represented by a collection of centroids leading to an approximate 10,000-fold reduction in the data set size, as compared to the original image series. Our method has been tested on LSM images obtained from an embryonic mouse brain, and compared to the segmentation and CN localization performed by an expert. The average Euclidian distance between locations of CNs obtained using our method and those obtained by an expert is 1.58+/-1.24 µm, a value well within the ~5 µm average radius of each nucleus. We conclude that our approach accurately segments and localizes CNs within cell dense embryonic tissue.

  10. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage.

    PubMed

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  11. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    PubMed Central

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  12. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy.

    PubMed

    McGorty, Ryan; Schnitzbauer, Joerg; Zhang, Wei; Huang, Bo

    2014-01-15

    Single-molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single-molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive index mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here we show a method to obtain accurate, depth-dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth-dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane.

  13. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  14. Integrated fluorescence and transmission electron microscopy.

    PubMed

    Agronskaia, Alexandra V; Valentijn, Jack A; van Driel, Linda F; Schneijdenberg, Chris T W M; Humbel, Bruno M; van Bergen en Henegouwen, Paul M P; Verkleij, Arie J; Koster, Abraham J; Gerritsen, Hans C

    2008-11-01

    Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold.

  15. Microdefects and 3 d electrons in ordered B2-FeAl alloys investigated by positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Yuyang, Huang; Yanqiong, Lu; Yanyan, Zhu; Yuxia, Li; Wen, Deng

    2009-09-01

    Microdefects and 3d electrons in B2-FeAl alloys with different chemical composition, single crystal of Fe and cold-rolled Fe has been studied by positron lifetime and coincidence Doppler broadening spectroscopy. The coincidence Doppler broadening spectrum of the single crystal of Fe shows the highest 3d electron signal in the spectra of all tested samples. The 3d electron signal in the spectrum of Fe50Al50 alloy is much lower than that of the cold-rolled Fe. This indicates that some of the 3d electrons of Fe atoms and 3p electrons of Al atoms in B2-FeAl alloy are localized to form strong covalent bonds, thus decreasing the probability of positron annihilation with 3d electrons of Fe atoms. With the increase of Al content in B2-FeAl alloys, the 3d electron signal in the spectrum of the alloy decreases, while the open volume of defect increases.

  16. Optical microscopy versus scanning electron microscopy in urolithiasis.

    PubMed

    Marickar, Y M Fazil; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Stone analysis is incompletely done in many clinical centers. Identification of the stone component is essential for deciding future prophylaxis. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) still remains a distant dream for routine hospital work. It is in this context that optical microscopy is suggested as an alternate procedure. The objective of this article was to assess the utility of an optical microscope which gives magnification of up to 40x and gives clear picture of the surface of the stones. In order to authenticate the morphological analysis of urinary stones, SEM and elemental distribution analysis were performed. A total of 250 urinary stones of different compositions were collected from stone clinic, photographed, observed under an optical microscope, and optical photographs were taken at different angles. Twenty-five representative samples among these were gold sputtered to make them conductive and were fed into the SEM machine. Photographs of the samples were taken at different angles at magnifications up to 4,000. Elemental distribution analysis (EDAX) was done to confirm the composition. The observations of the two studies were compared. The different appearances of the stones under optical illuminated microscopy were mostly standardized appearances, namely bosselations of pure whewellite, spiculations of weddellite, bright yellow colored appearance of uric acid, and dirty white amorphous appearance of phosphates. SEM and EDAX gave clearer pictures and gave added confirmation of the stone composition. From the references thus obtained, it was possible to confirm the composition by studying the optical microscopic pictures. Higher magnification capacity of the SEM and the EDAX patterns are useful to give reference support for performing optical microscopy work. After standardization, routine analysis can be performed with optical microscopy. The advantage of the optical microscope is that, it

  17. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  18. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    NASA Astrophysics Data System (ADS)

    Lin, He; Duan, Haiming

    2008-05-01

    The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete variational method (DVM) based on density functional theory. The calculated result indicated that the magnetic moment of transition metal increases first and then decreases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has different variation.

  19. Active Pixel Sensors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Denes, P.; Bussat, J.-M.; Lee, Z.; Radmillovic, V.

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  20. FERM3D: A finite element R-matrix electron molecule scattering code

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  1. Combined scanning transmission electron microscopy tilt- and focal series.

    PubMed

    Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels

    2014-04-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  2. Interaction of 3d transition metal atoms with charged ion projectiles from Electron Nuclear Dynamics computation

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2003-03-01

    Computational results on atomic scattering between charged projectiles and transition metal target atoms are presented. This work aims at obtaining detailed information about charge, spin and energy transfer processes that occur between the interacting particles. An in-depth understanding of these phenomena is expected to provide a theoretical basis for the interpretation of various types of ion beam experiments, ranging from gas phase chromatography to spectroscopic observations of fast ions in ferromagnetic media. This contribution focuses on the scattering of light projectiles ranging from He to O, that are prepared in various initial charge states, by 3d transition metal atoms. The presented computations are performed in the framework of Electron Nuclear Dynamics (END)^1 theory which incorporates the coupling between electronic and nuclear degrees of freedom without reliance on the computationally cumbersome and frequently intractable determination of potential energy surfaces. In the present application of END theory to ion - transition metal atom scattering, a supermolecule approach is utilized in conjunction with a spin-unrestricted single determinantal wave function describing the electronic system. Integral scattering, charge and spin exchange cross sections are discussed as functions of the elementary parameters of the problem, such as projectile and target atomic numbers as well as projectile charge and initial kinetic energy. ^1 E.Deumens, A.Diz, R.Longo, Y.Oehrn, Rev.Mod.Phys. 66, 917 (1994)

  3. [Pili annulati. A scanning electron microscopy study].

    PubMed

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Wet electron microscopy with quantum dots.

    PubMed

    Timp, Winston; Watson, Nicki; Sabban, Alon; Zik, Ory; Matsudaira, Paul

    2006-09-01

    Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM. PMID:16989089

  5. Wet electron microscopy with quantum dots.

    PubMed

    Timp, Winston; Watson, Nicki; Sabban, Alon; Zik, Ory; Matsudaira, Paul

    2006-09-01

    Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM.

  6. The rapidly changing face of electron microscopy

    NASA Astrophysics Data System (ADS)

    Thomas, John Meurig; Leary, Rowan K.; Eggeman, Alexander S.; Midgley, Paul A.

    2015-07-01

    This short but wide-ranging review is intended to convey to chemical physicists and others engaged in the interfaces between solid-state chemistry and solid-state physics the growing power and extensive applicability of multiple facets of the technique of electron microscopy.

  7. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  8. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  9. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  10. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  11. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc.

  12. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  13. Analytical scanning electron microscopy for solid surface.

    PubMed

    Ichinokawa, T

    1989-07-01

    A scanning electron microscope of ultra-high-vacuum (UHV-SEM) with a field emission gun (FEG) is operated at the primary electron energies of from 100 eV to 3 keV. The instrument can form the images that contain information on surface chemical composition, chemical bonding state (electronic structure), and surface crystal structure in a microscopic resolution of several hundred angstroms (A) using the techniques of scanning Auger electron microscope, scanning electron energy loss microscope, and scanning low-energy electron diffraction (LEED) microscope. A scanning tunneling microscope (STM) also has been combined with the SEM in order to obtain the atomic resolution for the solid surface. The instrumentation and examples of their applications are presented both for scanning LEED microscopy and STM.

  14. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    SciTech Connect

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  15. Application of Electron Diffraction to Biological Electron Microscopy

    PubMed Central

    Glaeser, Robert M.; Thomas, Gareth

    1969-01-01

    Three methods by which electron diffraction may be applied to problems in electron microscopy are discussed from a fundamental point of view, and experimental applications with biological specimens are demonstrated for each case. It is shown that wide-angle electron diffraction provides valuable information for evaluating specimen damage that can occur either during specimen preparation or while in the electron beam. Dark-field electron microscopy can be used both to enhance the image contrast and to provide highly restricted and therefore highly specific information about the object. Low-angle electron diffraction provides quantitative information about the object structure in the range from 20 A to ∼ 1000 A. Lowangle electron diffraction also demonstrates the important role of Fourier contrast with biological specimens, which are usually characterized by structural features with dimensions of 20 A or larger. ImagesFigure 1Figure 2Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:4896898

  16. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    PubMed

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  17. Aberration corrected Lorentz scanning transmission electron microscopy.

