Science.gov

Sample records for 3d facial scans

  1. 3D facial expression modeling for recognition

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  2. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  3. Comparison of the Reliability of Anatomic Landmarks based on PA Cephalometric Radiographs and 3D CT Scans in Patients with Facial Asymmetry

    PubMed Central

    Rathee, Pooja; Jain, Pradeep; Panwar, Vasim Raja

    2011-01-01

    Introduction Conventional cephalometry is an inexpensive and well-established method for evaluating patients with dentofacial deformities. However, patients with major deformities and in particular asymmetric cases are difficult to evaluate by conventional cephalometry. Reliable and accurate evaluation in the orbital and midfacial region in craniofacial syndrome patients is difficult due to inherent geometric magnification, distortion and the superpositioning of the craniofacial structures on cephalograms. Both two- and three-dimensional computed tomography (CT) have been proposed to alleviate some of these difficulties. Aims and objectives The aim of our study is to compare the reliability of anatomic cephalometric points obtained from the two modalities: Conventional posteroanterior cephalograms and 3D CT of patients with facial asymmetry, by comparison of intra- and interobserver variation of points recorded from frontal X-ray to those recorded from 3D CT. Materials and methods The sample included nine patients (5 males and 4 females) with an age range of 14 to 21 years and a mean age of 17.11 years, whose treatment plan called for correction of facial asymmetry. All CT scans were measured twice by two investigators with 2 weeks separation for determination of intraobserver and interobserver variability. Similarly, all measurement points on the frontal cephalograms were traced twice with 2 weeks separation. The tracings were superimposed and the average distance between replicate points readings were used as a measure of intra- and interobserver reliability. Intra-and interobserver variations are calculated for each method and the data were imported directly into the statistical program, SPSS 10.0.1 for windows. Results Intraobserver variations of points defined on 3D CT were small compared with frontal cephalograms. The intraobserver variations ranged from 0 (A1, B1) to 0.6 mm with the variations less than 0.5 mm for most of the points. Interobserver variations

  4. 2D/3D image (facial) comparison using camera matching.

    PubMed

    Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

    2006-11-10

    A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

  5. Modeling 3D facial shape from DNA.

    PubMed

    Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D

    2014-03-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  6. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  7. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  8. 3D face recognition based on matching of facial surfaces

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, Beatriz A.; Kober, Vitaly

    2015-09-01

    Face recognition is an important task in pattern recognition and computer vision. In this work a method for 3D face recognition in the presence of facial expression and poses variations is proposed. The method uses 3D shape data without color or texture information. A new matching algorithm based on conformal mapping of original facial surfaces onto a Riemannian manifold followed by comparison of conformal and isometric invariants computed in the manifold is suggested. Experimental results are presented using common 3D face databases that contain significant amount of expression and pose variations.

  9. Anthropological facial approximation in three dimensions (AFA3D): computer-assisted estimation of the facial morphology using geometric morphometrics.

    PubMed

    Guyomarc'h, Pierre; Dutailly, Bruno; Charton, Jérôme; Santos, Frédéric; Desbarats, Pascal; Coqueugniot, Hélène

    2014-11-01

    This study presents Anthropological Facial Approximation in Three Dimensions (AFA3D), a new computerized method for estimating face shape based on computed tomography (CT) scans of 500 French individuals. Facial soft tissue depths are estimated based on age, sex, corpulence, and craniometrics, and projected using reference planes to obtain the global facial appearance. Position and shape of the eyes, nose, mouth, and ears are inferred from cranial landmarks through geometric morphometrics. The 100 estimated cutaneous landmarks are then used to warp a generic face to the target facial approximation. A validation by re-sampling on a subsample demonstrated an average accuracy of c. 4 mm for the overall face. The resulting approximation is an objective probable facial shape, but is also synthetic (i.e., without texture), and therefore needs to be enhanced artistically prior to its use in forensic cases. AFA3D, integrated in the TIVMI software, is available freely for further testing.

  10. Anatomy of emotion: a 3D study of facial mimicry.

    PubMed

    Ferrario, V F; Sforza, C

    2007-01-01

    Alterations in facial motion severely impair the quality of life and social interaction of patients, and an objective grading of facial function is necessary. A method for the non-invasive detection of 3D facial movements was developed. Sequences of six standardized facial movements (maximum smile; free smile; surprise with closed mouth; surprise with open mouth; right side eye closure; left side eye closure) were recorded in 20 healthy young adults (10 men, 10 women) using an optoelectronic motion analyzer. For each subject, 21 cutaneous landmarks were identified by 2-mm reflective markers, and their 3D movements during each facial animation were computed. Three repetitions of each expression were recorded (within-session error), and four separate sessions were used (between-session error). To assess the within-session error, the technical error of the measurement (random error, TEM) was computed separately for each sex, movement and landmark. To assess the between-session repeatability, the standard deviation among the mean displacements of each landmark (four independent sessions) was computed for each movement. TEM for the single landmarks ranged between 0.3 and 9.42 mm (intrasession error). The sex- and movement-related differences were statistically significant (two-way analysis of variance, p=0.003 for sex comparison, p=0.009 for the six movements, p<0.001 for the sex x movement interaction). Among four different (independent) sessions, the left eye closure had the worst repeatability, the right eye closure had the best one; the differences among various movements were statistically significant (one-way analysis of variance, p=0.041). In conclusion, the current protocol demonstrated a sufficient repeatability for a future clinical application. Great care should be taken to assure a consistent marker positioning in all the subjects.

  11. Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis

    PubMed Central

    Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana

    2012-01-01

    Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153

  12. Integrating visible light 3D scanning into the everyday world

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  13. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  14. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  15. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  16. The dimension added by 3D scanning and 3D printing of meteorites

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  17. Algorithms for 3D shape scanning with a depth camera.

    PubMed

    Cui, Yan; Schuon, Sebastian; Thrun, Sebastian; Stricker, Didier; Theobalt, Christian

    2013-05-01

    We describe a method for 3D object scanning by aligning depth scans that were taken from around an object with a Time-of-Flight (ToF) camera. These ToF cameras can measure depth scans at video rate. Due to comparably simple technology, they bear potential for economical production in big volumes. Our easy-to-use, cost-effective scanning solution, which is based on such a sensor, could make 3D scanning technology more accessible to everyday users. The algorithmic challenge we face is that the sensor's level of random noise is substantial and there is a nontrivial systematic bias. In this paper, we show the surprising result that 3D scans of reasonable quality can also be obtained with a sensor of such low data quality. Established filtering and scan alignment techniques from the literature fail to achieve this goal. In contrast, our algorithm is based on a new combination of a 3D superresolution method with a probabilistic scan alignment approach that explicitly takes into account the sensor's noise characteristics.

  18. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    PubMed

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-01-01

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714

  19. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    PubMed

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-07-25

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  20. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    PubMed Central

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-01-01

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714

  1. Generating animated sequences from 3D whole-body scans

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Chhatriwala, Murtuza; Mulfinger, Daniel; Deshmukh, Pushkar; Vadhiyar, Sathish

    1999-03-01

    3D images of human subjects are, today, easily obtained using 3D wholebody scanners. 3D human images can provide static information about the physical characteristics of a person, information valuable to professionals such as clothing designers, anthropometrists, medical doctors, physical therapists, athletic trainers, and sculptors. Can 3D human images can be used to provide e more than static physical information. This research described in this paper attempts to answer the question by explaining a way that animated sequences may be generated from a single 3D scan. The process stars by subdividing the human image into segments and mapping the segments to those of a human model defined in a human-motion simulation package. The simulation software provides information used to display movement of the human image. Snapshots of the movement are captured and assembled to create an animated sequence. All of the postures and motion of the human images come from a single 3D scan. This paper describes the process involved in animating human figures from static 3D wholebody scans, presents an example of a generated animated sequence, and discusses possible applications of this approach.

  2. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  3. 3D scanning and printing skeletal tissues for anatomy education.

    PubMed

    Thomas, Daniel B; Hiscox, Jessica D; Dixon, Blair J; Potgieter, Johan

    2016-09-01

    Detailed anatomical models can be produced with consumer-level 3D scanning and printing systems. 3D replication techniques are significant advances for anatomical education as they allow practitioners to more easily introduce diverse or numerous specimens into classrooms. Here we present a methodology for producing anatomical models in-house, with the chondrocranium cartilage from a spiny dogfish (Squalus acanthias) and the skeleton of a cane toad (Rhinella marina) as case studies. 3D digital replicas were produced using two consumer-level scanners and specimens were 3D-printed with selective laser sintering. The fidelity of the two case study models was determined with respect to key anatomical features. Larger-scale features of the dogfish chondrocranium and frog skeleton were all well-resolved and distinct in the 3D digital models, and many finer-scale features were also well-resolved, but some more subtle features were absent from the digital models (e.g. endolymphatic foramina in chondrocranium). All characters identified in the digital chondrocranium could be identified in the subsequent 3D print; however, three characters in the 3D-printed frog skeleton could not be clearly delimited (palatines, parasphenoid and pubis). Characters that were absent in the digital models or 3D prints had low-relief in the original scanned specimen and represent a minor loss of fidelity. Our method description and case studies show that minimal equipment and training is needed to produce durable skeletal specimens. These technologies support the tailored production of models for specific classes or research aims. PMID:27146106

  4. 3D scanning and printing skeletal tissues for anatomy education.

    PubMed

    Thomas, Daniel B; Hiscox, Jessica D; Dixon, Blair J; Potgieter, Johan

    2016-09-01

    Detailed anatomical models can be produced with consumer-level 3D scanning and printing systems. 3D replication techniques are significant advances for anatomical education as they allow practitioners to more easily introduce diverse or numerous specimens into classrooms. Here we present a methodology for producing anatomical models in-house, with the chondrocranium cartilage from a spiny dogfish (Squalus acanthias) and the skeleton of a cane toad (Rhinella marina) as case studies. 3D digital replicas were produced using two consumer-level scanners and specimens were 3D-printed with selective laser sintering. The fidelity of the two case study models was determined with respect to key anatomical features. Larger-scale features of the dogfish chondrocranium and frog skeleton were all well-resolved and distinct in the 3D digital models, and many finer-scale features were also well-resolved, but some more subtle features were absent from the digital models (e.g. endolymphatic foramina in chondrocranium). All characters identified in the digital chondrocranium could be identified in the subsequent 3D print; however, three characters in the 3D-printed frog skeleton could not be clearly delimited (palatines, parasphenoid and pubis). Characters that were absent in the digital models or 3D prints had low-relief in the original scanned specimen and represent a minor loss of fidelity. Our method description and case studies show that minimal equipment and training is needed to produce durable skeletal specimens. These technologies support the tailored production of models for specific classes or research aims.

  5. Flexydos3D: A new deformable anthropomorphic 3D dosimeter readout with optical CT scanning

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Hill, Robin; Skyt, Peter S.; Booth, Jeremy

    2015-01-01

    A new deformable polydimethylsiloxane (PDMS) based dosimeter is proposed that can be cast in an anthropomorphic shape and that can be used for 3D radiation dosimetry of deformable targets. The new material has additional favorable characteristics as it is tissue equivalent for high-energy photons, easy to make and is non-toxic. In combination with dual wavelength optical scanning, it is a powerful dosimeter for dose verification of image gated or organ tracked radiotherapy with moving and deforming targets.

  6. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  7. Scanning Acoustic Microscope of 3D-Interconnect

    NASA Astrophysics Data System (ADS)

    Wai Kong, Lay; Diebold, A. C.; Rudack, A.; Arkalgud, S.

    2009-09-01

    The College of Nanoscale Science and Engineering of the University at Albany in collaboration with International SEMATECH is investigating the use of Scanning Acoustic Microscope (SAM) for analyzing 3D Interconnects. SAM is a non-destructive metrology technique which utilizes high frequency ultrasound to generate a microscopic image of the internal parts of a specimen. The goal of this project is to develop microscopic techniques for evaluating Through-Silicon Vias (TSVs) for 3D-Interconnects. Preliminary data shows voids and other defects in the interface between bonded wafers as shown in Figure 1. Our SAM laboratory system operates at 230 MHz and has a spatial resolution of 5-10 μm and focal length of 5.9 mm on a silicon wafer. The spatial resolution and sampling depth depend on the ultrasonic frequency, sound velocity, focal length and diameter of piezoelectric crystal. Typically, the silicon wafers have a thickness of 775 μm before they are bonded. Our initial work is focused on blanket wafers in order to develop the bonding process. The next step is to bond wafers with test die where the patterning obscures the interface. This paper will discuss the limitations of SAM and compare it to infrared microscopy which is another important imaging capability for 3D Interconnect. We also discuss the current status of research into more advanced acoustic microscopy methods and how this might impact 3D Interconnect imaging.

  8. Scanning 3D full human bodies using Kinects.

    PubMed

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications. PMID:22402692

  9. Wavefront scanning method for minimum traveltime calculations in 3-D

    SciTech Connect

    Meng, F.; Liu, H.; Li, Y.

    1994-12-31

    This paper proposes an efficient way to calculate the shortest travel-time and its correspondent ray-path in three dimension, by using point secondary approximation to depict the wavefront and propagate the travel-time computation along recursively expanding and contracting cubic boxes. Due to its following advantages: (1) the computation order is O(N), where N is the total number of discrete secondary nodes; (2) the memory occupation is relatively small; (3) the algorithm is robust even for high velocity contrast; (4) the minimum travel-time and raypath are computed accurately, this 3-D wavefront scanning raytracing method promises to be real tool for 3-D seismic prestack migration, velocity analysis as well as forward waveform modeling by Maslov asymptotic ray theory.

  10. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  11. Shaping Field for 3D Laser Scanning Microscopy

    PubMed Central

    Colon, Jorge; Lim, Hyungsik

    2015-01-01

    Imaging deep tissue can be extremely inefficient when the region of interest is non-planar and buried in a thick sample, yielding a severely limited effective field of view (FOV). Here we describe a novel technique, namely adaptive field microscopy, which improves the efficiency of 3D imaging by controlling the image plane. The plane of scanning laser focus is continuously reshaped in situ to match the conformation of the sample. The practicality is demonstrated for ophthalmic imaging, where a large area of the corneal epithelium of intact mouse eye is captured in a single frame with subcellular resolution. PMID:26176454

  12. Visualization package for 3D laser-scanned geometry

    NASA Astrophysics Data System (ADS)

    Neumann, Paul F.; Sadler, Lewis L.

    1993-06-01

    A computer software package named LEGO was designed and implemented to enable medical personnel to explore and manipulate laser scanned 3D geometry obtained from a Cyberware 4020PS scanner. This type of scanner reconstructs a real world object into a mathematical computer model by collecting thousands of depth measurement using a low powered laser. LEGO consists of a collection of tools that can be interactively combined to accomplish complex tasks. Tools fall into five major categories: viewing, simple, quantitative, manipulative, and miscellaneous. This paper is based on a masters thesis obtained from the University of Illinois at Chicago.

  13. A Multiscale Constraints Method Localization of 3D Facial Feature Points

    PubMed Central

    Li, Hong-an; Zhang, Yongxin; Li, Zhanli; Li, Huilin

    2015-01-01

    It is an important task to locate facial feature points due to the widespread application of 3D human face models in medical fields. In this paper, we propose a 3D facial feature point localization method that combines the relative angle histograms with multiscale constraints. Firstly, the relative angle histogram of each vertex in a 3D point distribution model is calculated; then the cluster set of the facial feature points is determined using the cluster algorithm. Finally, the feature points are located precisely according to multiscale integral features. The experimental results show that the feature point localization accuracy of this algorithm is better than that of the localization method using the relative angle histograms. PMID:26539244

  14. An omnidirectional 3D sensor with line laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  15. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  16. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  17. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their

  18. Genetic and Environmental Contributions to Facial Morphological Variation: A 3D Population-Based Twin Study

    PubMed Central

    Djordjevic, Jelena; Zhurov, Alexei I.; Richmond, Stephen

    2016-01-01

    Introduction Facial phenotype is influenced by genes and environment; however, little is known about their relative contributions to normal facial morphology. The aim of this study was to assess the relative genetic and environmental contributions to facial morphological variation using a three-dimensional (3D) population-based approach and the classical twin study design. Materials and Methods 3D facial images of 1380 female twins from the TwinsUK Registry database were used. All faces were landmarked, by manually placing 37 landmark points, and Procrustes registered. Three groups of traits were extracted and analysed: 19 principal components (uPC) and 23 principal components (sPC), derived from the unscaled and scaled landmark configurations respectively, and 1275 linear distances measured between 51 landmarks (37 manually identified and 14 automatically calculated). The intraclass correlation coefficients, rMZ and rDZ, broad-sense heritability (h2), common (c2) and unique (e2) environment contributions were calculated for all traits for the monozygotic (MZ) and dizygotic (DZ) twins. Results Heritability of 13 uPC and 17 sPC reached statistical significance, with h2 ranging from 38.8% to 78.5% in the former and 30.5% to 84.8% in the latter group. Also, 1222 distances showed evidence of genetic control. Common environment contributed to one PC in both groups and 53 linear distances (4.3%). Unique environment contributed to 17 uPC and 20 sPC and 1245 distances. Conclusions Genetic factors can explain more than 70% of the phenotypic facial variation in facial size, nose (width, prominence and height), lips prominence and inter-ocular distance. A few traits have shown potential dominant genetic influence: the prominence and height of the nose, the lower lip prominence in relation to the chin and upper lip philtrum length. Environmental contribution to facial variation seems to be the greatest for the mandibular ramus height and horizontal facial asymmetry. PMID

  19. Comparing Facial 3D Analysis With DNA Testing to Determine Zygosities of Twins.

    PubMed

    Vuollo, Ville; Sidlauskas, Mantas; Sidlauskas, Antanas; Harila, Virpi; Salomskiene, Loreta; Zhurov, Alexei; Holmström, Lasse; Pirttiniemi, Pertti; Heikkinen, Tuomo

    2015-06-01

    The aim of this study was to compare facial 3D analysis to DNA testing in twin zygosity determinations. Facial 3D images of 106 pairs of young adult Lithuanian twins were taken with a stereophotogrammetric device (3dMD, Atlanta, Georgia) and zygosity was determined according to similarity of facial form. Statistical pattern recognition methodology was used for classification. The results showed that in 75% to 90% of the cases, zygosity determinations were similar to DNA-based results. There were 81 different classification scenarios, including 3 groups, 3 features, 3 different scaling methods, and 3 threshold levels. It appeared that coincidence with 0.5 mm tolerance is the most suitable feature for classification. Also, leaving out scaling improves results in most cases. Scaling was expected to equalize the magnitude of differences and therefore lead to better recognition performance. Still, better classification features and a more effective scaling method or classification in different facial areas could further improve the results. In most of the cases, male pair zygosity recognition was at a higher level compared with females. Erroneously classified twin pairs appear to be obvious outliers in the sample. In particular, faces of young dizygotic (DZ) twins may be so similar that it is very hard to define a feature that would help classify the pair as DZ. Correspondingly, monozygotic (MZ) twins may have faces with quite different shapes. Such anomalous twin pairs are interesting exceptions, but they form a considerable portion in both zygosity groups.

  20. Spatially-dense 3D facial asymmetry assessment in both typical and disordered growth

    PubMed Central

    Claes, Peter; Walters, Mark; Vandermeulen, Dirk; Clement, John Gerald

    2011-01-01

    Mild facial asymmetries are common in typical growth patterns. Therefore, detection of disordered facial growth patterns in individuals characterized by asymmetries is preferably accomplished by reference to the typical variation found in the general population rather than to some ideal of perfect symmetry, which rarely exists. This presents a challenge in developing an asymmetry assessment tool that is applicable, without modification, to detect both mild and severe facial asymmetries. In this paper we use concepts from geometric morphometrics to obtain robust and spatially-dense asymmetry assessments using a superimposition protocol for comparison of a face with its mirror image. Spatially-dense localization of asymmetries was achieved using an anthropometric mask consisting of uniformly sampled quasi-landmarks that were automatically indicated on 3D facial images. Robustness, in the sense of an unbiased analysis under increasing asymmetry, was ensured by an adaptive, robust, least-squares superimposition. The degree of overall asymmetry in an individual was scored using a root-mean-squared-error, and the proportion was scored using a novel relative significant asymmetry percentage. This protocol was applied to a database of 3D facial images from 359 young healthy individuals and three individuals with disordered facial growth. Typical asymmetry statistics were derived and were mainly located on, but not limited to, the lower two-thirds of the face in males and females. The asymmetry in males was more extensive and of a greater magnitude than in females. This protocol and proposed scoring of asymmetry with accompanying reference statistics will be useful for the detection and quantification of facial asymmetry in future studies. PMID:21740426

  1. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  2. A 2D range Hausdorff approach to 3D facial recognition.

    SciTech Connect

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2004-11-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

  3. Automated 3D reconstruction of interiors with multiple scan views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  4. Development of a 3D printer using scanning projection stereolithography.

    PubMed

    Lee, Michael P; Cooper, Geoffrey J T; Hinkley, Trevor; Gibson, Graham M; Padgett, Miles J; Cronin, Leroy

    2015-04-23

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5 cm(2) area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels.

  5. Development of a 3D printer using scanning projection stereolithography.

    PubMed

    Lee, Michael P; Cooper, Geoffrey J T; Hinkley, Trevor; Gibson, Graham M; Padgett, Miles J; Cronin, Leroy

    2015-01-01

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5 cm(2) area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels. PMID:25906401

  6. Development of a 3D printer using scanning projection stereolithography

    PubMed Central

    Lee, Michael P.; Cooper, Geoffrey J. T.; Hinkley, Trevor; Gibson, Graham M.; Padgett, Miles J.; Cronin, Leroy

    2015-01-01

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels. PMID:25906401

  7. The use of 3D scanning for sporting applications

    NASA Astrophysics Data System (ADS)

    Friel, Kevin; Ajjimaporn, Pann; Straub, Jeremy; Kerlin, Scott

    2015-05-01

    This paper describes the process and research that went into creating a set of 3D models to characterize a golf swing. The purpose of this work is to illustrate how a 3D scanner could be used for assessing athlete performance in sporting applications. In this case, introductory work has been performed to show how the scanner could be used to show the errors a golfer made in a swing. Multiple factors must be taken into account when assessing golfers' swings including the position and movement of the golfer's hands, arms, and foot placement as well as the position of the club head and shaft of the golf club.

  8. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  9. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  10. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.

  11. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. PMID:27189134

  12. Facial expression identification using 3D geometric features from Microsoft Kinect device

    NASA Astrophysics Data System (ADS)

    Han, Dongxu; Al Jawad, Naseer; Du, Hongbo

    2016-05-01

    Facial expression identification is an important part of face recognition and closely related to emotion detection from face images. Various solutions have been proposed in the past using different types of cameras and features. Microsoft Kinect device has been widely used for multimedia interactions. More recently, the device has been increasingly deployed for supporting scientific investigations. This paper explores the effectiveness of using the device in identifying emotional facial expressions such as surprise, smile, sad, etc. and evaluates the usefulness of 3D data points on a face mesh structure obtained from the Kinect device. We present a distance-based geometric feature component that is derived from the distances between points on the face mesh and selected reference points in a single frame. The feature components extracted across a sequence of frames starting and ending by neutral emotion represent a whole expression. The feature vector eliminates the need for complex face orientation correction, simplifying the feature extraction process and making it more efficient. We applied the kNN classifier that exploits a feature component based similarity measure following the principle of dynamic time warping to determine the closest neighbors. Preliminary tests on a small scale database of different facial expressions show promises of the newly developed features and the usefulness of the Kinect device in facial expression identification.

  13. Analyzing the relevance of shape descriptors in automated recognition of facial gestures in 3D images

    NASA Astrophysics Data System (ADS)

    Rodriguez A., Julian S.; Prieto, Flavio

    2013-03-01

    The present document shows and explains the results from analyzing shape descriptors (DESIRE and Spherical Spin Image) for facial recognition of 3D images. DESIRE is a descriptor made of depth images, silhouettes and rays extended from a polygonal mesh; whereas the Spherical Spin Image (SSI) associated to a polygonal mesh point, is a 2D histogram built from neighboring points by using the position information that captures features of the local shape. The database used contains images of facial expressions which in average were recognized 88.16% using a neuronal network and 91.11% with a Bayesian classifier in the case of the first descriptor; in contrast, the second descriptor only recognizes in average 32% and 23,6% using the same mentioned classifiers respectively.

  14. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  15. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.

    PubMed

    Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

    2013-09-01

    The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base. PMID:23886899

  16. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  17. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  18. 3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study.

    PubMed

    Khambay, Balvinder; Nebel, Jean-Christophe; Bowman, Janet; Walker, Fraser; Hadley, Donald M; Ayoub, Ashraf

    2002-01-01

    The aim of this study was to register and assess the accuracy of the superimposition method of a 3-dimensional (3D) soft tissue stereophotogrammetric image (C3D image) and a 3D image of the underlying skeletal tissue acquired by 3D spiral computerized tomography (CT). The study was conducted on a model head, in which an intact human skull was embedded with an overlying latex mask that reproduced anatomic features of a human face. Ten artificial radiopaque landmarks were secured to the surface of the latex mask. A stereophotogrammetric image of the mask and a 3D spiral CT image of the model head were captured. The C3D image and the CT images were registered for superimposition by 3 different methods: Procrustes superimposition using artificial landmarks, Procrustes analysis using anatomic landmarks, and partial Procrustes analysis using anatomic landmarks and then registration completion by HICP (a modified Iterative Closest Point algorithm) using a specified region of both images. The results showed that Procrustes superimposition using the artificial landmarks produced an error of superimposition on the order of 10 mm. Procrustes analysis using anatomic landmarks produced an error in the order of 2 mm. Partial Procrustes analysis using anatomic landmarks followed by HICP produced a superimposition accuracy of between 1.25 and 1.5 mm. It was concluded that a stereophotogrammetric and a 3D spiral CT scan image can be superimposed with an accuracy of between 1.25 and 1.5 mm using partial Procrustes analysis based on anatomic landmarks and then registration completion by HICP.

  19. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  20. A coordinate-free method for the analysis of 3D facial change

    NASA Astrophysics Data System (ADS)

    Mao, Zhili; Siebert, Jan Paul; Cockshott, W. Paul; Ayoub, Ashraf Farouk

    2004-05-01

    Euclidean Distance Matrix Analysis (EDMA) is widely held as the most important coordinate-free method by which to analyze landmarks. It has been used extensively in the field of medical anthropometry and has already produced many useful results. Unfortunately this method renders little information regarding the surface on which these points are located and accordingly is inadequate for the 3D analysis of surface anatomy. Here we shall present a new inverse surface flatness metric, the ratio between the Geodesic and the Euclidean inter-landmark distances. Because this metric also only reflects one aspect of three-dimensional shape, i.e. surface flatness, we have combined it with the Euclidean distance to investigate 3D facial change. The goal of this investigation is to be able to analyze three-dimensional facial change in terms of bilateral symmetry as encoded both by surface flatness and by geometric configuration. Our initial study, based on 25 models of surgically managed children (unilateral cleft lip repair) and 40 models of control children at the age of 2 years, indicates that the faces of the surgically managed group were found to be significantly less symmetric than those of the control group in terms of surface flatness, geometric configuration and overall symmetry.

  1. 3D facial expression recognition using maximum relevance minimum redundancy geometrical features

    NASA Astrophysics Data System (ADS)

    Rabiu, Habibu; Saripan, M. Iqbal; Mashohor, Syamsiah; Marhaban, Mohd Hamiruce

    2012-12-01

    In recent years, facial expression recognition (FER) has become an attractive research area, which besides the fundamental challenges, it poses, finds application in areas, such as human-computer interaction, clinical psychology, lie detection, pain assessment, and neurology. Generally the approaches to FER consist of three main steps: face detection, feature extraction and expression recognition. The recognition accuracy of FER hinges immensely on the relevance of the selected features in representing the target expressions. In this article, we present a person and gender independent 3D facial expression recognition method, using maximum relevance minimum redundancy geometrical features. The aim is to detect a compact set of features that sufficiently represents the most discriminative features between the target classes. Multi-class one-against-one SVM classifier was employed to recognize the seven facial expressions; neutral, happy, sad, angry, fear, disgust, and surprise. The average recognition accuracy of 92.2% was recorded. Furthermore, inter database homogeneity was investigated between two independent databases the BU-3DFE and UPM-3DFE the results showed a strong homogeneity between the two databases.

  2. Modelling of facial growth in Czech children based on longitudinal data: Age progression from 12 to 15 years using 3D surface models.

    PubMed

    Koudelová, Jana; Dupej, Ján; Brůžek, Jaroslav; Sedlak, Petr; Velemínská, Jana

    2015-03-01

    Dealing with the increasing number of long-term missing children and juveniles requires more precise and objective age progression techniques for the prediction of their current appearance. Our contribution includes detailed and real facial growth information used for modelling age progression during adolescence. This study was based on an evaluation of the overall 180 three-dimensional (3D) facial scans of Czech children (23 boys, 22 girls), which were longitudinally studied from 12 to 15 years of age and thus revealed the real growth-related changes. The boys underwent more marked changes compared with the girls, especially in the regions of the eyebrow ridges, nose and chin. Using modern geometric morphometric methods, together with their applications, we modelled the ageing and allometric trajectories for both sexes and simulated the age-progressed effects on facial scans. The facial parts that are important for facial recognition (eyes, nose, mouth and chin) all deviated less than 0.75mm, whereas the areas with the largest deviations were situated on the marginal parts of the face. The mean error between the predicted and real facial morphology obtained by modelling the children from 12 to 15 years of age was 1.92mm in girls and 1.86mm in boys. This study is beneficial for forensic artists as it reduces the subjectivity of age progression methods.

