Science.gov

Sample records for 3d fault model

  1. Understanding how Fault-bounded Blocks Deform in 3D by Inverse Modelling

    NASA Astrophysics Data System (ADS)

    Jouen, G.; White, N.

    2004-05-01

    Normal faults play a crucial role in modifying basin stratigraphy. At the exploration scale, the internal deformation of tilted blocks is governed by the three-dimensional geometry of large-scale faults which bound these blocks. At the reservoir scale, the geometry and growth of normal faulting control the deformation of strata and the compartmentalisation of reservoir intervals. Despite their importance, large-scale normal faults are often difficult to image. The purpose of structural validation is two-fold: to determine the 3D shape of normal faults and to investigate the relationship between fault geometry and deformed stratigraphy including the intra-block faults. We have developed methods for tackling structural validation at a variety of scales in two and three dimensions. The cornerstone of our approach is the use of geophysical inverse theory to calculate optimal fault geometries from deformed strata. This approach allows us to focus on key questions: does a solution exist? Are there several possible solutions or just one unique one? In a complex normal fault system, which part of the fault controls the motion responsible for the deformation in the hanging-wall? Traditional forward modelling cannot answer these fundamental issues. We have applied the inversion on seismic data in particularly complex areas in the northern North Sea. The aims of this project are to determine the geometry of the basin-bounding fault, to assess the likelihood of out-of-plane motion as well as understanding the mode of deformation leading to the complexity of the present structure. Closely spaced inverse models show that the basin-bounding fault on the UK side is steeper and more planar than previously thought. This method also helped us to have a better view of what could have been the cause of the organisation and density of the intra-block faulting where it occurs. The North Cormorant study has shown how inverse modelling can yield important, quantitative, insights. Our

  2. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  3. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series

  4. 3D Fault modeling of the active Chittagong-Myanmar fold belt, Bangladesh

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Hubbard, J.; Akhter, S. H.; Shamim, N.

    2013-12-01

    The Chittagong-Myanmar fold belt (CMFB), located in eastern Bangladesh, eastern India and western Myanmar, accommodates east-west shortening at the India-Burma plate boundary. Oblique subduction of the Indian Plate beneath the Burma Plate since the Eocene has led to the development of a large accretionary prism complex, creating a series of north-south trending folds. A continuous sediment record from ~55 Ma to the present has been deposited in the Bengal Basin by the Ganges-Brahmaputra-Meghna rivers, providing an opportunity to learn about the history of tectonic deformation and activity in this fold-and-thrust belt. Surface mapping indicates that the fold-and-thrust belt is characterized by extensive N-S-trending anticlines and synclines in a belt ~150-200 km wide. Seismic reflection profiles from the Chittagong and Chittagong Hill Tracts, Bangladesh, indicate that the anticlines mapped at the surface narrow with depth and extend to ~3.0 seconds TWTT (two-way travel time), or ~6.0 km. The folds of Chittagong and Chittagong Hill Tracts are characterized by doubly plunging box-shaped en-echelon anticlines separated by wide synclines. The seismic data suggest that some of these anticlines are cored by thrust fault ramps that extend to a large-scale décollement that dips gently to the east. Other anticlines may be the result of detachment folding from the same décollement. The décollement likely deepens to the east and intersects with the northerly-trending, oblique-slip Kaladan fault. The CMFB region is bounded to the north by the north-dipping Dauki fault and the Shillong Plateau. The tectonic transition from a wide band of E-W shortening in the south to a narrow zone of N-S shortening along the Dauki fault is poorly understood. We integrate surface and subsurface datasets, including topography, geological maps, seismicity, and industry seismic reflection profiles, into a 3D modeling environment and construct initial 3D surfaces of the major faults in this

  5. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  6. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    Fault systems are important structural elements within many petroleum reservoirs, acting as potential conduits, baffles or barriers to hydrocarbon migration. Large, seismic-scale faults often serve as reservoir bounding seals, forming structural traps which have proved to be prolific plays in many petroleum provinces. Though inconspicuous within most seismic datasets, smaller subsidiary faults, commonly within the damage zones of parent structures, may also play an important role. These smaller faults typically form narrow, tabular low permeability zones which serve to compartmentalize the reservoir, negatively impacting upon hydrocarbon recovery. Though considerable improvements have been made in the visualization field to reservoir-scale fault systems with the advent of 3D seismic surveys, the occlusion of smaller scale faults in such datasets is a source of significant uncertainty during prospect evaluation. The limited capacity of conventional subsurface datasets to probe the spatial distribution of these smaller scale faults has given rise to a large number of outcrop based studies, allowing their intensity, connectivity and size distributions to be explored in detail. Whilst these studies have yielded an improved theoretical understanding of the style and distribution of sub-seismic scale faults, the ability to transform observations from outcrop to quantities that are relatable to reservoir volumes remains elusive. These issues arise from the fact that outcrops essentially offer a pseudo-3D window into the rock volume, making the extrapolation of surficial fault properties such as areal density (fracture length per unit area: P21), to equivalent volumetric measures (i.e. fracture area per unit volume: P32) applicable to fracture modelling extremely challenging. Here, we demonstrate an approach which harnesses advances in the extraction of 3D trace maps from surface reconstructions using calibrated image sequences, in combination with a novel semi

  7. Forward and Reverse Modeling Compressive Deformation in a 3D Geologic Model along the Central San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Roberts, M. A.; Graymer, R. W.; McPhee, D.

    2015-12-01

    During the late Miocene, a small change in the relative motion of the Pacific plate resulted in compressive as well as translational deformation along the central San Andreas Fault (SAF), creating thrust faults and folds throughout this region of California. We constructed a 3D model of an upper crustal volume between Pinnacles National Park and Gold Hill by assembling geologic map data and cross sections, geophysical data, and petroleum well logs in MoveTm, software which has the ability to forward and reverse model movement along faults and folds. For this study, we chose a blind thrust fault west of the SAF near Parkfield to compare deformation produced by MoveTm's forward modeling algorithm with that observed. We chose various synclines east of the SAF to explore the software's ability to unfold (reverse model) units. For the initial round of modeling, strike-slip movement has been omitted as the fault algorithm was designed primarily for extensional or compressional environments. Preliminary forward modeling of originally undeformed strata along the blind thrust produced geometries similar to those in the present-day 3D geologic model. The modeled amount of folding produced in hanging wall strata was less severe, suggesting these units were slightly folded before displacement. Based on these results, the algorithm shows potential in predicting deformation related to blind thrusts. Contraction in the region varies with fold axis location and orientation. MoveTm's unfolding algorithm can allow researchers to measure the amount of contraction a fold represents, and compare that amount across the modeled area as a way of observing regional stress patterns. The unfolding algorithm also allows for passive deformation of strata unconformably underlying the fold; one example reveals a steeper orientation of Cretaceous units prior to late Miocene deformation. Such modeling capabilities can allow for a better understanding of the structural history of the region.

  8. Poly 3D fault modeling scripts/data for permeability potential of Washington State geothermal prospects

    DOE Data Explorer

    Michael Swyer

    2015-02-05

    Matlab scripts/functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St Helen's, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.

  9. 3D mechanical modeling of the GPS velocity field along the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Provost, Ann-Sophie; Chéry, Jean; Hassani, Riad

    2003-04-01

    The North Anatolian fault (NAF) extends over 1500 km in a complex tectonic setting. In this region of the eastern Mediterranean, collision of the Arabian, African and Eurasian plates resulted in creation of mountain ranges (i.e. Zagros, Caucasus) and the westward extrusion of the Anatolian block. In this study we investigate the effects of crustal rheology on the long-term displacement rate along the NAF. Heat flow and geodetic data are used to constrain our mechanical model, built with the three-dimensional finite element code ADELI. The fault motion occurs on a material discontinuity of the model which is controlled by a Coulomb-type friction. The rheology of the lithosphere is composed of a frictional upper crust and a viscoelastic lower crust. The lithosphere is supported by a hydrostatic pressure at its base (representing the asthenospheric mantle). We model the long-term deformation of the surroundings of the NAF by adjusting the effective fault friction and also the geometry of the surface fault trace. To do so, we used a frictional range of 0.0-0.2 for the fault, and a viscosity varying between 10 19 and 10 21 Pa s. One of the most striking results of our rheological tests is that the upper part of the fault is locked if the friction exceeds 0.2. By comparing our results with geodetic measurements [McClusky et al., J. Geophys. Res. B 105 (2000) 5695-5719] and tectonic observations, we have defined a realistic model in which the displacement rate on the NAF reaches ˜17 mm/yr for a viscosity of 10 19 Pa s and a fault friction of 0.05. This strongly suggests that the NAF is a weak fault like the San Andreas fault in California. Adding topography with its corresponding crustal root does not induce gravity flow of Anatolia. Rather, it has the counter-intuitive effect of decreasing the westward Anatolian escape. We find a poor agreement between our calculated velocity field and what is observed with GPS in the Marmara and the Aegean regions. We suspect that the

  10. Preliminary simulation of a M6.5 earthquake on the Seattle Fault using 3D finite-difference modeling

    USGS Publications Warehouse

    Stephenson, William J.; Frankel, Arthur D.

    2000-01-01

    A three-dimensional finite-difference simulation of a moderate-sized (M 6.5) thrust-faulting earthquake on the Seattle fault demonstrates the effects of the Seattle Basin on strong ground motion in the Puget lowland. The model area includes the cities of Seattle, Bremerton and Bellevue. We use a recently developed detailed 3D-velocity model of the Seattle Basin in these simulations. The model extended to 20-km depth and assumed rupture on a finite fault with random slip distribution. Preliminary results from simulations of frequencies 0.5 Hz and lower suggest amplification can occur at the surface of the Seattle Basin by the trapping of energy in the Quaternary sediments. Surface waves generated within the basin appear to contribute to amplification throughout the modeled region. Several factors apparently contribute to large ground motions in downtown Seattle: (1) radiation pattern and directivity from the rupture; (2) amplification and energy trapping within the Quaternary sediments; and (3) basin geometry and variation in depth of both Quaternary and Tertiary sediments

  11. 3D coseismic deformation inversion of Wenchuan Ms8.0 earthquake with D-InSAR and the fault movement model

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.; Wu, J. C.; Guo, L. Y.; Wang, X. Y.; Tan, H. B.; Shen, C. Y.