    PubMed

    McVitie, S; McGrouther, D; McFadzean, S; MacLaren, D A; O'Shea, K J; Benitez, M J

    2015-05-01

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale.

  18. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations

    NASA Astrophysics Data System (ADS)

    Goel, Satyender; Masunov, Artëm E.

    2008-12-01

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  19. Ripple-modulated electronic structure of a 3D topological insulator.

    PubMed

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  20. Cryogenic electron microscopy and single-particle analysis.

    PubMed

    Elmlund, Dominika; Elmlund, Hans

    2015-01-01

    About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.

  1. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented.

  2. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  3. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes

    PubMed Central

    Grassucci, Robert A; Taylor, Derek; Frank, Joachim

    2009-01-01

    This protocol details the steps used for visualizing the frozen-hydrated grids as prepared following the accompanying protocol entitled ‘Preparation of macromolecular complexes for visualization using cryo-electron microscopy.’ This protocol describes how to transfer the grid to the microscope using a standard cryo-transfer holder or, alternatively, using a cryo-cartridge loading system, and how to collect low-dose data using an FEI Tecnai transmission electron microscope. This protocol also summarizes and compares the various options that are available in data collection for three-dimensional (3D) single-particle reconstruction. These options include microscope settings, choice of detectors and data collection strategies both in situations where a 3D reference is available and in the absence of such a reference (random-conical and common lines). PMID:18274535

  4. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy.

    PubMed

    Tyson, Adam L; Hilton, Stephen T; Andreae, Laura C

    2015-10-30

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods.

  5. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy

    PubMed Central

    Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.

    2015-01-01

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  6. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy.

    PubMed

    Tyson, Adam L; Hilton, Stephen T; Andreae, Laura C

    2015-10-30

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  7. Acoustic backing in 3-D integration of CMUT with front-end electronics.

    PubMed

    Berg, Sigrid; Rønnekleiv, Arne

    2012-07-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have shown promising qualities for medical imaging. However, there are still some problems to be investigated, and some challenges to overcome. Acoustic backing is necessary to prevent SAWs excited in the surface of the silicon substrate from affecting the transmit pattern from the array. In addition, echoes resulting from bulk waves in the substrate must be removed. There is growing interest in integrating electronic circuits to do some of the beamforming directly below the transducer array. This may be easier to achieve for CMUTs than for traditional piezoelectric transducers. We will present simulations showing that the thickness of the silicon substrate and thicknesses and acoustic properties of the bonding material must be considered, especially when designing highfrequency transducers. Through simulations, we compare the acoustic properties of 3-D stacks bonded with three different bonding techniques; solid-liquid interdiffusion (SLID) bonding, direct fusion bonding, and anisotropic conductive adhesives (ACA). We look at a CMUT array with a center frequency of 30 MHz and three silicon wafers underneath, having a total silicon thickness of 100 μm. We find that fusion bonding is most beneficial if we want to prevent surface waves from damaging the array response, but SLID and ACA are also promising if bonding layer thicknesses can be reduced.

  8. Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography

    NASA Astrophysics Data System (ADS)

    Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G.

    2016-10-01

    Manganese oxide has been investigated extensively as an electrochemical capacitor or supercapacitor electrode material. Manganese oxide is inexpensive to fabricate and exhibits relatively high capacitance values, i.e., in excess of 200 F g-1 in many cases; the actual value depends very much on the fabrication method and test conditions. The cycling behavior of Mn oxide, fabricated using anodic electrodeposition, is investigated using slice and view techniques, via a dual scanning electron microscope (SEM) and focused ion beam (FIB) instrument to generate three-dimensional (3D) images, coupled with electrochemical characterization. The initial as-fabricated electrode has a rod-like appearance, with a fine-scale, sheet-like morphology within the rods. The rod-like structure remains after cycling, but there are significant morphological changes. These include partial dissolution of Mn oxide followed by redeposition of Mn oxide in regions close to the substrate. The redeposited material has a finer morphology than the original as-fabricated Mn oxide. The Mn oxide coverage is also better near the substrate. These effects result in an increase in the specific capacitance.

  9. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  10. Frontiers of in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  11. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  12. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions

  13. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  14. Analytical transmission electron microscopy in minerals processing

    SciTech Connect

    Fraser, H.L.; Hsieh, K.C.; Twigg, M.E.

    1981-01-01

    A review of the possibilities of performing microchemical analysis in thin sections using a combination of scanning transmission electron microscopy and energy dispersive spectroscopy of x-rays is given. Particular attention is paid to the factors that limit accurate analysis at the highest spatial resolution. As an example of the use of these techniques applied to a potential problem in minerals processing, the identification of pyrite and pyrrhotite particles in Illinois, Herrin number 6 coal is presented.

  15. Electron Microscopy Study of Tin Whisker Growth

    SciTech Connect

    Norton, Murray G.; Lebret, Joel

    2003-03-30

    The growth of tin whiskers formed on sputtered tin layers deposited on brass was studied using electron microscopy. The occurrence of whiskers appeared to be largely independent of the macroscopic stress state in the film; rather it was microscopic compressive stresses arising from the formation of an intermetallic phase that appeared to be the necessary precursor. Whisker morphology was a result of whether nucleation had occurred on single grains or on multiple grains. In the latter case, the whiskers had a fluted or striated surface. The formation of whiskers on electron transparent samples was demonstrated. These samples showed the whiskers were monocrystalline and defect free, and that the growth direction could be determined.

  16. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  17. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  18. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy.

    PubMed

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-05-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  19. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  20. Preparation of cultured cells using high-pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope.

    PubMed

    Hawes, Philippa C

    2015-01-01

    Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast, and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice and infiltrating with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.

  1. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  2. Scanning transmission electron microscopy of biological structures.

    PubMed

    Colliex, C; Mory, C

    1994-01-01

    The design of the scanning transmission electron microscope (STEM) has been conceived to optimize its detection efficiency of the different elastic and inelastic signals resulting from the interaction of the high energy primary electrons with the specimen. Its potential use to visualize and measure biological objects was recognized from the first studies by Crewe and coworkers in the seventies. Later the real applications have not followed the initial hopes. The purpose of the present paper is to describe how the instrument has practically evolved and recently begun to demonstrate all its potentialities for quantitative electron microscopy of a wide range of biological specimens, from freeze-dried isolated macromolecules to unstained cryosections. Emphasis will be put on the mass-mapping, multi-signal and elemental mapping modes which are unique features of the STEM instruments.

  3. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    PubMed

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  4. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    van den Bos, Karel H. W.; De Backer, Annick; Martinez, Gerardo T.; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D.; Van Aert, Sandra

    2016-06-01

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  5. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    van den Bos, Karel H W; De Backer, Annick; Martinez, Gerardo T; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D; Van Aert, Sandra

    2016-06-17

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  6. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π.

  7. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  8. STXM goes 3D: digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy.

    PubMed

    Späth, Andreas; Scho Ll, Simon; Riess, Christian; Schmidtel, Daniel; Paradossi, Gaio; Raabe, Jo Rg; Hornegger, Joachim; Fink, Rainer H

    2014-09-01

    Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering. The algorithm is applied to simulated geometries and opaque soft matter specimens thus enabling 3D visualization. These studies with z-resolution of few 100nm serve as important step towards the vision of a confocal transmission x-ray microscope.

  9. Low energy electron microscopy and photoemission electron microscopy investigation of graphene

    NASA Astrophysics Data System (ADS)

    Man, K. L.; Altman, M. S.

    2012-08-01

    Low energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) are two powerful techniques for the investigation of surfaces, thin films and surface supported nanostructures. In this review, we examine the contributions of these microscopy techniques to our understanding of graphene in recent years. These contributions have been made in studies of graphene on various metal and SiC surfaces and free-standing graphene. We discuss how the real-time imaging capability of LEEM facilitates a deeper understanding of the mechanisms of dynamic processes, such as growth and intercalation. Numerous examples also demonstrate how imaging and the various available complementary measurement capabilities, such as selected area or micro low energy electron diffraction (μLEED) and micro angle resolved photoelectron spectroscopy (μARPES), allow the investigation of local properties in spatially inhomogeneous graphene samples.

  10. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  11. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  12. Nanometric crystal defects in transmission electron microscopy.