  3. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations. PMID:23218511

  4. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations.

  5. MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN.

    PubMed

    Liu, Lin; Wang, Erkang; Zhang, Xiaoyang; Liang, Wenxuan; Li, Xingde; Xie, Huikai

    2014-08-15

    A fiber-optic 3D confocal scanning microendoscope employing MEMS scanners for both lateral and axial scan was designed and constructed. The MEMS 3D scan engine achieved a lateral scan range of over ± 26° with a 2D MEMS scanning micromirror and a depth scan of over 400 μm with a 1D MEMS tunable microlens. The lateral resolution and axial resolution of this system were experimentally measured as 1.0 μm and 7.0 μm, respectively. 2D and 3D confocal reflectance images of micro-patterns, micro-particles, onion skins and acute rat brain tissue were obtained by this MEMS-based 3D confocal scanning microendoscope.

  6. Measured symmetry of facial 3D shape and perceived facial symmetry and attractiveness before and after orthognathic surgery.

    PubMed

    Ostwald, Julia; Berssenbrügge, Philipp; Dirksen, Dieter; Runte, Christoph; Wermker, Kai; Kleinheinz, Johannes; Jung, Susanne

    2015-05-01

    One aim of cranio-maxillo-facial surgery is to strive for an esthetical appearance. Do facial symmetry and attractiveness correlate? How are they affected by surgery? Within this study faces of patients with orthognathic surgery were captured and analyzed regarding their symmetry. A total of 25 faces of patients were measured three-dimensionally by an optical sensor using the fringe projection technique before and after orthognathic surgery. Based upon this data an asymmetry index was calculated for each case. In order to gather subjective ratings each face was presented to 100 independent test subjects in a 3D rotation sequence. Those were asked to rate the symmetry and the attractiveness of the faces. It was analyzed to what extend the ratings correlate with the measured asymmetry indices and whether pre- and post-surgical data differ. The measured asymmetry indices correlate significantly with the subjective ratings of both items. The measured symmetry as well as the rated symmetry and attractiveness increased on average after surgery. The increase of the ratings was even statistically significant. A larger enhancement of symmetry is achieved in pre-surgical strongly asymmetric faces than in rather symmetric faces.

  7. A multinational deployment of 3D laser scanning to study craniofacial dysmorphology in fetal alcohol spectrum disorders

    NASA Astrophysics Data System (ADS)

    Rogers, Jeff; Wernert, Eric; Moore, Elizabeth; Ward, Richard; Wetherill, Leah F.; Foroud, Tatiana

    2007-01-01

    Craniofacial anthropometry (the measurement and analysis of head and face dimensions) has been used to assess and describe abnormal craniofacial variation (dysmorphology) and the facial phenotype in many medical syndromes. Traditionally, anthropometry measurements have been collected by the direct application of calipers and tape measures to the subject's head and face, and can suffer from inaccuracies due to restless subjects, erroneous landmark identification, clinician variability, and other forms of human error. Three-dimensional imaging technologies promise a more effective alternative that separates the acquisition and measurement phases to reduce these variabilities while also enabling novel measurements and longitudinal analysis of subjects. Indiana University (IU) is part of an international consortium of researchers studying fetal alcohol spectrum disorders (FASD). Fetal alcohol exposure results in predictable craniofacial dysmorphologies, and anthropometry has been proven to be an effective diagnosis tool for the condition. IU is leading a project to study the use of 3D surface scanning to acquire anthropometry data in order to more accurately diagnose FASD, especially in its milder forms. This paper describes our experiences in selecting, verifying, supporting, and coordinating a set of 3D scanning systems for use in collecting facial scans and anthropometric data from around the world.

  8. Reduced Scan Time 3D FLAIR using Modulated Inversion and Repetition Time

    PubMed Central

    Gai, Neville D.; Butman, John A.

    2014-01-01

    Purpose To design and evaluate a new reduced scan time 3D FLuid Attenuated Inversion Recovery (FLAIR) sequence. Materials and Methods The 3D FLAIR sequence was modified so that the repetition time was modulated in a predetermined smooth fashion (3D mFLAIR). Inversion times were adjusted accordingly to maintain CSF suppression. Simulations were performed to determine SNR for gray matter (GM), white matter (WM) and CSF. Fourteen volunteers were imaged using the modified and product sequence. SNR measurements were performed in GM, WM and CSF. Mean value and the 95% confidence interval ([CI]) were assessed. Scan time for the 3D FLAIR and 3D mFLAIR sequences was measured. Results There was no statistically significant difference in the SNR measured in GM (P value = 0.5; mean SNR = 42.8 [CI]: 38.2-45.5 vs 42.2 [CI]: 38.3-46.1 for 3D FLAIR and 3D mFLAIR, respectively) and WM (P value = 0.25; mean SNR = 32.1 [CI]: 30.3-33.8 vs 32.9 [CI]: 31.1-34.7). Scan time reduction greater than 30% was achieved for the given parameter set with the 3D mFLAIR sequence. Conclusion Scan time for 3D FLAIR can be effectively reduced by modulating repetition and inversion time in a predetermined fashion while maintaining the SNR and CNR of a constant TR sequence. PMID:24979311

  9. A 3D acquisition system combination of structured-light scanning and shape from silhouette

    NASA Astrophysics Data System (ADS)

    Sun, Changku; Tao, Li; Wang, Peng; He, Li

    2006-05-01

    A robust and accurate three dimensional (3D) acquisition system is presented, which is a combination of structured-light scanning and shape from silhouette. Using common world coordinate system, two groups of point data can be integrated into the final complete 3D model without any integration and registration algorithm. The mathematics model of structured-light scanning is described in detail, and the shape from silhouette algorithm is introduced as well. The complete 3D model of a cup with a handle is obtained successfully by the proposed technique. At last the measurement on a ball bearing is performed, with the measurement precision better than 0.15 mm.

  10. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  11. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy.

    PubMed

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-05-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  12. 3D scanning characteristics of an amorphous silicon position sensitive detector array system.

    PubMed

    Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel

    2012-02-13

    The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

  13. Validation of a three-dimensional facial scanning system based on structured light techniques.

    PubMed

    Ma, Lili; Xu, Tianmin; Lin, Jiuxiang

    2009-06-01

    The aim of this study was to validate a newly developed three-dimensional (3D) structured light scanning system in recording the facial morphology. The validation was performed in three aspects including accuracy, precision and reliability. The accuracy and precision were investigated using a plaster model with 19 marked landmarks. The accuracy was determined by comparing the coordinates from the 3D images and from the coordinates measure machine (CMM). The precision was quantified through the repeated landmarks location on 3D images. The reliability was investigated in 10 adult volunteers. Each was scanned five times in 3 weeks. The 3D images acquired at different times were compared with each other to measure the reliability. We found that the accuracy was 0.93 mm, the precision was 0.79 mm, the reliability was 0.2mm. These findings suggested that the structured light scanning system was accurate, precise and reliable to record the facial morphology for both clinic and research purposes. PMID:19303659

  14. Development of a 3D laser scanning system for the cavity

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Zhang, Da; Zhang, Yuan Sheng

    2013-06-01

    Serious geological hazard such as the roof fall-rib spalling-closure deformation of the cavity can exert bad influence to mine, even threaten human life. The traditional monitoring ways have some disadvantages, which are difficulties in obtaining data of the cavity, monitoring the unmanned cavity and calculating volume of the cavity accurately. To solve these problems, this paper describes how to develop a high precision 3D laser scanning system, which enables scanning the cavity rapidly, obtaining the same resolution point cloud, calculating volume of the cavity, marking the deformation area correctly and providing visualized environment. At the same time, this device has realized remote control functionality to avoid people to work on the underground. The measurement accuracy of the 3D laser scanning system is +/-2cm. The 3D laser scanning system can be combined with the mine microseism monitoring system to help with the estimation the cavity's stability and improve the effect of cavity monitoring.

  15. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  16. Optical design for uniform scanning in MEMS-based 3D imaging lidar.

    PubMed

    Lee, Xiaobao; Wang, Chunhui

    2015-03-20

    This paper proposes a method for the optical system design of uniform scanning in a larger scan field of view (FOV) in 3D imaging lidar. The theoretical formulas are derived for the design scheme. By employing the optical design software ZEMAX, a foldaway uniform scanning optical system based on MEMS has been designed, and the scanning uniformity and spot size of the system on the target plane, perpendicular to optical axis, are analyzed and discussed. Results show that the designed system can scan uniformly within the FOV of 40°×40° with small spot size for the target at distance of about 100 m. PMID:25968504

  17. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  18. Weapon identification using antemortem CT with 3D reconstruction, is it always possible?--A report in a case of facial blunt and sharp injuries using an ashtray.

    PubMed

    Aromatario, Mariarosaria; Cappelletti, Simone; Bottoni, Edoardo; Fiore, Paola Antonella; Ciallella, Costantino

    2016-01-01

    An interesting case of homicide involving the use of a heavy glass ashtray is described. The victim, a 81-years-old woman, has survived for few days and died in hospital. The external examination of the victim showed extensive blunt and sharp facial injuries and defense injuries on both the hands. The autopsy examination showed numerous tears on the face, as well as multiple fractures of the facial bones. Computer tomography scan, with 3D reconstruction, performed in hospital before death, was used to identify the weapon used for the crime. In recent years new diagnostics tools such as computer tomography has been widely used, especially in cases involving sharp and blunt forces. Computer tomography has proven to be very valuable in analyzing fractures of the cranial teca for forensic purpose, in particular antemortem computer tomography with 3D reconstruction is becoming an important tool in the process of weapon identification, thanks to the possibility to identify and make comparison between the shape of the object used to commit the crime, the injury and the objects found during the investigations. No previous reports on the use of this technique, for the weapon identification process, in cases of isolated facial fractures were described. We report a case in which, despite the correct use of this technique, it was not possible for the forensic pathologist to identify the weapon used to commit the crime. Authors wants to highlight the limits encountered in the use of computer tomography with 3D reconstruction as a tool for weapon identification when facial fractures occurred.

  19. Taking advantage of selective change driven processing for 3D scanning.

    PubMed

    Vegara, Francisco; Zuccarello, Pedro; Boluda, Jose A; Pardo, Fernando

    2013-09-27

    This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this application. Several experiments for both capturing strategies have been performed to try to find the limitations in high speed acquisition/processing. The classical approach is limited by the sequential array acquisition, as predicted by the Nyquist-Shannon sampling theorem, and this has been experimentally demonstrated in the case of a rotating helix. These limitations are overcome by the SCD 3D scanning prototype achieving a significantly higher performance. The aim of this article is to compare both capturing strategies in terms of performance in the time and frequency domains, so they share all the static characteristics including resolution, 3D scanning method, etc., thus yielding the same 3D reconstruction in static scenes.

  20. Taking Advantage of Selective Change Driven Processing for 3D Scanning

    PubMed Central

    Vegara, Francisco; Zuccarello, Pedro; Boluda, Jose A.; Pardo, Fernando

    2013-01-01

    This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this application. Several experiments for both capturing strategies have been performed to try to find the limitations in high speed acquisition/processing. The classical approach is limited by the sequential array acquisition, as predicted by the Nyquist–Shannon sampling theorem, and this has been experimentally demonstrated in the case of a rotating helix. These limitations are overcome by the SCD 3D scanning prototype achieving a significantly higher performance. The aim of this article is to compare both capturing strategies in terms of performance in the time and frequency domains, so they share all the static characteristics including resolution, 3D scanning method, etc., thus yielding the same 3D reconstruction in static scenes. PMID:24084110

  1. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  2. The use of 3D surface scanning for the measurement and assessment of the human foot

    PubMed Central

    2010-01-01

    Background A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot. Methods The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review. Results Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out. Conclusions Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans. PMID:20815914

  3. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  4. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. PMID:25872024

  5. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots.

  6. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction

    PubMed Central

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-01-01

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory. PMID:27657074

  7. 3D Laser Scanning Modeling and Application on Dazu Thousand-hand Bodhisattva in China

    NASA Astrophysics Data System (ADS)

    Hou, M.; Zhang, X.; Wu, Y.; Hu, Y.

    2014-04-01

    The Dazu Thousand-hand Bodhisattva Statue is located at Baoding Mountain in Chongqing. It has the reputation as "the Gem of World's Rock Carving Art". At present,the Dazu Thousand-hand Bodhisattva Statue is basically well conserved, while the local damage is already very serious. However, the Dazu Thousand-hand Bodhisattva Statue is a three-dimensional caved statue, the present plane surveying and mapping device cannot reflect the preservation situation completely. Therefore, the documentation of the Dazu Thousand-hand Bodhisattva Statue using terrestrial laser scanning is of great significance. This paper will introduce a new method for superfine 3D modeling of Thousand-hand Bodhisattva based on the high-resolution 3D cloud points. By analyzing these 3D cloud points and 3D models, some useful information, such as several 3D statistics, 3D thematic map and 3D shape restoration suggestion of Thousand-hand Bodhisattva will be revealed, which are beneficial to restoration work and some other application.

  8. 3D Face Model Dataset: Automatic Detection of Facial Expressions and Emotions for Educational Environments

    ERIC Educational Resources Information Center

    Chickerur, Satyadhyan; Joshi, Kartik

    2015-01-01

    Emotion detection using facial images is a technique that researchers have been using for the last two decades to try to analyze a person's emotional state given his/her image. Detection of various kinds of emotion using facial expressions of students in educational environment is useful in providing insight into the effectiveness of tutoring…

  9. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    NASA Astrophysics Data System (ADS)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.

  10. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    NASA Astrophysics Data System (ADS)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  11. A novel sensor system for 3D face scanning based on infrared coded light

    NASA Astrophysics Data System (ADS)

    Modrow, Daniel; Laloni, Claudio; Doemens, Guenter; Rigoll, Gerhard

    2008-02-01

    In this paper we present a novel sensor system for three-dimensional face scanning applications. Its operating principle is based on active triangulation with a color coded light approach. As it is implemented in the near infrared band, the used light is invisible for human perception. Though the proposed sensor is primarily designed for face scanning and biometric applications, its performance characteristics are beneficial for technical applications as well. The acquisition of 3d data is real-time capable, provides accurate and high resolution depthmaps and shows high robustness against ambient light. Hence most of the limiting factors of other sensors for 3d and face scanning applications are eliminated, such as blinding and annoying light patterns, motion constraints and highly restricted scenarios due to ambient light constraints.

  12. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  13. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  14. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  15. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Huang, Xing; Qian, Wei

    2016-10-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  16. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  17. 3D laser scanning and modelling of the Dhow heritage for the Qatar National Museum

    NASA Astrophysics Data System (ADS)

    Wetherelt, A.; Cooper, J. P.; Zazzaro, C.

    2014-08-01

    Curating boats can be difficult. They are complex structures, often demanding to conserve whether in or out of the water; they are usually large, difficult to move on land, and demanding of gallery space. Communicating life on board to a visiting public in the terra firma context of a museum can be difficult. Boats in their native environment are inherently dynamic artifacts. In a museum they can be static and divorced from the maritime context that might inspire engagement. New technologies offer new approaches to these problems. 3D laser scanning and digital modeling offers museums a multifaceted means of recording, monitoring, studying and communicating watercraft in their care. In this paper we describe the application of 3D laser scanning and subsequent digital modeling. Laser scans were further developed using computer-generated imagery (CGI) modeling techniques to produce photorealistic 3D digital models for development into interactive, media-based museum displays. The scans were also used to generate 2D naval lines and orthographic drawings as a lasting curatorial record of the dhows held by the National Museum of Qatar.

  18. Autonomous Real-Time Interventional Scan Plane Control With a 3-D Shape-Sensing Needle

    PubMed Central

    Plata, Juan Camilo; Holbrook, Andrew B.; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L.; Cutkosky, Mark R.

    2016-01-01

    This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle’s estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner’s frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle’s profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response. PMID:24968093

  19. 3-D ice shape measurements using mid-infrared laser scanning.

    PubMed

    Gong, Xiaoliang; Bansmer, Stephan

    2015-02-23

    A general approach based on mid-infrared (MIR) laser scanning is proposed to measure the 3-D ice shape no matter whether the ice is composed of clear ice, rime ice, mixed ice, or even supercooled water droplets or films. This is possible because MIR radiation penetrates ice and water only within a depth of less than 10 micrometers. First, an MIR laser point scanning technique is implemented and verified on transparent glass and clear ice. Then, to improve efficiency, an MIR laser line scanning method is developed and validated on different models. At last, several sequential MIR laser line scans are applied to trace the 3-D shape evolution of the continuous ice accretion on an airfoil in an icing wind tunnel. The ice growth process can be well observed in the results. The MIR scan shows a good agreement with the traditional visible laser scan on a plastic replication of the final ice shape made by the mold and casting method. PMID:25836526

  20. 3-D ice shape measurements using mid-infrared laser scanning.

    PubMed

    Gong, Xiaoliang; Bansmer, Stephan

    2015-02-23

    A general approach based on mid-infrared (MIR) laser scanning is proposed to measure the 3-D ice shape no matter whether the ice is composed of clear ice, rime ice, mixed ice, or even supercooled water droplets or films. This is possible because MIR radiation penetrates ice and water only within a depth of less than 10 micrometers. First, an MIR laser point scanning technique is implemented and verified on transparent glass and clear ice. Then, to improve efficiency, an MIR laser line scanning method is developed and validated on different models. At last, several sequential MIR laser line scans are applied to trace the 3-D shape evolution of the continuous ice accretion on an airfoil in an icing wind tunnel. The ice growth process can be well observed in the results. The MIR scan shows a good agreement with the traditional visible laser scan on a plastic replication of the final ice shape made by the mold and casting method.

  1. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  2. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy.

    PubMed

    Rennie, Monique Y; Gahan, Curran G; López, Claudia S; Thornburg, Kent L; Rugonyi, Sandra

    2014-08-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three-dimensional (3D), high-resolution imaging. Focused ion beam scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a FIB, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy. Up to 1,100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800-1,500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall.

  3. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  4. Evaluating 3D registration of CT-scan images using crest lines

    NASA Astrophysics Data System (ADS)

    Ayache, Nicholas; Gueziec, Andre P.; Thirion, Jean-Philippe; Gourdon, A.; Knoplioch, Jerome

    1993-06-01

    We consider the issue of matching 3D objects extracted from medical images. We show that crest lines computed on the object surfaces correspond to meaningful anatomical features, and that they are stable with respect to rigid transformations. We present the current chain of algorithmic modules which automatically extract the major crest lines in 3D CT-Scan images, and then use differential invariants on these lines to register together the 3D images with a high precision. The extraction of the crest lines is done by computing up to third order derivatives of the image intensity function with appropriate 3D filtering of the volumetric images, and by the 'marching lines' algorithm. The recovered lines are then approximated by splines curves, to compute at each point a number of differential invariants. Matching is finally performed by a new geometric hashing method. The whole chain is now completely automatic, and provides extremely robust and accurate results, even in the presence of severe occlusions. In this paper, we briefly describe the whole chain of processes, already presented to evaluate the accuracy of the approach on a couple of CT-scan images of a skull containing external markers.

  5. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  6. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples.

  7. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  8. Analysis of the Possibilities of Using Low-Cost Scanning System in 3d Modeling

    NASA Astrophysics Data System (ADS)

    Kedzierski, M.; Wierzbickia, D.; Fryskowska, A.; Chlebowska, B.

    2016-06-01

    The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of

  9. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.

    PubMed

    Mochalov, Konstantin E; Efimov, Anton E; Bobrovsky, Alexey; Agapov, Igor I; Chistyakov, Anton A; Oleinikov, Vladimir; Sukhanova, Alyona; Nabiev, Igor

    2013-10-22

    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products.

  10. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.

    PubMed

    Mochalov, Konstantin E; Efimov, Anton E; Bobrovsky, Alexey; Agapov, Igor I; Chistyakov, Anton A; Oleinikov, Vladimir; Sukhanova, Alyona; Nabiev, Igor

    2013-10-22

    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products. PMID:23991901

  11. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging

    PubMed Central

    Huo, Li; Xi, Jiefeng; Wu, Yicong; Li, Xingde

    2010-01-01

    A forward-viewing resonant fiber-optic endoscope of a scanning speed appropriate for a high-speed Fourier-domain optical coherence tomography (FD-OCT) system was developed to enable real-time, three-dimensional endoscopic OCT imaging. A new method was explored to conveniently tune the scanning frequency of a resonant fiber-optic scanner, by properly selecting the fiber-optic cantilever length, partially changing the mechanical property of the cantilever, and adding a weight to the cantilever tip. Systematic analyses indicated the resonant scanning frequency can be tuned over two orders of magnitude spanning from ~10Hz to ~kHz. Such a flexible scanning frequency range makes it possible to set an appropriate scanning speed of the endoscope to match the different A-scan rates of a variety of FD-OCT systems. A 2.4-mm diameter, 62.5-Hz scanning endoscope appropriate to work with a 40-kHz swept-source OCT (SS-OCT) system was developed and demonstrated for 3D OCT imaging of biological tissues. PMID:20639922

  12. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  13. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  14. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  15. Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Gasser, Philippe; Lucas, Falk; Wepf, Roger

    2012-01-01

    The rationale of correlative light and electron microscopy (CLEM) is to collect data on different information levels--ideally from an identical area on the same sample--with the aim of combining datasets at different levels of resolution to achieve a more holistic view of the hierarchical structural organization of cells and tissues. Modern three-dimensional (3D) imaging techniques in light and electron microscopy opened up new possibilities to expand morphological studies into the third dimension at the nanometer scale and over various volume dimensions. Here, we present two alternative approaches to correlate 3D light microscopy (LM) data with scanning electron microscopy (SEM) volume data. An adapted sample preparation method based on high-pressure freezing for structure preservation, followed by freeze-substitution for multimodal en-bloc imaging or serial-section imaging is described. The advantages and potential applications are exemplarily shown on various biological samples, such as cells, individual organisms, human tissue, as well as plant tissue. The two CLEM approaches presented here are per se not mutually exclusive, but have their distinct advantages. Confocal laser scanning microscopy (CLSM) and focused ion beam-SEM (FIB-SEM) is most suitable for targeted 3D correlation of small volumes, whereas serial-section LM and SEM imaging has its strength in large-area or -volume screening and correlation. The second method can be combined with immunocytochemical methods. Both methods, however, have the potential to extract statistically relevant data of structural details for systems biology.

  16. 3D shape measurement for moving scenes using an interlaced scanning colour camera

    NASA Astrophysics Data System (ADS)

    Cao, Senpeng; Cao, Yiping; Lu, Mingteng; Zhang, Qican

    2014-12-01

    A Fourier transform deinterlacing algorithm (FTDA) is proposed to eliminate the blurring and dislocation of the fringe patterns on a moving object captured by an interlaced scanning colour camera in phase measuring profilometry (PMP). Every frame greyscale fringe from three colour channels of every colour fringe is divided into even and odd field fringes respectively, each of which is respectively processed by FTDA. All of the six frames deinterlaced fringes from one colour fringe form two sets of three-step phase-shifted greyscale fringes, with which two 3D shapes corresponding to two different moments are reconstructed by PMP within a frame period. The deinterlaced fringe is identical with the exact frame fringe at the same moment theoretically. The simulation and experiments show its feasibility and validity. The method doubles the time resolution, maintains the precision of the traditional phase measurement profilometry, and has potential applications in the moving and online object’s 3D shape measurements.

  17. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  18. 3-D ultrasonic strain imaging based on a linear scanning system.

    PubMed

    Huang, Qinghua; Xie, Bo; Ye, Pengfei; Chen, Zhaohong

    2015-02-01

    This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).

  19. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    NASA Astrophysics Data System (ADS)

    Nurunnabi, A.; West, G.; Belton, D.

    2013-10-01

    A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  20. Simultaneous multiplane imaging for 3D confocal microscopy using high-speed z-scanning multiplexing

    NASA Astrophysics Data System (ADS)

    Duocastella, Marti; Vicidomini, Giuseppe; Diaspro, Alberto

    2015-03-01

    One of the key frontiers in optical imaging is to maximize the spatial information retrieved from a sample while minimizing acquisition time. Confocal laser scanning microscopy is a powerful imaging modality that allows real-time and high-resolution acquisition of two-dimensional (2D) sections. However, in order to obtain information from threedimensional (3D) volumes it is currently limited by a stepwise process that consists of acquiring multiple 2D sections from different focal planes by slow z-focus translation. Here, we present a novel method that enables the capture of an entire 3D sample in a single step. Our approach is based on an acoustically-driven varifocal lens integrated in a commercial confocal system that enables axial focus scanning at speeds of 140 kHz or above. Such high-speed allows for one or multiple focus sweeps on a pixel by pixel basis. By using a fast acquisition card, we can assign the photons detected at each pixel to their corresponding focal plane allowing simultaneous multiplane imaging. We exemplify this novel 3D confocal microscopy technique by imaging different biological fluorescent samples and comparing them with those obtained using traditional z-scanners. Based on these results, we find that image quality in this novel approach is similar to that obtained with traditional confocal methods, while speed is only limited by signal-to-noise-ratio. As the sensitivity of photodetectors increases and more efficient fluorescent labeling is developed, this novel 3D method can result in significant reduction in acquisition time allowing the study of new fundamental processes in science.

  1. 3D scanning and imaging for quick documentation of crime and accident scenes

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Sala, R.; Scaioni, M.; Cattaneo, C.; Gibelli, D.; Giussani, A.; Poppa, P.; Roncoroni, F.; Vandone, A.

    2012-06-01

    Fast documentation of complex scenes where accidents or crimes occurred is fundamental not to lose information for post-event analyses and lesson learning. Today 3D terrestrial laser scanning and photogrammetry offer instruments capable of achieving this task. The former allows the fast geometric reconstruction of complex scenes through dense point clouds. Different kinds of instruments can be used according to the size of the area to survey and to the required level of details. The latter can be used for both geometric reconstruction and for photo-realistic texturing of laser scans. While photogrammetry better focuses on small details, laser scanning gives out a more comprehensive view of geometry of whole crime/accident scene. Both techniques can be used for recording a scene just after a crime or a disaster occurred, before the area is cleared out to recover regular activities. Visualization of results through an easy-to-use 3D environment is another import issue to offer useful data to investigators. Here two experiences of crime scene documentation are proposed.

  2. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  3. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-06-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  4. Re-thinking 3D printing: A novel approach to guided facial contouring.

    PubMed

    Darwood, Alastair; Collier, Jonathan; Joshi, Naresh; Grant, William E; Sauret-Jackson, Veronique; Richards, Robin; Dawood, Andrew; Kirkpatrick, Niall

    2015-09-01

    Rapid prototyped or three dimensional printed (3D printed) patient specific guides are of great use in many craniofacial and maxillofacial procedures and are extensively described in the literature. These guides are relatively easy to produce and cost effective. However existing designs are limited in that they are unable to be used in procedures requiring the 3D contouring of patient tissues. This paper presents a novel design and approach for the use of three dimensional printing in the production of a patient specific guide capable of fully guiding intraoperative 3D tissue contouring based on a pre-operative plan. We present a case where the technique was used on a patient suffering from an extensive osseous tumour as a result of fibrous dysplasia with encouraging results. PMID:26165757

  5. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  6. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    SciTech Connect

    Zelenogorskii, V V; Andrianov, A V; Gacheva, E I; Gelikonov, G V; Mironov, S Yu; Potemkin, A K; Khazanov, E A; Krasilnikov, M; Stephan, F; Mart'yanov, M A; Syresin, E M

    2014-01-31

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s{sup -1} and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 μs in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained. The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector. (laser applications and other topics in quantum electronics)

  7. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    PubMed

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. PMID:26930005

  8. Optimization of 3D laser scanning speed by use of combined variable step

    NASA Astrophysics Data System (ADS)

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  9. The Role of Active Exploration of 3D Face Stimuli on Recognition Memory of Facial Information

    ERIC Educational Resources Information Center

    Liu, Chang Hong; Ward, James; Markall, Helena

    2007-01-01

    Research on face recognition has mainly relied on methods in which observers are relatively passive viewers of face stimuli. This study investigated whether active exploration of three-dimensional (3D) face stimuli could facilitate recognition memory. A standard recognition task and a sequential matching task were employed in a yoked design.…

  10. 3D Imaging of Diatoms with Ion-abrasion Scanning Electron Microscopy

    PubMed Central

    Hildebrand, Mark; Kim, Sang; Shi, Dan; Scott, Keana; Subramaniam, Sriram

    2009-01-01

    Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at ~ 30 nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the “hard” (siliceous) and “soft” (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system. PMID:19269330

  11. State of the art of 3D scanning systems and inspection of textile surfaces

    NASA Astrophysics Data System (ADS)

    Montilla, M.; Orjuela-Vargas, S. A.; Philips, W.

    2014-02-01

    The rapid development of hardware and software in the digital image processing field has boosted research in computer vision for applications in industry. The development of new electronic devices and the tendency to decrease their prices makes possible new developments that few decades ago were possible only in the imagination. This is the case of 3D imaging technology which permits to detect failures in industrial products by inspecting aspects on their 3D surface. In search of an optimal solution for scanning textiles we present in this paper a review of existing techniques for digitizing 3D surfaces. Topographic details of textiles can be obtained by digitizing surfaces using laser line triangulation, phase shifting optical triangulation, projected-light, stereo-vision systems and silhouette analysis. Although we are focused on methods that have been used in the textile industry, we also consider potential mechanisms used for other applications. We discuss the advantages and disadvantages of the evaluated methods and state a summary of potential implementations for the textile industry.