    2015-08-01

    Conventional D-InSAR (Differential SAR Interferometry) can only monitor 1-D surface deformation along LOS (line of sight) direction. In order to overcome this limitation and extract 3-D coseismic displacement, we combine the LOS displacement derived from D-InSAR technology, the OKADA elastic half space dislocation model theory, jointly the surface rupture distribution by field investigations and the fault model inverted by GPS, level data and gravity survey to retrieve the directions of surface co-seismic displacement, and then have got Wenchuan Ms8.0 Earthquake 3D displacement. Firstly, thirty six L-band PALSAR images of six adjacent ascending tracks are processed with D-InSAR technology to obtain the coseismic displacements along LOS direction. According to the OKADA model and the thrust fault movement model of the Long-Men-Shan Fault , we specify the three directions of surface coseismic displacements. And thus the 3D coseismic displacement field is then recovered by using LOS displacement and relevant geometric projection formulas, obviously including horizontal displacements field and vertical deformation contour maps. By comparing with the 3D displacement estimated from OKADA dislocation model and fault model, the displacement retrieved in this study can give more detail, and reflect seismic characteristics more truly.

  12. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  13. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in

  14. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  15. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  16. Exploration of Wadi Zerka Ma'in rotational fault and its drainage pattern, Eastern of Dead Sea, by means of remote sensing, GIS and 3D geological modeling

    NASA Astrophysics Data System (ADS)

    Odeh, Taleb; Gloaguen, Richard; Schirmer, Mario; Geyer, Stefan; Rödiger, Tino; Siebert, Christian

    2009-09-01

    The Wadi Zerka Ma'in catchment area is located in the North East of the Dead Sea. It contains a confined river of about 23 km length. The region is characterized by a recent sharp base level drop and a strong orographic control on climatic parameters such as temperature and precipitation. It is controlled by three regional structural systems as follow: 1) the anticline - syncline system (late Cretaceous - end of Miocene) which is a part of Syrian fold arc system; 2) NW - SE faults system which were generated simultaneously and parallel to the Red Sea spreading; 3) NWW - SSE faults system which are perpendicular to the Dead Sea and younger than the Red Sea fault system; 4) NNW - SSE faults system (middle Miocene - until now) which were generated simultaneously and parallel to the active Dead Sea transform fault. The structural setting of the study area was evaluated by means of a three-dimensional (3D) geological model, a digital elevation model (DEM) with resolutions 15 meters and stream profile analysis. DEM generation was performed using ASTER data. We found that the Wadi is located at the junction of two main fault systems. The major feature is a trans-tensional fault displacement which changes from 0 to 200 m. We showed that the catchment area is a result of a rotational fault while the river changes its flow direction according to the different fault system directions. The lower portion of the basin is affected by the major base level drops and display contributing rivers in exceptional non-equilibrium. Thus this catchment allows observing the rapid adaptation of the drainage system to both climatic and tectonic forcing.

  17. Interaction of faults and perturbation of slip: influence of anisotropic stress states in the presence of fault friction and comparison between Wallace Bott and 3D Distinct Element models

    NASA Astrophysics Data System (ADS)

    Pascal, C.

    2002-10-01

    Two decades after their birth, the validity of fault slip inversion methods is still strongly debated. These methods are based upon a very simplified mechanical background, the Wallace-Bott hypothesis. Following previous studies, the 3D Distinct Element Method (3DEC software) is used to explore the effect of varying stress anisotropy (i.e. the "shape" ratio) on slip perturbation along pairs of faults. Two end-member configurations are modelled in taking into account fault friction and internal deformation of faulted blocks. The first model deals with a relatively simple case where two nonintersecting conjugate normal faults are reactivated in an oblique normal stress regime. The second one simulates an extreme situation where two perpendicular intersecting faults are submitted to oblique extension. The average direction of fault slip predicted by 3DEC models is compared to the corresponding slip predicted by the simplified Wallace-Bott model. For the two simulated cases, it is shown that results from 3DEC and Wallace-Bott models are mutually consistent and argue for the validity of fault slip data inversion methods. Consistency remains even if slip is significantly deviated near the intersection line of faults. These deviations depend on the degree of anisotropy of applied stresses in presence of fault friction. Furthermore, modelling results suggest that, for intersecting faults with convergent slip directions, consideration of fault friction in the models leads to reduction of slip perturbation. In other words, modelling results lead to the nonintuitive conclusion that the validity of the simplified Wallace-Bott model is strengthened when 3DEC model's complexity (i.e. the number of parameters incorporated) increases.

  18. Lithological 3D grid model of the Vuonos area built by using geostatistical simulation honoring the 3D fault model and structural trends of the Outokumpu association rocks in Eastern Finland

    NASA Astrophysics Data System (ADS)

    Laine, Eevaliisa

    2015-04-01

    The Outokumpu mining district - a metallogenic province about 100 km long x 60 km wide - hosts a Palaeoproterozoic sulfide deposit characterized by an unusual lithological association. It is located in the North Karelia Schist Belt , which was thrust on the late Archaean gneissic-granitoid basement of the Karelian craton during the early stages of the Svecofennian Orogeny between 1.92 and 1.87 Ga (Koistinen 1981). Two major tectono-stratigraphic units can be distinguished, a lower, parautochthonous 'Lower Kaleva' unit and an upper, allochthonous 'upper Kaleva' unit or 'Outokumpu allochthon'. The latter consists of tightly-folded deep marine turbiditic mica schists and metagraywackes containing intercalations of black schist, and the Outo¬kumpu assemblage, which comprises ca. 1950 Ma old, serpentinized peridotites surrounded by carbonate-calc-silicate ('skarn')-quartz rocks. The ore body is enclosed in the Outokumpu assemblage, which is thought to be part of a disrupted and incomplete ophiolite complex (Vuollo & Piirainen 1989) that can be traced to the Kainuu schist belt further north where the well-preserved Jormua ophiolite is ex¬posed (Kontinen 1987, Peltonen & Kontinen 2004). Outokumpu can be divided into blocks divided by faults and shear zones (Saalmann and Laine, 2014). The aim of this study was to make a 3D lithological model of a small part of the Outokumpu association rocks in the Vuonos area honoring the 3D fault model built by Saalmann and Laine (2014). The Vuonos study area is also a part of the Outokumpu mining camp area (Aatos et al. 2013, 2014). Fault and shear structures was used in geostatistical gridding and simulation of the lithologies. Several possible realizations of the structural grids, conforming the main lithological trends were built. Accordingly, it was possible to build a 3D structural grid containing information of the distribution of the possible lithologies and an estimation the associated uncertainties. References: Aatos, S

  19. Geodesy-based estimates of loading rates on faults beneath the Los Angeles basin with a new, computationally efficient method to model dislocations in 3D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Rollins, C.; Argus, D. F.; Avouac, J. P.; Landry, W.; Barbot, S.

    2015-12-01

    North-south compression across the Los Angeles basin is accommodated by slip on thrust faults beneath the basin that may present significant seismic hazard to Los Angeles. Previous geodesy-based efforts to constrain the distributions and rates of elastic strain accumulation on these faults [Argus et al 2005, 2012] have found that the elastic model used has a first-order impact on the inferred distribution of locking and creep, underlining the need to accurately incorporate the laterally heterogeneous elastic structure and complex fault geometries of the Los Angeles basin into this analysis. We are using Gamra [Landry and Barbot, in prep.], a newly developed adaptive-meshing finite-difference solver, to compute elastostatic Green's functions that incorporate the full 3D regional elastic structure provided by the SCEC Community Velocity Model. Among preliminary results from benchmarks, forward models and inversions, we find that: 1) for a modeled creep source on the edge dislocation geometry from Argus et al [2005], the use of the SCEC CVM material model produces surface velocities in the hanging wall that are up to ~50% faster than those predicted in an elastic halfspace model; 2) in sensitivity-modulated inversions of the Argus et al [2005] GPS velocity field for slip on the same dislocation source, the use of the CVM deepens the inferred locking depth by ≥3 km compared to an elastic halfspace model; 3) when using finite-difference or finite-element models with Dirichlet boundary conditions (except for the free surface) for problems of this scale, it is necessary to set the boundaries at least ~100 km away from any slip source or data point to guarantee convergence within 5% of analytical solutions (a result which may be applicable to other static dislocation modeling problems and which may scale with the size of the area of interest). Here we will present finalized results from inversions of an updated GPS velocity field [Argus et al, AGU 2015] for the inferred

  20. Pushing the Limits of Geological Mapping Outside the Earth: 3D Modeling of Strike-Slip and Extensional Fault Systems in Meridiani Planum Region, Mars.

    NASA Astrophysics Data System (ADS)

    Vidal Royo, O.