    PubMed

    Schäublin, Robin

    2006-05-01

    Transmission electron microscopy (TEM) is revisited in order to define methods for the identification of nanometric defects. Nanometric crystal defects play an important role as they influence, generally in a detrimental way, physical properties. For instance, radiation-induced damage in metals strongly degrades mechanical properties, rendering the material stronger but brittle. The difficulty in using TEM to identify the nature and size of such defects resides in their small size. TEM image simulations are deployed to explore limits and possible ways to improve on spatial resolution and contrast. The contrast of dislocation loops, cavities, and a stacking fault tetrahedra (SFT) are simulated in weak beam, interfering reflections (HRTEM), and scanned condensed electron probe (STEM) mode. Results indicate that STEM is a possible way to image small defects. In addition, a new objective aperture is proposed to improve resolution in diffraction contrast. It is investigated by simulations of the weak beam imaging of SFT and successfully applied in experimental observations.

  13. Extracellular vesicles of calcifying turkey leg tendon characterized by immunocytochemistry and high voltage electron microscopic tomography and 3-D graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.

    1992-01-01

    To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.

  14. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  15. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications.

  16. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  17. Characterization of hydroxyapatite by electron microscopy.

    PubMed

    Rodríguez-Lugo, V; Hernández, J Sanchez; Arellano-Jimenez, Ma J; Hernández-Tejeda, P H; Recillas-Gispert, S

    2005-12-01

    The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4.2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200 degrees C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 mum in length and 1-13 mum in diameter, and a second bundle of fibers 5 mum in length and less than 0.5 mum in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed. PMID:17481330

  18. Characterization of Hydroxyapatite by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lugo, V.; Sanchez Hernández, J.; Arellano-Jimenez, Ma. J.; Hernández-Tejeda, P. H.; Recillas-Gispert, S.

    2005-12-01

    The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4·2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200°C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 [mu]m in length and 1 13 [mu]m in diameter, and a second bundle of fibers 5 [mu]m in length and less than 0.5 [mu]m in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed.

  19. 3D image analysis of plants using electron tomography and micro-CT.

    PubMed

    Mineyuki, Yoshinobu

    2014-11-01

    help to promote MT bundling. Cell plate attachment to the parental wall leads to the fusion of the newly formed middle lamellae in the cell plate to the middle lamella of parental cell wall, and a three-way junction is created. Air space develops from the three-way junction. To determine 3D arrangement of cells and air spaces, we used X-ray micro-CT at the SPring-8 synchrotron radiation facility. Using micro-CT available in BL20XU (8 keV, 0.2 µm/pixel), we were able to elucidate ∼90% of the cortical cell outlines in the hypocotyl-radicle axis of arabidopsis seeds [4] and to analyze cell geometrical properties. As the strength of the system X-ray is too strong for seed survival, we used another beam line BL20B2 (10-15 keV, 2.4-2.7 µm/pixel) to examine air space development during seed imbibition [4,5]. Using this system, we were able to detect air space development at the early imbibition stages of seeds without causing damage during seed germination. AcknowledgmentThe author would like to thank Dr. Ichirou Karahara (Univ. Toyama), Dr. L. Andrew Staehelin (Univ. Colorado), Ms. Naoko Kajimura, Dr. Akio Takaoka (Osaka Univ.), Dr. Kazuyo Misaki, Dr. Shigenobu Yonemura (RIKEN CDB), Dr. Kazuyoshi Murata (NIP), Dr. Kentaro Uesugi, Dr. Akihisa Takeuchi, Dr. Yoshio Suzuki (JASRI), Dr. Miyuki Takeuchi, Dr. Daisuke Tamaoki, Dr. Daisuke Yamauchi, and Ms. Aki Fukuda (Univ. Hyogo) for their collaborations in the work presented here. PMID:25359847

  20. Feasibility study of a single-shot 3D electron bunch shape monitor with an electro-optic sampling technique

    NASA Astrophysics Data System (ADS)

    Okayasu, Yuichi; Tomizawa, Hiromitsu; Matsubara, Shinichi; Kumagai, Noritaka; Maekawa, Akira; Uesaka, Mitsuru; Ishikawa, Tetsuya

    2013-05-01

    We developed a three-dimensional electron bunch charge distribution (3D-BCD) monitor with single-shot detection, and a spectral decoding based electro-optic (EO) sampling technique for a nondestructive monitor enables real-time reconstruction of the three-dimensional distribution of a bunch charge. We realized three goals by simultaneously probing a number of Pockels EO crystals that surround the electron beam axis with hollow and radial polarized laser pulses. First, we performed a feasibility test as a simple case of a 3D-BCD monitor probing two ZnTe crystals as EO detectors installed on the opposite angle to the electron beam axis and confirmed that we simultaneously obtained both EO signals. Since the adopted hollow probe laser pulse is not only radially polarized but also temporally shifted azimuthally, some disorders in the radial polarization distribution of such a laser pulse were numerically analyzed with a plane-wave expansion method. Based on the above investigations, the 3D-BCD monitor is feasible both in experimental and numerical estimations. Furthermore, we previously developed a femtosecond response organic crystal as a Pockels EO detector and a broadband probe laser (≥350nm in FWHM); the 3D-BCD monitor realizes 30- to 40-fs (FWHM) temporal resolution. Eventually, the monitor is expected to be equipped in such advanced accelerators as XFEL to measure and adjust the electron bunch charge distribution in real time. The 3D-BCD measurement works as a critical tool to provide feedback to seeded FELs.

  1. High-Resolution Secondary Electron Microscopy and Scanning Reflection Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jingyue

    1990-01-01

    High resolution secondary electron microscopy (HRSEM) utilizes the low energy electrons emitted from the sample to form images of the surface. By using a very small incident electron probe subnanometer resolution images of solid surfaces can be obtained by collecting secondary electrons. Surfaces of both electron beam transparent samples and bulk samples can be investigated by high resolution secondary electron (SE) imaging technique. The emission of secondary electrons is determined by three different processes: (1) the generation of secondary electrons inside the sample; (2) the transport of the excited electrons to the vacuum-sample interface and (3) the escape of secondary electrons over the surface potential barrier into vacuum. The total yield of the emitted secondary electrons is sensitive to sample surface conditions. Surface electronic and geometric modifications will influence the total yield of secondary electrons. The contrast in a SE image is determined by the change of the total SE yield. Therefore the knowledge of the origin of SE emission is essential for interpreting the experimental high resolution secondary electron images. The first part of this dissertation is to discuss the origins of the collected secondary electrons, to develop the theory of surface imaging by secondary electrons and to investigate the contrast mechanisms of high resolution SE images. By combining HRSEM with secondary electron spectroscopy information about the surface topographic and, to some extent, surface electronic structures can be obtained. Experimental results obtained in the ultra-high vacuum (UHV) scanning transmission electron microscope have yielded fruitful information about the electron emission processes. Scanning reflection electron microscopy (SREM) utilizes the high energy electrons reflected from a bulk crystal to form images of the crystal surface. At glancing incident angle specularlly Bragg diffracted beam satisfying surface resonance conditions can

  2. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.; Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  3. Characterization of nanomaterials with transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Anjum, D. H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  4. ELECTRON MICROSCOPY OF PLASMOLYSIS IN ESCHERICHIA COLI.

    PubMed

    COTA-ROBLES, E H

    1963-03-01

    Cota-Robles, Eugene H. (University of California, Riverside). Electron microscopy of plasmolysis in Escherichia coli. J. Bacteriol. 85:499-503. 1963.-Escherichia coli cells plasmolyzed in 0.35 m sucrose reveal plasmolysis at one tip of a cell or in the center of dividing cells in which protoplast partition has been complete. Central plasmolysis reveals that protoplast separation can be completed before the invagination of the cell wall is complete. These studies support the concept that these cells divide by constriction. The strength of the union between cell wall and cytoplasm is not uniform around the entire cell. It is strongest along the sides of these rod-shaped cells and weakest at one tip of the single cell. Thus, a single cell generally forms one cup-shaped vacuole in which the cytoplasm has collapsed away from one tip of the cell.

  5. Scanning electron microscopy of tinea nigra.

    PubMed

    Guarenti, Isabelle Maffei; Almeida, Hiram Larangeira de; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques E

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion.

  6. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  7. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  8. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  9. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD.