  12. The 3-D alignment of objects in dynamic PET scans using filtered sinusoidal trajectories of sinogram

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Aristotelis E.; Happonen, Antti P.; Ruotsalainen, Ulla

    2006-12-01

    In this study, our goal is to employ a novel 3-D alignment method for dynamic positron emission tomography (PET) scans. Because the acquired data (i.e. sinograms) often contain noise considerably, filtering of the data prior to the alignment presumably improves the final results. In this study, we utilized a novel 3-D stackgram domain approach. In the stackgram domain, the signals along the sinusoidal trajectory signals of the sinogram can be processed separately. In this work, we performed angular stackgram domain filtering by employing well known 1-D filters: the Gaussian low-pass filter and the median filter. In addition, we employed two wavelet de-noising techniques. After filtering we performed alignment of objects in the stackgram domain. The local alignment technique we used is based on similarity comparisons between locus vectors (i.e. the signals along the sinusoidal trajectories of the sinogram) in a 3-D neighborhood of sequences of the stackgrams. Aligned stackgrams can be transformed back to sinograms (Method 1), or alternatively directly to filtered back-projected images (Method 2). In order to evaluate the alignment process, simulated data with different kinds of additive noises were used. The results indicated that the filtering prior to the alignment can be important concerning the accuracy.

  13. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  14. Measuring fracture properties of meteorites: 3D scans and disruption experiments

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, D.; Asphaug, E.; Morris, M.; Garvier, L.

    2014-07-01

    Many meteorite studies are focused on chemical and isotopic composition, which provide insightful information regarding the age, formation, and evolution of the Solar System. However, their fundamental mechanical properties have received less attention. It is important to determine these properties as they are related to disruption and fragmentation of bolides and asteroids, and activities related to sample return and hazardous asteroid mitigation. Here we present results from an ongoing suite of measurements and experiments focusing on maps of surface texture that connect to the dynamic geological properties of a diverse range of meteorites from the Center for Meteorite Studies (CMS) collection at Arizona State University (ASU). Results will include high-resolution 3D color-shape models and texture maps from which we derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of rock, and to macroscopic optical properties, and to rubble friction and cohesion. Selected meteorites, in particular Tamdakht (H5), Allende (CV3), and Chelyabinsk (LL5), will subsequently be disrupted in catastrophic hypervelocity impact experiments. The fragments obtained from these experiments will be scanned, and the results compared with the fragments obtained in numerical hydrocode simulations, whose initial conditions are set up precisely from 3D scans of the original meteorite. By attaining the best match we will obtain key parameters for models of asteroid and bolide disruption.

  15. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  16. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  17. A Lack of Sexual Dimorphism in Width-to-Height Ratio in White European Faces Using 2D Photographs, 3D Scans, and Anthropometry

    PubMed Central

    Kramer, Robin S. S.; Jones, Alex L.; Ward, Robert

    2012-01-01

    Facial width-to-height ratio has received a great deal of attention in recent research. Evidence from human skulls suggests that males have a larger relative facial width than females, and that this sexual dimorphism is an honest signal of masculinity, aggression, and related traits. However, evidence that this measure is sexually dimorphic in faces, rather than skulls, is surprisingly weak. We therefore investigated facial width-to-height ratio in three White European samples using three different methods of measurement: 2D photographs, 3D scans, and anthropometry. By measuring the same individuals with multiple methods, we demonstrated high agreement across all measures. However, we found no evidence of sexual dimorphism in the face. In our third study, we also found a link between facial width-to-height ratio and body mass index for both males and females, although this relationship did not account for the lack of dimorphism in our sample. While we showed sufficient power to detect differences between male and female width-to-height ratio, our results failed to support the general hypothesis of sexual dimorphism in the face. PMID:22880088

  18. Measuring Fracture Properties of Meteorites: 3D Scans and Disruption Experiments.

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Morris, Melissa A.; Garvie, Laurence

    2014-11-01

    The Arizona State University (ASU) Center for Meteorite Studies (CMS) houses over 30,000 specimens that represent almost every known meteorite type. A number of these are available for fragmentation experiments in small samples, but in most cases non-destructive experiments are desired in order to determine the fundamental mechanical properties of meteorites, and by extension, the Near-Earth Asteroids (NEAs) and other planetary bodies they derive from. We present results from an ongoing suite of measurements and experiments, featuring automated 3D topographic scans of a comprehensive suite of meteorites in the CMS collection, basic mechanical studies, and culminating in catastrophic fragmentation of four representative meteorites: Tamdakht (H5), Allende (CV3), Northwest Africa 869 (L3-6) and Chelyabinsk (LL5). Results will include high-resolution 3D color-shape models of meteorites, including specimens such as the 349g oriented and fusion crusted Martian (shergottite) Tissint, and the delicately fusion crusted and oriented 131g Whetstone Mountains (H5) ordinary chondrite. The 3D color-shape models will allow us to obtain basic physical properties (such as volume to derive density) and to derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of the material, to macroscopic optical properties, and to rubble friction and cohesion. Freshly fractured surfaces of fragments that will result from catastrophic hypervelocity impact experiments will be subsequently scanned and analyzed in order to determine whether fractal dimension is preserved or if it changes with surface maturation.

  19. Combining supine MRI and 3D optical scanning for improved surgical planning of breast conserving surgeries

    NASA Astrophysics Data System (ADS)

    Pallone, Matthew J.; Poplack, Steven P.; Barth, Richard J., Jr.; Paulsen, Keith D.

    2012-02-01

    Image-guided wire localization is the current standard of care for the excision of non-palpable carcinomas during breast conserving surgeries (BCS). The efficacy of this technique depends upon the accuracy of wire placement, maintenance of the fixed wire position (despite patient movement), and the surgeon's understanding of the spatial relationship between the wire and tumor. Notably, breast shape can vary significantly between the imaging and surgical positions. Despite this method of localization, re-excision is needed in approximately 30% of patients due to the proximity of cancer to the specimen margins. These limitations make wire localization an inefficient and imprecise procedure. Alternatively, we investigate a method of image registration and finite element (FE) deformation which correlates preoperative supine MRIs with 3D optical scans of the breast surface. MRI of the breast can accurately define the extents of very small cancers. Furthermore, supine breast MR reduces the amount of tissue deformation between the imaging and surgical positions. At the time of surgery, the surface contour of the breast may be imaged using a handheld 3D laser scanner. With the MR images segmented by tissue type, the two scans are approximately registered using fiducial markers present in both acquisitions. The segmented MRI breast volume is then deformed to match the optical surface using a FE mechanical model of breast tissue. The resulting images provide the surgeon with 3D views and measurements of the tumor shape, volume, and position within the breast as it appears during surgery which may improve surgical guidance and obviate the need for wire localization.

  20. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  1. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices

    PubMed Central

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-01-01

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given. PMID:26703624

  2. The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Friess, Martin

    2006-02-01

    Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.

  3. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    PubMed

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  4. Improved Scanning Geometry to Collect 3D-Geometry Data in Flat Samples

    SciTech Connect

    Krueger, P.; Niese, S.; Zschech, E.; Gelb, J.; Feser, M.

    2011-09-09

    3D integration through silicon technology of integrated circuits challenges non-destructive testing methods. 3D x-ray methods are the techniques of choice to localize defects in interconnects. The development of high-power x-ray sources enabled the use of x-ray microscopy in laboratory tools. Those devices are able to resolve features down to 40 nm in an acceptable measurement time. However, the field of view is very limited to 16 {mu}m in high-resolution mode and to 65 {mu}m in large-field-of-view mode. To record tomography data, the size of the samples must not exceed the field of view to circumvent specific artifacts. Semiconductor samples usually do not fulfill the condition mentioned above since they have the shape of flat sheets. Therefore limited-angle tomography is typically used. The missing angles cause typical capping artifacts and poor signal-to-noise ratio. We present a modified scanning geometry that overcomes some of the artifacts and yields a better image quality. The geometry and potential applications are presented in comparison to the traditional limited-angle tomography.

  5. Development and Evaluation of Roadside/Obstacle Detection Method Using 3D Scanned Data Processing

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Ishii, Yoshinori; Yamazaki, Katsuyuki

    In this paper, we have reported the development of a snowblower support system which can safely navigate snowblowers, even during a whiteout, with the combination of a very accurate GPS system, so called RTK-GPS, and a unique and highly accurate map of roadsides and obstacles on roads. Particularly emphasized new techniques in this paper are ways to detect accurate geographical positions of roadsides and obstacles by utilizing and analyzing 3D laser scanned data, whose data has become available in recent days. The experiment has shown that the map created by the methods and RTK-GPS can sufficiently navigate snowblowers, whereby a secure and pleasant social environment can be archived in snow areas of Japan. In addition, proposed methods are expected to be useful for other systems such as a quick development of a highly accurate road map, a safely navigation of a wheeled chair, and so on.

  6. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  7. 3D imaging acquisition, modeling, and prototyping for facial defects reconstruction

    NASA Astrophysics Data System (ADS)

    Sansoni, Giovanna; Trebeschi, Marco; Cavagnini, Gianluca; Gastaldi, Giorgio

    2009-01-01

    A novel approach that combines optical three-dimensional imaging, reverse engineering (RE) and rapid prototyping (RP) for mold production in the prosthetic reconstruction of facial prostheses is presented. A commercial laser-stripe digitizer is used to perform the multiview acquisition of the patient's face; the point clouds are aligned and merged in order to obtain a polygonal model, which is then edited to sculpture the virtual prothesis. Two physical models of both the deformed face and the 'repaired' face are obtained: they differ only in the defect zone. Depending on the material used for the actual prosthesis, the two prototypes can be used either to directly cast the final prosthesis or to fabricate the positive wax pattern. Two case studies are presented, referring to prostetic reconstructions of an eye and of a nose. The results demonstrate the advantages over conventional techniques as well as the improvements with respect to known automated manufacturing techniques in the mold construction. The proposed method results into decreased patient's disconfort, reduced dependence on the anaplasthologist skill, increased repeatability and efficiency of the whole process.

  8. Precision of cortical bone reconstruction based on 3D CT scans.

    PubMed

    Wang, Jianping; Ye, Ming; Liu, Zhongtang; Wang, Chengtao

    2009-04-01

    The precision and accuracy of human cortical bone reconstruction using 3D CT scans was evaluated using machined bone segments. Both linear and angular errors were measured. Cadaver adult femoral and tibial cortical bone segments were obtained and machined in six orthogonal planes with a precision milling machine. CT scans were then obtained and the bone segments were reconstructed as digital replicas. Dimensional and angular measurements errors were evaluated for the machined bone segments and the results were compared with known dimensions based on milling machine settings to calculate errors due to scanning and model reconstruction. The model dimensional error in the coronal, sagittal and axial directions had a mean of 0.21 mm, with standard a deviation of 0.12 mm and a maximum error of 0.47 mm. The mean percent error was 0.74% and the maximum percent error was 1.9%. The angular error of models in the coronal, sagittal and axial directions was calculated, yielding a mean of 0.47 degrees with a standard deviation of 0.37 degrees and a maximum of 1.33 degrees. The error in the cross-sectional axial direction had a mean of 0.54 mm with a maximum error of 0.83 mm, depending on the slice interval. The main error source was of the image processing, which was about 70% of the total error. We found that machining cortical bone segments prior to CT scanning is an effective method for accuracy evaluation of CT-based bone reconstruction. This method can provide a reference for assessing the sensitivity, reliability and accuracy of CT-based applications in the study of movement, finite element modeling, and prosthesis construction.

  9. Permanent 3D laser scanning system for an active landslide in Gresten (Austria)

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Höfle, Bernhard; Hämmerle, Martin; Benni, Thiebes; Glade, Thomas

    2015-04-01

    Terrestrial laser scanners (TLS) have widely been used for high spatial resolution data acquisition of topographic features and geomorphic analyses. Existing applications encompass different landslides including rockfall, translational or rotational landslides, debris flow, but also coastal cliff erosion, braided river evolution or river bank erosion. The main advantages of TLS are (a) the high spatial sampling density of XYZ-measurements (e.g. 1 point every 2-3 mm at 10 m distance), particularly in comparison with the low data density monitoring techniques such as GNSS or total stations, (b) the millimeter accuracy and precision of the range measurement to centimeter accuracy of the final DEM, and (c) the highly dense area-wide scanning that enables to look through vegetation and to measure bare ground. One of its main constraints is the temporal resolution of acquired data due to labor costs and time requirements for field campaigns. Thus, repetition measurements are generally performed only episodically. However, for an increased scientific understanding of the processes as well as for early warning purposes, we present a novel permanent 3D monitoring setup to increase the temporal resolution of TLS measurements. This accounts for different potential monitoring deliverables such as volumetric calculations, spatio-temporal movement patterns, predictions and even alerting. This system was installed at the active Salcher landslide in Gresten (Austria) that is situated in the transition zone of the Gresten Klippenbelt (Helvetic) and the Flyschzone (Penninic). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that are covered by a sequence of marly and silty beds with intercalated sandy limestones. Permanent data acquisition can be implemented into our workflow with any long-range TLS system offering fully automated capturing. We utilize an Optech ILRIS-3D scanner. The time interval between two scans is currently set to 24 hours, but can be

  10. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    PubMed Central

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  11. A new 3D method for measuring cranio-facial relationships with cone beam computed tomography (CBCT)

    PubMed Central

    Cibrián, Rosa; Gandia, Jose L.; Paredes, Vanessa

    2013-01-01

    Objectives: CBCT systems, with their high precision 3D reconstructions, 1:1 images and accuracy in locating cephalometric landmarks, allows us to evaluate measurements from craniofacial structures, so enabling us to replace the anthropometric methods or bidimensional methods used until now. The aims are to analyse cranio-facial relationships in a sample of patients who had previously undergone a CBCT and create a new 3D cephalometric method for assessing and measuring patients. Study Design: 90 patients who had a CBCT (i-Cat®) as a diagnostic register were selected. 12 cephalometric landmarks on the three spatial planes (X,Y,Z) were defined and 21 linear measurements were established. Using these measurements, 7 triangles were described and analysed. With the sides of the triangles: (CdR-Me-CdL); (FzR-Me-FzL); (GoR-N-GoL); and the Gl-Me distance, the ratios between them were analysed. In addition, 4 triangles in the mandible were measured (body: GoR-DB-Me and GoL-DB-Me and ramus: KrR-CdR-GoR and KrL-CdL-GoL). Results: When analyzing the sides of the CdR-Me-CdL triangle, it was found that the 69.33% of the patients could be considered symmetric. Regarding the ratios between the sides of the following triangles: CdR-Me-CdL, FzR-Me-FzL, GoR-N-GoL and the Gl-Me distance, it was found that almost all ratios were close to 1:1 except between the CdR-CdL side with respect the rest of the sides. With regard to the ratios of the 4 triangles of the mandible, it was found that the most symmetrical relationships were those corresponding to the sides of the body of the mandible and the most asymmetrical ones were those corresponding to the base of such triangles. Conclusions: A new method for assessing cranio-facial relationshps using CBCT has been established. It could be used for diverse purposes including diagnosis and treatment planning. Key words:Craniofacial relationship, CBCT, 3D cephalometry. PMID:23524427

  12. The virtual human face: superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan.

    PubMed

    Naudi, K B; Benramadan, R; Brocklebank, L; Ju, X; Khambay, B; Ayoub, A

    2013-03-01

    The aim of this study was to evaluate the impact of simultaneous capture of the three-dimensional (3D) surface of the face and cone beam computed tomography (CBCT) scan of the skull on the accuracy of their registration and superimposition. 3D facial images were acquired in 14 patients using the Di3d (Dimensional Imaging, UK) imaging system and i-CAT CBCT scanner. One stereophotogrammetry image was captured at the same time as the CBCT and another 1h later. The two stereophotographs were individually superimposed over the CBCT using VRmesh. Seven patches were isolated on the final merged surfaces. For the whole face and each individual patch: maximum and minimum range of deviation between surfaces; absolute average distance between surfaces; and standard deviation for the 90th percentile of the distance errors were calculated. The superimposition errors of the whole face for both captures revealed statistically significant differences (P=0.00081). The absolute average distances in both separate and simultaneous captures were 0.47 and 0.27mm, respectively. The level of superimposition accuracy in patches from separate captures was 0.3-0.9mm, while that of simultaneous captures was 0.4mm. Simultaneous capture of Di3d and CBCT images significantly improved the accuracy of superimposition of these image modalities.

  13. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  14. A primary study of appropriate intraoral scanning frequency of single 3D image

    NASA Astrophysics Data System (ADS)

    Li, Hong; Lyu, Peijun; Sun, Yuchun; Wang, Yong; Liang, Xiaoyue

    2015-07-01

    Objective To make a quantitative analysis between sampling frequencies and micro-movement distance of mark points on tooth surfaces, and to provide a reference for sampling frequency settings of intraoral scanning systems. Methods Mark points affixed to the incisors of five subjects. In total, 3600 groups of tracking point coordinates were obtained with frequencies of 60, 150 and 300 Hz using an optical 3D tracking system. The data was then re-sampled to obtain coordinates at lower frequencies (5, 10, 15 and 20 Hz) at equal intervals of groups of tracking point coordinates. Change in distance (Δd) was defined as the change in position of a single v from one sampling time point to another, and was valued by clinical accuracy requirement (20-100μm). The curve equation was fit quantitatively between Δd median (M) and the sampling frequency (f). The difference between upper and lower incisor mark points were analyzed by a non-parametric test; α=0.05. Result When the frequency (f) was 60 Hz, upper jaw Δd median (M) and interquartile (Q) were 14.4 μm and 9.2 μm, respectively, while the lower Δd(M) and (Q) were 6.4 μm and 10.2 μm, respectively. Every Δd value was less than 100 μm, while 74% of Δd vales were less than 20 μm. Δd(M) and f satisfy the power curve equation: Δd(M)=0.526×f-0.979(f∈[5,300]). Significant differences of incisor feature points were noted between upper and lower jaws of the same subject (P<0.01). Conclusion Clinical accuracy can be met when the sampling frequency of the intraoral scanning system is 60 Hz.

  15. Building a 3d Reference Model for Canal Tunnel Surveying Using Sonar and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.

    2015-04-01

    Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security issue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater data recording) and LASER data (for the above-water parts). Although both scanning devices produce point clouds, their properties are rather different. In particular, SONAR data are very noisy and their processing raises several issues related to the device capacities, the acquisition setup and the tubular shape of the tunnel. The proposed methodology relies on a denoising step by meshing, followed by the registration of SONAR data with the geo-referenced LASER data. Since there is no overlap between point clouds, a 3-step procedure is proposed to robustly estimate the registration parameters. In this paper, we report a first experimental survey, which concerned the entrance of a canal tunnel. The obtained results are promising and the analysis of the method raises several improvement directions that will help obtaining more accurate models, in a more automated fashion, in the limits of the involved technology.

  16. Studying post depositional damage on Acheulian bifaces using 3-D scanning.

    PubMed

    Grosman, Leore; Sharon, Gonen; Goldman-Neuman, Talia; Smikt, Oded; Smilansky, Uzy

    2011-04-01

    In this study, we explore post-depositional damage observed on Acheulian bifacial tools by comparing two assemblages: a collection of archaeological handaxes which shows pronounced damage marks associated with high energy water accumulation system, and an experimental assemblage that was rolled and battered in a controlled simulation experiment. Scanning the two assemblages with a precise 3-D optical scanner and subjecting the measured surfaces to the same mathematical analysis enabled the development of quantitative measures assessing and comparing the degree of damage observed on archaeological and experimental tools. The method presented here enables the definition of morphological patterns typically resulting from battering and different from intentional controlled knapping. The most important kinds of damage included the formation of deep, random 'notch-like' scars on the lateral edges and substantial degrees of damage to the tip of the tools, but minimal damage to the artifact's butt. Quantifying the degree of damage and its location and morphological characters allows us to present a method by which post depositional damage on archaeological tools can be measured. PMID:20304464

  17. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    PubMed Central

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-01-01

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm. PMID:26640425

  18. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-07-01

    As the rapid progress in the development of optoelectronic components and computational power, 3-D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This article proposed a new approach to measure tiny internal 3-D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3-D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  19. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  20. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  1. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  2. Fusion of image and laser-scanning data in a large-scale 3D virtual environment

    NASA Astrophysics Data System (ADS)

    Shih, Jhih-Syuan; Lin, Ta-Te

    2013-05-01

    Construction of large-scale 3D virtual environment is important in many fields such as robotic navigation, urban planning, transportation, and remote sensing, etc. Laser scanning approach is the most common method used in constructing 3D models. This paper proposes an automatic method to fuse image and laser-scanning data in a large-scale 3D virtual environment. The system comprises a laser-scanning device installed on a robot platform and the software for data fusion and visualization. The algorithms of data fusion and scene integration are presented. Experiments were performed for the reconstruction of outdoor scenes to test and demonstrate the functionality of the system. We also discuss the efficacy of the system and technical problems involved in this proposed method.

  3. Web-based 3D digital pathology framework for large-mapping data scanned by FF-OCT

    NASA Astrophysics Data System (ADS)

    Chang, ChiaKai; Tsai, Chien-Chung; Chien, Meng-Ting; Li, Yu-I.; Shun, Chia-Tung; Huang, Sheng-Lung

    2015-03-01

    Full-Field Optical Coherence Tomography (FF-OCT) is a high resolution instrument in 3 dimensional (3D) space, including lateral and longitudinal direction. With FF-OCT, we can perform 3D scanning for excised biopsy or cell culture sample to obtain cellular information. In this work, we have set up a high resolution FF-OCT scanning instrument that can perform cellular resolution tomography scanning of skin tissue for histopathology study. In a scan range of 1cm(x), 1cm(y), 106μm(z), for example, digital data occupies 253 GB capacity. Copying these materials is time consuming, not to mention efficient browsing and analyzing of these data. To solve the problem of information delivery, we have established a network service to browse and analyze the huge volume data.

  4. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    PubMed

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374

  5. Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays

    PubMed Central

    Contreras, Javier; Tornero, Josep; Ferreira, Isabel; Martins, Rodrigo; Gomes, Luis; Fortunato, Elvira

    2015-01-01

    A MATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array. PMID:26633403

  6. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  7. 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information.

    PubMed

    Hosoi, Fumiki; Nakabayashi, Kazushige; Omasa, Kenji

    2011-01-01

    In the present study, an attempt was made to produce a precise 3D image of a tomato canopy using a portable high-resolution scanning lidar. The tomato canopy was scanned by the lidar from three positions surrounding it. Through the scanning, the point cloud data of the canopy were obtained and they were co-registered. Then, points corresponding to leaves were extracted and converted into polygon images. From the polygon images, leaf areas were accurately estimated with a mean absolute percent error of 4.6%. Vertical profile of leaf area density (LAD) and leaf area index (LAI) could be also estimated by summing up each leaf area derived from the polygon images. Leaf inclination angle could be also estimated from the 3-D polygon image. It was shown that leaf inclination angles had different values at each part of a leaf. PMID:22319403

  8. Automatic extraction of Manhattan-World building masses from 3D laser range scans.

    PubMed

    Vanegas, Carlos A; Aliaga, Daniel G; Benes, Bedrich

    2012-10-01

    We propose a novel approach for the reconstruction of urban structures from 3D point clouds with an assumption of Manhattan World (MW) building geometry; i.e., the predominance of three mutually orthogonal directions in the scene. Our approach works in two steps. First, the input points are classified according to the MW assumption into four local shape types: walls, edges, corners, and edge corners. The classified points are organized into a connected set of clusters from which a volume description is extracted. The MW assumption allows us to robustly identify the fundamental shape types, describe the volumes within the bounding box, and reconstruct visible and occluded parts of the sampled structure. We show results of our reconstruction that has been applied to several synthetic and real-world 3D point data sets of various densities and from multiple viewpoints. Our method automatically reconstructs 3D building models from up to 10 million points in 10 to 60 seconds.

  9. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  10. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  11. Model based assessment of vestibular jawbone thickness using high frequency 3D ultrasound micro-scanning

    NASA Astrophysics Data System (ADS)

    Habor, Daniel; Neuhaus, Sarah; Vollborn, Thorsten; Wolfart, Stefan; Radermacher, Klaus; Heger, Stefan

    2013-03-01

    Endosseous implants are well-established in modern dentistry. However, without appropriate therapeutic intervention, progressive peri-implant bone loss may lead to failing implants. Conventionally, the particularly relevant vestibular jawbone thickness is monitored using radiographic 3D imaging methods. Ionizing radiation, as well as imaging artifacts caused by metallic implants and superstructures are major drawbacks of these imaging modalities. In this study, a high frequency ultrasound (HFUS) based approach to assess the vestibular jawbone thickness is being introduced. It should be emphasized that the presented method does not require ultrasound penetration of the jawbone. An in-vitro study using two porcine specimens with inserted endosseous implants has been carried out to assess the accuracy of our approach. The implant of the first specimen was equipped with a gingiva former while a polymer superstructure was mounted onto the implant of the second specimen. Ultrasound data has been acquired using a 4 degree of freedom (DOF) high frequency (<50MHz) laboratory ultrasound scanner. The ultrasound raw data has been converted to polygon meshes including the surfaces of bone, gingiva, gingiva former (first specimen) and superstructure (second specimen). The meshes are matched with a-priori acquired 3D models of the implant, the superstructure and the gingiva former using a best-fit algorithm. Finally, the vestibular peri-implant bone thickness has been assessed in the resulting 3D models. The accuracy of this approach has been evaluated by comparing the ultrasound based thickness measurement with a reference measurement acquired with an optical extra-oral 3D scanner prior to covering the specimens with gingiva. As a final result, the bone thicknesses of the two specimens were measured yielding an error of -46+/-89μm (first specimen) and 70+/-93μm (second specimen).

  12. Accurate 3d Scanning of Damaged Ancient Greek Inscriptions for Revealing Weathered Letters

    NASA Astrophysics Data System (ADS)

    Papadaki, A. I.; Agrafiotis, P.; Georgopoulos, A.; Prignitz, S.

    2015-02-01

    In this paper two non-invasive non-destructive alternative techniques to the traditional and invasive technique of squeezes are presented alongside with specialized developed processing methods, aiming to help the epigraphists to reveal and analyse weathered letters in ancient Greek inscriptions carved in masonry or marble. The resulting 3D model would serve as a detailed basis for the epigraphists to try to decipher the inscription. The data were collected by using a Structured Light scanner. The creation of the final accurate three dimensional model is a complicated procedure requiring large computation cost and human effort. It includes the collection of geometric data in limited space and time, the creation of the surface, the noise filtering and the merging of individual surfaces. The use of structured light scanners is time consuming and requires costly hardware and software. Therefore an alternative methodology for collecting 3D data of the inscriptions was also implemented for reasons of comparison. Hence, image sequences from varying distances were collected using a calibrated DSLR camera aiming to reconstruct the 3D scene through SfM techniques in order to evaluate the efficiency and the level of precision and detail of the obtained reconstructed inscriptions. Problems in the acquisition processes as well as difficulties in the alignment step and mesh optimization are also encountered. A meta-processing framework is proposed and analysed. Finally, the results of processing and analysis and the different 3D models are critically inspected and then evaluated by a specialist in terms of accuracy, quality and detail of the model and the capability of revealing damaged and "hidden" letters.

  13. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy

    PubMed Central

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A.; Bunday, Benjamin; Vartanian, Victor

    2016-01-01

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  14. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy.

    PubMed

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A; Bunday, Benjamin; Vartanian, Victor

    2016-07-25

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  15. Novel eye-safe line scanning 3D laser-radar

    NASA Astrophysics Data System (ADS)

    Eberle, B.; Kern, Tobias; Hammer, Marcus; Schwanke, Ullrich; Nowak, Heinrich

    2014-10-01

    Today, the civil market provides quite a number of different 3D-Sensors covering ranges up to 1 km. Typically these sensors are based on single element detectors which suffer from the drawback of spatial resolution at larger distances. Tasks demanding reliable object classification at long ranges can be fulfilled only by sensors consisting of detector arrays. They ensure sufficient frame rates and high spatial resolution. Worldwide there are many efforts in developing 3D-detectors, based on two-dimensional arrays. This paper presents first results on the performance of a recently developed 3D imaging laser radar sensor, working in the short wave infrared (SWIR) at 1.5 μm. It consists of a novel Cadmium Mercury Telluride (CMT) linear array APD detector with 384x1 elements at a pitch of 25 μm, developed by AIM Infrarot Module GmbH. The APD elements are designed to work in the linear (non-Geiger) mode. Each pixel will provide the time of flight measurement, and, due to the linear detection mode, allowing the detection of three successive echoes. The resolution in depth is 15 cm, the maximum repetition rate is 4 kHz. We discuss various sensor concepts regarding possible applications and their dependence on system parameters like field of view, frame rate, spatial resolution and range of operation.

  16. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  17. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    SciTech Connect

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  18. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    NASA Astrophysics Data System (ADS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  19. Algorithm of geometry correction for airborne 3D scanning laser radar

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Siying; Zhang, Yinchao; Ni, Guoqiang

    2009-11-01

    Airborne three-dimensional scanning laser radar is used for wholesale scanning exploration to the target realm, then three-dimensional model can be established and target features can be identified with the characteristics of echo signals. So it is used widely and have bright prospect in the modern military, scientific research, agriculture and industry. At present, most researchers are focus on higher precision, more reliability scanning system. As the scanning platform is fixed on the aircraft, the plane cannot keep horizontal for a long time, also impossibly for a long time fly in the route without deviation. Data acquisition and the subsequence calibration rely on different equipments. These equipments bring errors both in time and space. Accurate geometry correction can amend the errors created by the process of assembly. But for the errors caused by the plane during the flight, whole imaging process should be analyzed. Take the side-roll as an example; scanning direction is inclined, so that the scanning point deviates from the original place. New direction and coordinate is the aim to us. In this paper, errors caused by the side-roll, pitch, yaw and assembly are analyzed and the algorithm routine is designed.