    2014-12-01

    GIS and geological modeling software have radically changed the means by which geological mapping is produced, published and visualized. This type of software environment normally requires a spatially aware reference system to position data and interpretation, often referred as georeferenced data (i.e. geographic data referenced on the Earth). However, for this study we coin the term areoreferenced data (i.e. Mars-referenced "geographic" data). Thanks to the wealth of areoreferenced data made available by the NASA and the HiRise at University of Arizona it is now possible to carry out 3D areographic and areologic (i.e. related to the topography and geology of Mars, respectively) reconstructions in great detail. The present work benefits from the availability of software and areographic data, and presents the results of an areologic map and 3D model of the fault systems in the Meridiani Planum of Mars. The work has been carried out in Move™ (developed by Midland Valley Exploration), a geological modeling toolkit that allows for easy data loading in a wide range of formats as well as straightforward 2D/3D model building tools of geological bodies. Initial data consisted of Digital Terrain Model and orthoimages (NASA/JPL/University of Arizona/USGS). From these we have interpreted several structural domains: right-lateral strike-slip systems with associated releasing bends, which gave room to an extensional event causing a horizontal-axis rotation of the bedding. Bedding ranges from subhorizontal in the southern domain where strike-slip prevails to nearly 40º in the central and northern domains, where a more complex interaction between strike-slip and extensional faults is described. The stratigraphic sequence is mainly composed by moderately rounded well laminated basaltic sandstones (Squyres et al., 2004) in which a high component of sulfurs (e.g. sulfate anhydrate, hexahydrite, epsomite, gypsum) and salts (e.g. halite) has been described (Squyres et al., 2004

  1. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model

    NASA Astrophysics Data System (ADS)

    Jiang, Guoyan; Xu, Xiwei; Chen, Guihua; Liu, Yajing; Fukahata, Yukitoshi; Wang, Hua; Yu, Guihua; Tan, Xibin; Xu, Caijun

    2015-03-01

    We use GPS and interferometric synthetic aperture radar (InSAR) measurements to image the spatial variation of interseismic coupling on the Xianshuihe-Anninghe-Zemuhe (XAZ) fault system. A new 3-D viscoelastic interseismic deformation model is developed to infer the rotation and strain rates of blocks, postseismic viscoelastic relaxation, and interseismic slip deficit on the fault surface discretized with triangular dislocation patches. The inversions of synthetic data show that the optimal weight ratio and smoothing factor are both 1. The successive joint inversions of geodetic data with different viscosities reveal six potential fully coupled asperities on the XAZ fault system. Among them, the potential asperity between Shimian and Mianning, which does not exist in the case of 1019 Pa s, is confirmed by the published microearthquake depth profile. Besides, there is another potential partially coupled asperity between Daofu and Kangding with a length scale up to 140 km. All these asperity sizes are larger than the minimum resolvable wavelength. The minimum and maximum slip deficit rates near the Moxi town are 7.0 and 12.7 mm/yr, respectively. Different viscosities have little influence on the roughness of the slip deficit rate distribution and the fitting residuals, which probably suggests that our observations cannot provide a good constraint on the viscosity of the middle lower crust. The calculation of seismic moment accumulation on each segment indicates that the Songlinkou-Selaha (S4), Shimian-Mianning (S7), and Mianning-Xichang (S8) segments are very close to the rupture of characteristic earthquakes. However, the confidence level is confined by sparse near-fault observations.

  2. 3D model of fault and fissures structure of the Kovdor Baddeleyite-Apatite-Magnetite Deposit (NE of the Fennoscandian Shield)

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry; Klimov, Sergey

    2015-04-01

    The Kovdor baddeleyite-apatite-magnetite deposit (KBAMD) is represented by a large vertical ore body and is located in the southwestern part of the Kovdor ultramafic-alkaline central-type intrusion. The intrusion represents a concentrically zoned complex of rocks with an oval shape in plan, and straight zoning, which complies with the injection and displacement of each of further magma phases from the center towards the periphery. The operation of the deposit in open pits started in 1962, and nowadays, it has produced over 500,000,000 tons of ore. This is one of the largest open pits in the Kola region, which is ca. 2 km long, 1.8 km wide, and over 400 m deep. Regular structural studies has been carried out since late 1970. A unique massif of spatial data has been accumulated so far to include over 25,000 measurements of fissures and faults from the surface, ca. 20,000 measurements of fissures in the oriented drill core (over 18 km) etc. Using this data base the 3D model of fault and fissures structure was designed. The analysis of one has resulted in the identification of a series of laws and features, which are necessary to be taken into account when designing a deep open pit and mining is carried out. These are mainly aspects concerning the origin, kinematics, mechanics and ratio of spatial extension of various fault systems, variation of their parameters at deep horizons, features of a modern stress field in the country rocks, etc. The 3D model has allowed to divide the whole fracture / fissure systems of the massif rocks into 2 large groups: prototectonic system of joints, including cracks of 'liquid magmatic (carbonatite stage) contraction genesis', and newly formed faults due to the superimposed tectonic stages. With regard to the deposit scale, these are characterized as intraformational and transformational, respectively. Each group shows a set (an assemblage) of fault systems with unique features and signs, as well as regular interconnections. The

  3. Location and moment tensor inversion of small earthquakes using 3D Green's functions in models with rugged topography: application to the Longmenshan fault zone

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Zhang, Wei; Shen, Yang; Chen, Xiaofei; Zhang, Jie

    2016-06-01

    With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of M W3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.

  4. Understanding the thermal history, exhumation patterns, and role of fault systems on Goodenough Island, Papua New Guinea: Insights from 3D thermo-kinematic modelling

    NASA Astrophysics Data System (ADS)

    Bermudez, M. A.; Baldwin, S.; Fitzgerald, P. G.; Braun, J.

    2012-12-01

    The world's youngest eclogites, exhumed from depths of ca. 90 km since 8 Ma, are located in the D'Entrecasteaux Islands in the active Woodlark rift of southeastern Papua New Guinea. These (U)HP rocks formed during/following subduction of Australian margin-derived volcaniclastic sediments, and were exhumed during rifting within the larger, obliquely convergent Australian-Pacific plate boundary zone. Several (U)HP exhumation mechanisms have been proposed including diapiric rise of buoyant crust from mantle to crustal depths, and rifting of heterogeneous crust ahead of the east-to-west propagating Woodlark seafloor spreading center. In order to constrain the relative importance of different exhumation mechanisms through time (i.e., timing and rates of diapirism vs crustal faulting), we apply 3D thermo-kinematic modeling (Pecube) to constrain cooling and exhumation histories derived from thermochronologic data from Goodenough Island, the western-most of the D'Entrecasteaux Islands. More than 500,000 Pecube inverse models were run to evaluate scenarios involving vertical exhumation velocities (i.e., simulating simple buoyancy due to diapirism), low-angle normal faulting and combinations of both processes. These preliminary models assume steady-state topography. Preliminary models (starting at 8 Ma) include: (i) continuous exhumation, (ii) two exhumation phases with different exhumation rates (increasing and/or decreasing), and (iii) three exhumation phases with variable exhumation rates. For buoyancy-only models, the first two scenarios (i and ii) result in poor fits between model-derived and observed (experimental) data. Notably, scenarios (i) and (ii) produce indistinguishable ages for all thermochronologic systems, uniformly long apatite fission-track (AFT) lengths, excessive temperatures at the Moho and geological starting parameters (depth, T) that are not consistent with other data. Scenario (iii) with three exhumation phases has the least misfit between model

  5. 3-D seismic response of buried pipelines laid through fault

    SciTech Connect

    Liang, J.W.

    1995-12-31

    An ideal model for the non-causative fault is put forward in which the fault is assumed to be composed by three horizontally adjacent soil media. Dynamic behaviors of pipelines laid through the fault is analyzed. Although simple, this model may qualitatively illustrate the accumulation of seismic waves in the fault, so illustrate the dynamic behaviors of the pipelines. The results show that, the fault is materially different from a two soil site even if the fault width is very narrow, and the dynamic behaviors of the pipelines laid through the fault are determined by the fault width, the stiffness ratio of the three soil media, and the type of the seismic waves.

  6. Assessment of earthquake locations in 3-D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, D.; Mirabella, F.; Chiaraluce, L.; Trippetta, F.; Lomax, A.

    2016-11-01

    The accuracy of earthquake locations and their correspondence with subsurface geology depends strongly on the accuracy of the available seismic velocity model. Most modern methods to construct a velocity model for earthquake location are based on the inversion of passive source seismological data. Another approach is the integration of high-resolution geological and geophysical data to construct deterministic velocity models in which earthquake locations can be directly correlated to the geological structures. Such models have to be kinematically consistent with independent seismological data in order to provide precise hypocenter solutions. We present the Altotiberina (AT) seismic model, a three-dimensional velocity model for the Upper Tiber Valley region (Northern Apennines, Italy), constructed by combining 300 km of seismic reflection profiles, six deep boreholes (down to 5 km depth), detailed data from geological surveys and direct measurements of P and S wave velocities performed in situ and in laboratory. We assess the robustness of the AT seismic model by locating 11,713 earthquakes with a nonlinear, global-search inversion method and comparing the probabilistic hypocenter solutions to those calculated in three previously published velocity models, constructed by inverting passive seismological data only. Our results demonstrate that the AT seismic model is able to provide higher-quality hypocenter locations than the previous velocity models. Earthquake locations are consistent with the subsurface geological structures and show a high degree of spatial correlation with specific lithostratigraphic units, suggesting a lithological control on the seismic activity evolution.

  7. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  8. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  9. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  10. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  11. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Nikkhoo, M.; Holohan, E. P.; Walter, T. R.

    2015-07-01

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a 'sliding-trapdoor' ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano's western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that 'sliding-trapdoor' ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  12. QUANTIFYING UNCERTAINTIES IN GROUND MOTION SIMULATIONS FOR SCENARIO EARTHQUAKES ON THE HAYWARD-RODGERS CREEK FAULT SYSTEM USING THE USGS 3D VELOCITY MODEL AND REALISTIC PSEUDODYNAMIC RUPTURE MODELS

    SciTech Connect

    Rodgers, A; Xie, X

    2008-01-09

    This project seeks to compute ground motions for large (M>6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (< 1 Hz).

  13. Testing the influence of vertical, pre-existing joints on normal faulting using analogue and 3D discrete element models (DEM)

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.

    2015-04-01

    Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change

  14. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  15. Coseismic and postseismic Coulomb stress changes on intra-continental dip-slip faults and the role of viscoelastic relaxation in the lower crust: insights from 3D finite-element models

    NASA Astrophysics Data System (ADS)

    Bagge, Meike; Hampel, Andrea

    2016-04-01

    Investigating the stress interaction of faults plays a crucial role for assessing seismic hazard of a region. The calculation of Coulomb stress changes allows quantifying stress changes on so-called receiver faults in the surrounding of a source fault that was ruptured during an earthquake. Positive Coulomb stress changes bring receiver faults closer to failure, while a negative value indicates a delay of the next earthquake. Besides the coseismic ('static') stress changes, postseismic ('transient') stress changes induced by postseismic viscoelastic relaxation occur. Here we use 3D finite-element models with arrays of normal or thrust faults to study the coseismic stress changes and the stress changes arising from postseismic relaxation in the lower crust. The lithosphere is divided into an elastic upper crust, a viscoelastic lower crust and a viscoelastic lithospheric mantle. Gravity is included in the models. Driven by extension or shortening of the model, slip on the fault planes develops in a self-consistent way. We modelled an earthquake on a 40-km-long source fault with a coseismic slip of 2 m and calculated the displacement fields and Coulomb stress changes during the coseismic and postseismic phases. The results for the coseismic phase (Bagge and Hampel, Tectonophysics in press) show that synthetic receiver faults in the hanging wall and footwall of the source fault exhibit a symmetric distribution of the coseismic Coulomb stress changes on each fault, with large areas of negative stress changes but also some smaller areas of positive values. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its hanging wall and footwall undergo mostly positive stress changes. Postseismic stress changes caused by viscous flow modify the static stress changes in a way that the net Coulomb stress changes on the receiver faults change significantly through space and time. Our models allow deciphering the combined effect of stress

  16. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O.; Samson, P.; Segonds, D.