  10. High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies.

    PubMed

    Meehl, Janet B; Giddings, Thomas H; Winey, Mark

    2009-01-01

    Preservation of Tetrahymena thermophila basal body ultrastructure for visualization by transmission electron microscopy is improved by a combination of high pressure freezing (HPF) and freeze substitution (FS). These methods also reliably retain the antigenicity of cellular proteins for immuno-electron microscopy, which enables the precise localization of green fluorescent protein (GFP)-tagged and native basal body proteins. The plastic-embedded samples generated by these methods take full advantage of higher resolution visualization techniques such as electron tomography. We describe protocols for cryofixation, FS, immunolabeling, and staining. Suggestions for trouble shooting and evaluation of specimen quality are discussed. In combination with identification and manipulation of a rapidly expanding list of basal body-associated gene products, these methods are being used to increase our understanding of basal body composition, assembly, and function.

  11. Digital position determination system for electron microscopy.

    PubMed

    Hohmann-Marriott, Martin F; Sharp, William P; Roberson, Robert W; Blankenship, Robert E

    2005-06-01

    The precise determination of object positions within a specimen grid is important for many applications in electron microscopy. For example, real-time position determination is necessary for current statistical approaches and the efficient mapping and relocation of objects. Unfortunately, precise real-time position determination is not available on many older electron microscopes with manual stage controls. This report demonstrates the cost-effective and flexible implementation of a digital position determination system that can be adapted to many hand-operated electron microscopes. A customized solution that includes the hardware and software to accomplish position determination is presented. Lists of required parts, instructions for building the hardware, and descriptions of the developed programs are included. Two LED-photodiode assemblies detect x and y movements via an optical wheel that is in physical contact with the mechanical x and y stage control elements. These detector assemblies are interfaced with an integrated circuit that converts movement information into serial port-compatible signals, which are interpreted by a computer with specialized software. Two electron microscopes, a Philips CM12 (S)TEM and a Philips 201 TEM, were equipped with the described digital position determination system. The position fidelity and position fidelity after reloading of grids were determined for both microscopes. The determined position deviation was 1.06 microm in the x axis and 0.565 microm in the y axis for the Philips CM12 (S)TEM, and 0.303 microm in the x axis and 0.545 microm in the y axis for the Philips 201 TEM. After reloading and computational realigning, the determined average position variation was 2.66 microm in the x axis and 2.61 microm in the y axis for the Philips CM12 (S)TEM, and 1.13 microm in the x axis and 1.27 microm in the y axis for the Philips 201 TEM.

  12. Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Tidu, Aurélien; Portier, François; Mosser, Gervaise; Schanne-Klein, Marie-Claire

    2016-07-11

    This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules. PMID:27410876

  13. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy.

    PubMed

    Chong, Ketpin; Deng, Yuru

    2012-01-01

    Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement.

  14. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.

    PubMed

    Martini, N; Bewersdorf, J; Hell, S W

    2002-05-01

    High-resolution light microscopy of glycerol-mounted biological specimens is performed almost exclusively with oil immersion lenses. The reason is that the index of refraction of the oil and the cover slip of approximately 1.51 is close to that of approximately 1.45 of the glycerol mountant, so that refractive index mismatch-induced spherical aberrations are tolerable to some extent. Here we report the application of novel cover glass-corrected glycerol immersion lenses of high numerical aperture (NA) and the avoidance of these aberrations. The new lenses feature a semi-aperture angle of 68.5 degrees, which is slightly larger than that of the diffraction-limited 1.4 NA oil immersion lenses. The glycerol lenses are corrected for a quartz cover glass of 220 microm thickness and for a 80% glycerol-water immersion solution. Featuring an aberration correction collar, the lens can adapt to glycerol concentrations ranging between 72% and 88%, to slight variations of the temperature, and to the cover glass thickness. As the refractive index mismatch-induced aberrations are particularly important to quantitative confocal fluorescence microscopy, we investigated the axial sectioning ability and the axial chromatic aberrations in such a microscope as well as the image brightness as a function of the penetration depth. Whereas there is a significant decrease in image brightness associated with oil immersion, this decrease is absent with the glycerol immersion system. In addition, we show directly the compression of the optic axis in the case of oil immersion and its absence in the glycerol system. The unique advantages of these new lenses in high-resolution microscopy with two coherently used opposing lenses, such as 4 Pi-microscopy, are discussed. PMID:12000554

  15. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  16. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

    PubMed Central

    Hohmann-Marriott, Martin F.; Sousa, Alioscka A.; Azari, Afrouz A.; Glushakova, Svetlana; Zhang, Guofeng; Zimmerberg, Joshua; Leapman, Richard D.

    2009-01-01

    Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We show that scanning transmission electron tomography of 1000 nm thick samples using axial detection provides resolution comparable to conventional electron tomography. The method is demonstrated by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum. PMID:19718033

  17. [Morton's disease: optic and electron microscopy observations].

    PubMed

    De Palma, L; Tulli, A

    1991-01-01

    The authors performed an optic and electron-microscope investigation above the common digital nerve of the foot, whose fragments had been surgically removed from patients suffering from "Morton metatarsalgia" (neuroma). Histological sections were taken from pre-stenotic swelling in patients with clinical symptoms persisting for one year; perineural thickening without evidence of fibroblastic proliferation could be demonstrated, together with an intraneural deposition of an amorphous substance. In other patients suffering from Morton's disease for a longer time, a more pronounced epineural thickening in the pre-stenotic zone could be shown, with partial replacement of nerve fibers by amorphous substance. In the same patients endoneural fibrositis was seen at the level of the stenosis. Electron-microscopy in patients after one year showed an increase in collagenous endoneural fibers and microfibrils. These histopathological findings suggest a compressive mechanism in the pathogenesis of the damage to the common interdigital nerve in Morton's disease, caused by the extrinsic anatomical structures surrounding the nerve. The so-called "neuroma" can be identified with the pre-stenotic swelling.

  18. Simulation of the 3-D Evolution of Electron Scale Magnetic Reconnection - Motivated by Laboratory Experiments Predictions for MMS

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Jain, N.; Sharma, A.

    2013-12-01

    The four s/c of the Magnetospheric Multiscale (MMS) mission, to be launched in 2014, will use the Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes. One of them is magnetic reconnection, an essentially multi-scale process. While laboratory experiments and past theoretical investigations have shown that important processes necessary to understand magnetic reconnection take place at electron scales the MMS mission for the first time will be able to resolve these scales by in space observations. For the measurement strategy of MMS it is important to make specific predictions of the behavior of current sheets with a thickness of the order of the electron skin depth which play an important role in the evolution of collisionless magnetic reconnection. Since these processes are highly nonlinear and non-local numerical simulation is needed to specify the current sheet evolution. Here we present new results about the nonlinear evolution of electron-scale current sheets starting from the linear stage and using 3-D electron-magnetohydrodynamic (EMHD) simulations. The growth rates of the simulated instabilities compared well with the growth rates obtained from linear theory. Mechanisms and conditions of the formation of flux ropes and of current filamentation will be discussed in comparison with the results of fully kinetic simulations. In 3D the X- and O-point configurations of the magnetic field formed in reconnection planes alternate along the out-of-reconnection-plane direction with the wavelength of the unstable mode. In the presence of multiple reconnection sites, the out-of-plane magnetic field can develop nested structure of quadrupoles in reconnection planes, similar to the 2-D case, but now with variations in the out-of-plane direction. The structures of the electron flow and magnetic field in 3-D simulations will be compared with those in 2-D simulations to discriminate the essentially 3D features. We also discuss

  19. Color 3D electronic imaging of the surface of the human body

    NASA Astrophysics Data System (ADS)

    Rioux, Marc

    1994-10-01

    The NRC laboratories have developed a laser scanning technique to digitize shapes and colors in registration. The technique, known as synchronized scanning, is capable of digitizing topography as small as the relief of a bare finger tip, showing a clear picture of the skin structure (essentially a clean fingerprint without distortion), as well as the shape and size of body components such as hands, face, and feet, and the full body of one or more subjects simultaneously. The laser scanner uses a RGB laser, coupled to an optical fiber, which is projected in the field of view. The 3D color measurements are made by optical triangulation to a resolution of 10 micrometers for finger tip scans and a resolution of 1 mm for whole body scans. Experimental results are presented and discussed. Potential applications of this technology in the field of identification and inspection of humans include face recognition, finger, foot and teeth print identification, and 3D mugshots that can be rapidly broadcast through satellite communication. One of the unique properties of this technology is that absolute measurements, not only appearance and relative position of features, can be used for identification purposes.