  20. Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Weekes, Ben; Ewins, David

    2015-06-01

    Continuous scan laser Doppler vibrometry (CSLDV) is a technique which has been described and explored in the literature for over two decades, but remains niche compared to SLDV inspection by a series of discrete-point measurements. This is in part because of the unavoidable phenomenon of laser speckle, which deteriorates signal quality when velocity data is captured from a moving spot measurement. Further, applicability of CSLDV has typically been limited to line scans and rectangular areas by the application of sine, step, or ramp functions to the scanning mirrors which control the location of the measurement laser spot. In this paper it is shown that arbitrary functions to scan any area can easily be derived from a basic calibration routine, equivalent to the calibration performed in conventional discrete-point laser vibrometry. This is extended by performing the same scan path upon a test surface from three independent locations of the laser head, and decomposing the three sets of one-dimensional deflection shapes into a single set of three-dimensional deflection shapes. The test was performed with multi-sine excitation, yielding 34 operating deflection shapes from each scan.

  1. A segmentation method for 3D visualization of neurons imaged with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Anderson, Jeffrey R.; Barrett, Steven F.; Wilcox, Michael J.

    2005-04-01

    Our understanding of the world around us is based primarily on three-dimensional information because of the environment in which we live and interact. Medical or biological image information is often collected in the form of two-dimensional, serial section images. As such, it is difficult for the observer to mentally reconstruct the three dimensional features of each object. Although many image rendering software packages allow for 3D views of the serial sections, they lack the ability to segment, or isolate different objects in the data set. Segmentation is the key to creating 3D renderings of distinct objects from serial slice images, like separate pieces to a puzzle. This paper describes a segmentation method for objects recorded with serial section images. The user defines threshold levels and object labels on a single image of the data set that are subsequently used to automatically segment each object in the remaining images of the same data set, while maintaining boundaries between contacting objects. The performance of the algorithm is verified using mathematically defined shapes. It is then applied to the visual neurons of the housefly, Musca domestica. Knowledge of the fly"s visual system may lead to improved machine visions systems. This effort has provided the impetus to develop this segmentation algorithm. The described segmentation method can be applied to any high contrast serial slice data set that is well aligned and registered. The medical field alone has many applications for rapid generation of 3D segmented models from MRI and other medical imaging modalities.

  2. Scanning transmission and computer-aided volumic electron microscopy: 3-D modeling of entire cells by electronic imaging

    NASA Astrophysics Data System (ADS)

    Bron, Christophe; Gremillet, Philip; Launay, D.; Jourlin, Michel; Gautschi, H. P.; Baechi, Thomas; Schuepbach, Joerg

    1990-05-01

    The digital processing of electron microscopic images from serial sections containing laser-induced topographical references allows a 3-D reconstruction at a depth resolution of 30 to 40 nm of entire cells by the use of image analysis methods, as already demonstrated for Transmission Electron Microscopy (TEM) coupled with a video camera. We decided to use a Scanning Transmission Electron Microscope (STEM) to get higher contrast and better resolution at medium magnification. The scanning of our specimens at video frequencies is an attractive and easy way to link a STEM with an image processing system but the hysteresis of the electronic spools responsible for the magnetic deviation of the scanning electron beam induces deformations of images which have to be modelized and corrected before registration. Computer algorithms developed for image analysis and treatment correct the artifacts caused by the use of STEM and by serial sectioning to automatically reconstruct the third dimension of the cells. They permit the normalization of the images through logarithmic processing of the original grey level infonnation. The automatic extraction of cell limits allows to link the image analysis and treatments with image synthesis methods by minimal human intervention. The surface representation and the registered images provide an ultrastructural data base from which quantitative 3-D morphological parameters, as well as otherwise impossible visualizations, can be computed. This 3-D image processing named C.A.V.U.M. for Computer Aided Volumic Ultra-Microscopy offers a new tool for the documentation and analysis of cell ultrastructure and for 3-D morphometric studies at EM magnifications. Further, a virtual observer can be computed in such a way as to simulate a visit of the reconstructed object.

  3. NON-INVASIVE 3D FACIAL ANALYSIS AND SURFACE ELECTROMYOGRAPHY DURING FUNCTIONAL PRE-ORTHODONTIC THERAPY: A PRELIMINARY REPORT

    PubMed Central

    Tartaglia, Gianluca M.; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F.

    2009-01-01

    Objectives: Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. Material and Methods: The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. Results: The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Conclusions: Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles. PMID:19936531

  4. Analysis of Age-Related Changes in Asian Facial Skeletons Using 3D Vector Mathematics on Picture Archiving and Communication System Computed Tomography

    PubMed Central

    Kim, Soo Jin; Kim, So Jung; Park, Jee Soo; Byun, Sung Wan

    2015-01-01

    Purpose There are marked differences in facial skeletal characteristics between Asian and Caucasian. However, ethnic differences in age-related facial skeletal changes have not yet been fully established. The aims of this study were to evaluate age-related changes in Asian midfacial skeletons and to explore ethnic differences in facial skeletal structures with aging between Caucasian and Asian. Materials and Methods The study included 108 men (aged 20-79 years) and 115 women (aged 20-81 years). Axial CT images with a gantry tilt angle of 0 were analyzed. We measured three-dimensional (3D) coordinates at each point with a pixel lens cursor in a picture archiving and communication system (PACS), and angles and widths between the points were calculated using 3D vector mathematics. We analyzed angular changes in 4 bony regions, including the glabellar, orbital, maxillary, and pyriform aperture regions, and changes in the orbital aperture width (distance from the posterior lacrimal crest to the frontozygomatic suture) and the pyriform width (between both upper margins of the pyriform aperture). Results All 4 midfacial angles in females and glabellar and maxillary angles in males showed statistically significant decreases with aging. On the other hand, the orbital and pyriform widths did not show statistically significant changes with aging. Conclusion The results of this study suggest that Asian midfacial skeletons may change continuously throughout life, and that there may be significant differences in the midfacial skeleton between both sexes and between ethnic groups. PMID:26256986

  5. Development of a temporal multiplexed 3D beam-scanning Lissajous trajectory microscope for rapid multimodal volumetric imaging

    NASA Astrophysics Data System (ADS)

    Newman, Justin A.; Sullivan, Shane Z.; Dinh, Janny; Sarkar, Sreya; Simpson, Garth J.

    2016-03-01

    A beam-scanning microscope is described based on a temporally multiplexed Lissajous trajectory for achieving 1 kHz frame rate 3D imaging. The microscope utilizes two fast-scan resonant mirrors to direct the optical beam on a circuitous, Lissajous trajectory through the field of view. Acquisition of two simultaneous focal planes is achieved by implementation of an optical delay line, producing a second incident beam at a different focal plane relative to the initial incident beam. High frame rates are achieved by separating the full time-domain data into shorter sub-trajectories resulting in undersampling of the field of view. A model-based image reconstruction (MBIR) 3D in-painting algorithm is utilized for interpolating the missing data to recover full images. The MBIR algorithm uses a maximum a posteriori estimation with a generalized Gaussian Markov random field prior model for image interpolation. Because images are acquired using photomultiplier tubes or photodiodes, parallelization for multi-channel imaging is straightforward. Preliminary results obtained using a Lissajous trajectory beam-scanning approach coupled with temporal multiplexing by the implementation of an optical delay line demonstrate the ability to acquire 2 distinct focal planes simultaneously at frame rates >450 Hz for full 512 × 512 images. The use of multi-channel data acquisition cards allows for simultaneous multimodal image acquisition with perfect image registry between all imaging modalities. Also discussed here is the implementation of Lissajous trajectory beam-scanning on commercially available microscope hardware.

  6. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.

  7. Design of a VLSI scan conversion processor for high-performance 3-D graphics systems

    SciTech Connect

    Huang, H.U.

    1988-01-01

    Scan-conversion processing is the bottleneck in the image generation process. To solve the problem of smooth shading and hidden surface elimination, a new processor architecture was invented which has been labeled as a scan-conversion processor architecture (SCP). The SCP is designed to perform hidden surface elimination and scan conversion for 64 pixels. The color intensities are dual-buffered so that when one buffer is being updated the other can be scanned out. Z-depth is used to perform the hidden surface elimination. The key operation performed by the SCP is the evaluation of linear functions of a form like F(X,Y) = A X + B Y + C. The computation is further simplified by using incremental addition. The z-depth buffer and the color buffers are incorporated onto the same chip. The SCP receives from its preprocessor the information for the definition of polygons and the computation of z-depth and RGB color intensities. Many copies of this processor will be used in a high-performance graphics system.

  8. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Fang, Lina; Li, Jonathan

    2013-05-01

    Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive "scanning lines", which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech's Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.

  9. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.

  10. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better

  11. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  12. Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder

    NASA Astrophysics Data System (ADS)

    Brücker, Ch.

    1995-08-01

    Scanning-Particle-Image-Velocimetry Technique (SPIV), introduced by Brücker (1992) and Brücker and Althaus (1992), offers the quantitative investigation of three-dimensional vortical structures in unsteady flows. On principle, this technique combines classical Particle-Image-Velocimetry (PIV) with volume scanning using a scanning light-sheet. In our previous studies, single scans obtained from photographic frame series were evaluated to show the instantaneous vortical structure of the respective flow phenomena. Here, continuous video recordings are processed to capture also the temporal information for the study of the set-up of 3D effects in the cylinder wake. The flow is continuously sampled in depth by the scanning light-sheet and in each of the parallel planes frame-to-frame cross-correlation of the video images (DPIV) is applied to obtain the 2D velocity field. Because the scanning frequency and repetition rate is high in comparison with the characteristic time-scale of the flow, the evaluation provides a complete time-record of the 3D flow during the starting process. With use of the continuity concept as described by Robinson and Rockwell (1993), we obtained in addition the out-of-plane component of the velocity in spanwise direction. This in view, the described technique enabled the reconstruction of the three-dimensional time-dependent velocity and vorticity field. The visualization of the dynamical behaviour of these quantities as, e.g. by video, gave a good impression of the spanwise flow showing the “tornado-like” suction effect of the starting vortices.

  13. Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror

    NASA Astrophysics Data System (ADS)

    Kumar, Karthik; Condit, Jonathan C.; McElroy, Austin; Kemp, Nate J.; Hoshino, Kazunori; Milner, Thomas E.; Zhang, Xiaojing

    2008-04-01

    We report on a fibre-based forward-imaging swept-source optical coherence tomography system using a high-reflectivity two-axis microelectromechanical scanning mirror for high-speed 3D in vivo visualization of cellular-scale architecture of biological specimens. The scanning micromirrors, based on electrostatic staggered vertical comb drive actuators, can provide ± 9° of optical deflection on both rotation axes and uniform reflectivity of greater than 90% over the range of imaging wavelengths (1260-1360 nm), allowing for imaging turbid samples with good signal-to-noise ratio. The wavelength-swept laser, scanning over 100 nm spectrum at 20 kHz rate, enables fast image acquisition at 10.2 million voxels s-1 (for 3D imaging) or 40 frames s-1 (for 2D imaging with 500 transverse pixels per image) with 8.6 µm axial resolution. Lateral resolution of 12.5 µm over 3 mm field of view in each lateral direction is obtained using ZEMAX optical simulations for the lateral beam scanning system across the scanning angle range of the 500 µm × 700 µm micromirror. We successfully acquired en face and tomographic images of rigid structures (scanning micromirror), in vitro biological samples (onion peels and pickle slices) and in vivo images of human epidermis over 2 × 1 × 4 mm3 imaging volume in real time at faster-than-video 2D frame rates. The results indicate that our system framework may be suitable for image-guided minimally invasive examination of various diseased tissues.

  14. Study of 3D remote sensing system based on optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zhao, Shihu; Yan, Lei

    2009-06-01

    High-precision and real-time remote sensing imaging system is an important part of remote sensing development. Holography is a method of wave front record and recovery which was presented by Dennis Gabor. As a new kind of holography techniques, Optical scanning holography (OSH) and remote sensing imaging are intended to be combined together and applied in acquisition and interference measurement of remote sensing. The key principles and applicability of OSH are studied and the mathematic relation between Fresnel Zone Plate number, numerical aperture and object distance was deduced, which are proved to be feasible for OSH to apply in large scale remote sensing. At last, a new three-dimensional reflected OSH remote sensing imaging system is designed with the combination of scanning technique to record hologram patterns of large scale remote sensing scenes. This scheme is helpful for expanding OSH technique to remote sensing in future.

  15. Full-color holographic 3D imaging system using color optical scanning holography

    NASA Astrophysics Data System (ADS)

    Kim, Hayan; Kim, You Seok; Kim, Taegeun

    2016-06-01

    We propose a full-color holographic three-dimensional imaging system that composes a recording stage, a transmission and processing stage and reconstruction stage. In recording stage, color optical scanning holography (OSH) records the complex RGB holograms of an object. In transmission and processing stage, the recorded complex RGB holograms are transmitted to the reconstruction stage after conversion to off-axis RGB holograms. In reconstruction stage, the off-axis RGB holograms are reconstructed optically.

  16. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

    PubMed Central

    Hohmann-Marriott, Martin F.; Sousa, Alioscka A.; Azari, Afrouz A.; Glushakova, Svetlana; Zhang, Guofeng; Zimmerberg, Joshua; Leapman, Richard D.

    2009-01-01

    Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We show that scanning transmission electron tomography of 1000 nm thick samples using axial detection provides resolution comparable to conventional electron tomography. The method is demonstrated by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum. PMID:19718033

  17. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation

    PubMed Central

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-01-01

    Abstract Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  18. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation: A Preliminary Study.

    PubMed

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-03-01

    Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  19. Morphologic 3D scanning of fallopian tubes to assist ovarian cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Madore, Wendy-Julie; De Montigny, Etienne; Deschênes, Andréanne; Benboujja, Fouzi; Leduc, Mikael; Mes-Masson, Anne-Marie; Provencher, Diane M.; Rahimi, Kurosh; Boudoux, Caroline; Godbout, Nicolas

    2016-02-01

    Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≍15μm and an axial resolution of ≍12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.

  20. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  1. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  2. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  3. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc.

  4. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

    PubMed Central

    Wu, Yicong; Leng, Yuxin; Xi, Jiefeng; Li, Xingde

    2009-01-01

    An extremely compact all-fiber-optic scanning endomicroscopy system was developed for two-photon fluorescence (TPF) and second harmonic generation (SHG) imaging of biological samples. A conventional double-clad fiber (DCF) was employed in the endomicroscope for single-mode femtosecond pulse delivery, multimode nonlinear optical signals collection and fast two-dimensional scanning. A single photonic bandgap fiber (PBF) with negative group velocity dispersion at two-photon excitation wavelength (i.e. ~810 nm) was used for pulse prechirping in replacement of a bulky grating/lens-based pulse stretcher. The combined use of DCF and PBF in the endomicroscopy system made the endomicroscope basically a plug-and-play unit. The excellent imaging ability of the extremely compact all-fiber-optic nonlinear optical endomicroscopy system was demonstrated by SHG imaging of rat tail tendon and depth-resolved TPF imaging of epithelial tissues stained with acridine orange. The preliminary results suggested the promising potential of this extremely compact all-fiber-optic endomicroscopy system for real-time assessment of both epithelial and stromal structures in luminal organs. PMID:19434122

  5. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  6. Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Hämmerle, Martin; Forbriger, Markus; Höfle, Bernhard

    2013-04-01

    LiDAR is a state of the art method for directly capturing 3D geodata. A laser beam is emitted in a known direction. The time of flight of the laser pulse is recorded and transformed into the distance between sensor and scanned object. The result of the scanning process is a 3D laser point cloud densely covering the surveyed area. LiDAR is used in a vast variety of research fields. In this study, the focus is on the application of terrestrial laser scanning (TLS), the static and ground-based LiDAR operation, in a multitemporal analysis of fluvial geomorphology. Within the framework of two study projects in 2011/2012, two TLS surveys were carried out. The surveys covered a gravel bar of about 150 m × 25 m size in a side branch of the Neckar River near Heidelberg (49°28'36''N, 8°34'32''E) located in a nature reserve with natural river characteristics. The first survey was performed in November 2011, the second in June 2012. Due to seasonally changing water levels, the gravel bar was flooded and the morphology changed. For the field campaigns, a Riegl VZ-400 was available. Height control points and tie points for registration and georeferencing were obtained with a total station and GPS equipment. The first survey was done from 6 scan positions (77 million points) and the second from 5 positions (89 million points). The point spacing for each single scan was set to 3 mm at 10 m distance. Co-registration of the individual campaigns was done via an Iterative Closest Point algorithm. Thereafter, co-registration and fine georeferencing of both epochs was performed using manually selected tie points and least-squares adjustment. After filtering of vegetation in the 3D point cloud in the software OPALS, a digital terrain model (DTM) with 0.25 m by 0.25 m cell size was generated for each epoch. A difference raster model of the two DTMs for assessing the changes was derived excluding water surface areas using the signal amplitude recorded for each echo. From the mean

  7. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  8. Incorporation of 3-D Scanning Lidar Data into Google Earth for Real-time Air Pollution Observation

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Nee, J.; Das, S.; Sun, S.; Hsu, Y.; Chiang, H.; Chen, S.; Lin, P.; Chu, J.; Su, C.; Lee, W.; Su, L.; Chen, C.

    2011-12-01

    3-D Differential Absorption Scanning Lidar (DIASL) system has been designed with small size, light weight, and suitable for installation in various vehicles and places for monitoring of air pollutants and displays a detailed real-time temporal and spatial variability of trace gases via the Google Earth. The fast scanning techniques and visual information can rapidly identify the locations and sources of the polluted gases and assess the most affected areas. It is helpful for Environmental Protection Agency (EPA) to protect the people's health and abate the air pollution as quickly as possible. The distributions of the atmospheric pollutants and their relationship with local metrological parameters measured with ground based instruments will also be discussed. Details will be presented in the upcoming symposium.

  9. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    PubMed Central

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  10. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties. PMID:17481354

  11. 3D Plant cell architecture of Arabidopsis thaliana (Brassicaceae) using focused ion beam–scanning electron microscopy1

    PubMed Central

    Bhawana; Miller, Joyce L.; Cahoon, A. Bruce

    2014-01-01

    • Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM) combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. • Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. • Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. • Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies. PMID:25202629

  12. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    NASA Astrophysics Data System (ADS)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  13. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  14. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-03-07

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  15. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  16. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data. PMID:24357389

  17. Automatic thermographic scanning with the creation of 3D panoramic views of buildings

    NASA Astrophysics Data System (ADS)

    Ferrarini, G.; Cadelano, G.; Bortolin, A.

    2016-05-01

    Infrared thermography is widely applied to the inspection of building, enabling the identification of thermal anomalies due to the presence of hidden structures, air leakages, and moisture. One of the main advantages of this technique is the possibility to acquire rapidly a temperature map of a surface. However, due to the actual low-resolution of thermal camera and the necessity of scanning surfaces with different orientation, during a building survey it is necessary to take multiple images. In this work a device based on quantitative infrared thermography, called aIRview, has been applied during building surveys to automatically acquire thermograms with a camera mounted on a robotized pan tilt unit. The goal is to perform a first rapid survey of the building that could give useful information for the successive quantitative thermal investigations. For each data acquisition, the instrument covers a rotational field of view of 360° around the vertical axis and up to 180° around the horizontal one. The obtained images have been processed in order to create a full equirectangular projection of the ambient. For this reason the images have been integrated into a web visualization tool, working with web panorama viewers such as Google Street View, creating a webpage where it is possible to have a three dimensional virtual visit of the building. The thermographic data are embedded with the visual imaging and with other sensor data, facilitating the understanding of the physical phenomena underlying the temperature distribution.

  18. Microscale Diffusion Properties of the Cartilage Pericellular Matrix Measured Using 3D Scanning Microphotolysis

    PubMed Central

    Leddy, Holly A.; Christensen, Susan E.; Guilak, Farshid

    2009-01-01

    Chondrocytes (cartilage cells) are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM will help elucidate the PCM’s regulatory role in controlling transport to and from the chondrocyte. The diffusivity of a fluorescently-labeled 70 kDa dextran was quantified within the PCM of porcine articular cartilage using a newly-developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid, line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusion coefficient of dextran was significantly lower in the PCM than in the ECM in normal cartilage. In early-stage arthritic tissue, however, no significant differences in diffusivity were detectable. These results support the hypothesis that the diffusivity of the PCM is lower than that of the ECM, presumably due to differences in proteoglycan content, and that osteoarthritic changes in tissue affect the transport properties of the PCM. PMID:19045531

  19. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning.

    PubMed

    Djordjevic, Jelena; Toma, Arshed M; Zhurov, Alexei I; Richmond, Stephen

    2014-04-01

    Laser scanning is a non-invasive method for three-dimensional assessment of facial morphology and symmetry. The aim of this study was to quantify facial symmetry in healthy adolescents and explore if there is any gender difference. Facial scans of 270 subjects, 123 males and 147 females (aged 15.3 ± 0.1 years, range 14.6-15.6), were randomly selected from the Avon Longitudinal Study of Parents and Children. Facial scans were processed and analysed using in-house developed subroutines for commercial software. The surface matching between the original face and its mirror image was measured for the whole face, upper, middle, and lower facial thirds. In addition, 3 angular and 14 linear parameters were measured. The percentage of symmetry of the whole face was significantly lower in males (53.49 ± 10.73 per cent) than in females (58.50 ± 10.27 per cent; P < 0.01). There was no statistically significant difference in the amount of symmetry among facial thirds within each gender (P > 0.05). Average values of linear parameters were less than 1 mm and did not differ significantly between genders (P > 0.05). One angular parameter showed slight lip line asymmetry in both genders. Faces of male 15-year-old adolescents were less symmetric than those of females, but the difference in the amount of symmetry, albeit statistically significant, may not be clinically relevant. Upper, middle, and lower thirds of the face did not differ in the amount of three-dimensional symmetry. Angular and linear parameters of facial symmetry did not show any gender difference.

  20. Sliding slice: A novel approach for high accuracy and automatic 3D localization of seeds from CT scans

    SciTech Connect

    Tubic, Dragan; Beaulieu, Luc

    2005-01-01

    We present a conceptually novel principle for 3D reconstruction of prostate seed implants. Unlike existing methods for implant reconstruction, the proposed algorithm uses raw CT data (sinograms) instead of reconstructed CT slices. Using raw CT data solves several inevitable problems related to the reconstruction from CT slices. First, the sinograms are not affected by reconstruction artifacts in the presence of metallic objects and seeds in the patient body. Second, the scanning axis is not undersampled as in the case of CT slices; as a matter of fact the scanning axis is the most densely sampled and each seed is typically represented by several hundred samples. Moreover, the shape of a single seed in a sinogram can be modeled exactly, thus facilitating the detection. All this allows very accurate 3D reconstruction of both position and the orientation of the seeds. Preliminary results indicate that the seed position can be estimated with 0.15 mm accuracy (average), while the orientation estimate accuracy is within 3 deg. on average. Although the main contribution of the paper is to present a new principle of reconstruction, a preliminary implementation is also presented as a proof of concept. The implemented algorithm has been tested on a phantom and the obtained results are presented to validate the proposed approach.

  1. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Amiri, Nina; Yao, Wei; Heurich, Marco; Krzystek, Peter; Skidmore, Andrew K.

    2016-10-01

    Forest understory and regeneration are important factors in sustainable forest management. However, understanding their spatial distribution in multilayered forests requires accurate and continuously updated field data, which are difficult and time-consuming to obtain. Therefore, cost-efficient inventory methods are required, and airborne laser scanning (ALS) is a promising tool for obtaining such information. In this study, we examine a clustering-based 3D segmentation in combination with ALS data for regeneration coverage estimation in a multilayered temperate forest. The core of our method is a two-tiered segmentation of the 3D point clouds into segments associated with regeneration trees. First, small parts of trees (super-voxels) are constructed through mean shift clustering, a nonparametric procedure for finding the local maxima of a density function. In the second step, we form a graph based on the mean shift clusters and merge them into larger segments using the normalized cut algorithm. These segments are used to obtain regeneration coverage of the target plot. Results show that, based on validation data from field inventory and terrestrial laser scanning (TLS), our approach correctly estimates up to 70% of regeneration coverage across the plots with different properties, such as tree height and tree species. The proposed method is negatively impacted by the density of the overstory because of decreasing ground point density. In addition, the estimated coverage has a strong relationship with the overstory tree species composition.

  2. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Speidel, Michael A.

    2015-03-01

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  3. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  4. Optimised 3D surface measurement of hydroxyapatite layers using adapted white light scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pecheva, Emilia; Montgomery, Paul; Montaner, Denis; Pramatarova, Lilyana; Zanev, Zenko

    2006-09-01

    Biomineralization is intensively studied at present due to its importance in the formation of bones, teeth, cartilage, etc. Hydroxyapatite is one of the most common natural biomaterials and the primary structural component of bones and teeth. We have grown bio-like hydroxyapatite layers in-vitro on stainless steel, silicon and silica glass by using a biomimetic approach (immersion in a supersaturated aqueous solution resembling the ion composition of human blood plasma). Using classical techniques such as stylus profiling, AFM or SEM, it was found difficult, destructive or time-consuming to measure the topography, thickness and profile of the heterogeneous, thick and rough hydroxyapatite layers. White light scanning interferometry, on the other hand, has been found to be particularly useful for analyzing such bio-like layers, requiring no sample preparation and being rapid and non-destructive. The results have shown a typical layer thickness of up to 20 μm and a rms roughness of 4 μm. The hydroxyapatite presents nonetheless a challenge for this technique because of its semi-translucence, high roughness and the presence of cavities within its volume. This results in varying qualities of fringe pattern depending on the area, ranging from classical fringes on smooth surfaces, to complex speckle-like fringes on rough surfaces, to multiple fringe signals along the optical axis in the presence of buried layers. In certain configurations this can affect the measurement precision. In this paper we present the latest results for optimizing the measurement conditions in order to reduce such errors and to provide additional useful information concerning the layer.

  5. Method for visualization and presentation of priceless old prints based on precise 3D scan

    NASA Astrophysics Data System (ADS)

    Bunsch, Eryk; Sitnik, Robert

    2014-02-01

    Graphic prints and manuscripts constitute main part of the cultural heritage objects created by the most of the known civilizations. Their presentation was always a problem due to their high sensitivity to light and changes of external conditions (temperature, humidity). Today it is possible to use an advanced digitalization techniques for documentation and visualization of mentioned objects. In the situation when presentation of the original heritage object is impossible, there is a need to develop a method allowing documentation and then presentation to the audience of all the aesthetical features of the object. During the course of the project scans of several pages of one of the most valuable books in collection of Museum of Warsaw Archdiocese were performed. The book known as "Great Dürer Trilogy" consists of three series of woodcuts by the Albrecht Dürer. The measurement system used consists of a custom designed, structured light-based, high-resolution measurement head with automated digitization system mounted on the industrial robot. This device was custom built to meet conservators' requirements, especially the lack of ultraviolet or infrared radiation emission in the direction of measured object. Documentation of one page from the book requires about 380 directional measurements which constitute about 3 billion sample points. The distance between the points in the cloud is 20 μm. Provided that the measurement with MSD (measurement sampling density) of 2500 points makes it possible to show to the publicity the spatial structure of this graphics print. An important aspect is the complexity of the software environment created for data processing, in which massive data sets can be automatically processed and visualized. Very important advantage of the software which is using directly clouds of points is the possibility to manipulate freely virtual light source.

  6. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan

    2012-04-01

    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  7. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  8. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  9. Improving Social Understanding of Individuals of Intellectual and Developmental disabilities through a 3D-Facial Expression Intervention Program

    ERIC Educational Resources Information Center

    Cheng, Yufang; Chen, Shuhui

    2010-01-01

    Individuals with intellectual and developmental disabilities (IDD) have specific difficulties in cognitive social-emotional capability, which affect numerous aspects of social competence. This study evaluated the learning effects of using 3D-emotion system intervention program for individuals with IDD in learning socially based-emotions capability…

  10. Brief Report: Infants Developing with ASD Show a Unique Developmental Pattern of Facial Feature Scanning

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Walsh, Jennifer A.; Lee, Vivian

    2015-01-01

    Infants are interested in eyes, but look preferentially at mouths toward the end of the first year, when word learning begins. Language delays are characteristic of children developing with autism spectrum disorder (ASD). We measured how infants at risk for ASD, control infants, and infants who later reached ASD criterion scanned facial features.…

  11. Fast and memory-efficient LOGISMOS graph search for intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2015-03-01

    Image segmentation is important for quantitative analysis of medical image data. Recently, our research group has introduced a 3-D graph search method which can simultaneously segment optimal interacting surfaces with respect to the cost function in volumetric images. Although it provides excellent segmentation accuracy, it is computationally demanding (both CPU and memory) to simultaneously segment multiple surfaces from large volumetric images. Therefore, we propose a new, fast, and memory-efficient graph search method for intraretinal layer segmentation of 3-D macular optical coherence tomograpy (OCT) scans. The key idea is to reduce the size of a graph by combining the nodes with high costs based on the multiscale approach. The new approach requires significantly less memory and achieves significantly faster processing speeds (p < 0.01) with only small segmentation differences compared to the original graph search method. This paper discusses sub-optimality of this approach and assesses trade-off relationships between decreasing processing speed and increasing segmentation differences from that of the original method as a function of employed scale of the underlying graph construction.