    1996-12-31

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  17. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O. ); Samson, P. ); Segonds, D. )

    1996-01-01

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  18. The role of salt layers in the hangingwall deformation of kinked-planar extensional faults: Insights from 3D analogue models and comparison with the Parentis Basin

    NASA Astrophysics Data System (ADS)

    Ferrer, O.; Roca, E.; Vendeville, B. C.

    2014-12-01

    Using an analogue modelling approach, this work investigates the role played by salt in the hangingwall deformation of an extensional fault. Models' set-up included a wooden block simulating the footwall of different kinked-planar fault geometries flattening at depth. Above these faults, the hangingwall was modelled using only sand or sand overlain by pre- or syn-kinematic silicone putty. Regardless of the stage at which was deposited, the silicone appears as an efficient decoupling level that changes the deformation mode of the overlying sand layers. Above the silicone layers, the rollover panels only continue to develop up to the welding of the underlying silicone. Afterwards, they do not grow anymore and all shearing induced by the underlying fault bends is accommodated along the tilted silicone layer that acts as an extensional shear band. Further fault slip produces near-horizontal growth stratal geometries that can be easily misinterpreted as a syn-rift/post-rift boundary. In addition, the differential sedimentary loading of syn-kinematic layers triggers the upslope silicone flow from the hangingwall depocenters towards the rollover shoulders. This migration results in the formation of silicone welds at the rollover limbs and the growth of gentle silicone-cored anticlines above or near the rollover shoulder that are locally pierced by diapirs and walls. These experimental results fit with the Parentis Basin structure that, formed from the motion of lithosphere-scale kinked-planar extensional faults, includes salt inflated anticlines above their rollover shoulders and an intra-Albian unconformity interpreted now as syn-kinematic.

  19. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  20. Deformation of Rock Mass Caused by Strike-Slip Faulting: 3D Analysis of Analogue Models by Helical X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Ueta, K.

    2007-12-01

    the second order jogs and produce the progressively more continuous and smoother principal displacement shear plane, and the real area of contact on the shear plane decrease. 5) With decreasing distance between adjacent first order compressional jogs (protrusions on surface), the real area of contact on the shear plane increase. Such evolution of the shears and its associated structures in the fault model tests agrees well with that of strike-slip fault systems and its associated geomorphic structures.

  1. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    SciTech Connect

    Neuhaus, D. )

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic survey covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.

  2. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  3. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  4. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern

  5. Complex patterns of faulting revealed by 3D seismic data at the West Galicia rifted margin

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Cresswell, Derren; Sawyer, Dale; Ranero, Cesar; Shillington, Donna; Morgan, Julia; Lymer, Gael

    2015-04-01

    The west Galicia margin is characterised by crust thinning to less than 3 km, well-defined fault blocks, which overlie a bright reflection (the S reflector) generally interpreted as a tectonic Moho. The margin exhibits neither voluminous magmatism nor thick sediment piles to obscure the structures and the amount of extension. As such is represents an ideal location to study the process of continental breakup both through seismic imaging and potentially through drilling. Prestack depth migration of existing 2D profiles has strongly supported the interpretation of the S reflector as both a detachment and as the crust-mantle boundary; wide-angle seismic has also shown that the mantle beneath S is serpentinised. Despite the quality of the existing 2D seismic images, a number of competing models have been advanced to explain the formation of this margin, including sequential faulting, polyphase faulting, multiple detachments and the gravitational collapse of the margin over exhumed mantle. As these models, all developed for the Galicia margin, have been subsequently applied to other margins, distinguishing between them has implications not only for the structure of the Galicia margin but for the process of rifting through to breakup more generally. To address these issues in summer of 2013 we collected a 3D combined seismic reflection and wide-angle dataset over this margin. Here we present some of the results of ongoing processing of the 3D volume, focussing on the internal structure of some of the fault blocks that overlies the S detachment. 2D processing of the data shows a relatively simple series of tilted fault block, bound by west-dipping faults that detach downwards onto the bright S reflector. However, inspection of the 3D volume produced by 3D pre-stack time migration reveals that the fault blocks contain a complex set of sedimentary packages, with strata tilted to the east, west, north and south, each package bound by faults. Furthermore, the top of crustal

  6. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  7. Intensity of joints associated with an extensional fault zone: an estimation by poly3d .

    NASA Astrophysics Data System (ADS)

    Minelli, G.

    2003-04-01

    The presence and frequency of joints in sedimentary rocks strongly affects the mechanical and fluid flow properties of the host layers. Joints intensity is evaluated by spacing, S, the distance between neighbouring fractures, or by density, D = 1/S. Joint spacing in layered rocks is often linearly related to layer thickness T, with typical values of 0.5 T < S < 2.0 T . On the other hand, some field cases display very tight joints with S << T and nonlinear relations between spacing and thickness , most of these cases are related to joint system “genetically” related to a nearby fault zone. The present study by using the code Poly3D (Rock Fracture Project at Stanford), numerically explores the effect of the stress distribution in the neighbour of an extensional fault zone with respect to the mapped intensity of joints both in the hanging wall and in the foot wall of it (WILLEMSE, E. J. M., 1997; MARTEL, S. J, AND BOGER, W. A,; 1998). Poly3D is a C language computer program that calculates the displacements, strains and stresses induced in an elastic whole or half-space by planar, polygonal-shaped elements of displacement discontinuity (WILLEMSE, E. J. M., POLLARD, D. D., 2000) Dislocations of varying shapes may be combined to yield complex three-dimensional surfaces well-suited for modeling fractures, faults, and cavities in the earth's crust. The algebraic expressions for the elastic fields around a polygonal element are derived by superposing the solution for an angular dislocation in an elastic half-space. The field data have been collected in a quarry located close to Noci town (Puglia) by using the scan line methodology. In this quarry a platform limestone with a regular bedding with very few shale or marly intercalations displaced by a normal fault are exposed. The comparison between the mapped joints intensity and the calculated stress around the fault displays a good agreement. Nevertheless the intrinsic limitations (isotropic medium and elastic behaviour

  8. 3D coexisting modes of thermal convection in the faulted Lower Yarmouk Gorge

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Inbar, Nimrod; Möller, Peter; Raggad, Marwan; Rödiger, Tino; Rosenthal, Eliyahu; Siebert, Christian

    2016-04-01

    Numerical investigations of 3D modes of large-scale convection in faulted aquifers are presented with the aim to infer possible transport mechanisms supporting the formation of thermal springs in the Lower Yarmouk Gorge (LYG), at the border between Israel and Jordan. The transient finite elements models are based on a geological model of the LYG that introduces more realistic structural features of the basin, compared to previous existing models of the area (Magri et al., submitted). The sensitivity analysis of the fault permeability showed that faults cross-cutting the main regional flow direction allow groundwater to be driven laterally by convective forces within the fault planes. Therein thermal waters can either discharge along the fault traces or exit the fault through adjacent permeable aquifers. The location of springs can migrate with time, is not strictly constrained to the damage zones and reflects the interplay between the wavelength of the multicellular regime in the fault zone and the regional flow toward discharge areas in the lowlands. The results presented here suggest that in the LYG case, crossing flow paths result from the coexistence of fault convection, that can develop for example along NE-SW oriented faults within the Gorge, and additional flow fields that can be induced either by topography N-S gradients, e.g. perpendicular to the major axe of the Gorge, or by local thermal convection in permeable aquifers below Eocene aquiclude. The sensitivity analysis is consistent with the analytical solutions based on viscous-dependent Rayleigh theory. It indicates that in the LYG coexisting transport processes likely occur at fault hydraulic conductivity ranging between 2.3e-7 m/s and 9.3e- 7 m/s (i.e. 7 m/yr and 30 m/yr). The LYG numerical example and the associated Rayleigh analysis can be applied to study the onset of thermal convection and resulting flow patterns of any fractured hydrothermal basin. References Magri F, Möller S, Inbar N, M

  9. 3D Microperfusion Model of ADPKD

    DTIC Science & Technology

    2015-10-01

    Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D

  10. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  11. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2017-03-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  12. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  13. Kinematics of a growth fault/raft system on the West African margin using 3-D restoration

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Raillard, Stéphane; Guillocheau, François; Bouroullec, Renaud; Nalpas, Thierry

    2002-04-01

    The ability to quantify the movement history associated with growth structures is crucial in the understanding of fundamental processes such as the growth of folds or faults in 3-D. In this paper, we present an application of an original approach to restore in 3-D a listric growth fault system resulting from gravity-induced extension located on the West African margin. Our goal is to establish the 3-D structural framework and kinematics of the study area. We construct a 3-D geometrical model of the fault system (from 3-D seismic data), then restore six stratigraphic surfaces and reconstruct the 3-D geometry of the system at six incremental steps of its history. The evolution of the growth fault/raft system corresponds to the progressive separation of two rafts by regional extension, resulting in the development of an intervening basin located between them that evolved in three main stages: (1) the rise of an evaporite wall, (2) the development of a symmetric basin as the elevation of the diapir is reduced and buried, and (3) the development of asymmetric basins related to two systems of listric faults (the main fault F1 and the graben located between the rollovers and the lower raft). Important features of the growth fault/raft system could only be observed in 3-D and with increments of deformation restored. The rollover anticline (associated with the listric fault F1) is composed of two sub-units separated by an E-W oriented transverse graben indicating that the displacement field was divergent in map view. The rollover units are located within the overlap area of two fault systems and displays a 'mock-turtle' anticline structure. The seaward translation of the lower raft is associated with two successive vertical axis rotations in the opposite sense (clockwise then counter-clockwise by about 10°). This results from the fact that the two main fault systems developed successively. Fault system F1 formed during the Upper Albian, and the graben during the Cenomanian

  14. Modeling cellular processes in 3D.

    PubMed

    Mogilner, Alex; Odde, David

    2011-12-01

    Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.