  20. Electronic structure of the chiral helimagnet and 3 d -intercalated transition metal dichalcogenide C r1 /3Nb S2

    NASA Astrophysics Data System (ADS)

    Sirica, N.; Mo, S.-K.; Bondino, F.; Pis, I.; Nappini, S.; Vilmercati, P.; Yi, J.; Gai, Z.; Snijders, P. C.; Das, P. K.; Vobornik, I.; Ghimire, N.; Koehler, M. R.; Li, L.; Sapkota, D.; Parker, D. S.; Mandrus, D. G.; Mannella, N.

    2016-08-01

    The electronic structure of the chiral helimagnet C r1 /3Nb S2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the Nb S2 layers but also cause significant modifications of the electronic structure of the host Nb S2 material. In particular, the data provide evidence that a description of the electronic structure of C r1 /3Nb S2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. The relevance of these results to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3 d magnetic elements is discussed.

  1. Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source

    NASA Astrophysics Data System (ADS)

    El Mallahi, A.; Detavernier, A.; Yourassowsky, C.; Dubois, F.

    2012-06-01

    Over the past century, monitoring of Giardia lamblia became a matter of concern for all drinking water suppliers worldwide. Indeed, this parasitic flagellated protozoan is responsible for giardiasis, a widespread diarrhoeal disease (200 million symptomatic individuals) that can lead immunocompromised individuals to death. The major difficulty raised by Giardia lamblia's cyst, its vegetative transmission form, is its ability to survive for long periods in harsh environments, including the chlorine concentrations and treatment duration used traditionally in water disinfection. Currently, there is a need for a reliable, inexpensive, and easy-to-use sensor for the identification and quantification of cysts in the incoming water. For this purpose, we investigated the use of a digital holographic microscope working with partially coherent spatial illumination that reduces the coherent noise. Digital holography allows one to numerically investigate a volume by refocusing the different plane of depth of a hologram. In this paper, we perform an automated 3D analysis that computes the complex amplitude of each hologram, detects all the particles present in the whole volume given by one hologram and refocuses them if there are out of focus using a refocusing criterion based on the integrated complex amplitude modulus and we obtain the (x,y,z) coordinates of each particle. Then the segmentation of the particles is processed and a set of morphological and textures features characteristic to Giardia lamblia cysts is computed in order to classify each particles in the right classes.

  2. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  3. Electron microscopy reveals unique microfossil preservation in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Saunders, M.; Kong, C.; Menon, S.; Wacey, D.

    2014-06-01

    Electron microscopy was applied to the study of 1 billion-year-old microfossils from northwest Scotland in order to investigate their 3D morphology and mode of fossilization. 3D-FIB-SEM revealed high quality preservation of organic cell walls with only minor amounts of post-mortem decomposition, followed by variable degrees of morphological alteration (folding and compression of cell walls) during sediment compaction. EFTEM mapping plus SAED revealed a diverse fossilizing mineral assemblage including K-rich clay, Fe-Mg-rich clay and calcium phosphate, with each mineral occupying specific microenvironments in proximity to carbonaceous microfossil cell walls.

  4. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  5. Scanning tunneling and scanning transmission electron microscopy of biological membranes

    NASA Astrophysics Data System (ADS)

    Stemmer, A.; Reichelt, R.; Engel, A.; Rosenbusch, J. P.; Ringger, M.; Hidber, H. R.; Güntherodt, H. J.

    1987-03-01

    The feasibility of imaging porin membrane, which is a reconstituted biological membrane consisting of phospholipid and protein, was studied by scanning tunneling microscopy (STM). Due to detailed knowledge of its composition from biochemical and its three-dimensional (3D) structure from electron microscopical analysis, porin vesicles seem to be a suitable model specimen for exploring the application of STM in biology. Unstained vesicles adsorbed onto a thin amorphous carbon film supported by a finder grid were localized using a scanning transmission electron microscope (STEM) at low irradiation doses ( < 100 {e -}/{nm 2}). Suitable areas of the sample were then positioned in the STM by a light optical telescope. STM images taken under ambient pressure from empty amorphous carbon films exhibited corrugations in the range of ⩽ 1 nm, whereas steps having a height of 5 nm were reproducibly observed on grids with porin vesicles. Since this value is in good agreement with that obtained from air-dried metal shadowed vesicles, we interpret these steps as the edges of porin membranes.

  6. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  7. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  8. Observations of the 3-D distribution of interplanetary electrons and ions from solar wind plasma to low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G. K.

    1995-01-01

    The 3-D Plasma and Energetic Particle instrument on the GGS Wind spacecraft (launched November 1, 1994) is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. Three pairs of double-ended telescopes, each with two or three closely sandwiched passivated ion implanted silicon detectors measure electrons and ions from approximately 20 keV to greater than or equal to 300 keV. Four top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors, a large and a small geometric factor analyzer for electrons and a similar pair for ions, cover from approximately 3 eV to 30 keV. We present preliminary observations of the electron and ion distributions in the absence of obvious solar impulsive events and upstream particles. The quiet time electron energy spectrum shows a smooth approximately power law fall-off extending from the halo population at a few hundred eV to well above approximately 100 keV The quiet time ion energy spectrum also shows significant fluxes over this energy range. Detailed 3-D distributions and their temporal variations will be presented.

  9. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  10. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research.

    PubMed

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data.

  11. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice.

    PubMed

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.

  12. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, Yongkeun

    2016-09-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.

  13. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    PubMed Central

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  14. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice.

    PubMed

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  15. Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM

    NASA Astrophysics Data System (ADS)

    King, Sharon V.; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2014-03-01

    Wavefront coding techniques are currently used to engineer unique point spread functions (PSFs) that enhance existing microscope modalities or create new ones. Previous work in this field demonstrated that simulated intensity PSFs encoded with a generalized cubic phase mask (GCPM) are invariant to spherical aberration or misfocus; dependent on parameter selection. Additional work demonstrated that simulated PSFs encoded with a squared cubic phase mask (SQUBIC) produce a depth invariant focal spot for application in confocal scanning microscopy. Implementation of PSF engineering theory with a liquid crystal on silicon (LCoS) spatial light modulator (SLM) enables validation of WFC phase mask designs and parameters by manipulating optical wavefront properties with a programmable diffractive element. To validate and investigate parameters of the GCPM and SQUBIC WFC masks, we implemented PSF engineering in an upright microscope modified with a dual camera port and a LCoS SLM. We present measured WFC PSFs and compare them to simulated PSFs through analysis of their effect on the microscope imaging system properties. Experimentally acquired PSFs show the same intensity distribution as simulation for the GCPM phase mask, the SQUBIC-mask and the well-known and characterized cubic-phase mask (CPM), first applied to high NA microscopy by Arnison et al.10, for extending depth of field. These measurements provide experimental validation of new WFC masks and demonstrate the use of the LCoS SLM as a WFC design tool. Although efficiency improvements are needed, this application of LCoS technology renders the microscope capable of switching among multiple WFC modes.

  16. Quantitative characterization of electron detectors for transmission electron microscopy.

    PubMed

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. PMID:24189638

  17. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  18. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    PubMed

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  19. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data. PMID:24357389

  20. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  1. Low-temperature electron microscopy: techniques and protocols.

    PubMed

    Fleck, Roland A

    2015-01-01

    Low-temperature electron microscopy endeavors to provide "solidification of a biological specimen by cooling with the aim of minimal displacement of its components through the use of low temperature as a physical fixation strategy" (Steinbrecht and Zierold, Cryotechniques in biological electron microscopy. Springer-Verlag, Berlin, p 293, 1987). The intention is to maintain confidence that the tissue observed retains the morphology and dimensions of the living material while also ensuring soluble cellular components are not displaced. As applied to both scanning and transmission electron microscopy, cryo-electron microscopy is a strategy whereby the application of low-temperature techniques are used to reduce or remove processing artifacts which are commonly encountered in more conventional room temperature electron microscopy techniques which rely heavily on chemical fixation and heavy metal staining. Often, cryo-electron microscopy allows direct observation of specimens, which have not been stained or chemically fixed.

  2. A 3D cellular context for the macromolecular world

    PubMed Central

    Patwardhan, Ardan; Ashton, Alun; Brandt, Robert; Butcher, Sarah; Carzaniga, Raffaella; Chiu, Wah; Collinson, Lucy; Doux, Pascal; Duke, Elizabeth; Ellisman, Mark H; Franken, Erik; Grünewald, Kay; Heriche, Jean-Karim; Koster, Abraham; Kühlbrandt, Werner; Lagerstedt, Ingvar; Larabell, Carolyn; Lawson, Catherine L; Saibil, Helen R; Sanz-García, Eduardo; Subramaniam, Sriram; Verkade, Paul; Swedlow, Jason R; Kleywegt, Gerard J

    2015-01-01

    We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community. PMID:25289590

  3. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  4. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  5. Scanning electron microscopy of rabbit corneal scars.