  12. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  13. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  14. 3D Scan of Ornamental Column (huabiao) Using Terrestrial LiDAR and Hand-held Imager

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Wang, C.; Xi, X.

    2015-08-01

    In ancient China, Huabiao was a type of ornamental column used to decorate important buildings. We carried out 3D scan of a Huabiao located in Peking University, China. This Huabiao was built no later than 1742. It is carved by white marble, 8 meters in height. Clouds and various postures of dragons are carved on its body. Two instruments were used to acquire the point cloud of this Huabiao, a terrestrial LiDAR (Riegl VZ-1000) and a hand-held imager (Mantis Vision F5). In this paper, the details of the experiment were described, including the differences between these two instruments, such as working principle, spatial resolution, accuracy, instrument dimension and working flow. The point clouds obtained respectively by these two instruments were compared, and the registered point cloud of Huabiao was also presented. These should be of interest and helpful for the research communities of archaeology and heritage.

  15. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  16. Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry.

    PubMed

    Galantucci, Luigi Maria; Di Gioia, Eliana; Lavecchia, Fulvio; Percoco, Gianluca

    2014-05-01

    In the literature, several papers report studies on mathematical models used to describe facial features and to predict female facial beauty based on 3D human face data. Many authors have proposed the principal component analysis (PCA) method that permits modeling of the entire human face using a limited number of parameters. In some cases, these models have been correlated with beauty classifications, obtaining good attractiveness predictability using wrapped 2D or 3D models. To verify these results, in this paper, the authors conducted a three-dimensional digitization study of 66 very attractive female subjects using a computerized noninvasive tool known as 3D digital photogrammetry. The sample consisted of the 64 contestants of the final phase of the Miss Italy 2010 beauty contest, plus the two highest ranked contestants in the 2009 competition. PCA was conducted on this real faces sample to verify if there is a correlation between ranking and the principal components of the face models. There was no correlation and therefore, this hypothesis is not confirmed for our sample. Considering that the results of the contest are not only solely a function of facial attractiveness, but undoubtedly are significantly impacted by it, the authors based on their experience and real faces conclude that PCA analysis is not a valid prediction tool for attractiveness. The database of the features belonging to the sample analyzed are downloadable online and further contributions are welcome. PMID:24728666

  17. A system for high resolution 3D mapping using laser radar and requiring no beam scanning mechanisms

    NASA Astrophysics Data System (ADS)

    Rademacher, Paul

    1988-06-01

    The inherently high angular and range resolution capabilities associated with radar systems operating at optical frequencies are at once a blessing and a curse. Standard implementations consist of very narrow field of view optical receivers operating in conjunction with laser transmitters or even narrower illumination beamwidth. While high angular resolution is thus achieved, mechanical scanning is required to gather data over extended fields of view. The many laser pulse transmissions necessary to cover the entire field of view increase the detectability of the system by enemy sensors. A system concept is proposed which, through the use of a single laser transmitter and multiple optical receivers, largely eliminate these deficiencies. Complete 3D data over a broad angular field of view and depth of field can be gathered based upon the reflections from a single transmitted laser pulse. Covert operation is enhanced as a result of the sparse laser transmissions required. The eye safety characteristics of the system are also enhanced. Proprietary coding of optical shutters in each of the multiple optical receivers permits the number of such receivers to be reduced to a very practical few. An alternative configuration of the system reduces the number of receivers required to one, at the expense of increased data acquisition time. The multiple receiver configuration is simply a parallel processing implementation of the single receiver approach. While data rate is reduced by the single receiver configuration, it still greatly exceeds that of scanning systems, and hardware complexity is also reduced significantly.

  18. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  19. Neuronal nuclei localization in 3D using level set and watershed segmentation from laser scanning microscopy images

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Olson, Eric; Subramanian, Arun; Feiglin, David; Varshney, Pramod K.; Krol, Andrzej

    2008-03-01

    Abnormalities of the number and location of cells are hallmarks of both developmental and degenerative neurological diseases. However, standard stereological methods are impractical for assigning each cell's nucleus position within a large volume of brain tissue. We propose an automated approach for segmentation and localization of the brain cell nuclei in laser scanning microscopy (LSM) embryonic mouse brain images. The nuclei in these images are first segmented by using the level set (LS) and watershed methods in each optical plane. The segmentation results are further refined by application of information from adjacent optical planes and prior knowledge of nuclear shape. Segmentation is then followed with an algorithm for 3D localization of the centroid of nucleus (CN). Each volume of tissue is thus represented by a collection of centroids leading to an approximate 10,000-fold reduction in the data set size, as compared to the original image series. Our method has been tested on LSM images obtained from an embryonic mouse brain, and compared to the segmentation and CN localization performed by an expert. The average Euclidian distance between locations of CNs obtained using our method and those obtained by an expert is 1.58+/-1.24 µm, a value well within the ~5 µm average radius of each nucleus. We conclude that our approach accurately segments and localizes CNs within cell dense embryonic tissue.

  20. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape1

    PubMed Central

    Landis, Jacob B.; Ventura, Kayla L.; Soltis, Douglas E.; Soltis, Pamela S.; Oppenheimer, David G.

    2015-01-01

    Premise of the study: Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Methods: Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. Results: This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. Conclusions: This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM. PMID:25909040

  1. A quantitative study of 3D-scanning frequency and Δd of tracking points on the tooth surface

    PubMed Central

    Li, Hong; Lyu, Peijun; Sun, Yuchun; Wang, Yong; Liang, Xiaoyue

    2015-01-01

    Micro-movement of human jaws in the resting state might influence the accuracy of direct three-dimensional (3D) measurement. Providing a reference for sampling frequency settings of intraoral scanning systems to overcome this influence is important. In this study, we measured micro-movement, or change in distance (∆d), as the change in position of a single tracking point from one sampling time point to another in five human subjects. ∆d of tracking points on incisors at 7 sampling frequencies was judged against the clinical accuracy requirement to select proper sampling frequency settings. The curve equation was then fit quantitatively between ∆d median and the sampling frequency to predict the trend of ∆d with increasing f. The difference of ∆d among the subjects and the difference between upper and lower incisor feature points of the same subject were analyzed by a non-parametric test (α = 0.05). Significant differences of incisor feature points were noted among different subjects and between upper and lower jaws of the same subject (P < 0.01). Overall, ∆d decreased with increasing frequency. When the frequency was 60 Hz, ∆d nearly reached the clinical accuracy requirement. Frequencies higher than 60 Hz did not significantly decrease Δd further. PMID:26400112

  2. Visual scanning in the recognition of facial affect: is there an observer sex difference?

    PubMed

    Vassallo, Suzane; Cooper, Sian L; Douglas, Jacinta M

    2009-01-01

    This investigation assessed whether differences exist in the way males and females overtly orient their visual attention to salient facial features while viewing static emotional facial expressions. Eye movements were recorded while fifty healthy participants (23 males, 27 females) viewed a series of six universal facial expressions. Groups were compared with respect to accuracy and reaction time in emotional labeling. The number and duration of foveal fixations to four predefined facial areas of interest (AOIs)--each eye, nose, mouth--were also recorded. There were no significant group differences with respect to accuracy (p = 0.997), though females were significantly faster than males in correctly identifying expressions (p = 0.047). Analysis of the visual scan path revealed that while both groups spent more time and looked more frequently at the eye region, males spent significantly more time viewing the nose and mouth. The duration and number of fixations made to the nose were significantly greater in males (p < 0.05). This study is the first to show reaction time differences between the sexes across a range of universal emotions. Further, this is the first work to suggest the orienting of attention to the lower part of the face, especially the nose, appears to differentiate the sexes. PMID:19757950

  3. A CT-scan database for the facial soft tissue thickness of Taiwan adults.

    PubMed

    Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping

    2015-08-01

    Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al. PMID:26028278

  4. Complete-mouth rehabilitation using a 3D printing technique and the CAD/CAM double scanning method: A clinical report.

    PubMed

    Joo, Han-Sung; Park, Sang-Won; Yun, Kwi-Dug; Lim, Hyun-Pil

    2016-07-01

    According to evolving computer-aided design/computer-aided manufacturing (CAD/CAM) technology, ceramic materials such as zirconia can be used to create fixed dental prostheses for partial removable dental prostheses. Since 3D printing technology was introduced a few years ago, dental applications of this technique have gradually increased. This clinical report presents a complete-mouth rehabilitation using 3D printing and the CAD/CAM double-scanning method.

  5. Complete-mouth rehabilitation using a 3D printing technique and the CAD/CAM double scanning method: A clinical report.

    PubMed

    Joo, Han-Sung; Park, Sang-Won; Yun, Kwi-Dug; Lim, Hyun-Pil

    2016-07-01

    According to evolving computer-aided design/computer-aided manufacturing (CAD/CAM) technology, ceramic materials such as zirconia can be used to create fixed dental prostheses for partial removable dental prostheses. Since 3D printing technology was introduced a few years ago, dental applications of this technique have gradually increased. This clinical report presents a complete-mouth rehabilitation using 3D printing and the CAD/CAM double-scanning method. PMID:26946918

  6. Reconstruction, Quantification, and Visualization of Forest Canopy Based on 3d Triangulations of Airborne Laser Scanning Point Data

    NASA Astrophysics Data System (ADS)

    Vauhkonen, J.

    2015-03-01

    Reconstruction of three-dimensional (3D) forest canopy is described and quantified using airborne laser scanning (ALS) data with densities of 0.6-0.8 points m-2 and field measurements aggregated at resolutions of 400-900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty) space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i) to optimize the degree of filtration with respect to the field measurements, and (ii) to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2) with the stem volume considered, both alone (R2=0.65) and together with other predictors (R2=0.78). When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  7. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  8. Evaluation of the use of laser scanning to create key models for 3D printing separate from and augmenting visible light sensing

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Kerlin, Scott

    2016-05-01

    The illicit creation of 3D printed keys is problematic as it can allow intruders nearly undetectable access to secure facilities. Prior work has discussed how keys can be created using visible light sensing. This paper builds on this work by evaluating the utility of keys produced with laser scanning. The quality of the model produced using a structured laser scanning approach is compared to the quality of a model produced using a similarly robust visible light sensing approach.

  9. Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation.

    PubMed

    Werner, Heron; Lopes, Jorge; Tonni, Gabriele; Araujo Júnior, Edward

    2015-04-01

    Rapid prototyping is becoming a fast-growing and valuable technique for physical models in case of congenital anomalies. Manufacturing models are generally built from three-dimensional (3D) ultrasound, computed tomography, and fetal magnetic resonance imaging (MRI) scan data. Physical prototype has demonstrated to be clinically of value in case of complex fetal malformations and may improve antenatal management especially in cases of craniosynostosis, orofacial clefts, and giant epignathus. In addition, it may enhance parental bonding in visually impaired parents and have didactic value in teaching program. Hereby, the first 3D physical model from 3D ultrasound and MRI scan data reconstruction of lumbosacral myelomeningocele in a third trimester fetus affected by Chiari II malformation is reported. PMID:25686895

  10. Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation.

    PubMed

    Werner, Heron; Lopes, Jorge; Tonni, Gabriele; Araujo Júnior, Edward

    2015-04-01

    Rapid prototyping is becoming a fast-growing and valuable technique for physical models in case of congenital anomalies. Manufacturing models are generally built from three-dimensional (3D) ultrasound, computed tomography, and fetal magnetic resonance imaging (MRI) scan data. Physical prototype has demonstrated to be clinically of value in case of complex fetal malformations and may improve antenatal management especially in cases of craniosynostosis, orofacial clefts, and giant epignathus. In addition, it may enhance parental bonding in visually impaired parents and have didactic value in teaching program. Hereby, the first 3D physical model from 3D ultrasound and MRI scan data reconstruction of lumbosacral myelomeningocele in a third trimester fetus affected by Chiari II malformation is reported.

  11. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  12. Ground Deformation Analysis of Blast-Induced Liquefaction at a Simulated Airport Infrastructure Using High Resolution 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Minasian, D.; Kayen, R.; Ashford, S.; Kawamata, Y.; Sugano, T.

    2008-12-01

    In October 2007, the Port and Airport Research Institute (PARI) of the Japan Ministry of Land, Infrastructure and Transportation conducted a large-scale blast-induced liquefaction experiment in Ishikari, Hokkaido, Japan. Approximately 24,000 m2 of ground was liquefied using controlled blasting techniques to investigate the performance of airport infrastructure. The USGS and Oregon State University participated in the study and measured topographic changes in ground level using 3D laser scanning techniques (terrestrial lidar), as well as changes in shear wave velocity of the between the pre- and post-liquefied soil. This poster focuses on the lidar results. The overall objective of the PARI experiment is to assess the performance of airport infrastructure subjected to liquefaction. Specifically, the performance of pipelines and large concrete utility raceways located beneath runway pavements is of interest, as well as the performance of pavements and embankments with and without soil improvement techniques. At the site, 5-7 m of loose silty sand was placed as hydraulic fill on natural alluvial sand as an expansion of the Ishikari port facility. On a portion of the liquefied site, three 20 m by 50 m test sections were constructed to investigate the performance of improved ground beneath asphalt runways, concrete runway aprons, and open areas. Pipelines and concrete utility conduits were also buried in each section. The three ground improvement techniques investigated were sand-cement mixing, vertical drains, and colloidal silica injection. The PARI experiment provided an excellent opportunity to conduct terrestrial lidar measurements - a revolutionary tool for accurate characterization of fine-scale changes of topography and identification of subtle deformations. Lidar was used for characterizing post-blast deformations both immediately after the charges were used, and subsequently over time at intervals of 2 days, 4 days, and 5 months after blasting. Settlement

  13. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

    PubMed

    Swennen, G R J; Barth, E-L; Eulzer, C; Schutyser, F

    2007-02-01

    Three-dimensional (3D) virtual planning of orthognathic surgery requires detailed visualization of the interocclusal relationship. The purpose of this study was to introduce the modification of the double computed tomography (CT) scan procedure using a newly designed 3D splint in order to obtain a detailed anatomic 3D virtual augmented model of the skull. A total of 10 dry adult human cadaver skulls were used to evaluate the accuracy of the automatic rigid registration method for fusion of both CT datasets (Maxilim, version 1.3.0). The overall mean registration error was 0.1355+/-0.0323 mm (range 0.0760-0.1782 mm). Analysis of variance showed a registration method error of 0.0564 mm (P < 0.001; 95% confidence interval = 0.0491-0.0622). The combination of the newly designed 3D splint with the double CT scan procedure allowed accurate registration and the set-up of an accurate anatomic 3D virtual augmented model of the skull with detailed dental surface.

  14. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study

    PubMed Central

    2014-01-01

    Background Custom foot orthoses are currently recognized as the gold standard for treatment of foot and lower limb pathology. While foam and plaster casting methods are most widely used in clinical practice, technology has emerged, permitting the use of 3D scanning, computer aided design (CAD) and computer aided manufacturing (CAM) for fabrication of foot molds and custom foot orthotic components. Adoption of 3D printing, as a form of CAM, requires further investigation for use as a clinical tool. This study provides a preliminary description of a new method to manufacture foot orthoses using a novel 3D scanner and printer and compare gait kinematic outputs from shod and traditional plaster casted orthotics. Findings One participant (male, 25 years) was included with no lower extremity injuries. Foot molds were created from both plaster casting and 3D scanning/printing methods. Custom foot orthoses were then fabricated from each mold. Lower body plug-in-gait with the Oxford Foot Model on the right foot was collected for both orthotic and control (shod) conditions. The medial longitudinal arch was measured using arch height index (AHI) where a decrease in AHI represented a drop in arch height. The lowest AHI was 21.2 mm in the running shoes, followed by 21.4 mm wearing the orthoses made using 3D scanning and printing, with the highest AHI of 22.0 mm while the participant wore the plaster casted orthoses. Conclusion This preliminary study demonstrated a small increase in AHI with the 3D printing orthotic compared to the shod condition. A larger sample size may demonstrate significant patterns for the tested conditions. PMID:25015013

  15. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  16. The implications of free 3D scanning in the conservation state assessment of old wood painted icon

    NASA Astrophysics Data System (ADS)

    Munteanu, Marius; Sandu, Ion

    2016-06-01

    The present paper presents the conservation state and the making of a 3D model of a XVIII-th century orthodox icon on wood support, using free available software and cloud computing. In order to create the 3D model of the painting layer of the icon a number of 70 pictures were taken using a Nikon DSLR D3300, 24.2 MP in setup with a Hama Star 75 photo tripod, in loops 360° around the painting, at three different angles. The pictures were processed with Autodesk I23D Catch, which automatically finds and matches common features among all of the uploaded photographs in order to create the 3D scene, using the power and speed of cloud computing. The obtained 3D model was afterwards analyzed and processed in order to obtain a final version, which can now be use to better identify, to map and to prioritize the future conservation processes and finally can be shared online as an animation.

  17. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    PubMed Central

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills. PMID:26579054

  18. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    PubMed

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  19. [Documentation of course and results of crime scene reconstruction and virtual crime scene reconstruction possibility by means of 3D laser scanning technology].

    PubMed

    Maksymowicz, Krzysztof; Zołna, Małgorzata M; Kościuk, Jacek; Dawidowicz, Bartosz

    2010-01-01

    The objective of the study was to present both the possibilities of documenting the course and results of crime scene reconstruction using 3D laser scanning technology and the legal basis for application of this technology in evidence collection. The authors present the advantages of the aforementioned method, such as precision, objectivity, resistance of the measurement parameters to manipulation (comparing to other methods), high imaging resolution, touchless data recording, nondestructive testing, etc. Moreover, trough the analysis of the current legal regulations concerning image recording in criminal proceedings, the authors show 3D laser scanning technology to have a full complete ability to be applied in practice in documentation of the course and results of crime scene reconstruction. PMID:21863738

  20. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production

  1. Validity of Intraoral Scans Compared with Plaster Models: An In-Vivo Comparison of Dental Measurements and 3D Surface Analysis

    PubMed Central

    2016-01-01

    Purpose Dental measurements have been commonly taken from plaster dental models obtained from alginate impressions can. Through the use of an intraoral scanner, digital impressions now acquire the information directly from the mouth. The purpose of this study was to determine the validity of the intraoral scans compared to plaster models. Materials and Methods Two types of dental models (intraoral scan and plaster model) of 20 subjects were included in this study. The subjects had impressions taken of their teeth and made as plaster model. In addition, their mouths were scanned with the intraoral scanner and the scans were converted into digital models. Eight transverse and 16 anteroposterior measurements, 24 tooth heights and widths were recorded on the plaster models with a digital caliper and on the intraoral scan with 3D reverse engineering software. For 3D surface analysis, the two models were superimposed by using best-fit algorithm. The average differences between the two models at all points on the surfaces were computed. Paired t-test and Bland-Altman plot were used to determine the validity of measurements from the intraoral scan compared to those from the plaster model. Results There were no significant differences between the plaster models and intraoral scans, except for one measurement of lower intermolar width. The Bland-Altman plots of all measurements showed that differences between the two models were within the limits of agreement. The average surface difference between the two models was within 0.10 mm. Conclusions The results of the present study indicate that the intraoral scans are clinically acceptable for diagnosis and treatment planning in dentistry and can be used in place of plaster models. PMID:27304976

  2. The advantage of CT scans and 3D visualizations in the analysis of three child mummies from the Graeco-Roman Period.

    PubMed

    Villa, Chiara; Davey, Janet; Craig, Pamela J G; Drummer, Olaf H; Lynnerup, Niels

    2015-01-01

    Three child mummies from the Graeco-Roman Period (332 BCE - c. 395 CE) were examined using CT scans and 3D visualizations generated with Vitrea 2 and MIMICS graphic workstations with the aim of comparing the results with previous X-ray examinations performed by Dawson and Gray in 1968. Although the previous analyses reported that the children had been excerebrated and eviscerated, no evidence of incisions or breaches of the cranial cavity were found; 3D visualizations were generated showing the brain and the internal organs to be in situ. A larger number of skeletal post-mortem damages were identified, such as dislocation of mandible, ribs, and vertebrae, probably suffered at the time of embalming procedure. Different radio-opaque granular particles were observed throughout bodies (internally and externally) and could be explained as presence of natron, used as external desiccating agent by the embalmers, or as adipocerous alteration, a natural alteration of body fat. Age-at-death was estimated using the 3D visualization of the teeth, the state of fusion of the vertebrae and the presence of the secondary centers of the long bones: two mummies died at the age of 4 years ± 12 months, the third one at the age of 6 years ± 24 months. Hyperdontia or polydontia, a dental anomaly, could also be identified in one child using 3D visualizations of the teeth: two supernumerary teeth were found behind the maxillary permanent central incisors which had not been noticed in the Dawson and Gray's X-ray analysis. In conclusion, CT-scan investigations and especially 3D visualizations are important tools in the non-invasive analysis of the mummies and, in this case, provided revised and additional information compared to the only X-ray examination.

  3. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  4. Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Owens, C. T.; Liu, K. C.; Swenson, E.; Ghoshal, A.; Weiss, V.

    2013-01-01

    The application of guided waves to interrogate remote areas of structural components has been researched extensively in characterizing damage. However, there exists a sparsity of work in using piezoelectric transducer-generated guided waves as a method of assessing stress intensity factors (SIF). This quantitative information enables accurate estimation of the remaining life of metallic structures exhibiting cracks, such as military and commercial transport vehicles. The proposed full wavefield approach, based on 3D laser vibrometry and piezoelectric transducer-generated guided waves, provides a practical means for estimation of dynamic stress intensity factors (DSIF) through local strain energy mapping via the J-integral. Strain energies and traction vectors can be conveniently estimated from wavefield data recorded using 3D laser vibrometry, through interpolation and subsequent spatial differentiation of the response field. Upon estimation of the Jintegral, it is possible to obtain the corresponding DSIF terms. For this study, the experimental test matrix consists of aluminum plates with manufactured defects representing canonical elliptical crack geometries under uniaxial tension that are excited by surface mounted piezoelectric actuators. The defects' major to minor axes ratios vary from unity to approximately 133. Finite element simulations are compared to experimental results and the relative magnitudes of the J-integrals are examined.

  5. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells

    NASA Astrophysics Data System (ADS)

    Amor, Rumelo; Mahajan, Sumeet; Amos, William Bradshaw; McConnell, Gail

    2014-12-01

    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report here a variation in the intensity of fluorescence of successive planes related to the Stokes shift of the dye. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.

  6. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells.

    PubMed

    Amor, Rumelo; Mahajan, Sumeet; Amos, William Bradshaw; McConnell, Gail

    2014-12-08

    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report here a variation in the intensity of fluorescence of successive planes related to the Stokes shift of the dye. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ≈90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.

  7. Documenting a Complex Modern Heritage Building Using Multi Image Close Range Photogrammetry and 3d Laser Scanned Point Clouds

    NASA Astrophysics Data System (ADS)

    Vianna Baptista, M. L.

    2013-07-01

    Integrating different technologies and expertises help fill gaps when optimizing documentation of complex buildings. Described below is the process used in the first part of a restoration project, the architectural survey of Theatre Guaira Cultural Centre in Curitiba, Brazil. To diminish time on fieldwork, the two-person-field-survey team had to juggle, during three days, the continuous artistic activities and performers' intense schedule. Both technologies (high definition laser scanning and close-range photogrammetry) were used to record all details in the least amount of time without disturbing the artists' rehearsals and performances. Laser Scanning was ideal to record the monumental stage structure with all of its existing platforms, light fixtures, scenery walls and curtains. Although scanned with high-definition, parts of the exterior façades were also recorded using Close Range Photogrammetry. Tiny cracks on the marble plaques and mosaic tiles, not visible in the point clouds, were then able to be precisely documented in order to create the exterior façades textures and damages mapping drawings. The combination of technologies and the expertise of service providers, knowing how and what to document, and what to deliver to the client, enabled maximum benefits to the following restoration project.

  8. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    PubMed

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  9. Investigations on 2D and 3D topography and Z-scan studies of zinc chloride co-doped L-lysinium succinate

    NASA Astrophysics Data System (ADS)

    Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    Semi-organic NLO single crystals of zinc chloride doped L-lysinium succinate (ZnCl2-Lls) were grown using a slow evaporation method at ambient temperature. The structure and cell parameters of the grown crystal were determined by single crystal XRD and powder XRD studies. The 2-D surface morphology and elemental compositions were analyzed through SEM and EDAX studies. The 3-D surface topology was discussed using AFM images. Z-scan technique was used for measuring the third order nonlinear optical coefficients of the grown crystal.

  10. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'.

    PubMed

    Lloris-Garcerá, Pilar; Slusky, Joanna S G; Seppälä, Susanna; Prieß, Marten; Schäfer, Lars V; von Heijne, Gunnar

    2013-11-15

    The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.

  11. Analysis of the Development of the Nasal Septum and Measurement of the Harvestable Septal Cartilage in Koreans Using Three-Dimensional Facial Bone Computed Tomography Scanning

    PubMed Central

    Kim, Jae Hee; Jung, Dong Ju; Kim, Hyo Seong; Kim, Chang Hyun

    2014-01-01

    Background The septal cartilage is the most useful donor site for autologous cartilage graft material in rhinoplasty. For successful nasal surgery, it is necessary to understand the developmental process of the nasal septum and to predict the amount of harvestable septal cartilage before surgery. Methods One hundred twenty-three Korean patients who underwent three-dimensional (3D) facial bone computed tomography (CT) were selected for evaluation of the midsagittal view of the nasal septum. Multiple parameters such as the area of each component of the nasal septum and the amount of harvestable septal cartilage were measured using Digimizer software. Results The area of the total nasal septum showed rapid growth until the teenage years, but thereafter no significant change throughout the lifetime. However, the development of the septal cartilage showed a gradual decline due to ossification changes with aging after puberty in spite of a lack of change in the total septal area. The area of harvestable septal cartilage in young adults was 549.84±151.26 mm2 and decreased thereafter with age. Conclusions A 3D facial bone CT scan can provide valuable information on the septal cartilage graft before rhinoplasty. Considering the developmental process of the septal cartilage identified in this study, septal surgery should not be performed until puberty due to the risk of nasal growth impairment. Furthermore, in elderly patients who show a decreased cartilage area due to ossification changes, septal cartilage harvesting should be performed carefully due to the risk of saddle nose deformity. PMID:24665426

  12. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  13. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  14. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  15. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  16. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  17. Back Analysis of the 2014 San Leo Landslide Using Combined Terrestrial Laser Scanning and 3D Distinct Element Modelling

    NASA Astrophysics Data System (ADS)

    Spreafico, Margherita Cecilia; Francioni, Mirko; Cervi, Federico; Stead, Doug; Bitelli, Gabriele; Ghirotti, Monica; Girelli, Valentina Alena; Lucente, Claudio Corrado; Tini, Maria Alessandra; Borgatti, Lisa

    2016-06-01

    Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. The edges of these plateaux are often the location of rapid landslide phenomena, such as rock slides, rock falls and topples. In this paper, we present a back analysis of a recent landslide (February 2014), involving the north-eastern sector of the San Leo rock slab (northern Apennines, Emilia-Romagna Region) which is a representative example of this type of phenomena. The aquifer hosted in the fractured slab, due to its relatively higher secondary permeability in comparison to the lower clayey units leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales have led to the progressive undermining of the slab, eventually predisposing large-scale landslides. Stability analyses were conducted coupling terrestrial laser scanning (TLS) and distinct element methods (DEMs). TLS point clouds were analysed to determine the pre- and post-failure geometry, the extension of the detachment area and the joint network characteristics. The block dimensions in the landslide deposit were mapped and used to infer the spacing of the discontinuities for insertion into the numerical model. Three-dimensional distinct element simulations were conducted, with and without undermining of the rock slab. The analyses allowed an assessment of the role of the undermining, together with the presence of an almost vertical joint set, striking sub-parallel to the cliff orientation, on the development of the slope instability processes. Based on the TLS and on the numerical simulation results, an interpretation of the landslide mechanism is proposed.

  18. A 3D scanning confocal imaging method measures pit volume and captures the role of Rac in osteoclast function.

    PubMed

    Goldberg, Stephanie R; Georgiou, John; Glogauer, Michael; Grynpas, Marc D

    2012-07-01

    Modulation of Rho GTPases Rac1 and Rac2 impacts bone development, remodeling, and disease. In addition, GTPases are considered treatment targets for dysplastic and erosive bone diseases including Neurofibromatosis type 1. While it is important to understand the effects of Rac modulation on osteoclast function, two-dimensional resorption pit area measurements fall short in elucidating the volume aspect of bone resorption activity. Bone marrow from wild-type, Rac1 and Rac2 null mice was isolated from femora. Osteoclastogenesis was induced by adding M-CSF and RANKL in culture plates containing dentin slices and later stained with Picro Sirius Red to image resorption lacunae. Osteoclasts were also plated on glass cover slips and stained with phalloidin and DAPI to measure their surface area and the number of nuclei. Volumetric images were collected on a laser-scanning confocal system. Sirius Red confocal imaging provided an unambiguous, continuous definition of the pit boundary compared to reflected and transmitted light imaging. Rac1- and Rac2-deficient osteoclasts had fewer nuclei in comparison to wild-type counterparts. Rac1-deficient osteoclasts showed reduced resorption pit volume and surface area. Lacunae made by single Rac2 null osteoclasts had reduced volume but surprisingly surface area was unaffected. Surface area measures are deceiving since volume changed independently in resorption pits made by individual Rac2 null osteoclasts. Our innovative confocal imaging technique allows us to derive novel conclusions about Rac1 and Rac2 in osteoclast function. The data and method can be applied to study effects of genes and drugs including Rho GTPase modulators on osteoclast function and to develop pharmacotherapeutics to treat bone lytic disorders.