  15. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  16. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  17. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  18. 3D microstructural and microchemical characteristics of SAFOD fault gouge: implications for understanding fault creep

    NASA Astrophysics Data System (ADS)

    Warr, Laurence; Wojatschke, Jasmaria; Carpenter, Brett; Marone, Chris; Schleicher, Anja; van der Pluijm, Ben

    2013-04-01

    Fault creep on the SAFOD section of the San Andreas Fault occurs along mechanically weak fault gouge characterized by high proportions of hydrous clay minerals, namely smectite, illite-smectite and chlorite-smectite phases. These minerals are concentrated along closely spaced, interconnected polished slip surfaces that give the gouge its characteristic scaly fabric. Although it is generally accepted that the creep behavior of the gouge relates to the concentration of these minerals, the precise mechanisms by which clay minerals weaken rock is currently a topic of debate. In this contribution we present the first results from a "slice-and-view" study of SAFOD gouge material by focused ion beam - scanning electron microscopy (Zeiss Auriga FIB/SEM), which allows the reconstruction of the microstructure and microchemistry of mineralized slip surfaces in 3D. The core and cuttings samples studied were selected from ca. 3297 m measured depth and represent some of the weakest materials yet recovered from the borehole, with a frictional coefficient of ca. 0.10 and a healing rate close to zero. This gouge contains abundant serpentine and smectite minerals, the latter of which was identified by X-ray diffraction to be saponite, after Mg- and glycol intercalation. Imaging and chemical analyses reveal nanometer scale thin alteration seams of saponite clay distributed throughout the ca. 50 micron thick sheared serpentinite layer that coats the slip surfaces. The base of this layer is defined by cataclastically deformed iron oxide minerals. The 3D fabric implies the orientation of the hydrated smectite minerals, which are interconnected and lie commonly sub parallel to the slip surface, are responsible for the gouge creep behavior in the laboratory. These minerals, and related interlayered varieties, are particularly weak due to their thin particle size and large quantities of adsorbed water, properties that are expected to persist down to mid-crustal depth (ca. 10 km). Creep of

  19. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Hauksson, E.; Plesch, A.

    2012-12-01

    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  20. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  1. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  2. 3D Modeling Engine Representation Summary Report

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  3. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  4. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  5. Source Process of the 1923 Kanto Earthquake Using New Fault Geometry and 3-D Green's Functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, R.; Koketsu, K.

    2005-12-01

    The September 1, 1923, Kanto earthquake caused severe damage and more than 100,000 fatalities in the Tokyo metropolitan area. This earthquake is an interplate event along the Sagami trough where the Philippine Sea plate is subducting beneath a continental plate. We have investigated the source process of this earthquake using the geodetic, teleseismic, and strong motion data (Kobayashi and Koketsu, 2005). The resultant slip distributions show that two asperities (areas of large slips) are located around the base of the Izu peninsula and the Uraga channel. In 2002 and 2003, four seismic surveys were carried out to determine crustal structures and fault locations in the Kanto region (Sato et al., 2005). The seismic reflections from the surface of the Philippine Sea slab suggested that the slab surface should be shallower than the previous models (e.g., Ishida, 1992; Matsu'ura et al., 1980). The fault model of Kobayashi and Koketsu (2005) was also based on Matsu'ura et al. (1980). In this study, we adopt new fault geometry consistent with the result of the reflection surveys and perform another source process inversion. The new slip distribution showed that the western asperity moved from the Uraga channel to the tip of the Miura peninsula, while the western asperity did not move considerably. Green's functions that Kobayashi and Koketsu (2005) used were calculated in a halfspace for geodetic data or in a 1-D model for strong motions. However, the real structure in the Kanto region is three-dimensionally complex as suggested by the geographical setting and seismic surveys. In fact, Kobayashi and Koketsu (2005) showed that the long coda of the observed seismogram at Hongo, Tokyo, was not reproduced in the synthetic one. The forward modeling with a 3-D structure (Sato et al., 1999) suggested that surface waves excited along the boundary between the Kanto mountains and Kanto basin can explain the large coda. Thus we calculate 3-D Green's functions for the strong motion

  6. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  7. 3-D Teaching Models for All

    ERIC Educational Resources Information Center

    Bradley, Joan; Farland-Smith, Donna

    2010-01-01

    Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…

  8. Constructing Arguments with 3-D Printed Models

    ERIC Educational Resources Information Center

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  9. Model-based 3D SAR reconstruction

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2014-06-01

    Three dimensional scene reconstruction with synthetic aperture radar (SAR) is desirable for target recognition and improved scene interpretability. The vertical aperture, which is critical to reconstruct 3D SAR scenes, is almost always sparsely sampled due to practical limitations, which creates an underdetermined problem. This papers explores 3D scene reconstruction using a convex model-based approach. The approach developed is demonstrated on 3D scenes, but can be extended to SAR reconstruction of sparsely sampled signals in the spatial and, or, frequency domains. The model-based approach enables knowledge-aided image formation (KAIF) by incorporating spatial, aspect, and sparsity magnitude terms into the image reconstruction. The incorporation of these terms, which are based on prior scene knowledge, will demonstrate improved results compared to traditional image formation algorithms. The SAR image formation problem is formulated as a second order cone program (SOCP) and the results are demonstrated on 3D scenes using simulated data and data from the GOTCHA data collect.1 The model-based results are contrasted against traditional backprojected images.

  10. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  11. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  12. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  13. Crustal Deformation Analysis Using a 3D FE High-fidelity Model with a Fast Computation Method and Its Application to Inversion Analysis of Fault Slip in the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hori, M.

    2012-12-01

    Crustal deformation analysis is important in order to understand the interplate coupling and coseismic fault slips. To perform it more accurately, we need a high-fidelity crustal structure model. However, in spite of accumulated crustal data, models with simplified flat shapes or relatively low resolution have been used, because the computation cost using high-fidelity models with a large degree-of-freedom (DOF) could be significantly high. Especially, estimation of the interplate coupling and coseismic fault slip requires the calculation of Green's function (the response displacement due to unit fault slip). To execute this computation in a realistic time, we need to reduce the computation cost. The objectives of our research is following: (1)To develop a method to generate 3D Finite Element (FE) models which represent heterogeneous crustal layers with the complex shape of crustal structure; (2)To develop a fast FE analysis method to perform crustal deformation analysis many times using single computation node, supposing the use of a small-scale computation environment. We developed an automatic FE model generation method using background grids with high quality meshes in a large area by extending the method of (Ichimura et al, 2009). We used Finite Element Method (FEM) because it has an advantage in representing the shape. Hybrid meshes consisting of tetrahedral and voxel elements are generated; the former is used when the interface surfaces and the grids intersect so that the shape of the crust is represented well, while the latter is used in the homogeneous areas. Also, we developed a method for crustal deformation analysis due to fault slip, which solves the FEM equation Ku=f assuming that the crust is an elastic body. To compute it fast, firstly we solved the problem by CG method with a simple preconditioning, parallelizing it by OpenMP. However, this computation took a long time, so we improved the method by introducing Multigrid Method (Saam, 2003) to the

  14. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT)

    NASA Astrophysics Data System (ADS)

    Lee, En-Jui; Chen, Po

    2017-04-01

    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  15. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  16. 3D Discrete Element Simulation of Large-scale Faulting and Crustal Thickening in the India-Asia Collision Zone

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Tapponnier, P.; Donze, F. V.; Scholtes, L.; Gaudemer, Y.; Huang, Z.

    2015-12-01

    Understanding the discontinuous nucleation, growth, and interaction of large faults within continental collision zones remains a challenge. Previous analog experiments simulating the India-Asia collision successfully modeled the development and kinematics of large strike-slip faults within the Eurasian plate. However, these 2D experiments were dynamically unscaled with gravity and did not allow the development of topographic relief. We use the YADE discrete element (DEM) code to alleviate these problems, producing a suite of 3D models. These 3D DEM models also involve the extrusion and rotation of coherent blocks by generating two large strike-slip faults. The location, size and offsets of these faults are consistent with those of the Red River and Altyn Tagh mega-faults. In addition, concurrently with strike-slip movement, the large scale deformation includes the successive formation, from South to North, of thrust faults that bound a growing plateau which may be considered analogous to the Tibet-Qinghai plateau. While based on very simplified boundary conditions and mechanical properties, such modeling results are therefore consistent with the topographic, tectonic and geological evolution of Eastern Asia in the last ~50 million years.

  17. 3D Geologic Model of the San Diego Area

    NASA Astrophysics Data System (ADS)

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  18. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  19. Sensing and compressing 3-D models

    SciTech Connect

    Krumm, J.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  20. Vision models for 3D surfaces

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda

    1992-11-01

    Different approaches to computational stereo to represent human stereo vision have been developed over the past two decades. The Marr-Poggio theory of human stereo vision is probably the most widely accepted model of the human stereo vision. However, recently developed motion stereo models which use a sequence of images taken by either a moving camera or a moving object provide an alternative method of achieving multi-resolution matching without the use of Laplacian of Gaussian operators. While using image sequences, the baseline between two camera positions for a image pair is changed for the subsequent image pair so as to achieve different resolution for each image pair. Having different baselines also avoids the inherent occlusion problem in stereo vision models. The advantage of using multi-resolution images acquired by camera positioned at different baselines over those acquired by LOG operators is that one does not have to encounter spurious edges often created by zero-crossings in the LOG operated images. Therefore in designing a computer vision system, a motion stereo model is more appropriate than a stereo vision model. However, in some applications where only a stereo pair of images are available, recovery of 3D surfaces of natural scenes are possible in a computationally efficient manner by using cepstrum matching and regularization techniques. Section 2 of this paper describes a motion stereo model using multi-scale cepstrum matching for the detection of disparity between image pairs in a sequence of images and subsequent recovery of 3D surfaces from depth-map obtained by a non convergent triangulation technique. Section 3 presents a 3D surface recovery technique from a stereo pair using cepstrum matching for disparity detection and cubic B-splines for surface smoothing. Section 4 contains the results of 3D surface recovery using both of the techniques mentioned above. Section 5 discusses the merit of 2D cepstrum matching and cubic B

  1. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  2. Fallon FORGE 3D Geologic Model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  3. Inferential modeling of 3D chromatin structure.