    PubMed

    Cintron, C; Szamier, R B; Hassinger, L C; Kublin, C L

    1982-07-01

    Central full-thickness perforating excision wounds were made in rabbit corneas and were examined by light and scanning electron microscopy at various times after wounding to study the three-dimensional morphologic changes in the tissue during healing and remodeling. Formation of a fibrin clot soon after wounding seals the hole and functions as a substrate for the healing epithelium. Changes in the histologic appearance of the fibrin lot immediately below the new epithelium are followed by migration of adjacent stromal cells under the epithelium, parallel to the basal surface of this tissue. Further healing is characterized by the organization of stromal fibroblasts into several layers parallel to the corneal surface and the deposition of collagen as a matted meshwork of fibrils tangential to the cell surface. Although remodeling of the collagenous matrix of corneal scar is evident and the scar eventually appears less opaque, the lamellae of the scar are narrower and shorter than normal. Evidence from this and other studies suggests that the orientation of the fibroblasts in healing tissues is determined by the organization of the newly formed epithelium. Furthermore, our observations are consistent with the hypothesis that collagen fibrils are deposited parallel to the flat surface of the fibroblasts during scar formation. Subsequent reorganization of this collagenous matrix approaches the normal lamellar appearance, but the matrix fails to regenerate even after 2 years.

  6. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2010-01-01

    Summary The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments- are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:19768431

  7. Electron microscopy and theoretical modeling of cochleates.

    PubMed

    Nagarsekar, Kalpa; Ashtikar, Mukul; Thamm, Jana; Steiniger, Frank; Schacher, Felix; Fahr, Alfred; May, Sylvio

    2014-11-11

    Cochleates are self-assembled cylindrical condensates that consist of large rolled-up lipid bilayer sheets and represent a novel platform for oral and systemic delivery of therapeutically active medicinal agents. With few preceding investigations, the physical basis of cochleate formation has remained largely unexplored. We address the structure and stability of cochleates in a combined experimental/theoretical approach. Employing different electron microscopy methods, we provide evidence for cochleates consisting of phosphatidylserine and calcium to be hollow tubelike structures with a well-defined constant lamellar repeat distance and statistically varying inner and outer radii. To rationalize the relation between inner and outer radii, we propose a theoretical model. Based on the minimization of a phenomenological free energy expression containing a bending, adhesion, and frustration contribution, we predict the optimal tube dimensions of a cochleate and estimate ratios of material constants for cochleates consisting of phosphatidylserines with varied hydrocarbon chain structures. Knowing and understanding these ratios will ultimately benefit the successful formulation of cochleates for drug delivery applications.

  8. Dynamical electron compressibility in the 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Inhofer, Andreas; Assaf, Badih; Wilmart, Quentin; Veyrat, Louis; Nowka, Christian; Dufouleur, Joseph; Giraud, Romain; Hampel, Silke; Buechner, Bernd; Fève, Gwendal; Berroir, Jean-Marc; Placais, Bernard

    Measurements of the quantum capacitance cq, related to the electron compressibility χ =cq /e2 is a sensitive tool to probe the density of states. In a topological insulator (TI) the situation is enriched by the coexistence and the interplay of topologically protected surface states and massive bulk carriers. We investigate top-gate metal-oxyde-TI capacitors using Bi2Se3 thin crystals at GHz frequencies. These measurements provide insight into the compressibillity of such a two electron-fluid system. Furthermore, the dynamical response yields information about electron scattering properties in TIs. More specifically, in our measurements we track simultaneously the conductivity σ and the compressibility as a function of a DC-gate voltage. Using the Einstein relation σ =cq D , we have access to the gate dependence of the electron diffusion constant D (Vg) , a signature of the peculiar scattering mechanisms in TIs.

  9. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  10. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  11. Another 60 years in electron microscopy: development of phase-plate electron microscopy and biological applications.

    PubMed

    Nagayama, Kuniaki

    2011-01-01

    It has been six decades since the concept of phase-plate electron microscopy was first reported by Boersch, but an experimental report on a phase plate with a theoretically rational performance has only recently been released by a group including the present author. Currently, many laboratories around the world are attempting to develop a wide range of phase plates to enhance the capabilities of transmission electron microscopy. They are reporting not only advantages of their own developments but also a fundamental problem inherent to electron beam devices, namely charging, i.e. the accumulation of electrostatic charge. In this report, we review the 60-year history of phase-plate development, with a particular focus on the fundamental issue of phase-plate charging. Next, we review biological applications of qualified phase plates, which have been successful in avoiding charging to some extent. Finally, we compare and discuss electron microscopic images, taken with or without phase plates, of biological targets such as proteins (GroEL and TRPV4), protein complexes (flagellar motor), viruses (T4 phage, ε-15 phage and herpes simplex virus), bacterial (cyanobacteria) and mammalian (PtK2) cells. PMID:21844600

  12. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  13. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    SciTech Connect

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random number and for measuring the time of simulation.

  14. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random numbermore » and for measuring the time of simulation.« less

  15. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma. PMID:23285847

  16. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  17. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    PubMed

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.

  18. Imaging green fluorescent protein-labeled neurons using light and electron microscopy.

    PubMed

    Knott, Graham W

    2013-06-01

    The ability to observe axons and dendrites with transmission electron microscopy (EM) after they have been previously imaged live with laser-scanning microscopy is a useful technique to study their synaptic connectivity. This protocol provides a detailed method by which neurons that were imaged in a live brain or slice culture can be reimaged using EM. First, brain tissue expressing green fluorescent protein (GFP) is chemically fixed. Then, an immunocytochemistry process is used to render the fluorescent protein electron dense so that it can first be located using light microscopy and then serial thin-sectioned for EM so that the ultrastructure of specific parts of neurites can be analyzed in three dimensions. Patterns of blood vessels observed in the live brain are used to locate the previously imaged neurons. The method described here allows for a complete three-dimensional (3D) reconstruction to be made of the imaged structures from serial electron micrographs. PMID:23734023

  19. Correlative Light and Electron Microscopy of Nucleolar Transcription in Saccharomyces cerevisiae.

    PubMed

    Normand, Christophe; Berthaud, Maxime; Gadal, Olivier; Léger-Silvestre, Isabelle

    2016-01-01

    Nucleoli form around RNA polymerase I transcribed ribosomal RNA (rRNA) genes. The direct electron microscopy observation of rRNA genes after nucleolar chromatin spreading (Miller's spreads) constitutes to date the only system to quantitatively assess transcription at a single molecule level. However, the spreading procedure is likely generating artifact and despite being informative, these spread rRNA genes are far from their in vivo situation. The integration of the structural characterization of spread rRNA genes in the three-dimensional (3D) organization of the nucleolus would represent an important scientific achievement. Here, we describe a correlative light and electron microscopy (CLEM) protocol allowing detection of tagged-Pol I by fluorescent microscopy and high-resolution imaging of the nucleolar ultrastructural context. This protocol can be implemented in laboratories equipped with conventional fluorescence and electron microscopes and does not require sophisticated "pipeline" for imaging.