  19. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  20. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer

  1. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice.

  2. Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators

    SciTech Connect

    Kim, MinKyu; Ju, Sang Gyu E-mail: doho.choi@samsung.com; Chung, Kwangzoo; Hong, Chae-Seon; Kim, Jinsung; Ahn, Sung Hwan; Jung, Sang Hoon; Han, Youngyih; Chung, Yoonsun; Cho, Sungkoo; Choi, Doo Ho E-mail: doho.choi@samsung.com; Kim, Jungkuk; Shin, Dongho

    2015-02-15

    Purpose: A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. Methods: The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. Results: The Auto

  3. The Structure of the Kaali Impact Crater (Estonia) based on 3D Laser Scanning, Photogrammetric Modelling and Strike and Dip Measurements

    NASA Astrophysics Data System (ADS)

    Zanetti, Michael; Wilk, Jakob; Joeleht, Argo; Välja, Rudolf; Losiak, Anna; Wisniowski, Tomek; Huber, Matthew; Pavel, Kristiina; Kriiska, Aivar; Plado, Jüri; Geppert, Wolf Dietrich; Kukko, Antero; Kaartinen, Harri

    2015-04-01

    Introduction: The Kaali Impact Crater on the island of Saaremaa, Estonia (58.37° N, 22.67° E) is part of a crater-strewn-field consisting of nine identified craters, ranging in size from 110m (Kaali Main) to a few meters in diameter [1-3]. The strewn field was formed by the breakup of an IAB iron meteorite during atmospheric entry [4]. The main crater is due to its size an important crater to study the effects of small asteroidal impacts on terrestrial planets. Despite some anthropomorphic changes, the crater is well preserved. During a scientific expedition in August 2014, we mapped the crater in unprecedented detail using 3D laser scanning tools and made detailed strike and dip measurements of all outcrops. Additional measurements using ground-penetrating radar and electro-resistivity tomography we also conducted to further refine the subsurface crater morphology. The results include a high resolution topographic map of the crater, previously unreported observations of overturned ejecta, and refined morphometric estimates of the crater. Additionally, research conducted as part of the expedition has provided a new, best-estimate for the formation of the crater (3200a +/- 30 BP) based on 14C AMS dating of charcoal from within the ejecta blanket [Losiak et al., 2015, this conference]. Structural Mapping: Although Kaali Main has been the subject of previous investigation (e.g. [2,5,6]), most of the structural descriptions of the crater pre-date modern crater investigations. Strongly inclined blocks were previously considered being affected by erosion and slope processes, our new observations show that most high dip-angle features fit well with overall dip-angle systematics. The existence of the overturned flap can be demonstrated in at least four areas around the crater. 3D Laser Scanning: A point cloud containing 16 million data points was created using 43 individual scans from a tripod mounted Faro 3D 330x laser scanner. Scans were processed using Trimble

  4. Nasal Anthropometry on Facial Computed Tomography Scans for Rhinoplasty in Koreans

    PubMed Central

    Moon, Kyung Min; Cho, Geon; Sung, Ha Min; Jung, Min Su; Tak, Kyoung Seok; Jung, Sung-Won; Lee, Hoon-Bum

    2013-01-01

    Background Cephalometric analysis is essential for planning treatment in maxillofacial and aesthetic facial surgery. Although photometric analysis of the Korean nose has been attempted in the past, anthropometry of the deeper nasal structures in the same population based on computerized tomography (CT) has not been published. We therefore measured three anthropometric parameters of the nose on CT scans in our clinical series of patients. Methods We conducted the current retrospective study of a total of 100 patients (n=100) who underwent a CT-guided radiological measurement at our institution during a period ranging from January of 2008 to August of 2010. In these patients, we took three anthropometric measurements: the nasofrontal angle, the pyramidal angle, and the linear distance between the nasion and the tip of the nasal bone. Results The mean nasofrontal angle was 131.14° in the male patients and 140.70° in the female patients. The mean linear distance between the nasion and the tip of the nasal bone was 21.28 mm and 18.02 mm, respectively. The mean nasal pyramidal angle was 112.89° and 103.25° at the level of the nasal root, 117.49° and 115.60° at the middle level of the nasal bone, and 127.99° and 125.04° at the level of the tip of the nasal bone, respectively. Conclusions In conclusion, our data will be helpful in the preparation of silicone implants for augmentation and/or corrective rhinoplasty in ethnic Korean people. PMID:24086818

  5. An Evaluation of the Observational Capabilities of A Scanning 95-GHz Radar in Studying the 3D Structures of Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Bowley, Kevin

    Marine stratocumulus clouds play a critical role in Earth's radiative balance primarily due to the role of their high albedo reflecting incoming solar radiation, causing a cooling effect, while weakly reflecting outgoing infrared radiation. Characterization of the 3-Dimensional (3D) structure of these cloud systems over scales of 20-40 km is required to accurately account for the role of cloud inhomogeneity and structure on their shortwave forcing and lifetime, which has important applications for Global Climate Models. For first time, such 3D measurements in clouds were made available from a scanning cloud radar during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign in the Azores Islands. The scanning radar observations were complemented by a suite of zenith-pointing active and passive remote sensors that were deployed to provide a detailed description of marine stratus over a long-term observation period in the ideal marine environment commonly found at the Azores. The scanning cloud radar observations present a shift from a multi-instrument, vertically pointing 'soda-straw' observation technique to a radar-only, 'radar-centric' observation technique. The scanning radar observations were gridded using a nearest-neighbor type scheme devised to take the natural variability of the observed field into account. The ability of the scheme to capture primary cloud properties (cloud fraction, cloud boundaries, drizzle detection) was assessed using measurements from the vertically pointing sensors. Despite the great sensitivity of the scanning cloud radar (-42.5 dBZ at 1 km range), the drop in sensitivity with range resulted in an artificial thinning of clouds with range from the radar. Drizzle-free cloud structures were undetectable beyond 5 km from the radar. Cloud fields containing drizzle were generally detectable to ranges exceeding 10 km from

  6. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  7. 2D and 3D documentation of St. Nicolas baroque church for the general reconstruction using laser scanning and photogrammetry technologies combination

    NASA Astrophysics Data System (ADS)

    Křemen, Tomáš; Koska, Bronislav

    2013-04-01

    Total reconstruction of a historical object is a complicated process consisting of several partial steps. One of these steps is acquiring high-quality data for preparation of the project documentation. If these data are not available from the previous periods, it is necessary to proceed to a detailed measurement of the object and to create a required drawing documentation. New measurement of the object brings besides its costs also several advantages as complex content and form of drawings exactly according to the requirements together with their high accuracy. The paper describes measurement of the Baroque church by the laser scanning method extended by the terrestrial and air photogrammetry. It deals with processing the measured data and creating the final outputs, which is a 2D drawing documentation, orthophotos and a 3D model. Attention is focused on their problematic parts like interconnection of the measurement data acquired by various technologies, creation of orthophotos and creation of the detailed combined 3D model of the church exterior. Results of this work were used for preparation of the planned reconstruction of the object.

  8. Personal identification by the comparison of facial profiles: testing the reliability of a high-resolution 3D-2D comparison model.

    PubMed

    Cattaneo, Cristina; Cantatore, Angela; Ciaffi, Romina; Gibelli, Daniele; Cigada, Alfredo; De Angelis, Danilo; Sala, Remo

    2012-01-01

    Identification from video surveillance systems is frequently requested in forensic practice. The "3D-2D" comparison has proven to be reliable in assessing identification but still requires standardization; this study concerns the validation of the 3D-2D profile comparison. The 3D models of the faces of five individuals were compared with photographs from the same subjects as well as from another 45 individuals. The difference in area and distance between maxima (glabella, tip of nose, fore point of upper and lower lips, pogonion) and minima points (selion, subnasale, stomion, suprapogonion) were measured. The highest difference in area between the 3D model and the 2D image was between 43 and 133 mm(2) in the five matches, always greater than 157 mm(2) in mismatches; the mean distance between the points was greater than 1.96 mm in mismatches, <1.9 mm in five matches (p < 0.05). These results indicate that this difference in areas may point toward a manner of distinguishing "correct" from "incorrect" matches.

  9. The Application of 3D Laser Scanning in the Survey and Measuring of Guyue Bridge of Song Dynasty in Yiwu City

    NASA Astrophysics Data System (ADS)

    Lu, N.; Wang, Q.; Wang, S.; Zhang, R.

    2015-08-01

    It is believed that folding-arch is the transitional form from beam to curved arch. Guyue Bridge, built in JiaDing 6year (A.D 1213) of Southern Song Dynasty, located in Yiwu City, Zhejiang Province in China, is one of typical objective examples for this transition. It possesses high historical, scientific, artistic, cultural and social values. Facing severe environmental problems and deteriorated heritage situation, our conservation team selected 3D laser scanning as basic recording method, then acquired the precise threedimensional model. Measured the fundamental dimension and components' sizes, we analysed its stable state. Moreover, combined with historic documents, we reasonably speculated and calculated the original sizes and important scales at the building time. These findings have significant research values as well as evidential meanings for future conservation.

  10. The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures.

    PubMed

    Yang, Hao; Xu, Xiangyang; Neumann, Ingo

    2014-01-01

    Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model. PMID:25414968

  11. Patterns of variation and match rates of the anterior biting dentition: characteristics of a database of 3D-scanned dentitions.

    PubMed

    Sheets, H David; Bush, Peter J; Bush, Mary A

    2013-01-01

    An understanding of the variability of the anterior human dentition is essential in bitemark analysis. A collection of 1099 3D laser scans of paired maxillary and mandibular arches were studied using geometric morphometric methods. Analyses were performed without scale (shape only) and with scale (shape and size). Specimens differing by no more than experimentally obtained measurement error were counted as matches, or as indistinguishable. A total of 487 maxillary (396 size preserved), 131 mandibular (83 size preserved), and one paired dentition (two size preserved) matches were found. Principal component analysis and partial least squares revealed interpretable patterns of variation and covariation in dental shape, principally dominated by variation in dental arch width. The sensitivity of match rate to assumed degree of measurement error was also determined showing rapid increases in match rate as measurement error increased. In conclusion, the concept of dental uniqueness with regard to bitemark analysis should be approached with caution.

  12. Patterns of variation and match rates of the anterior biting dentition: characteristics of a database of 3D-scanned dentitions.

    PubMed

    Sheets, H David; Bush, Peter J; Bush, Mary A

    2013-01-01

    An understanding of the variability of the anterior human dentition is essential in bitemark analysis. A collection of 1099 3D laser scans of paired maxillary and mandibular arches were studied using geometric morphometric methods. Analyses were performed without scale (shape only) and with scale (shape and size). Specimens differing by no more than experimentally obtained measurement error were counted as matches, or as indistinguishable. A total of 487 maxillary (396 size preserved), 131 mandibular (83 size preserved), and one paired dentition (two size preserved) matches were found. Principal component analysis and partial least squares revealed interpretable patterns of variation and covariation in dental shape, principally dominated by variation in dental arch width. The sensitivity of match rate to assumed degree of measurement error was also determined showing rapid increases in match rate as measurement error increased. In conclusion, the concept of dental uniqueness with regard to bitemark analysis should be approached with caution. PMID:23311517

  13. Separating Leaves from Trunks and Branches with Dual-Wavelength Terrestrial Lidar Scanning: Improving Canopy Structure Characterization in 3-D Space

    NASA Astrophysics Data System (ADS)

    Li, Z.; Strahler, A. H.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Yao, T.; Zhao, F.; Woodcock, C.; Jupp, D.; Schaefer, M.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Leaf area index (LAI) is an important parameter characterizing forest structure, used in models regulating the exchange of carbon, water and energy between the land and the atmosphere. However, optical methods in common use cannot separate leaf area from the area of upper trunks and branches, and thus retrieve only plant area index (PAI), which is adjusted to LAI using an appropriate empirical woody-to-total index. An additional problem is that the angular distributions of leaf normals and normals to woody surfaces are quite different, and thus leafy and woody components project quite different areas with varying zenith angle of view. This effect also causes error in LAI retrieval using optical methods. Full-waveform scans at both the NIR (1064 nm) and SWIR (1548 nm) wavelengths from the new terrestrial Lidar, the Dual-Wavelength Echidna Lidar (DWEL), which pulses in both wavelengths simultaneously, easily separate returns of leaves from trunks and branches in 3-D space. In DWEL scans collected at two different forest sites, Sierra National Forest in June 2013 and Brisbane Karawatha Forest Park in July 2013, the power returned from leaves is similar to power returned from trunks/branches at the NIR wavelength, whereas the power returned from leaves is much lower (only about half as large) at the SWIR wavelength. At the SWIR wavelength, the leaf scattering is strongly attenuated by liquid water absorption. Normalized difference index (NDI) images from the waveform mean intensity at the two wavelengths demonstrate a clear contrast between leaves and trunks/branches. The attached image shows NDI from a part of a scan of an open red fir stand in the Sierra National Forest. Leaves appear light, while other objects are darker.Dual-wavelength point clouds generated from the full waveform data show weaker returns from leaves than from trunks/branches. A simple threshold classification of the NDI value of each scattering point readily separates leaves from trunks and

  14. Methodological Developments in 3d Scanning and Modelling of Archaeological French Heritage Site : the Bronze Age Painted Cave of "LES FRAUX", Dordogne (france)

    NASA Astrophysics Data System (ADS)

    Burens, A.; Grussenmeyer, P.; Guillemin, S.; Carozza, L.; Lévêque, F.; Mathé, V.

    2013-07-01

    For six years, an interdisciplinary team of archaeologists, surveyors, environmentalists and archaeometrists have jointly carried out the study of a Bronze Age painted cave, registrered in the French Historical Monuments. The archaeological cave of Les Fraux (Saint-Martin-de-Fressengeas, Dordogne) forms a wide network of galleries, characterized by the exceptional richness of its archaeological remains such as ceramic and metal deposits, parietal representation and about domestic fireplaces. This cave is the only protohistorical site in Europe wherein are gathered testimonies of domestic, spiritual and artistic activities. Fortunately, the cave was closed at the end of the Bronze Age, following to the collapse of its entrance. The site was re-discovered in 1989 and its study started in 2007. The study in progress takes place in a new kind of tool founded by the CNRS's Institute of Ecology and Environment. The purpose of this observatory is the promotion of new methodologies and experimental studies in Global Ecology. In that framework, 3D models of the cave constitute the common work support and the best way for scientific communication for the various studies conducted on the site by nearly forty researchers. In this specific context, a partnership among archaeologists and surveyors from INSA Strasbourg allows the team to develop, in an interdisciplinary way, new methods of data acquiring based on contact-free measurements techniques in order to acquire a full 3D-documentation. This work is conducted in compliance with the integrity of the site. Different techniques based on Terrestrial Laser Scanning, Digital Photogrammetry and Spatial Imaging System have been used in order to generate a geometric and photorealistic 3D model from the combination of point clouds and photogrammetric images, for both visualization and accurate documentation purposes. Various scales of acquiring and diverse resolutions have been applied according to the subject: global volume cave

  15. 3D reconstruction on CBCT in the cystic pathology of the jaws

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    The paper presents the image acquisition of Cone Beam Computer Tomography scans of human facial bones and their processing in order to obtain a 3D reconstruction model of the skull. The reconstructed model provides useful data to the physician in situations of maxillary cystic pathology but more important is the data about the relationship of the maxillary cyst with the surrounding anatomical elements. Using the B-splines a 3D volume model of the human facial bones can be achieved. This model can be exported in any CAD system, resulting a virtual model witch can be used in FEM analysis.

  16. Effect of defocusing distance on the contaminated surface of brass ring with nanosecond laser in a 3D laser scanning system

    NASA Astrophysics Data System (ADS)

    Zhao, Mali; Liu, Tiegen; Jiang, Junfeng; Wang, Meng

    2014-08-01

    Defocusing distance plays a key role in laser cleaning result and can be either positive or negative, depending on the focus position relative to the sample surface. In this paper, we investigate the effect of the defocusing distance on the cleaning efficiency of oxidized brass surface. The oxide layer from the surface of a brass ring was processed with a three dimensional (3-D) dynamically focused laser galvanometer scanning system. The relationship between removal efficiency of the oxide layer and the defocusing distance was analyzed. The sample surface topography, element content before and after the laser cleaning were analyzed by a scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS), the surface quality after laser cleaning was analyzed by a Atomic Force Microscope (AFM), the chemical constituents of the oxide layer on the sample surface after being processed with different defocusing distances were examined by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The results show that the ratios of Cu/O and Zn/O reach the maximum of 53.2 and 27.78 respectively when the defocusing distance is +0.5 mm. The laser pulses will lose the ability to remove the oxide layer from the substrate surface when the defocusing distance is larger than ±2 mm.

  17. Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture.

    PubMed

    Schroeder-Reiter, Elizabeth; Pérez-Willard, Fabián; Zeile, Ulrike; Wanner, Gerhard

    2009-02-01

    Focused ion beam (FIB) milling in combination with field emission scanning electron microscopy (FESEM) was applied to investigations of metaphase barley chromosomes, providing new insight into the chromatin packaging in the chromosome interior and 3D distribution of histone variants in the centromeric region. Whole mount chromosomes were sectioned with FIB with thicknesses in the range of 7-20nm, resulting in up to 2000 sections, which allow high resolution three-dimensional reconstruction. For the first time, it could be shown that the chromosome interior is characterized by a network of interconnected cavities, with openings to the chromosome surface. In combination with immunogold labeling, the centromere-correlated distribution of histone variants (phosphorylated histone H3, CENH3) could be investigated with FIB in three dimensions. Limitations of classical SEM analysis of whole mount chromosomes with back-scattered electrons requiring higher accelerating voltages, e.g. faint and blurred interior signals, could be overcome with FIB milling: from within the chromosome even very small labels in the range of 10nm could be precisely visualized. This allowed direct quantification of marker molecules in a three-dimensional context. Distribution of DNA in the chromosome interior could be directly analyzed after staining with a DNA-specific platinorganic compound Platinum Blue. Higher resolution visualization of DNA distribution could be performed by preparation of FIB lamellae with the in situ lift-out technique followed by investigation in dark field with a scanning transmission electron detector (STEM) at 30kV. PMID:19059341

  18. Facial biometrics of peri-oral changes in Crohn's disease.

    PubMed

    Zou, L; Adegun, O K; Willis, A; Fortune, Farida

    2014-05-01

    Crohn's disease is a chronic relapsing and remitting inflammatory condition which affects any part of the gastrointestinal tract. In the oro-facial region, patients can present peri-oral swellings which results in severe facial disfigurement. To date, assessing the degree of facial changes and evaluation of treatment outcomes relies on clinical observation and semi-quantitative methods. In this paper, we describe the development of a robust and reproducible measurement strategy using 3-D facial biometrics to objectively quantify the extent and progression of oro-facial Crohn's disease. Using facial laser scanning, 32 serial images from 13 Crohn's patients attending the Oral Medicine clinic were acquired during relapse, remission, and post-treatment phases. Utilising theories of coordinate metrology, the facial images were subjected to registration, regions of interest identification, and reproducible repositioning prior to obtaining volume measurements. To quantify the changes in tissue volume, scan images from consecutive appointments were compared to the baseline (first scan image). Reproducibility test was performed to ascertain the degree of uncertainty in volume measurements. 3-D facial biometric imaging is a reliable method to identify and quantify peri-oral swelling in Crohn's patients. Comparison of facial scan images at different phases of the disease revealed precisely profile and volume changes. The volume measurements were highly reproducible as adjudged from the 1% standard deviation. 3-D facial biometrics measurements in Crohn's patients with oro-facial involvement offers a quick, robust, economical and objective approach for guided therapeutic intervention and routine assessment of treatment efficacy on the clinic.

  19. Polish Experience with Advanced Digital Heritage Recording Methodology, including 3D Laser Scanning, CAD, and GIS Application, as the Most Accurate and Flexible Response for Archaeology and Conservation Needs at Jan III Sobieski's Residence in Wilanów

    NASA Astrophysics Data System (ADS)

    Baranowski, P.; Czajkowski, K.; Gładki, M.; Morysiński, T.; Szambelan, R.; Rzonca, A.

    Review of recent critical points for introduction of laser technology into the field of heritage documentation, management, conservation, and archaeology will be discussed. The relationship of benefit versus cost of 3D laser scanning technique for complex multitask heritage recording project at Wilanow is presented. Definition of basic criteria for the successful use of such heritage detailed record as laser scanning is given.

  20. Enhanced simultaneous detection of ractopamine and salbutamol--Via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates.

    PubMed

    Wang, Ming Yan; Zhu, Wei; Ma, Lin; Ma, Juan Juan; Zhang, Dong En; Tong, Zhi Wei; Chen, Jun

    2016-04-15

    In this paper, we report a facile method to successfully fabricate MnO2 nanoflowers loaded onto 3D RGO@nickel foam, showing enhanced biosensing activity due to the improved structural integration of different electrode materials components. When the as-prepared 3D hybrid electrodes were investigated as a binder-free biosensor, two well-defined and separate differential pulse voltammetric peaks for ractopamine (RAC) and salbutamol (SAL) were observed, indicating the simultaneous selective detection of both β-agonists possible. The MnO2/RGO@NF sensor also demonstrated a linear relationship over a wide concentration range of 17 nM to 962 nM (R=0.9997) for RAC and 42 nM to 1463 nM (R=0.9996) for SAL, with the detection limits of 11.6 nM for RAC and 23.0 nM for SAL. In addition, the developed MnO2/RGO@NF sensor was further investigated to detect RAC and SAL in pork samples, showing satisfied comparable results in comparison with analytic results from HPLC.

  1. Sex Differences in Facial Scanning: Similarities and Dissimilarities between Infants and Adults

    ERIC Educational Resources Information Center

    Rennels, Jennifer L.; Cummings, Andrew J.

    2013-01-01

    When face processing studies find sex differences, male infants appear better at face recognition than female infants, whereas female adults appear better at face recognition than male adults. Both female infants and adults, however, discriminate emotional expressions better than males. To investigate if sex and age differences in facial scanning…

  2. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning.

    PubMed

    Mattei, Alexandra L; Riccio, Mark L; Avila, Frank W; Wolfner, Mariana F

    2015-07-01

    Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female's circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female's reproductive physiology.

  3. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning

    PubMed Central

    Mattei, Alexandra L.; Riccio, Mark L.; Avila, Frank W.; Wolfner, Mariana F.

    2015-01-01

    Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female’s circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female’s reproductive physiology. PMID:26041806

  4. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  5. Quantification of facial movements by optical instruments: surface laser scanning and optoelectronic three-dimensional motion analyzer.

    PubMed

    Sidequersky, Fernanda Vincia; Verzé, Laura; Mapelli, Andrea; Ramieri, Guglielmo Amedeo; Sforza, Chiarella

    2014-01-01

    The objective of this study was to assess the accuracy of displacements of tracing landmarks in standardized facial movements. Forty healthy persons were evaluated in 2 different groups (20 men and 20 women, aged 18-30 years) with optoelectronic motion analyzer and surface laser scanning. The displacements of tracing landmarks in brow lift and smile were calculated, and the 2 methods (optoelectronic motion analyzer and surface laser scanning) were compared in healthy persons. Side-related differences were found in the tracing landmark (superciliare) during brow lift movements between both methods (the largest movements were found on the right side, P = 0.044), whereas in smile movements the tracing landmark cheilion did not show significant differences between the 2 sides. In both movements, the differences of the tracing landmark displacements between the 2 systems and sexes were on average less than 2 mm, without statistically significant differences (P > 0.05). In conclusion, normal young adult men and women had similar standardized facial movements. The 2 analyzed movements can be measured by both optical instruments with comparable results.

  6. An in vivo study of hindfoot 3D kinetics in stage II posterior tibial tendon dysfunction (PTTD) flatfoot based on weight-bearing CT scan

    PubMed Central

    Zhang, Y.; Xu, J.; Wang, X.; Huang, J.; Zhang, C.; Chen, L.; Wang, C.; Ma, X.

    2013-01-01

    Objective The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing. Methods CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint. Results From non- to full-body-weight-bearing condition, the difference in the talus position relative to the calcaneus in the talocalcaneal joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p = 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal (p = 0.004) in stage II PTTD flatfoot compared with that in a healthy foot. The navicular position difference relative to the talus in the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm more proximal (p = 0.017). The cuboid position difference relative to the calcaneus in the calcaneocuboid joint did not change significantly in rotation and translation (all p ≥ 0.08). Conclusion Referring to a previous study regarding both the cadaveric foot and the live foot, joint instability occurred in the hindfoot in simulated weight-bearing condition in patients with stage II PTTD flatfoot. The method used in this study might be applied to clinical analysis of the aetiology and evolution of PTTD flatfoot, and may inform biomechanical

  7. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  8. Acceptability, Precision and Accuracy of 3D Photonic Scanning for Measurement of Body Shape in a Multi-Ethnic Sample of Children Aged 5-11 Years: The SLIC Study

    PubMed Central

    Wells, Jonathan C. K.; Stocks, Janet; Bonner, Rachel; Raywood, Emma; Legg, Sarah; Lee, Simon; Treleaven, Philip; Lum, Sooky

    2015-01-01

    Background Information on body size and shape is used to interpret many aspects of physiology, including nutritional status, cardio-metabolic risk and lung function. Such data have traditionally been obtained through manual anthropometry, which becomes time-consuming when many measurements are required. 3D photonic scanning (3D-PS) of body surface topography represents an alternative digital technique, previously applied successfully in large studies of adults. The acceptability, precision and accuracy of 3D-PS in young children have not been assessed. Methods We attempted to obtain data on girth, width and depth of the chest and waist, and girth of the knee and calf, manually and by 3D-PS in a multi-ethnic sample of 1484 children aged 5–11 years. The rate of 3D-PS success, and reasons for failure, were documented. Precision and accuracy of 3D-PS were assessed relative to manual measurements using the methods of Bland and Altman. Results Manual measurements were successful in all cases. Although 97.4% of children agreed to undergo 3D-PS, successful scans were only obtained in 70.7% of these. Unsuccessful scans were primarily due to body movement, or inability of the software to extract shape outputs. The odds of scan failure, and the underlying reason, differed by age, size and ethnicity. 3D-PS measurements tended to be greater than those obtained manually (p<0.05), however ranking consistency was high (r2>0.90 for most outcomes). Conclusions 3D-PS is acceptable in children aged ≥5 years, though with current hardware/software, and body movement artefacts, approximately one third of scans may be unsuccessful. The technique had poorer technical success than manual measurements, and had poorer precision when the measurements were viable. Compared to manual measurements, 3D-PS showed modest average biases but acceptable limits of agreement for large surveys, and little evidence that bias varied substantially with size. Most of the issues we identified could be

  9. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

    PubMed Central

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing

  10. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    NASA Astrophysics Data System (ADS)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  11. Natural, but not artificial, facial movements elicit the left visual field bias in infant face scanning

    PubMed Central

    Xiao, Naiqi G.; Quinn, Paul C.; Wheeler, Andrea; Pascalis, Olivier; Lee, Kang

    2014-01-01

    A left visual field (LVF) bias has been consistently reported in eye movement patterns when adults look at face stimuli, which reflects hemispheric lateralization of face processing and eye movements. However, the emergence of the LVF attentional bias in infancy is less clear. The present study investigated the emergence and development of the LVF attentional bias in infants from 3 to 9 months of age with moving face stimuli. We specifically examined the naturalness of facial movements in infants’ LVF attentional bias by comparing eye movement patterns in naturally and artificially moving faces. Results showed that 3- to 5-month-olds exhibited the LVF attentional bias only in the lower half of naturally moving faces, but not in artificially moving faces. Six- to 9-month-olds showed the LVF attentional bias in both the lower and upper face halves only in naturally moving, but not in artificially moving faces. These results suggest that the LVF attentional bias for face processing may emerge around 3 months of age and is driven by natural facial movements. The LVF attentional bias reflects the role of natural face experience in real life situations that may drive the development of hemispheric lateralization of face processing in infancy. PMID:25064049

  12. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features.

    PubMed

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J; Balding, David; Ruiz-Linares, Andrés

    2016-03-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10(-8) to 3 × 10(-119)), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair.

  13. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features.

    PubMed

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10(-8) to 3 × 10(-119)), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair. PMID:26926045

  14. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

    PubMed Central

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A.; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J.; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10−8 to 3 × 10−119), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair. PMID:26926045

  15. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  16. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  17. 3D Face Recognition Based on Multiple Keypoint Descriptors and Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  18. Three-dimensional facial surface analysis of patients with skeletal malocclusion.

    PubMed

    Alves, Patrícia Valéria Milanezi; Zhao, Linping; Patel, Pravin K; Bolognese, Ana M

    2009-03-01

    Three-dimensional (3D) laser surface scanning analysis has taken hold in orthodontics, as well as craniomaxillofacial and plastic surgery as a new tool that can navigate away from the limitations of conventional two-dimensional methods. Various techniques for 3D reconstruction of the face have been used in diagnosis, treatment planning and simulation, and outcomes follow-up. The aim of the current prospective study was to present some technical aspects for the assessment of facial changes after orthodontic and orthognathic surgery treatment using 3D laser surface scanning. The technique proposed for facial surface shape analysis represented three-dimensionally the expected surgical changes, and the reduction of the postoperative swelling was verified. This study provides technical information from the data collection to the 3D virtual soft-tissue analysis that can be useful for diagnostic information, treatment planning, future comparisons of treatment stability or facial postoperative swelling, and soft-tissue profile assessment.