    PubMed

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-04-30

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen.

  4. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  5. 3-D Model of Earthquake Sources in the Los Angeles Basin, CA

    NASA Astrophysics Data System (ADS)

    Plesch, A.; Shaw, J. H.

    2001-12-01

    We present a digital 3d model of the major, seismogenic fault system in the Los Angeles basin. The model is a prototype for a community-based fault characterization effort initiated by the Southern California Earthquake Center, Phase 2 (SCEC2). Faults were selected by consensus within the SCEC2 community based on geologic relevance, perceived hazard, and quality of descriptive data. Our first iteration model was populated with most of the important faults and with the deformed basement surface, which represents the main velocity interface in the basin. Constraints on fault geometries and positions include surface traces, surficial neotectonic data, seismic reflection profiles, wells, cross-sections, hypocentral locations, and focal mechanisms. Accurate geospatial registration proved essential. We use advanced geometric modeling software to integrate these various geophysical and geologic data in a 3d space, and to interpolate and extrapolate the fault surfaces. The model describes the geometry of imbricated blind-thrust faults that underlie the northern Los Angeles basin (Puente Hills, Las Cienegas, San Vicente, Elysian Park), as well as the basin bounding structures including the Santa Monica, Sierra Madre, and Cucamonga systems. In the case of the Santa Monica thrust, the 3d construction suggests the presence of a previously undocumented blind extension of this system to the northeast, below the Hollywood fault, and perhaps coinciding in parts with the North Salt Lake fault. The model also describes the 3D geometry of the major strike-slip systems in the basin, including the Newport-Inglewood and Whittier faults. The model provides a medium to investigate the spatial and temporal interactions of these fault systems based on their precise 3D geometries.

  6. 3D Model of Surfactant Replacement Therapy

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  7. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  8. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x

  9. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  10. Scalable 3D GIS environment managed by 3D-XML-based modeling

    NASA Astrophysics Data System (ADS)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  11. Automated modeling of RNA 3D structure.

    PubMed

    Rother, Kristian; Rother, Magdalena; Skiba, Pawel; Bujnicki, Janusz M

    2014-01-01

    This chapter gives an overview over the current methods for automated modeling of RNA structures, with emphasis on template-based methods. The currently used approaches to RNA modeling are presented with a side view on the protein world, where many similar ideas have been used. Two main programs for automated template-based modeling are presented: ModeRNA assembling structures from fragments and MacroMoleculeBuilder performing a simulation to satisfy spatial restraints. Both approaches have in common that they require an alignment of the target sequence to a known RNA structure that is used as a modeling template. As a way to find promising template structures and to align the target and template sequences, we propose a pipeline combining the ParAlign and Infernal programs on RNA family data from Rfam. We also briefly summarize template-free methods for RNA 3D structure prediction. Typically, RNA structures generated by automated modeling methods require local or global optimization. Thus, we also discuss methods that can be used for local or global refinement of RNA structures.

  12. Regional geothermal 3D modelling in Denmark

    NASA Astrophysics Data System (ADS)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  13. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.

    2014-12-01

    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  14. 3D Modelling of Kizildag Monument

    NASA Astrophysics Data System (ADS)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  15. 3-D physical models of amitosis (cytokinesis).

    PubMed

    Cheng, Kang; Zou, Changhua

    2005-01-01

    Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too.

  16. Influence of 3D Teleseismic Body Waves in the Finite-Fault Source Inversion of Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Sladen, A.; Monteiller, V.

    2014-12-01

    Most large earthquakes are generated in subduction zones. To study the complexity of these events, teleseismic body waves offer many advantages over other types of data: they allow to study both the temporal and spatial evolution of slip during the rupture, they don't depend on the presence of nearby land and they allow to study earthquakes regardless of their location. Since the development of teleseismic finite-fault inversion in the 1980th, teleseismic body waves have been simulated using 1D velocity models to take into account propagation effects at the source. Yet, subduction zones are known to be highly heterogeneous: they are characterized by curved and dipping structures, strong seismic velocity contrasts, strong variations of topography and height of the water column. The main reason for relying on a 1D approximation is the computational cost of 3D simulations. And while forward simulations of teleseismic waves in a 3D Earth are only starting to be tractable on modern computers at the frequency range of interest (0.1Hz or shorter), finite-fault source studies require a large number of these simulations. In this work, we present a new and efficient approach to compute 3D teleseismic body waves, in which the full 3D propagation is only computed in a regional domain using discontinuous Galerkin finite-element method, while the rest of the seismic wave field is propagated in a background axisymmetric Earth. The regional and global wave fields are matched using the so-called Total-Field/Scattered-Field technique. This new simulation approach allows us to study the waveform complexities resulting from 3D propagation and investigate how they could improve the resolution and reduce the non-uniqueness of finite-fault inversions.

  17. 3D Fault Geometry and Basin Evolution in the Northern Continental Borderland Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Schindler, C. S.; Nicholson, C.; Sorlien, C.

    2007-12-01

    Grids of recently released high-quality industry multichannel seismic (MCS) reflection data, combined with bathymetry and offshore well data are used to map digital 3D fault surfaces and stratigraphic reference horizons in the northern Continental Borderland offshore of southern California. This area experienced large-scale oblique crustal extension and translation associated with the initiation and development of the Pacific-North American plate boundary. The 3D surfaces of structure and stratigraphy can thus be used to better understand and evaluate regional patterns of uplift, subsidence, fault interaction and other aspects of plate boundary deformation. Our mapping in Santa Cruz basin and on Santa Rosa and Santa Cruz-Catalina Ridge reveals an unusual pattern of faulting, folding and basin subsidence. This subsidence is significant (up to 3-4 km since early-Miocene time) and is responsible for the development of several major Borderland basins. Vertical motions can be estimated from an early-Miocene unconformity that likely represents a paleo-horizontal, near-paleo-sea-level erosional surface. As such, it can be used to reconstruct Borderland forearc geometry prior to rifting, subsidence and subsequent basin inversion. Major findings to date include: (a) a better characterization of the complex 3D geometry and pinch-out of the eastern edge of the northern forearc Nicolas terrane and its implications for Borderland basin development, plate reconstructions, and vertical motions associated with oblique rifting; (b) recognition that the East Santa Cruz Basin fault, previously thought to be a predominantly high-angle, large- displacement right-slip fault representing the eastern edge of the Nicolas terrane, is in fact a series of reactivated right-stepping, NE-dipping reverse-separation faults; (c) discovery that NW-striking faults associated with Santa Cruz-Catalina Ridge bend west into a horse-tail structure to interact with and contribute to the southern frontal

  18. Lithospheric Structure of the Western North Anatolian Fault Zone from 3-D Teleseismic Tomography

    NASA Astrophysics Data System (ADS)

    Papaleo, E.

    2015-12-01

    The North Anatolian Fault Zone (NAFZ) is a 1500 km long active strike-slip fault that spans northern Turkey. During the past century a series of migrating earthquakes have sequentially activated different segments of the fault. The last major events of this sequence are the 1999 Izmit and Düzce earthquakes, which are consistent with a gradual westward migration in seismicity. The next active segment of the fault may be close to the city of Istanbul, posing a major risk for its population. Historically, the NAFZ exhibits a recurrent migrating sequence of high magnitude earthquakes along the fault zone, suggesting that it accommodates most of the plate motion between Anatolian and Eurasian plates in a narrow shear zone. From GPS studies following the Izmit and Düzce events, this motion does not appear to be constrained to the upper crust, and may extend at least to the lower crust. However, the geometry of the fault in the lower crust and upper mantle is at present poorly understood and previous tomographic studies do not provide a consistent picture of the velocity structure in this region. To better constrain the geometry of the shear zone at depth, in particular beneath the most recently active segment of the fault, an array of 70 temporary seismic stations with a 7 km spacing was deployed for 18 months as part of the FaultLab project. Amongst all the events recorded, those of magnitude ≥ 5 and situated between 27 and 98 degrees from the centre of the array were selected to perform 3D teleseismic tomography. Synthetic resolution tests indicate that structures as small as the average station spacing can be recovered to a depth of approximately 80 km. The work aims to provide a higher resolution image of the velocity structure beneath the western segment of the NAFZ, leading to a better understanding of the shear zone in the lower crust and upper mantle.

  19. A Study of Static Shift Removal Methods in a 3D Magnetotelluric Survey at Pisagua Fault, Chile.

    NASA Astrophysics Data System (ADS)

    Bascur, J.; Comte, D.; Dias, D.; Siripunvaraporn, W.