  20. Correlative Light and Electron Microscopy of Nucleolar Transcription in Saccharomyces cerevisiae.

    PubMed

    Normand, Christophe; Berthaud, Maxime; Gadal, Olivier; Léger-Silvestre, Isabelle

    2016-01-01

    Nucleoli form around RNA polymerase I transcribed ribosomal RNA (rRNA) genes. The direct electron microscopy observation of rRNA genes after nucleolar chromatin spreading (Miller's spreads) constitutes to date the only system to quantitatively assess transcription at a single molecule level. However, the spreading procedure is likely generating artifact and despite being informative, these spread rRNA genes are far from their in vivo situation. The integration of the structural characterization of spread rRNA genes in the three-dimensional (3D) organization of the nucleolus would represent an important scientific achievement. Here, we describe a correlative light and electron microscopy (CLEM) protocol allowing detection of tagged-Pol I by fluorescent microscopy and high-resolution imaging of the nucleolar ultrastructural context. This protocol can be implemented in laboratories equipped with conventional fluorescence and electron microscopes and does not require sophisticated "pipeline" for imaging. PMID:27576708

  1. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  2. An LS-MARS method for modeling regional 3D ionospheric electron density based on GPS data and IRI

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Pyng; Chen, Yao-Chung; Ning, Fang-Shii; Tu, Yuh-Min

    2015-05-01

    The methods of developing an accurate and effective ionospheric electron density (IED) model have greatly interested ionosphere researchers. Numerous scholars have proposed many effective and reliable models and methods of global positioning system (GPS)-based computerized ionospheric tomography (CIT) in the past decades. This study introduced a new function-based CIT method, namely the LS-MARS (Least Squares method-Multivariate Adaptive Regression Splines), combining MARS with IEDs calculated by International Reference Ionosphere (IRI) to automatically choose the best representing basis functions for the three-dimensional (3D) electron density inside that modeling area. This selected basis functions was substituted into the observation equation of the GPS total electron content (TEC) to calculate the design matrix. Finally, the weighted damped least squares (WDLS) were adopted to reestimate the IED model coefficients. In contrast to common function-based CIT methods, the LS-MARS can be used to attain optimal 3D model automatically, flexibly, adaptively based on the IRI without a priori knowledge of the IED distribution mathematical function. The findings indicated that the LS-MARS model had a smaller recovery TEC error than did the MARS_IRI2012 model, and the VTEC calculated using the LS-MARS model was closer to the VTEC obtained from International GNSS Service (IGS) final IONEX files than was the VTEC calculated using the MARS_IRI2012 and IRI2012. Therefore, this method exhibits strong modeling effectiveness and reliability, and can be an efficient alternative method for estimating regional 3D IED models.

  3. Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists.

    PubMed

    Miranda, Kildare; Girard-Dias, Wendell; Attias, Marcia; de Souza, Wanderley; Ramos, Isabela

    2015-01-01

    Early applications of transmission electron microscopy (TEM) in the life sciences have contributed tremendously to our current understanding at the subcellular level. Initially limited to two-dimensional representations of three-dimensional (3D) objects, this approach has revolutionized the fields of cellular and structural biology-being instrumental for determining the fine morpho-functional characterization of most cellular structures. Electron microscopy has progressively evolved towards the development of tools that allow for the 3D characterization of different structures. This was done with the aid of a wide variety of techniques, which have become increasingly diverse and highly sophisticated. We start this review by examining the principles of 3D reconstruction of cells and tissues using classical approaches in TEM, and follow with a discussion of the modern approaches utilizing TEM as well as on new scanning electron microscopy-based techniques. 3D reconstruction techniques from serial sections and (cryo) electron-tomography are examined, and the recent applications of focused ion beam-scanning microscopes and serial-block-face techniques for the 3D reconstruction of large volumes are discussed. Alternative low-cost techniques and more accessible approaches using basic transmission or field emission scanning electron microscopes are also examined. PMID:25652003

  4. Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists.

    PubMed

    Miranda, Kildare; Girard-Dias, Wendell; Attias, Marcia; de Souza, Wanderley; Ramos, Isabela

    2015-01-01

    Early applications of transmission electron microscopy (TEM) in the life sciences have contributed tremendously to our current understanding at the subcellular level. Initially limited to two-dimensional representations of three-dimensional (3D) objects, this approach has revolutionized the fields of cellular and structural biology-being instrumental for determining the fine morpho-functional characterization of most cellular structures. Electron microscopy has progressively evolved towards the development of tools that allow for the 3D characterization of different structures. This was done with the aid of a wide variety of techniques, which have become increasingly diverse and highly sophisticated. We start this review by examining the principles of 3D reconstruction of cells and tissues using classical approaches in TEM, and follow with a discussion of the modern approaches utilizing TEM as well as on new scanning electron microscopy-based techniques. 3D reconstruction techniques from serial sections and (cryo) electron-tomography are examined, and the recent applications of focused ion beam-scanning microscopes and serial-block-face techniques for the 3D reconstruction of large volumes are discussed. Alternative low-cost techniques and more accessible approaches using basic transmission or field emission scanning electron microscopes are also examined.

  5. Visualization of Clusters in Polymer Electrolyte Membranes by Electron Microscopy

    PubMed Central

    Yakovlev, Sergey

    2014-01-01

    The morphology of ionic clusters that form in polyelectrolyte membranes has a strong effect on transport and electrical properties. In spite of considerable research efforts the link between morphology and properties has not been clearly established, mainly due to difficulties in assessing nanoscale morphology. Electron microscopy (EM) has the potential to visualize morphology. However success in visualization has so far been moderate. In this review we focus on the potential of EM techniques to characterize the ionic domains. We use both experimental data and models to compare the capabilities of several EM techniques: BF TEM, HAADF, core-loss EELS, and low-loss EELS in projection imaging and STEM modes. The main problems common for all these EM modes are radiation damage and overlap of features in projection. Our models show that core loss EELS with exposures that are below the typical damage threshold is incapable of resolving 2 nm diameter sulfur-rich clusters in PEMs. While low loss EELS requires lower exposure the insight it can provide is quite limited. HAADF and BF TEM present the most effective modes for imaging the sulfur clusters in PEMs. While BF TEM uses scattered electrons more efficiently, HAADF using slightly higher doses can provide unique information due to in-focus imaging and transparent interpretation of the images. Fortunately, in at least some interesting cases the clusters themselves are much more radiation resistant than the polymer and can be studied at exposures high enough to obtain clear images. Our simulations also show that tomographic 3D reconstruction provides the best approach for solving the overlap problem. In spite of the abilities of electron tomography, data obtained from all EM techniques improves if thin sections are studied. We briefly discuss methods for obtaining such sections. PMID:23165242

  6. Ultrastructure of Candida albicans pleomorphic forms: phase-contrast microscopy, scanning and transmission electron microscopy.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Siennicka, Katarzyna; Kurzatkowski, Wiesław

    2012-01-01

    A modified method of glutaraldeyde-osmium tetroxide fixation was adjusted to characterize the ultrastructure of Candida albicans pleomorphic forms, using phase-contrast microscopy, scanning electron microscopy and transmission electron microscopy. The discovered morphological criteria defining the individual morphotypes are discussed in terms of mycological and histopathological diagnostics of candidiasis. The relations are discussed between fungal pleomorphism, virulence and susceptibility of different morphotypes to fungicides.

  7. Electron-density comparisons between radar observations and 3-D ionospheric model calculations. Master's thesis

    SciTech Connect

    Johnson, M.W.

    1990-01-01

    A comparison of electron densities calculated from the Utah State University First-Principals Ionospheric Model with simultaneous observations taken at Sondrestrom, Millstone, and Arecibo incoherent-scatter radars was undertaken to better understanding the response of the ionosphere at these longitudinally similar yet latitudinally separated locations. The comparison included over 50 days distributed over 3 1/2 years roughly symmetrical about the last solar-minimum in 1986. The overall trend of the comparison was that to first-order the model reproduces electron densities responding to diurnal, seasonal, geomagnetic, and solar-cycle variations for all three radars. However, some model-observation discrepancies were found. These include, failure of the model to correctly produce an evening peak at Millstone, fall-spring equinox differences at Sondrestrom, tidal structure at Arecibo, and daytime NmF2 values at Arecibo.

  8. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  9. 3D modeling of the electron energy distribution function in negative hydrogen ion sources.

    PubMed

    Terasaki, R; Fujino, I; Hatayama, A; Mizuno, T; Inoue, T

    2010-02-01

    For optimization and accurate prediction of the amount of H-ion production in negative ion sources, analysis of electron energy distribution function (EEDF) is necessary. We are developing a numerical code which analyzes EEDF in the tandem-type arc-discharge source. It is a three-dimensional Monte Carlo simulation code with realistic geometry and magnetic configuration. Coulomb collision between electrons is treated with the "binary collision" model and collisions with hydrogen species are treated with the "null-collision" method. We applied this code to the analysis of the JAEA 10 A negative ion source. The numerical result shows that the obtained EEDF is in good agreement with experimental results.

  10. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  11. 3s- and 3p-core level excitations in 3d-transition metal oxides from electron-energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, P.; Zimmermann, R.; Reinert, F.; Engel, Th.; Hüfner, S.