  19. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x

  20. Analysis of usefulness of airborne laser scanning for preparation of 3D buildings model consistent with inspire specification. (Polish Title: Analiza przydatności lotniczego skaningu laserowego do opracowania modelu budynków 3D zgodnego ze specyfikacją INSPIRE)

    NASA Astrophysics Data System (ADS)

    Cisło-Lesicka, U.; Borowiec, N.; Marmol, U.; Pyka, K.

    2014-12-01

    The inspiration to undertake the subject was the announcement of preparations for project Poland 3D+. First the presentation of background analysis of modelling methods was sketched. Then the principles of buildings modelling, imposed by INSPIRE specification, were recalled. Next the conditions of conversion of 2D spatial database to 3D ones, on the basis of experience acquired thanks to the research project performed in AGH in the years 2009 - 2012, was discussed. The research indicated airborne scanning as the best data source but at the same time indicated that highly detailed models considered for large areas may turn out to be poorly efficient for the GIS technology. Then t he systematization of modelling methods of airborne scanning, with emphasis on advantages and disadvantages of the approach model driven and date driven, was presented. The thesis is concluded with a suggestion of modelling strategy in the context of condition of geo - reference databases in Poland, prospects of their development and demand for spatial data from the social and economic point of view. A gradual solution was suggested, in which, firstly, attempts are made to apply the model driven method and in case of failure, the data driven method is applied, which enables modelling the buildings of complex shapes but doe s not guarantee full automation. Such a procedure, in the opinion of the authors, would be optimal at implementation of project Poland 3D+.

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  2. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  3. A 3D Wavelet Fusion Approach for the Reconstruction of Isotropic-Resolution MR Images from Orthogonal Anisotropic-Resolution Scans

    PubMed Central

    Aganj, Iman; Lenglet, Christophe; Yacoub, Essa; Sapiro, Guillermo; Harel, Noam

    2011-01-01

    Hardware constraints, scanning time limitations, patient movement, and SNR considerations, restrict the slice-selection and the in-plane resolutions of MRI differently, generally resulting in anisotropic voxels. This non-uniform sampling can be problematic, especially in image segmentation and clinical examination. To alleviate this, the acquisition is divided into (two or) three separate scans, with higher in-plane resolutions and thick slices, yet orthogonal slice-selection directions. In this work, a non-iterative wavelet-based approach for combining the three orthogonal scans is adopted, and its advantages compared to other existing methods, such as Fourier techniques, are discussed, including the consideration of the actual pulse response of the MRI scanner, and its lower computational complexity. Experimental results are shown on simulated and real 7T MRI data. PMID:21761448

  4. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  5. Construction and investigation of 3D vessels net of the brain according to MRI data using the method of variation of scanning plane

    NASA Astrophysics Data System (ADS)

    Cherevko, A. A.; Yankova, G. S.; Maltseva, S. V.; Parshin, D. V.; Akulov, A. E.; Khe, A. K.; Chupakhin, A. P.

    2016-06-01

    The blood realizes the transport of substances, which are necessary for livelihoods, throughout the body. The assumption about the relationship genotype and structure of vasculature (in particular of brain) is natural. In the paper we consider models of vessel net for two genetic lines of laboratory mice. Vascular net obtained as a result of preprocessing MRI data. MRI scanning is realized using the method of variation of slope of scanning plane, i.e. by several sets of parallel planes specified by different normal vectors. The following special processing allowed to construct models of vessel nets without fragmentation. The purpose of the work is to compare the vascular network models of two different genetic lines of laboratory mice.

  6. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data

    PubMed Central

    Copes, Lynn E.; Lucas, Lynn M.; Thostenson, James O.; Hoekstra, Hopi E.; Boyer, Doug M.

    2016-01-01

    A dataset of high-resolution microCT scans of primate skulls (crania and mandibles) and certain postcranial elements was collected to address questions about primate skull morphology. The sample consists of 489 scans taken from 431 specimens, representing 59 species of most Primate families. These data have transformative reuse potential as such datasets are necessary for conducting high power research into primate evolution, but require significant time and funding to collect. Similar datasets were previously only available to select research groups across the world. The physical specimens are vouchered at Harvard’s Museum of Comparative Zoology. The data collection took place at the Center for Nanoscale Systems at Harvard. The dataset is archived on MorphoSource.org. Though this is the largest high fidelity comparative dataset yet available, its provisioning on a web archive that allows unlimited researcher contributions promises a future with vastly increased digital collections available at researchers’ finger tips. PMID:26836025

  7. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data.

    PubMed

    Copes, Lynn E; Lucas, Lynn M; Thostenson, James O; Hoekstra, Hopi E; Boyer, Doug M

    2016-01-01

    A dataset of high-resolution microCT scans of primate skulls (crania and mandibles) and certain postcranial elements was collected to address questions about primate skull morphology. The sample consists of 489 scans taken from 431 specimens, representing 59 species of most Primate families. These data have transformative reuse potential as such datasets are necessary for conducting high power research into primate evolution, but require significant time and funding to collect. Similar datasets were previously only available to select research groups across the world. The physical specimens are vouchered at Harvard's Museum of Comparative Zoology. The data collection took place at the Center for Nanoscale Systems at Harvard. The dataset is archived on MorphoSource.org. Though this is the largest high fidelity comparative dataset yet available, its provisioning on a web archive that allows unlimited researcher contributions promises a future with vastly increased digital collections available at researchers' finger tips. PMID:26836025

  8. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data.

    PubMed

    Copes, Lynn E; Lucas, Lynn M; Thostenson, James O; Hoekstra, Hopi E; Boyer, Doug M

    2016-01-01

    A dataset of high-resolution microCT scans of primate skulls (crania and mandibles) and certain postcranial elements was collected to address questions about primate skull morphology. The sample consists of 489 scans taken from 431 specimens, representing 59 species of most Primate families. These data have transformative reuse potential as such datasets are necessary for conducting high power research into primate evolution, but require significant time and funding to collect. Similar datasets were previously only available to select research groups across the world. The physical specimens are vouchered at Harvard's Museum of Comparative Zoology. The data collection took place at the Center for Nanoscale Systems at Harvard. The dataset is archived on MorphoSource.org. Though this is the largest high fidelity comparative dataset yet available, its provisioning on a web archive that allows unlimited researcher contributions promises a future with vastly increased digital collections available at researchers' finger tips.

  9. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.

  10. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. PMID:26820619

  11. The effect of near-infrared laser beam on the surface modification of metal complex based on 3D laser scanning system

    NASA Astrophysics Data System (ADS)

    Zhao, Mali; Liu, Tiegen; Jiang, Junfeng; Wang, Meng

    2014-11-01

    High-precision 3-dimensional metallization is difficult to realize in specific nonmetallic areas by using the traditional methods such as wet-chemical and mechanical methods because of the disadvantage that usually they cannot achieve selective modification. In this paper, 3-dimensional laser scanning system was applied to achieve the modification of specific regions of the sample surface. In 3-dimensional laser scanning system, the laser beam, after going through dynamic focusing system, was reflected by galvanometers and then focused by f-theta lens on the sample surface. The changes in surface characteristics of the blends of polycarbonate and acrylonitrile butadiene styrene copolymers (PC/ABS) mixed with Cu-Cr complex by the laser irradiation with the wavelength of 1064nm were investigated. Through analysis it was found that the smooth surface of the original samples was changed to a micro-hole structure accompanied by an increased surface roughness as well as an increased water contact angle. The chemical composition percentage had changed and the metal components of copper and chromium were detected after the laser irradiation. The irradiated areas were degraded into organic ligand fragments, volatile gas and reducing metal ions of copper and chromium. Besides, the thickness of the deposited metal layer and the adhesive force between the metal layer and the substrate after electroless plating varied according to the laser parameters such as frequency and scanning speed. As shown in the experiment, the thickness of deposited copper layer exceeded 11μm and the deposited nickel layer exceeded 2μm respectively.

  12. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  13. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  14. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  15. New Optical Scanning Tomography using a rotating slicing for time-resolved measurements of 3D full field displacements in structures

    NASA Astrophysics Data System (ADS)

    Morandi, P.; Brémand, F.; Doumalin, P.; Germaneau, A.; Dupré, J. C.

    2014-07-01

    In this paper, a new optical tomography process is presented. It has been developed for time-resolved measurement of kinematic fields in the whole volume of structure. This new process is based on the scan of the specimen by a plane laser beam submitted to a motion of rotation. Calibration and reconstruction steps have been established and are described in this document. Acquisition is achieved by illuminating successive slices in the specimen using a rotating plane laser beam and data are recorded with a single CCD camera. The recorded volumes are analyzed by Digital Volume Correlation to measure the three displacement components in the bulk. This new acquisition process is assessed by performing sub-voxel rigid body translations along the three axes. We discuss the quality of a reconstructed volume and also the measurement accuracy in terms of mean error and standard deviation through rigid body displacement tests. Results are compared with those obtained using classical Optical Scanning Tomography (OST) and using X-ray Tomography.

  16. Structural properties of spatial representations in blind people: Scanning images constructed from haptic exploration or from locomotion in a 3-D audio virtual environment.

    PubMed

    Afonso, Amandine; Blum, Alan; Katz, Brian F G; Tarroux, Philippe; Borst, Grégoire; Denis, Michel

    2010-07-01

    When people scan mental images, their response times increase linearly with increases in the distance to be scanned, which is generally taken as reflecting the fact that their internal representations incorporate the metric properties of the corresponding objects. In view of this finding, we investigated the structural properties of spatial mental images created from nonvisual sources in three groups (blindfolded sighted, late blind, and congenitally blind). In Experiment 1, blindfolded sighted and late blind participants created metrically accurate spatial representations of a small-scale spatial configuration under both verbal and haptic learning conditions. In Experiment 2, late and congenitally blind participants generated accurate spatial mental images after both verbal and locomotor learning of a full-scale navigable space (created by an immersive audio virtual reality system), whereas blindfolded sighted participants were selectively impaired in their ability to generate precise spatial representations from locomotor experience. These results attest that in the context of a permanent lack of sight, encoding spatial information on the basis of the most reliable currently functional system (the sensorimotor system) is crucial for building a metrically accurate representation of a spatial environment. The results also highlight the potential of spatialized audio-rendering technology for exploring the spatial representations of visually impaired participants.

  17. Structural properties of spatial representations in blind people: Scanning images constructed from haptic exploration or from locomotion in a 3-D audio virtual environment.

    PubMed

    Afonso, Amandine; Blum, Alan; Katz, Brian F G; Tarroux, Philippe; Borst, Grégoire; Denis, Michel

    2010-07-01

    When people scan mental images, their response times increase linearly with increases in the distance to be scanned, which is generally taken as reflecting the fact that their internal representations incorporate the metric properties of the corresponding objects. In view of this finding, we investigated the structural properties of spatial mental images created from nonvisual sources in three groups (blindfolded sighted, late blind, and congenitally blind). In Experiment 1, blindfolded sighted and late blind participants created metrically accurate spatial representations of a small-scale spatial configuration under both verbal and haptic learning conditions. In Experiment 2, late and congenitally blind participants generated accurate spatial mental images after both verbal and locomotor learning of a full-scale navigable space (created by an immersive audio virtual reality system), whereas blindfolded sighted participants were selectively impaired in their ability to generate precise spatial representations from locomotor experience. These results attest that in the context of a permanent lack of sight, encoding spatial information on the basis of the most reliable currently functional system (the sensorimotor system) is crucial for building a metrically accurate representation of a spatial environment. The results also highlight the potential of spatialized audio-rendering technology for exploring the spatial representations of visually impaired participants. PMID:20551339

  18. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  19. SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry

    SciTech Connect

    Bache, S; Malcolm, J; Adamovics, J; Oldham, M

    2014-06-01

    Purpose: To characterize and explore the efficacy of a novel low-cost, lowfluid, broad-beam optical-CT system for 3D-dosimetry in radiochromic Presage dosimeters. Leading current optical-CT systems incorporate expensive glass-based telecentric lens technology, and a fluid bath with substantial amounts of fluid (which introduces an inconvenience factor) to minimize refraction artifacts. Here we introduce a novel system which addresses both these limitations by: (1) the use of Fresnel lenses in a telecentric arrangement, and (2) a ‘solid’ fluid bath which dramatically reduces the amount of fluid required for refractive-index (RI) matching. Materials Methods: A fresnel based telecentric optical-CT system was constructed which expands light from a single red LED source into a nominally parallel beam into which a cubic ‘dry-tank’ is placed. The drytank consists of a solid polyurethane cube (with the same RI as Presage) but containing a cylindrical cavity (11.5cm diameter × 11cm ) into which the dosimeter is placed for imaging. A narrow (1-3mm) gap between the walls of the dosimeter and dry-tank is filled with a fluid of similar RI. This arrangement reduces the amount of RI fluid from about 1000cc to 75cc, yielding substantial practical benefit in convenience and cost. The new system was evaluated in direct comparison against Eclipse planning system from a 4-field parallel-opposed treatmen Results: Gamma calculations of dose from DFOS-dry system versus Eclipse showed 92% and 97% agreement with 4mm/4% and 5mm/5% criteria, respectively, in the central 80% of dose distribution. Reconstructions showed some edge artifacts, as well as some dose underestimation towards the dosimeter edge. Conclusion: The implementation of Fresnel based ‘dry’ optical-CT for 3Ddosimetry would represent an important advance enhancing costeffectiveness and practical viability. The performance of the prototype presented here is not yet comparable to the state-of-the-art, but shows

  20. Visual scanning and recognition of Chinese, Caucasian, and racially ambiguous faces: contributions from bottom-up facial physiognomic information and top-down knowledge of racial categories.

    PubMed

    Wang, Qiandong; Xiao, Naiqi G; Quinn, Paul C; Hu, Chao S; Qian, Miao; Fu, Genyue; Lee, Kang

    2015-02-01

    Recent studies have shown that participants use different eye movement strategies when scanning own- and other-race faces. However, it is unclear (1) whether this effect is related to face recognition performance, and (2) to what extent this effect is influenced by top-down or bottom-up facial information. In the present study, Chinese participants performed a face recognition task with Chinese, Caucasian, and racially ambiguous faces. For the racially ambiguous faces, we led participants to believe that they were viewing either own-race Chinese faces or other-race Caucasian faces. Results showed that (1) Chinese participants scanned the nose of the true Chinese faces more than that of the true Caucasian faces, whereas they scanned the eyes of the Caucasian faces more than those of the Chinese faces; (2) they scanned the eyes, nose, and mouth equally for the ambiguous faces in the Chinese condition compared with those in the Caucasian condition; (3) when recognizing the true Chinese target faces, but not the true target Caucasian faces, the greater the fixation proportion on the nose, the faster the participants correctly recognized these faces. The same was true when racially ambiguous face stimuli were thought to be Chinese faces. These results provide the first evidence to show that (1) visual scanning patterns of faces are related to own-race face recognition response time, and (2) it is bottom-up facial physiognomic information that mainly contributes to face scanning. However, top-down knowledge of racial categories can influence the relationship between face scanning patterns and recognition response time. PMID:25497461

  1. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data

    PubMed Central

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants’ cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  2. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    PubMed

    Belcher, Claire M; Punyasena, Surangi W; Sivaguru, Mayandi

    2013-01-01

    Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.

  3. Observing spin excitations in 3 d transition-metal adatoms on Pt(111) with inelastic scanning tunneling spectroscopy: A first-principles perspective

    NASA Astrophysics Data System (ADS)

    Schweflinghaus, Benedikt; dos Santos Dias, Manuel; Lounis, Samir

    2016-01-01

    Spin excitations in atomic-scale nanostructures have been investigated with inelastic scanning tunneling spectroscopy, sometimes with conflicting results. In this work, we present a theoretical viewpoint on a recent experimental controversy regarding the spin excitations of Co adatoms on Pt(111). While one group [Balashov et al., Phys. Rev. Lett. 102, 257203 (2009), 10.1103/PhysRevLett.102.257203] claims to have detected them, another group reported their observation only after the hydrogenation of the Co adatom [Dubout et al., Phys. Rev. Lett. 114, 106807 (2015), 10.1103/PhysRevLett.114.106807]. Utilizing time-dependent density functional theory in combination with many-body perturbation theory, we demonstrate that, although inelastic spin excitations are possible for Cr, Mn, Fe, and Co adatoms, their efficiency differs. While the excitation signature is less pronounced for Mn and Co adatoms, it is larger for Cr and Fe adatoms. We find that the tunneling matrix elements or the tunneling cross-section related to the nature and symmetry of the relevant electronic states are more favorable for triggering the spin excitations in Fe than in Co. An enhancement of the tunneling and of the inelastic spectra is possible by attaching hydrogen to the adatom at the appropriate position.

  4. The aetiology behind torticollis and variable spine defects in patients with Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome: 3D CT scan analysis.

    PubMed

    Al Kaissi, Ali; Ganger, Rudolf; Hofstaetter, Jochen G; Klaushofer, Klaus; Grill, Franz

    2011-10-01

    The aim of the article is fourfold; firstly, to detect the aetiology of torticollis in patients with Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome; secondly, spine pathology in Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome varies considerably from one patient to another and there are remarkable differences in severity and localization; thirdly, mismanagement of congenital spine pathology is a frequent cause of morbid/fatal outcome; and fourthly, the application of prophylactic surgical treatment to balance the growth of the spine at an early stage is mandatory. Reformatted CT scans helped in exploring the craniocervical and the entire spine in these patients. The reason behind torticollis ranged between aplasia of the posterior arch of the atlas, assimilation of the atlas and extensive fusion of the lower cervical vertebrae (bilateral failure of segmentation) in four patients; in one patient, in addition to the hypoplastic posterior arch of the atlas, we observed ossification of the anterior and the posterior longitudinal spinal ligaments giving rise to a block vertebrae-like suggestive of early senile ankylosing vertebral hyperostosis (Forestier disease). Scoliosis at different spine levels was attributable to variable spine defects. Pelvic ultrasound showed the classical renal agenesis in four patients; whereas in one patient, the MRI showed pelvic cake kidney (renal fused ectopia) associated with ovarian, uterine and vaginal abnormalities. This is the first exploratory study on the craniocervical and the entire spine in a group of patients with MURCS association.

  5. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    PubMed

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  6. 3D laser scanning as a new tool of assessment of erosion rates in forested loess gullies (case study: Kolonia Celejów, Lublin Upland)

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar; Janicki, Grzegorz; Rodzik, Jan

    2014-06-01

    The gully network existing in a number of loess areas under agricultural use in the Lublin Upland has been subject to secondary vegetation succession. The dense plant cover makes the application of remote sensing methods difficult. As a result, topographic maps frequently present the general outlines of the gullies, and in the case of a considerable dissection of the badlands type - only the boundaries between the occurring forest assemblages and cultivated fields. Aerial photographs do not permit tracing the modern development of the lateral branches of the gully, or the qualitative assessment of material transported in the gully system. The application of satellite geodesy tools is also problematic due to weak penetration of tree crowns by the signal. The application of traditional geodesic tools, including laser total stations, is time-consuming and strenuous, particularly in the case of measurement of microforms. Moreover, measurements by means of total stations require relevant preparation of the polygon, and frequently the removal of bushes and high perennials. Such measurement problems can be solved by the application of the modern Terrestrial Laser Scanning (TLS) technology. The primary objective of the paper is to develop a strategy of measurement of active gully landforms, and the application of the TLS technology for geomorphological mapping in forested and branched gully systems. Moreover, detailed measurements of the geometry of the secondary landforms permit the monitoring of tendencies and the determination of the rate of development of gullies

  7. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    NASA Astrophysics Data System (ADS)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in

  8. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  9. Three-dimensional cranio-facial reconstruction in forensic identification: latest progress and new tendencies in the 21st century.

    PubMed

    De Greef, Sven; Willems, Guy

    2005-01-01

    Three-dimensional (3D) cranio-facial reconstruction can be useful in the identification of an unknown body. The progress in computer science and the improvement of medical imaging technologies during recent years had significant repercussions on this domain. New facial soft tissue depth data for children and adults have been obtained using ultrasound, CT-scans and radiographies. New guidelines for facial feature properties such as nose projection, eye protrusion or mouth width, have been suggested, but also older theories and "rules of thumbs" have been critically evaluated based on digital technology. New fast, flexible and objective 3D reconstruction computer programs are in full development. The research on craniofacial reconstruction since the beginning of the 21st century is presented, highlighting computer-aided 3D facial reconstruction. Employing the newer technologies and permanently evaluating and (re)questioning the obtained results will hopefully lead to more accurate reconstructions.

  10. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  11. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. Comparison of the impact of fire, floods, and large herbivore grazing on the 3-D structure and biomass of Mopane Woodland in Kruger National Park using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Delgado, A.; Washington-Allen, R. A.; Bruton, R.; Swemmer, A.

    2012-12-01

    We conducted a study to look at the impact of large herbivore grazing exclusion, fire, and flooding on the three dimensional (3-D) structure and biomass of Mopane woodlands using Terrestrial Laser Scanning (TLS). The study was conducted at the 42-ha Letaba exclosure that is located on the northern shore of the Letaba River in the northern part of Kruger National Park (KNP), South Africa. The study entailed comparison of 4 X 30-m diameter paired plots, with 4 treatment (no grazing) plots within the exclosure and 4 control plots outside. Additionally, the northern 4 plots are in upland savanna vegetation on a gravelly loam stream terrace that had been burned in 2010. The southern 4 plots are in riparian woodlands on sandy loam soils that had been flooded in 2007. TLS data was collected at 4-cm spacing with 30-m range at 4 scans per plot. Scans were registered and a 3-D virtual environment was created for each plot from which canopy cover, plant density, and vegetation height were manually measured and biomass was derived. We used discriminant analysis to test the hypothesis that 4 structurally distinct groups would be detected, i.e., burned ungrazed savanna, burned grazed savanna, flooded ungrazed riparian, and a flooded grazed riparian group. We found that point density of grass and trees across plots correlated significantly with plot biomass. We predicted that exclosure biomass would be greater than biomass outside the exclosure and that upland biomass < riparian biomass and this was confirmed. Structural parameters were distinct in riparian plots with > height and density in the canopy, shrub, and herbaceous layers within the exclosure compared to outside. However, though biomass was distinct, structural features were not in the upland pairs.

  13. Signals of Personality and Health: The Contributions of Facial Shape, Skin Texture, and Viewing Angle

    ERIC Educational Resources Information Center

    Jones, Alex L.; Kramer, Robin S. S.; Ward, Robert

    2012-01-01

    To what extent does information in a person's face predict their likely behavior? There is increasing evidence for association between relatively neutral, static facial appearance and personality traits. By using composite images rendered from three dimensional (3D) scans of women scoring high and low on health and personality dimensions, we aimed…

  14. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  15. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  16. Stolen twin: fascination and curiosity/twin research reports: evolution of sleep length; dental treatment of craniopagus twins; cryopreserved double embryo transfer; gender options in multiple pregnancy/current events: appendectomy in one twin; autistic twin marathon runners; 3D facial recognition; twin biathletes.

    PubMed

    Segal, Nancy L

    2014-02-01

    The story of her allegedly stolen twin brother in Armenia is recounted by a 'singleton twin' living in the United States. The behavioral consequences and societal implications of this loss are considered. This case is followed by twin research reports on the evolution of sleep length, dental treatment of craniopagus conjoined twins, cryopreserved double embryo transfer (DET), and gender options in multiple pregnancy. Current events include the diagnosis of appendectomy in one identical twin, the accomplishments of autistic twin marathon runners, the power of three-dimensional (3D) facial recognition, and the goals of twin biathletes heading to the 2014 Sochi Olympics in Russia. PMID:24418634

  17. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  19. Facial Ringworm (Tinea Faciale)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Ringworm, Facial (Tinea Faciei) Information for adults A A A A ... with scaling along the edge is typical of tinea faciale. Overview Tinea infections are commonly called ringworm ...

  20. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  1. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  2. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  3. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

    SciTech Connect

    Li Shidong; Liu Dezhi; Yin Gongjie; Zhuang Ping; Geng, Jason

    2006-02-15

    Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation.

  4. How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images?

    PubMed Central

    Jayaratne, Yasas S. N.; McGrath, Colman P. J.; Zwahlen, Roger A.

    2012-01-01

    Background Cone-beam Computed Tomography (CBCT) and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D) visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1) to evaluate the feasibility of integrating 3-D Photos and CBCT images 2) to assess degree of error that may occur during the above processes and 3) to identify facial regions that would be most appropriate for 3-D image registration. Methodology CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS) error. Principal Findings: The signed average and RMS of the distance differences between the registered surfaces were −0.018 (±0.129) mm and 0.739 (±0.239) mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. Conclusions CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning. PMID:23185372

  5. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  6. A prescreener for 3D face recognition using radial symmerty and the Hausdorff fraction.

    SciTech Connect

    Koudelka, Melissa L.; Koch, Mark William; Russ, Trina Denise

    2005-04-01

    Face recognition systems require the ability to efficiently scan an existing database of faces to locate a match for a newly acquired face. The large number of faces in real world databases makes computationally intensive algorithms impractical for scanning entire databases. We propose the use of more efficient algorithms to 'prescreen' face databases, determining a limited set of likely matches that can be processed further to identify a match. We use both radial symmetry and shape to extract five features of interest on 3D range images of faces. These facial features determine a very small subset of discriminating points which serve as input to a prescreening algorithm based on a Hausdorff fraction. We show how to compute the Haudorff fraction in linear O(n) time using a range image representation. Our feature extraction and prescreening algorithms are verified using the FRGC v1.0 3D face scan data. Results show 97% of the extracted facial features are within 10 mm or less of manually marked ground truth, and the prescreener has a rank 6 recognition rate of 100%.

  7. Facial diplegia revealing ventriculoperitoneal shunt failure in a patient with Crouzon syndrome. Case report.

    PubMed

    Thines, Laurent; Vinchon, Matthieu; Lahlou, Amine; Pellerin, Philippe; Dhellemmes, Patrick

    2007-07-01

    The authors report on the case of a 15-year-old boy with Crouzon syndrome (CS) who presented with headache and facial diplegia. He had undergone several craniofacial interventions and a posterior fossa decompression for tonsillar herniation caused by the CS. A ventriculoperitoneal (VP) shunt had been inserted for hydrocephalus. Emergency computed tomography (CT) disclosed slight dilation of the ventricular cavities compared with their appearance on a baseline CT scan. Magnetic resonance imaging showed a deformed brainstem but no compression at the occipital foramen; there was no apparent explanation for the facial diplegia. The neuroophthalmological examination revealed neither papilledema nor oculomotor palsy. Electromyography confirmed incomplete peripheral facial diplegia. The patient underwent emergency shunt revision, during which complete obstruction of the ventricular catheter and severe cerebrospinal fluid hypertension were found. After surgery, cranial hypertension symptoms completely resolved and the facial diplegia improved slowly with a persistent and incomplete right superior facial palsy. Cranial 3D CT scanning reconstructions and brain magnetic resonance imaging demonstrated severe petrous bone distortion that could have been responsible for direct stretching injuries on the facial nerves at the level of the internal acoustic meatus. The present case represents the first reported occurrence of VP shunt failure as revealed by a facial palsy; the authors discuss the pathophysiology of facial palsy in intracranial hypertension.

  8. Three-dimensional computer-assisted simulation combining facial skeleton with facial morphology for orthognathic surgery.

    PubMed

    Chen, L H; Chen, W H

    1999-01-01

    The purpose of this study was to use a 3-dimensional (3D) computer-aided design (CAD) simulation system to plan surgical procedures and predict postoperative changes in orthognathic surgery patients. A computer-generated imaging model was developed by combining a 3D reconstructed cephalometric skeletal image and a laser-scanned facial surface image. Moreover, postoperative data were studied and linked to the simulator model for programming and executing simulated surgical procedures. Interactive editing capabilities allow surgeons to operate CAD surgical simulation, and predicted results can be presented graphically and numerically. The results indicate that the integration of 3D images and CAD techniques have a potential for simulating surgery and providing graphic information to patients in obtaining an informed consent.

  9. Anatomical placement of the human eyeball in the orbit--validation using CT scans of living adults and prediction for facial approximation.

    PubMed

    Guyomarc'h, Pierre; Dutailly, Bruno; Couture, Christine; Coqueugniot, Hélène

    2012-09-01

    Accuracy of forensic facial approximation and superimposition techniques relies on the knowledge of anatomical correlations between soft and hard tissues. Recent studies by Stephan and collaborators (6,8,10) reviewed traditional guidelines leading to a wrong placement of the eyeball in the orbit. As those statements are based on a small cadaver sample, we propose a validation of these findings on a large database (n = 375) of living people. Computed tomography scans of known age and sex subjects were used to collect landmarks on three-dimensional surfaces and DICOM with TIVMI. Results confirmed a more superior and lateral position of the eyeball relatively to the orbital rims. Orbital height and breadth were used to compute regression formulae and proportional placement using percentages to find the most probable position of the eyeball in the orbit. A size-related sexual dimorphism was present but did not impact on the prediction accuracy.

  10. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  11. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  13. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  14. Facial Expression Biometrics Using Statistical Shape Models

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Matuszewski, Bogdan J.; Shark, Lik-Kwan; Ait-Boudaoud, Djamel

    2009-12-01

    This paper describes a novel method for representing different facial expressions based on the shape space vector (SSV) of the statistical shape model (SSM) built from 3D facial data. The method relies only on the 3D shape, with texture information not being used in any part of the algorithm, that makes it inherently invariant to changes in the background, illumination, and to some extent viewing angle variations. To evaluate the proposed method, two comprehensive 3D facial data sets have been used for the testing. The experimental results show that the SSV not only controls the shape variations but also captures the expressive characteristic of the faces and can be used as a significant feature for facial expression recognition. Finally the paper suggests improvements of the SSV discriminatory characteristics by using 3D facial sequences rather than 3D stills.