    2014-12-01

    The static shift is one of the main problems that cause misleads in the magnetotellurics (MT) interpretation. This work presents a study comparing methods for removing the static shift effect from MT data acquired around the Pisagua Fault in Chile (2014). This evaluation considers the methods based on the joint inversion of the subsurface resistivity with the static shift effect and the calibration based on the TDEM data.First, it was developed a formulation in the data space, following the work of W. Siripunvaraporn (2005), that allows the joint inversion of the resistivity model and the static shift effect. That formulation makes it possible to use any linear representation for removing the static shift in the MT stations. This property permits compare the representation proposed by Sasaki (2004) and the static shift tensor, which use a 2x2 matrix to correct the effect. The last one is suggested to be a better model for 3D MT responses, because it can reproduce the distortion on the phase of MT data.Twenty one stations, measuring MT and TDEM methods, were acquired at the east side of the Pisagua town in the North of Chile (figure). In this place, there is an evident scarp on the topography that reveals the existence of an important fault (Pisagua Fault). Also, the Chilean desert at this location is characterized by the presence of shallow nitrate deposits (called "caliche"), whose have an elevated electrical resistance and can produce the static shift effect in the MT stations. For those reasons it was expected that the sector around the Pisagua Fault was an adequate place to evaluate static correction methods, because the data certainly would be distorted by the static shift and a successful correction method should reveal the fault observed at surface.The MT data acquired have mostly a 3D dimensionality (using A. Marti criteria, 2009) and show signs of being static shifted. A 3D inversion of this data, without considering the static shift, results in a poor

  20. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  1. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  2. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  3. Constraints on 3D fault and fracture distribution in layered volcanic- volcaniclastic sequences from terrestrial LIDAR datasets: Faroe Islands

    NASA Astrophysics Data System (ADS)

    Raithatha, Bansri; McCaffrey, Kenneth; Walker, Richard; Brown, Richard; Pickering, Giles

    2013-04-01

    Hydrocarbon reservoirs commonly contain an array of fine-scale structures that control fluid flow in the subsurface, such as polyphase fracture networks and small-scale fault zones. These structures are unresolvable using seismic imaging and therefore outcrop-based studies have been used as analogues to characterize fault and fracture networks and assess their impact on fluid flow in the subsurface. To maximize recovery and enhance production, it is essential to understand the geometry, physical properties, and distribution of these structures in 3D. Here we present field data and terrestrial LIDAR-derived 3D, photo-realistic virtual outcrops of fault zones at a range of displacement scales (0.001- 4.5 m) within a volcaniclastic sand- and basaltic lava unit sequence in the Faroe Islands. Detailed field observations were used to constrain the virtual outcrop dataset, and a workflow has been developed to build a discrete fracture network (DFN) models in GOCAD® from these datasets. Model construction involves three main stages: (1) Georeferencing and processing of LIDAR datasets; (2) Structural interpretation to discriminate between faults, fractures, veins, and joint planes using CAD software and RiSCAN Pro; and (3) Building a 3D DFN in GOCAD®. To test the validity of this workflow, we focus here on a 4.5 m displacement strike-slip fault zone that displays a complex polymodal fracture network in the inter-layered basalt-volcaniclastic sequence, which is well-constrained by field study. The DFN models support our initial field-based hypothesis that fault zone geometry varies with increasing displacement through volcaniclastic units. Fracture concentration appears to be greatest in the upper lava unit, decreases into the volcaniclastic sediments, and decreases further into the lower lava unit. This distribution of fractures appears to be related to the width of the fault zone and the amount of fault damage on the outcrop. For instance, the fault zone is thicker in

  4. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  5. A 3-D shape model of Interamnia

    NASA Astrophysics Data System (ADS)

    Sato, Isao

    2015-08-01

    A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.

  6. Anatomy-based 3D skeleton extraction from femur model.

    PubMed

    Gharenazifam, Mina; Arbabi, Ehsan

    2014-11-01

    Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.

  7. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    SciTech Connect

    Duru, Kenneth; Dunham, Eric M.

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  8. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  9. Elastic wave modelling in 3D heterogeneous media: 3D grid method

    NASA Astrophysics Data System (ADS)

    Jianfeng, Zhang; Tielin, Liu

    2002-09-01

    We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.

  10. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  11. 3D modeling based on CityEngine

    NASA Astrophysics Data System (ADS)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  12. 3-D numerical modelling of the influence of reactivated pre-existing faults on the distribution of deformation: example of North-Western Ghana around 2.15-2.00 Ga

    NASA Astrophysics Data System (ADS)

    FENG, Xiaojun; Gerbault, Muriel; Martin, Roland; Ganne, Jérôme; Jessell, Mark

    2015-04-01

    High strain zones appear to play a significant role in feeding the upper crust with fluids and partially molten material from lower crust sources. The Bole-Bulenga terrain (North-Western Ghana) is located in between two subvertical shear zones, and mainly consists of high-grade orthogneisses, paragneisses and metabasites intruded by partially molten lower crustal material with monzogranites and orthogneisses (Eburnean orogeny, around 2.1 Ga). In order to understand the location of these high grade rocks at the edges and in between these two shear zones, a three dimensional numerical model was built to test the influence of different orientations of a system of branched strike-slip faults on visco-plastic deformation, under compressional and simple shear boundary conditions. Our models indicate domains of tensile vs. compressional strain as well as shear zones, and show that not only internal fault zones but also the host rock in between the faults behave relatively softer than external regions. Under both applied compressive and simple shear boundary conditions, these softened domains constitute preferential zones of tensile strain accommodation (dilation) in the upper crust, which may favor infilling by deeper partially molten rocks. Our modeled pre-existing faults zones are assumed to have formed during an early D1 stage of deformation, and they are shown to passively migrate and rotate together with the solid matrix under applied external boundary conditions (corresponding to a post D1 - early D2 phase of deformation). We suggest that in the Bole-Bulenga terrain, fluids or partially molten material stored in deeper crustal domains, preferentially intruded the upper crust within these highly (shear and tensile) strained domains, thanks to this D2 shearing deformation phase. Building relief at the surface is primarily controlled by fault orientations, together with mechanical parameters and external boundary conditions. In particular, greatest magnitudes of relief

  13. Single-Tooth Modeling for 3D Dental Model

    PubMed Central

    Yuan, Tianran; Liao, Wenhe; Dai, Ning; Cheng, Xiaosheng; Yu, Qing

    2010-01-01

    An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the “valley” shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed and classified based on the minimum curvatures of the surface. The single tooth shape is restored according to the bioinformation along the hole boundary, which is generated after the fusion region being removed. By using the extracted boundary from the blending regions between the teeth and soft tissues as reference, the teeth can be separated from the 3D dental model one by one correctly. Experimental results show that the proposed method can achieve satisfying modeling results with high-degree approximation of the real tooth and meet the requirements of clinical oral medicine. PMID:20689718

  14. 3D tumor models: history, advances and future perspectives.

    PubMed

    Benien, Parul; Swami, Archana

    2014-05-01

    Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.

  15. Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Zhou, Y.

    2010-12-01

    It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement

  16. Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Gil, Joon-Min

    2015-03-01

    The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.

  17. 3D Face modeling using the multi-deformable method.

    PubMed

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  18. Kinematic ground motion simulations on rough faults including effects of 3D stochastic velocity perturbations

    USGS Publications Warehouse

    Graves, Robert; Pitarka, Arben

    2016-01-01

    We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5  km) and deep (>15  km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1  Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from

  19. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  20. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  1. 3-D GRACE gravity model for the 2011 Japan earthquake

    NASA Astrophysics Data System (ADS)

    Sastry, Rambhatla G.; Sonker, Mahendra K.

    2017-02-01

    The GRACE mission has contributed to the seismic characterization of major earthquakes in offshore regions of the world. Here, we isolate satellite gravity signal (μGal range) for the Japan Earthquake of 2011 using a difference method. Contrary to the existing gravity models, we propose a unit vertical pyramid based five-layer 3-D thrust fault model, which extends to the hypocenter and honors the ocean water layer and sea floor upheaval also. Our model partly uses existing seismological information (hypocenter depth of 32 km, rupture length of 300 km and vertical slip of 4 m), provides a snapshot of episodic subduction of the Pacific Plate below the Atlantic Plate and its gravity response closely matches the observed gravity (RMS error of 3.4012×10-13μGal), fully accounting for co-seismic mass redistribution including sea surface deformation. Our inferred rupture length, rupture velocity, average seismic moment magnitude and momentum, respectively, are 300 km, 4.49 km/s, 1.152×1021-1.8816×1021 N m and 2.319×106 GNs, which fairly agree with the literature. Further, our model inferred momentum at the sea floor corresponds to an area pulse that led to Tsunami generation.

  2. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  3. 3D Modelling of X-pinches.

    NASA Astrophysics Data System (ADS)

    Ciardi, A.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.

    2003-10-01

    X-pinch produced plasmas are an intense source of soft x-rays generated by passing a large, fast rising current through two or more thin metallic wires crossed in the shape of <93>an "X". During the current pulse, the plasma is pinched at the crossing point where a dense Z-pinch plasma column develops. Further compression produces micron sized x-ray hot spots with energy densities in excess of ˜10^24 eV cm-3. We present 3D resistive magnetohydrodynamic simulations of two- and four-wire X-pinches for a variety of wire materials. The simulations naturally follow the evolution of the X-pinch: jet-like structures on axis, formation of a Z-pinch and its subsequent rapid evolution and production of x-ray hot spots. The effects of wire material and wire number are studied with particular consideration to the relationship between the magnetic confinement and radiative cooling mechanisms, which ultimately determine the complex behaviour of the X-pinch.

  4. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  5. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  6. Visualization of 3D Geological Models on Google Earth

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  7. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  8. [Potentials of 3D-modeling in reconstructive orbital surgery].

    PubMed

    Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A

    2012-01-01

    A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.

  9. Bispectrum feature extraction of gearbox faults based on nonnegative Tucker3 decomposition with 3D calculations

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Xu, Feiyun; Zhao, Jun'ai; Jia, Minping; Hu, Jianzhong; Huang, Peng

    2013-11-01

    Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow convergence under the anharmonic vibration circumstance occurred in the field of mechanical fault diagnosis. To decompose a large-scale tensor and extract available bispectrum feature, a method of conjugating Choi-Williams kernel function with Gauss-Newton Cartesian product based on nonnegative Tucker3 decomposition(NTD_EDF) is investigated. The complexity of the proposed method is reduced from o( n N lg n) in 3D spaces to o( R 1 R 2 nlg n) in 1D vectors due to its low rank form of the Tucker-product convolution. Meanwhile, a simultaneously updating algorithm is given to overcome the overfitting, slow convergence and low efficiency existing in the conventional one-by-one updating algorithm. Furthermore, the technique of spectral phase analysis for quadratic coupling estimation is used to explain the feature spectrum extracted from the gearbox fault data by the proposed method in detail. The simulated and experimental results show that the sparser and more inerratic feature distribution of basis images can be obtained with core tensor by the NTD_EDF method compared with the one by the other methods in bispectrum feature extraction, and a legible fault expression can also be performed by power spectral density(PSD) function. Besides, the deviations of successive relative error(DSRE) of NTD_EDF achieves 81.66 dB against 15.17 dB by beta-divergences based on NTD(NTD_Beta) and the time-cost of NTD_EDF is only 129.3 s, which is far less than 1 747.9 s by hierarchical alternative least square based on NTD (NTD_HALS). The NTD_EDF method proposed not only avoids the data overfitting and improves the computation efficiency but also can be used to extract more inerratic and sparser bispectrum features of the gearbox fault.