    1995-03-01

    3s- and 3p-core level excitations for a large number of 3d-transition metal oxides, with a formal 3d occupation from 3d0 to 3d10, have been measured by electron energy loss spectroscopy in reflection geometry (REELS) with primary energies 200 eV≤ E 0≤1600 eV. Their intensities decrease systematically with the formal 3d-count, classifying them as transitions to empty 3d-states. The structure of the 3s excitations is analysed in detail and is compared to the 3s-XPS photoemission spectra of the samples. This 3s-REELS structure and its change with the 3d occupation can be explained by the assumption that the excitation arises mainly from a 3s23dn→3s13dn+1 quadrupole transition.

  12. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  13. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.

  14. Matched Backprojection Operator for Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series.

    PubMed

    Dahmen, Tim; Kohr, Holger; de Jonge, Niels; Slusallek, Philipp

    2015-06-01

    Combined tilt- and focal series scanning transmission electron microscopy is a recently developed method to obtain nanoscale three-dimensional (3D) information of thin specimens. In this study, we formulate the forward projection in this acquisition scheme as a linear operator and prove that it is a generalization of the Ray transform for parallel illumination. We analytically derive the corresponding backprojection operator as the adjoint of the forward projection. We further demonstrate that the matched backprojection operator drastically improves the convergence rate of iterative 3D reconstruction compared to the case where a backprojection based on heuristic weighting is used. In addition, we show that the 3D reconstruction is of better quality.

  15. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  16. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  17. The linearly scaling 3D fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  18. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  19. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  20. Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model

    SciTech Connect

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.; Evans, T. E.; Rosenbluth, M. N.; Whyte, D. G.

    2000-11-01

    Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect of small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses

  1. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.

    PubMed

    Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S

    2013-09-24

    Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils. PMID:23988022

  2. Electron transfer through ordered metallic chains in LiNbO 3 : (Mg, Zn) : Me(3d)

    NASA Astrophysics Data System (ADS)

    Rakitina, L. G.; Shanina, B. D.; Corradi, G.; Polgar, K.

    1998-04-01

    In crystal and ceramic LiNbO 3 double doped with Mg or Zn above the threshold concentration ( CMg,Zn⩾4-6 mol%) and with transition metals of the 3d group (Cr, Fe, Mn) non-resonant microwave absorption (NRMA) dependent on the magnetic field was studied. Peak-like dependencies of the NRMA signal intensity on the concentration of dopants and stoichiometry of lithium niobate were found. The EPR line of mobile electrons (Δ B=30 mT) with g=2.0023 was detected. The interaction energy between the substitutional impurities of Mg and Cr was calculated. It was concluded, that in LiNbO 3 : (Mg, Zn) : (Cr, Fe, Mn) ordered metallic chains exist with electron conductivity.

  3. Transmission electron microscopy investigation of auto catalyst and cobalt germanide

    NASA Astrophysics Data System (ADS)

    Sun, Haiping

    The modern ceria-zirconia based catalysts are used in automobiles to reduce exhaust pollutants. Cobalt germanides have potential applications as electrical contacts in the future Ge-based semiconductor devices. In this thesis, transmission electron microscopy (TEM) techniques were used to study the atomic scale interactions between metallic nanostructures and crystalline substrates in the two material systems mentioned above. The model catalyst samples consisted of precious metal nano-particles (Pd, Rh) supported on the surface of (Ce,Zr)O2 thin films. The response of the microstructure of the metal-oxide interface to the reduction and oxidation treatments was investigated by cross-sectional high resolution TEM. Atomic detail of the metal-oxide interface was obtained. It was found that Pd and Rh showed different sintering and interaction behaviors on the oxide surface. The preferred orientation of Pd particles in this study was Pd(111)//CZO(111). Partial encapsulation of Pd particles by reduced (Ce,Zr)O 2 surface was observed and possible mechanisms of the encapsulation were discussed. The characteristics of the metal-oxide interaction depend on the properties of the oxide, as well as their relative orientation. The results provide experimental evidence for understanding the thermodynamics of the equilibrium morphology of a solid particle supported on a solid surface that is not considered as inert. The reaction of Co with Ge to form epitaxial Co5Ge7 was studied by in situ ultra-high vacuum (UHV) TEM using two methods. One was reactive deposition of Co on Ge, in which the Ge substrate was maintained at 350°C during deposition. The other method was solid state reaction, in which the deposition of Co on Ge was carried out at room temperature followed by annealing to higher temperatures. During reactive deposition, the deposited Co reacted with Ge to form nanosized 3D Co 5Ge7 islands. During solid state reaction, a continuous epitaxial Co5Ge7 film on the (001) Ge

  4. Value of electron microscopy in the diagnosis of glomerular diseases.

    PubMed

    Darouich, Sihem; Goucha, Rym Louzir; Jaafoura, Mohamed Habib; Moussa, Fatma Ben; Zekri, Semy; Maiz, Hédi Ben

    2010-04-01

    To evaluate the contribution of electron microscopy to the final diagnosis of glomerulopathies, the authors established a prospective study during the first semester of 2006. A total of 52 kidney biopsies were performed with 3 samples for light microscopy, immunofluorescence, and electron microscopy. Among these renal biopsies, only 20 were examined with electron microscopy because the diagnosis made on the basis of conventional methods had remained unclear or doubtful. In 18 cases, electron microscopy was undertaken for the investigation of primary kidney disease. The 2 remaining cases were transplant biopsies. In this series of 20 patients, there were 3 children with an average age of 9 years and 17 adults with an average age of 35.5 years. Fifteen patients (75%) were nephrotic. The study revealed that electron microscopy was essential for diagnosis in 8 cases (40%) and was helpful in 12 cases (60%). In conclusion, the results showed that the ultrastructural study provides essential or helpful information in many cases of glomerular diseases, and therefore electron microscopy should be considered an important tool of diagnostic renal pathology. As was recommended, it is important to reserve renal tissue for ultrastructural study unless electron microscopy can be routinely used in all biopsies. Thus, this technique could be performed wherever a renal biopsy has to be ultrastructurally evaluated.

  5. Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy

    SciTech Connect

    Su, Shiqin; Moran, Kathryn; Robar, James L.

    2014-08-15

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.

  6. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  7. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  8. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells

    PubMed Central

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-01-01

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results. PMID:26066680

  9. Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

    2008-07-01

    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

  10. High voltage electron microscopy and low voltage scanning electron microscopy of human neoplastic cell culture.

    PubMed

    Malecki, M

    1991-01-01

    Improved procedures were developed to correlate cell culture data with the images provided by advanced ultrastructural technologies. These procedures were compatible with the two main types of cellular behavior: adherent, spreading (melanomas, rhabdomyosarcomas) and non-adherent in suspension (leukemias). The ultrastructure and function of spreading neoplastic cells primarily depend on surface properties of the attaching substrates. Therefore, the films used for cultured cell whole-mount ultrastructural analysis must have adherence features identical to those of standard cell culture vessels. Improved procedures were developed to produce the polystyrene films of required qualities. These films allowed processing of cells for electron microscopy including chemical fixation, cryo-immobilization, and immunolabelling. Furthermore, these polystyrene films permitted observations of the same cell in the high voltage electron microscope to reveal the internal organization and in the low voltage scanning electron microscope to reveal the surface topography. Neoplastic cells in suspension may dramatically change their ultrastructure as a result of interactions with substrates or other cells. Therefore, immobilization of cellular processes must occur rapidly while cells remain in suspension. These processes were cryo-immobilized by high pressure freezing through the use of the newly designed specimen carrier. Procedures allowing high yield attachment of cryo-fixed neoplastic cells to amino-propyl-derived glass carriers enabled observations of cell surface topography. Furthermore, freeze-substitution and drying of freeze-fractured cells revealed their three-dimensional internal organization in the low voltage scanning electron microscope. PMID:1822024

  11. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    PubMed Central

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2012-01-01

    Summary Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microfluidic chamber can be constructed for the imaging of samples in liquid in the electron microscope. We provide microchip design specifications, a fabrication outline, instructions on how to prepare them for biological samples, and examples of images obtained using different light-, and electron microscopy modalities. The use of these microchips is particularly advantageous for correlative light-, and electron microscopy. PMID:21770941

  12. Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity

    SciTech Connect

    Aydin, C.; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D.; Gates, Bruce C.

    2013-05-10

    Size, shape, nuclearity: Aberration-corrected scanning transmission electron microscopy was used to determine the 3D structures of MgO-supported Os3, Os4, Os5, and Os10 clusters, which have structures nearly matching those of osmium carbonyl compounds with known crystal structures. The samples are among the best-defined supported catalysts.

  13. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.