  15. 3D Face modeling using the multi-deformable method.

    PubMed

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  16. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  17. Precise positioning surveillance in 3-D using night-vision stereoscopic photogrammetry

    NASA Astrophysics Data System (ADS)

    Schwartz, Jason M.

    2011-06-01

    A 3-D imaging technique is presented which pairs high-resolution night-vision cameras with GPS to increase the capabilities of passive imaging surveillance. Camera models and GPS are used to derive a registered point cloud from multiple night-vision images. These point clouds are used to generate 3-D scene models and extract real-world positions of mission critical objects. Analysis shows accuracies rivaling laser scanning even in near-total darkness. The technique has been tested on stereoscopic 3-D video collections as well. Because this technique does not rely on active laser emissions it is more portable, less complex, less costly, and less detectable than laser scanning. This study investigates close-range photogrammetry under night-vision lighting conditions using practical use-case examples of terrain modeling, covert facility surveillance, and stand-off facial recognition. The examples serve as the context for discussion of a standard processing workflow. Results include completed, geo-referenced 3-D models, assessments of related accuracy and precision, and a discussion of future activities.

  18. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  19. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  20. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  1. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  2. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  3. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  4. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  5. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  6. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  7. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. Fabricating 3D figurines with personalized faces.

    PubMed

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.

  10. Fabricating 3D figurines with personalized faces.

    PubMed

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer. PMID:24808129

  11. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  12. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    PubMed

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of < or =0.22 mm (25% percentile), < or =0.44 mm (50% percentile) and < or =1.09 mm (90% percentile) for ICP surface matching. The mean registration error for automatic point-based rigid registration was 0.18+/-0.10 mm (range 0.13-0.26 mm). The results show the potential for a double CBCT scan procedure with a modified wax bite wafer to set-up a 3D virtual augmented model of the skull with detailed dental surface.

  13. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation.

    PubMed

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10(-8)) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. PMID:27193062

  14. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation

    PubMed Central

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria- Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. PMID:27193062

  15. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation.

    PubMed

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-05-19

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10(-8)) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion.

  16. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  17. 3DSEM: A 3D microscopy dataset

    PubMed Central

    Tafti, Ahmad P.; Kirkpatrick, Andrew B.; Holz, Jessica D.; Owen, Heather A.; Yu, Zeyun

    2015-01-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  18. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  19. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... on film. Three-dimensional (3D) models of the leg can be created by adding the slices together. ...

  20. Computer-aided forensics: facial reconstruction.

    PubMed

    Turner, Wesley; Tu, Peter; Kelliher, Timothy; Brown, Rebecca

    2006-01-01

    The 3D reconstruction of facial features from skeletal remains is a key component to the identification of missing persons and victims of violent crime. A comprehensive Computed Tomography (CT) head-scan database is currently being collected which will enable a new approach to forensic facial reconstruction. Using this unique resource, we show how a face space can be tailored to a specific unknown, or questioned skull. A set of database derived estimates of the questioned face is constructed by first computing non-rigid transformations between the known head-scan skulls and the questioned skull followed by application of these transformations to the known head-scan faces. This effectively factors out influences due to skeletal variation. A tailored face space is formed by applying Principal Component Analysis (PCA) to this ensemble of estimates of the questioned face. Thus, the face space is a direct approximation of correlated soft tissue variance indicative of the population. Ours is the first mathematical representation of the face continuum associated with a given skull. Embedded in this space resides the elements needed for recognition.

  1. Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

    PubMed Central

    Kim, Soo-Hwan; Jung, Woo-Young; Seo, Yu-Jin; Kim, Kyung-A; Park, Ki-Ho

    2015-01-01

    Objective A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D® scanner (Morpheus Co., Seoul, Korea). Methods The sample comprised 30 subjects aged 24-34 years (mean 29.0 ± 2.5 years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D® scanner is therefore a clinically acceptable method of recording facial integumental data. PMID:26023538

  2. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  4. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. Morphometric Optic Nerve Head Analysis in Glaucoma Patients: A Comparison between the Simultaneous Nonmydriatic Stereoscopic Fundus Camera (Kowa Nonmyd WX3D) and the Heidelberg Scanning Laser Ophthalmoscope (HRT III).

    PubMed

    Mariacher, Siegfried; Hipp, Stephanie; Wirthky, Robert; Blumenstock, Gunnar; Bartz-Schmidt, Karl-Ulrich; Ziemssen, Focke; Schiefer, Ulrich; Voykov, Bogomil; Januschowski, Kai

    2016-01-01

    Purpose. To investigate the agreement between morphometric optic nerve head parameters assessed with the confocal laser ophthalmoscope HRT III and the stereoscopic fundus camera Kowa nonmyd WX3D retrospectively. Methods. Morphometric optic nerve head parameters of 40 eyes of 40 patients with primary open angle glaucoma were analyzed regarding their vertical cup-to-disc-ratio (CDR). Vertical CDR, disc area, cup volume, rim volume, and maximum cup depth were assessed with both devices by one examiner. Mean bias and limits of agreement (95% CI) were obtained using scatter plots and Bland-Altman analysis. Results. Overall vertical CDR comparison between HRT III and Kowa nonmyd WX3D measurements showed a mean difference (limits of agreement) of -0.06 (-0.36 to 0.24). For the CDR < 0.5 group (n = 24) mean difference in vertical CDR was -0.14 (-0.34 to 0.06) and for the CDR ≥ 0.5 group (n = 16) 0.06 (-0.21 to 0.34). Conclusion. This study showed a good agreement between Kowa nonmyd WX3D and HRT III with regard to widely used optic nerve head parameters in patients with glaucomatous optic neuropathy. However, data from Kowa nonmyd WX3D exhibited the tendency to measure larger CDR values than HRT III in the group with CDR < 0.5 group and lower CDR values in the group with CDR ≥ 0.5.

  6. Scan patterns during the processing of facial expression versus identity: an exploration of task-driven and stimulus-driven effects.

    PubMed

    Malcolm, George L; Lanyon, Linda J; Fugard, Andrew J B; Barton, Jason J S

    2008-01-01

    Perceptual studies suggest that processing facial identity emphasizes upper-face information, whereas processing expressions of anger or happiness emphasizes the lower-face. The two goals of the present study were to determine (a) if the distributions of eye fixations reflect these upper/lower-face biases, and (b) whether this bias is task- or stimulus-driven. We presented a target face followed by a probe pair of morphed faces, neither of which was identical to the target. Subjects judged which of the pair was more similar to the target face while eye movements were recorded. In Experiment 1 the probe pair always differed from each other in both identity and expression on each trial. In one block subjects judged which probe face was more similar to the target face in identity, and in a second block subjects judged which probe face was more similar to the target face in expression. In Experiment 2 the two probe faces differed in either expression or identity, but not both. Subjects were not informed which dimension differed, but simply asked to judge which probe face was more similar to the target face. We found that subjects scanned the upper-face more than the lower-face during the identity task but the lower-face more than the upper-face during the expression task in Experiment 1 (task-driven effects), with significantly less variation in bias in Experiment 2 (stimulus-driven effects). We conclude that fixations correlate with regional variations of diagnostic information in different processing tasks, but that these reflect top-down task-driven guidance of information acquisition more than stimulus-driven effects. PMID:18831625

  7. Stereoscopic display technologies for FHD 3D LCD TV

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Ko, Young-Ji; Park, Sang-Moo; Jung, Jong-Hoon; Shestak, Sergey

    2010-04-01

    Stereoscopic display technologies have been developed as one of advanced displays, and many TV industrials have been trying commercialization of 3D TV. We have been developing 3D TV based on LCD with LED BLU (backlight unit) since Samsung launched the world's first 3D TV based on PDP. However, the data scanning of panel and LC's response characteristics of LCD TV cause interference among frames (that is crosstalk), and this makes 3D video quality worse. We propose the method to reduce crosstalk by LCD driving and backlight control of FHD 3D LCD TV.

  8. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  9. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  10. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  11. IR Fringe Projection for 3D Face Recognition

    NASA Astrophysics Data System (ADS)

    Spagnolo, Giuseppe Schirripa; Cozzella, Lorenzo; Simonetti, Carla

    2010-04-01

    Facial recognitions of people can be used for the identification of individuals, or can serve as verification e.g. for access controls. The process requires that the facial data is captured and then compared with stored reference data. Different from traditional methods which use 2D images to recognize human faces, this article shows a known shape extraction methodology applied to the extraction of 3D human faces conjugated with a non conventional optical system able to work in ``invisible'' way. The proposed method is experimentally simple, and it has a low-cost set-up.

  12. Mask free intravenous 3D digital subtraction angiography (IV 3D-DSA) from a single C-arm acquisition

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Yang, Pengfei; Aagaard-Kienitz, Beveley; Niemann, David B.; Ahmed, Azam S.; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan. Potential benefits of eliminating mask scan would be: (1) both radiation dose and scan time can be reduced by a factor of 2; (2) intra-sweep motion can be eliminated; (3) inter-sweep motion can be mitigated. Numerical simulations were used to validate the algorithm in terms of contrast recoverability and the ability to mitigate limited view artifacts.

  13. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  14. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  15. Evaluation of Lip Cant Change by 2-Jaw Surgery in Class III Asymmetry Cases Using Three-Dimensional Facial Scan in Conjunction With Computed Tomographic Images.

    PubMed

    Ko, Jeong-Min; Choi, Jin-Young; Baek, Seung-Hak

    2015-06-01

    The aim of our study was to evaluate the effect of cant correction in the anterior (AMXTOP) and posterior maxillary transverse occlusal planes (PMXTOP) on the change in lip cant (LC) using three-dimensional facial scan (FS) in conjunction with computed tomographic (CT) images. Thirty-five class III asymmetry patients treated with 2-jaw surgery were selected. Three-dimensional CT and three-dimensional FS images were taken before (T1) and after orthognathic surgery (T2). After obtaining the same head orientation between 2 images, bracket slot midpoints of the maxillary right and left canines as well as the first molars, point A, point B, and menton on three-dimensional CT images and the right and left lip commissures on three-dimensional FS images were located. Linear and angular variables of AMXTOP, PMXTOP, and LC were measured and statistically analyzed. At the T1 stage, linear and angular LC showed significant correlations with linear and angular cant of AMXTOP and PMXTOP, as well as menton deviation (all P < 0.001). During T1 to T2, significant linear and angular cant corrections were observed: ΔAMXTOP (1.3 mm, 1.9 degrees), ΔPMXTOP (1.9 mm, 1.7 degrees), and ΔLC (1.5 mm, 1.8 degrees) (all P < 0.001). Although angular change ratios of ΔLC/ΔAMXTOP and ΔLC/ΔPMXTOP did not exhibit a significant difference (1.0 vs 0.7), linear change ratio of ΔLC/ΔAMXTOP was higher than that of ΔLC/ΔPMXTOP (3.0 vs 0.5, P < 0.05). The vertical change in commissures was related to that in the maxillary right and left canines or maxillary right and left first molars and the extent of mandibular setback (all P < 0.01). To conclude, the use of three-dimensional FS images in conjunction with three-dimensional CT can provide more accurate information for changes in AMXTOP, PMXTOP, and LC.

  16. Robust facial landmark detection for three-dimensional face segmentation and alignment

    NASA Astrophysics Data System (ADS)

    Wu, Hai Shan; Chen, Yan Qiu

    2010-07-01

    Three-dimensional human faces have been applied in many fields, such as face animation, identity recognition, and facial plastic surgery. Segmenting and aligning 3-D faces from raw scanned data is the first vital step toward making these applications successful. However, the existence of artifacts, facial expressions, and noises poses many challenges to this problem. We propose an automatic and robust method to segment and align 3-D face surfaces by locating the nose tip and nose ridge. Taking a raw scanned surface as input, a novel feature-based moment analysis on scale spaces is presented to locate the nose tip accurately and robustly, which is then used to crop the face region. A technique called the geodesic Euclidean ratio is then developed to find the nose ridge. Each face is aligned based on the locations of nose tip and nose ridge. The proposed method is not only invariant to translations and rotations, but also robust in the presence of facial expressions and artifacts such as hair, clothing, other body parts, etc. Experimental results on two large 3-D face databases demonstrate the accuracy and robustness of the proposed method.

  17. New 3D Bolton standards: coregistration of biplane x rays and 3D CT

    NASA Astrophysics Data System (ADS)

    Dean, David; Subramanyan, Krishna; Kim, Eun-Kyung

    1997-04-01

    The Bolton Standards 'normative' cohort (16 males, 16 females) have been invited back to the Bolton-Brush Growth Study Center for new biorthogonal plain film head x-rays and 3D (three dimensional) head CT-scans. A set of 29 3D landmarks were identified on both their biplane head film and 3D CT images. The current 3D CT image is then superimposed onto the landmarks collected from the current biplane head films. Three post-doctoral fellows have collected 37 3D landmarks from the Bolton Standards' 40 - 70 year old biplane head films. These films were captured annually during their growing period (ages 3 - 18). Using 29 of these landmarks the current 3D CT image is next warped (via thin plate spline) to landmarks taken from each participant's 18th year biplane head films, a process that is successively reiterated back to age 3. This process is demonstrated here for one of the Bolton Standards. The outer skull surfaces will be extracted from each warped 3D CT image and an average will be generated for each age/sex group. The resulting longitudinal series of average 'normative' boney skull surface images may be useful for craniofacial patient: diagnosis, treatment planning, stereotactic procedures, and outcomes assessment.

  18. A 3D cellular context for the macromolecular world

    PubMed Central

    Patwardhan, Ardan; Ashton, Alun; Brandt, Robert; Butcher, Sarah; Carzaniga, Raffaella; Chiu, Wah; Collinson, Lucy; Doux, Pascal; Duke, Elizabeth; Ellisman, Mark H; Franken, Erik; Grünewald, Kay; Heriche, Jean-Karim; Koster, Abraham; Kühlbrandt, Werner; Lagerstedt, Ingvar; Larabell, Carolyn; Lawson, Catherine L; Saibil, Helen R; Sanz-García, Eduardo; Subramaniam, Sriram; Verkade, Paul; Swedlow, Jason R; Kleywegt, Gerard J

    2015-01-01

    We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community. PMID:25289590

  19. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  20. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  1. MRI Volume Fusion Based on 3D Shearlet Decompositions

    PubMed Central

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  2. A 4-month, open-label study evaluating the efficacy of eflornithine 11.5% cream in the treatment of unwanted facial hair in women using TrichoScan.

    PubMed

    Hoffmann, Rolf

    2008-01-01

    Eflornithine 11.5% cream is an effective treatment for unwanted facial hair (UFH) in women with the effect on facial hair growth starting to be seen from 1 month after treatment initiation. TrichoScan is a validated method of assessing hair length, thickness, density, and growth rate using contact skin microscopy. The study aimed to evaluate the efficacy of eflornithine cream in women with UFH, as assessed by TrichoScan. In this open-label, single-centre study, 25 women (aged 25-63 years) applied eflornithine 11.5% cream to the upper lip twice daily for 4 months. Hair density, mean and cumulative hair length, mean hair thickness and hair growth rate were assessed at baseline and Month 1, 2 and 4 using TrichoScan. Eflornithine cream significantly decreased hair density from baseline to Month 1 (- 11.4 hairs/cm2, p = 0.014), Month 2 (- 16.5 hairs/cm2, p = 0.013) and Month 4 (- 12.05 hairs/cm2, p = 0.05). In addition, cumulative hair length decreased from baseline to Month 1 (- 7.104 mm, p = 0.001), Month 2 (- 10.054 mm, p < 0.001) and Month 4 (- 8.061 mm, p = 0.001). There was also a significant decrease in hair growth rate. Mean hair thickness did not change significantly. Eflornithine 11.5% cream is an effective treatment for UFH in women with the effect on facial hair growth starting to be seen from 1 month after treatment initiation.

  3. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  4. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  5. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  6. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  8. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  9. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  10. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  11. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  12. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  13. Facial Transplantation.

    PubMed

    Russo, Jack E; Genden, Eric M

    2016-08-01

    Reconstruction of severe facial deformities poses a unique surgical challenge: restoring the aesthetic form and function of the face. Facial transplantation has emerged over the last decade as an option for reconstruction of these defects in carefully selected patients. As the world experience with facial transplantation grows, debate remains regarding whether such a highly technical, resource-intensive procedure is warranted, all to improve quality of life but not necessarily prolong it. This article reviews the current state of facial transplantation with focus on the current controversies and challenges, with particular attention to issues of technique, immunology, and ethics. PMID:27400850

  14. Modeling 3D faces from samplings via compressive sensing

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  15. Facial Scar Revision: Understanding Facial Scar Treatment

    MedlinePlus

    ... Contact Us Trust your face to a facial plastic surgeon Facial Scar Revision Understanding Facial Scar Treatment ... face like the eyes or lips. A facial plastic surgeon has many options for treating and improving ...

  16. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  18. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  19. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  20. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  1. 3D face recognition under expressions, occlusions, and pose variations.

    PubMed

    Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim

    2013-09-01

    We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.

  2. Volumetric visualization of 3D data

    NASA Technical Reports Server (NTRS)

    Russell, Gregory; Miles, Richard

    1989-01-01

    In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.

  3. Telecentric scanner for 3D profilometry of very large objects

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Borra, Ermanno F.; Szapiel, Stan

    1997-09-01

    Triangulation systems that are based on an autosynchronized scanning principle to provide accurate and fast acquisition of 3D shapes are able to scan large fields. It is done generally by a coordinate measuring machine (CMM) carrying a small-volume 3D camera. However the acquisition speed is limited by the CMM movement and also by the image fusion time required to get the complete 3D shape. This paper describes some practical consideration for large volume 3D inspections with emphasis on telecentric scanning. We present the analytical and the optical design of a large telecentric scanner using a large reflective surface. Some results of the laboratory prototype will be presented. We also discuss applications and the viability of this new approach.

  4. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  5. Facial fractures.

    PubMed Central

    Carr, M. M.; Freiberg, A.; Martin, R. D.

    1994-01-01

    Emergency room physicians frequently see facial fractures that can have serious consequences for patients if mismanaged. This article reviews the signs, symptoms, imaging techniques, and general modes of treatment of common facial fractures. It focuses on fractures of the mandible, zygomaticomaxillary region, orbital floor, and nose. Images p520-a p522-a PMID:8199509

  6. Who is this person? A comparison study of current three-dimensional facial approximation methods.

    PubMed

    Decker, Summer; Ford, Jonathan; Davy-Jow, Stephanie; Faraut, Philippe; Neville, Wesley; Hilbelink, Don

    2013-06-10

    Facial approximation is a common tool utilised in forensic human identification. Three-dimensional (3D) imaging technologies allow researchers to go beyond traditional clay models to now create virtual computed models of anatomical structures. The goal of this study was to compare the accuracy of available methods of facial approximation ranging from clay modelling to advanced computer facial approximation techniques. Two computerised reconstructions (FaceIT and FBI's ReFace) and two manual reconstructions (completed by FBI's Neville and Faraut) were completed using a skull from a known individual. A living individual's computed tomography (CT) scan was used to create a virtual 3D model of the skull and soft tissue of the face. The virtual skull models were provided to the computer-based approximation specialists. A rapid prototype of the skull was printed and provided to the practitioners who needed physical specimens. The results from all of the methods (clay and virtual) were compared visually to each other and collectively to the actual features of the living individual to compare the results of each. A quantitative study was also conducted to establish the accuracy of each method and the regions of the face that need the most improvement for all of the specialists. This project demonstrates the wide range of variation between commonly used facial identification methods. The benefit of this study was having a living individual to test the strengths and weaknesses of each method while also providing future areas of focus for soft tissue depth data studies. PMID:23628365

  7. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  8. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  9. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  11. Design of Cerebellar and Nontegmental Rhombencephalic Microvascular Bed in the Sterlet, Acipenser ruthenus: A Scanning Electron Microscope and 3D Morphometry Study of Vascular Corrosion Casts

    NASA Astrophysics Data System (ADS)

    Stöttinger, Bernhard; Klein, Martin; Minnich, Bernd; Lametschwandtner, Alois

    2006-07-01

    The design of the microvasculature of cerebellum and nontegmental rhombencephalic areas was studied in eight adult Acipenser ruthenus L. by scanning electron microscopy of vascular corrosion casts and three-dimensional morphometry. Gross vascularization was described and diameters and total branching angles of parent and daughter vessels of randomly selected arterial and capillary bifurcations (respectively, venous mergings) were measured. With diameters ranging from 15.9 ± 1.9 [mu]m (cerebellum; mean ± S.D.) to 15.9 ± 1.7 mm (nontegmental rhombencephalon; mean ± S.D.) capillaries in Acipenser were significantly (p [greater-than-or-equal] .05) smaller than in cyclostomes (18 20 [mu]m) but significantly thicker than in higher vertebrates and men (6 8 [mu]m). With the exception of the area ratio [beta] (i.e., sum of squared daugther diameters divided by squared diameter of parent vessel) of the venular mergings in the nontegmental rhombencephalon, no significant differences (p [greater-than-or-equal] .05) existed between the two brain areas. Data showed that arteriolar and capillary bifurcations and venular mergings are optimally designed in respect to diameters of parent vessel to daughter vessels and to branching (merging) angles. Quantitative data are discussed both in respect to methodical pitfalls and the optimality principles possibly underlying the design of vascular bifurcations/mergings in selected brain areas of a nonteleost primitive actinopterygian fish.

  12. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  13. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  14. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  15. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  16. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  17. Viewing 3D MRI data in perspective

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Chin, Chialei

    2000-10-01

    In medical imaging applications, 3D morphological data set is often presented in 2D format without considering visual perspective. Without perspective, the resulting image can be counterintuitive to natural human visual perception, specially in a setting of MR guided neurosurgical procedure where depth perception is crucial. To address this problem we have developed a new projection scheme that incorporates linear perspective transformation in various image reconstructions, including MR angiographical projection. In the scheme, an imaginary picture plane (PP) can be placed within or immediately in front of a 3D object, and the stand point (SP) of an observer is fixed at a normal viewing distance os 25 cm in front of the picture plane. A clinical 3D angiography data set (TR/TF/Flipequals30/5.4/15) was obtained from a patient head on a 1.5T MR scanner in 4 min 10 sec (87.5% rectangular, 52% scan). The length, width and height of the image volume were 200mm, 200mm and 72.4mm respectively, corresponding to an effective matrix size of 236x512x44 in transverse orientation (512x512x88 after interpolation). Maximum intensity project (MaxIP) algorithm was used along the viewing trace of perspective projection than rather the parallel projection. Consecutive 36 views were obtained at a 10 degree interval azimuthally. When displayed in cine-mode, the new MaxIP images appeared realistic with an improved depth perception.

  18. Complex light in 3D printing

    NASA Astrophysics Data System (ADS)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.

  19. Three-dimensional assessment of facial asymmetry: A systematic review

    PubMed Central

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-01-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries. PMID:26538893

  20. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  1. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  2. Facial trauma

    MedlinePlus

    Kellman RM. Maxillofacial trauma. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . ... Facial trauma. In: Marx JA, Hockberger RS, Walls RM, et al, eds. Rosen's Emergency Medicine: Concepts and ...

  3. Facial anatomy.

    PubMed

    Marur, Tania; Tuna, Yakup; Demirci, Selman

    2014-01-01

    Dermatologic problems of the face affect both function and aesthetics, which are based on complex anatomical features. Treating dermatologic problems while preserving the aesthetics and functions of the face requires knowledge of normal anatomy. When performing successfully invasive procedures of the face, it is essential to understand its underlying topographic anatomy. This chapter presents the anatomy of the facial musculature and neurovascular structures in a systematic way with some clinically important aspects. We describe the attachments of the mimetic and masticatory muscles and emphasize their functions and nerve supply. We highlight clinically relevant facial topographic anatomy by explaining the course and location of the sensory and motor nerves of the face and facial vasculature with their relations. Additionally, this chapter reviews the recent nomenclature of the branching pattern of the facial artery.

  4. Facial paralysis

    MedlinePlus

    ... headaches, seizures, or hearing loss. In newborns, facial paralysis may be caused by trauma during birth. Other causes include: Infection of the brain or surrounding tissues Lyme disease Sarcoidosis Tumor that ...

  5. Facial tics

    MedlinePlus

    ... 2010;33:641-655. Jankovic J, Lang AE. Movement disorders. In: Daroff RB, Fenichel GM, Jankovic J, Mazziotta ... Malhotra R. Review and update of involuntary facial movement disorders presenting in the ophthalmological setting. Surv Ophthalmol. Ryan ...

  6. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  7. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  8. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  9. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  10. Teat Morphology Characterization With 3D Imaging.

    PubMed

    Vesterinen, Heidi M; Corfe, Ian J; Sinkkonen, Ville; Iivanainen, Antti; Jernvall, Jukka; Laakkonen, Juha

    2015-07-01

    The objective of this study was to visualize, in a novel way, the morphological characteristics of bovine teats to gain a better understanding of the detailed teat morphology. We applied silicone casting and 3D digital imaging in order to obtain a more detailed image of the teat structures than that seen in previous studies. Teat samples from 65 dairy cows over 12 months of age were obtained from cows slaughtered at an abattoir. The teats were classified according to the teat condition scoring used in Finland and the lengths of the teat canals were measured. Silicone molds were made from the external teat surface surrounding the teat orifice and from the internal surface of the teat consisting of the papillary duct, Fürstenberg's rosette, and distal part of the teat cistern. The external and internal surface molds of 35 cows were scanned with a 3D laser scanner. The molds and the digital 3D models were used to evaluate internal and external teat surface morphology. A number of measurements were taken from the silicone molds. The 3D models reproduced the morphology of the teats accurately with high repeatability. Breed didn't correlate with the teat classification score. The rosette was found to have significant variation in its size and number of mucosal folds. The internal surface morphology of the rosette did not correlate with the external surface morphology of the teat implying that it is relatively independent of milking parameters that may impact the teat canal and the external surface of the teat. PMID:25382725

  11. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  12. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    SciTech Connect

    Ehler, E; Perks, J; Rasmussen, K; Bakic, P

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  13. ECG gated tomographic reconstruction for 3-D rotational coronary angiography

    PubMed Central

    Hu, Yining; Xie, Lizhe; Nunes, Jean Claude; Bellanger, Jean Jacques; Bedossa, Marc; Toumoulin, Christine

    2010-01-01

    A method is proposed for 3-D reconstruction of coronary from a limited number of projections in rotational angiography. A Bayesian maximum a posteriori (MAP) estimation is applied with a Poisson distributed projection to reconstruct the 3D coronary tree at a given instant of the cardiac cycle. Several regularizers are investigated L0-norm, L1 and L2 -norm in order to take into account the sparsity of the data. Evaluations are reported on simulated data obtained from a 3D dynamic sequence acquired on a 64-slice GE LightSpeed CT scan. A performance study is conducted to evaluate the quality of the reconstruction of the structures. PMID:21096844

  14. Multi-camera system for 3D forensic documentation.

    PubMed

    Leipner, Anja; Baumeister, Rilana; Thali, Michael J; Braun, Marcel; Dobler, Erika; Ebert, Lars C

    2016-04-01

    Three-dimensional (3D) surface documentation is well established in forensic documentation. The most common systems include laser scanners and surface scanners with optical 3D cameras. An additional documentation tool is photogrammetry. This article introduces the botscan© (botspot GmbH, Berlin, Germany) multi-camera system for the forensic markerless photogrammetric whole body 3D surface documentation of living persons in standing posture. We used the botscan© multi-camera system to document a person in 360°. The system has a modular design and works with 64 digital single-lens reflex (DSLR) cameras. The cameras were evenly distributed in a circular chamber. We generated 3D models from the photographs using the PhotoScan© (Agisoft LLC, St. Petersburg, Russia) software. Our results revealed that the botscan© and PhotoScan© produced 360° 3D models with detailed textures. The 3D models had very accurate geometries and could be scaled to full size with the help of scale bars. In conclusion, this multi-camera system provided a rapid and simple method for documenting the whole body of a person to generate 3D data with Photoscan©. PMID:26921815

  15. Multi-camera system for 3D forensic documentation.

    PubMed

    Leipner, Anja; Baumeister, Rilana; Thali, Michael J; Braun, Marcel; Dobler, Erika; Ebert, Lars C

    2016-04-01

    Three-dimensional (3D) surface documentation is well established in forensic documentation. The most common systems include laser scanners and surface scanners with optical 3D cameras. An additional documentation tool is photogrammetry. This article introduces the botscan© (botspot GmbH, Berlin, Germany) multi-camera system for the forensic markerless photogrammetric whole body 3D surface documentation of living persons in standing posture. We used the botscan© multi-camera system to document a person in 360°. The system has a modular design and works with 64 digital single-lens reflex (DSLR) cameras. The cameras were evenly distributed in a circular chamber. We generated 3D models from the photographs using the PhotoScan© (Agisoft LLC, St. Petersburg, Russia) software. Our results revealed that the botscan© and PhotoScan© produced 360° 3D models with detailed textures. The 3D models had very accurate geometries and could be scaled to full size with the help of scale bars. In conclusion, this multi-camera system provided a rapid and simple method for documenting the whole body of a person to generate 3D data with Photoscan©.

  16. Facial attractiveness.

    PubMed

    Little, Anthony C

    2014-11-01

    Facial attractiveness has important social consequences. Despite a widespread belief that beauty cannot be defined, in fact, there is considerable agreement across individuals and cultures on what is found attractive. By considering that attraction and mate choice are critical components of evolutionary selection, we can better understand the importance of beauty. There are many traits that are linked to facial attractiveness in humans and each may in some way impart benefits to individuals who