  10. Stratigraphic architecture and fault offsets of alluvial terraces at Te Marua, Wellington fault, New Zealand, revealed by pseudo-3D GPR investigation

    NASA Astrophysics Data System (ADS)

    Beauprêtre, S.; Manighetti, I.; Garambois, S.; Malavieille, J.; Dominguez, S.

    2013-08-01

    earthquake slips on faults are commonly determined by measuring morphological offsets at current ground surface. Because those offsets might not always be well preserved, we examine whether the first 10 m below ground surface contains relevant information to complement them. We focus on the Te Marua site, New Zealand, where 11 alluvial terraces have been dextrally offset by the Wellington fault. We investigated the site using pseudo-3D Ground Penetrating Radar and also produced a high-resolution digital elevation model (DEM) of the zone to constrain the surface slip record. The GPR data reveal additional information: (1) they image the 3D stratigraphic architecture of the seven youngest terraces and show that they are strath terraces carved into graywacke bedrock. Each strath surface is overlain by 3-5 m of horizontally bedded gravel sheets, including two pronounced and traceable reflectors; (2) thanks to the multilayer architecture, terrace risers and channels are imaged at three depths and their lateral offsets can be measured three to four times, constraining respective offsets and their uncertainties more reliably; and (3) the offsets are better preserved in the subsurface than at the ground surface, likely due to subsequent erosion-deposition on the latter. From surface and subsurface data, we infer that Te Marua has recorded six cumulative offsets of 2.9, 7.6, 18, 23.2, 26, and 31 m (± 1-2 m). Large earthquakes on southern Wellington fault might produce 3-5 m of slip, slightly less than previously proposed. Pseudo-3D GPR thus provides a novel paleoseismological tool to complement and refine surface investigations.

  11. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    USGS Publications Warehouse

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for ruptures with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.

  12. West Flank Coso, CA FORGE 3D temperature model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the

  13. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling.

  14. Geomorphological maps and 3d models in cave research

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María

    2013-04-01

    Cave geomorphological processes and features can be studied by geomorphological maps although topographic maps, aerial photos and GPS are not available. Methods in cave geomorphological mapping are conditioned by cave environment configuration, the need of using speleological techniques, and limitations arising from the projection of the 3D data from the cave to a 2D plan. Some of our previous works in the Cantabrian Mountains and Cantabrian Coast (NW Spain) established the approach of the design of cave geomorphological maps and its legend. Today we are improving the display of cave process combining geomorphological maps and 3d models based on the experience obtained from the research of one cave from the Cantabrian Coast and four caves in the Picos de Europa National Park (funded by GEOCAVE project, Spanish National Parks Agency). The five caves are developed in Carboniferous limestone affected by faults and thrusts. The method of work includes: 1) the elaboration of the cave survey at 1:50 to 1:500 scale; 2) the check of the cave survey of three caves by closed loops; 3) the mapping of cave features based on the performed survey; 4) the 3d modeling of the caves approximating each survey shoot by an octagonal prism; and 5) the implementation and management of the survey and geomorphological map in a Geographic Information System. Based on the survey, the cavities are small caves to deep alpine shafts with 281 to 4,438 m length and up to 738 m deep. The precision of the cave maps only could be estimated in two caves at a cavity scale, displaying both of them a 2.49 % error. The prisms of the 3d model was classified into four groups according to the morphology of the cave passage: 1) canyons, 2) phreatic and epiphreatic tubes, 3) soutirage conduits, 4) mixed forms composed by phreatic and epiphreatic tubes modified by fluvial incision, 5) pitches and 6) irregular passages enlarged strongly by gravity process. According to our previous works geomorphological

  15. San Francisco Bay test case for 3-D model verification

    USGS Publications Warehouse

    Smith, Peter E.

    1994-01-01

    This paper describes a field test case for 3-D hydrodynamic model verification using data from Carquinez Strait in San Francisco Bay, California. It will be disseminated by the ASCE Computational Hydraulics task committee on 3-D Free-Surface Hydrodynamic Model Verifications during late 1994.

  16. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  17. The impact of fault zones on the 3D coupled fluid and heat transport for the area of Brandenburg (NE German Basin)

    NASA Astrophysics Data System (ADS)

    Yvonne, Cherubini; Mauro, Cacace; Scheck-Wenderoth, Magdalena

    2013-04-01

    Faults can provide permeable pathways for fluids at a variety of scales, from great depth in the crust to flow through fractured aquifers, geothermal fields, and hydrocarbon reservoirs (Barton et al. 1995). In terms of geothermal energy exploration, it is essential to understand the role of faults and their impact on the thermal field and fluid system. 3D numerical simulations provide a useful tool for investigating the active physical processes in the subsurface. To assess the influence of major fault zones on the thermal field and fluid system, 3D coupled fluid and heat transport simulations are carried out. The study is based on a recently published structural model of the Brandenburg area, which is located in the south-eastern part of the Northeast German Basin (NEGB) (Noack et al. 2010). Two major fault zones of the Elbe Fault System (Gardelegen and Lausitz Escarpments) vertically offset the pre-Permian basement against the Permian to Cenozoic basin fill at the southern margin by several km (Scheck et al. 2002). Within the numerical models, these two major fault zones are represented as equivalent porous media and vertical discrete elements. The coupled system of equations describing fluid flow and heat transport in saturated porous media are numerically solved by the Finite Element software FEFLOW® (Diersch, 2002). Different possible geological scenarios are modelled and compared to a simulation in which no faults are considered. In one scenario the fault zones are set as impermeable. In this case, the thermal field is similar to the no fault model. Fluid flow is redirected because the fault zones act as hydraulic barriers that prevent a lateral fluid advection into the fault zones. By contrast, modelled permeable fault zones induce a pronounced thermal signature with distinctly cooler temperatures than in the no fault model. Fluid motion within the fault is initially triggered by advection due to hydraulic head gradients, but may be even enhanced by

  18. Interactive mapping on 3-D terrain models

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-10-01

    We present an interactive, real-time mapping system for use with digital elevation models and remotely sensed multispectral imagery that aids geoscientists in the creation and interpretation of geologic/neotectonic maps at length scales of 10 m to 1000 km. Our system provides a terrain visualization of the surface of the Earth or other terrestrial planets by displaying a virtual terrain model generated from a digital elevation model overlain by a color texture generated from orthophotos or satellite imagery. We use a quadtree-based, multiresolution display method to render in real time high-resolution virtual terrain models that span large spatial regions. The system allows users to measure the orientations of geologic surfaces and record their observations by drawing lines directly on the virtual terrain model. In addition, interpretive surfaces can be generated from these drawings and displayed to facilitate understanding of the three-dimensional geometry of geologic surfaces. The main strength of our system is the combination of real-time rendering and interactive mapping performed directly on the virtual terrain model with the ability to navigate the scene while changing viewpoints arbitrarily during mapping. User studies and comparisons with commercially available mapping software show that our system improves mapping accuracy and efficiency and also yields observations that cannot be made with existing systems.

  19. 3-D model-based Bayesian classification

    SciTech Connect

    Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.

    1994-12-31

    The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.

  20. Extending 3D city models with legal information

    NASA Astrophysics Data System (ADS)

    Frank, A. U.; Fuhrmann, T.; Navratil, G.

    2012-10-01

    3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.

  1. Opportunity Landing Spot Panorama (3-D Model)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

    [figure removed for brevity, see original site] Click on image for larger view

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

  2. Venusian Applications of 3D Convection Modeling

    NASA Technical Reports Server (NTRS)

    Bonaccorso, Timary Annie

    2011-01-01

    This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.

  3. RELAP5-3D Compressor Model

    SciTech Connect

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  4. Global Magnetospheric Modeling of 3D Reconnection

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S.

    1999-01-01

    A review of approaches to the global modeling of the terrestrial magnetosphere, how these approaches are utilized to interpret satellite data, and how these approaches have been successful at predicting magnetospheric phenomena will be presented. In addition, the importance of the ionospheric boundary and its effect on the globally topology of the magnetospheric magnetic field will be reviewed. In particular, numerical results that are rapidly changing our view of magnetospheric reconnection within the magnetospheric magnetic field will be discussed.

  5. A 3-D Geodynamic Model of Strain Partitioning in Southern California

    NASA Astrophysics Data System (ADS)

    Ye, J.; Liu, M.; Lin, F.

    2012-12-01

    In southern California, strain resulting from the relative motion between the Pacific and the North American plates is partitioned in a complex system of transcurrent, transcompressional, and transtensional faults. High-precision GPS measurements in this region have enabled kinematic modeling of the present-day strain partitioning between major faults in southern California. However, geodynamic models are needed to understand the cause of strain partitioning and to determine strain in regions where faults are blind or diffuse. We have developed a regional-scale geodynamic model of strain partitioning in southern California. This 3-D viscoelasto-plastic finite element model incorporates first-order fault geometry of the major active faults in the region. The model domain includes an elastoplastic upper crust on top of a viscoelastic lower lithospheric layer. Deformation is driven by the relative motion between the Pacific and the North American plates, imposed as a displacement boundary condition. Plastic deformation both within the fault zones and in the unfaulted surrounding crust is calculated. Our results show that the Big Bend of the San Andreas Fault, and other geometric complexity of faults in southern California, plays a major role in strain partitioning. The observed variations of strain portioning in southern California can be explained by the geometric configuration of fault systems relative to the relative plate motion, without appealing to basal traction of a flowing lower lithosphere. The model predicts concentrated plastic strain under the reverse fault systems in the Transverse Ranges and the young and diffuse faults in the Eastern California Shear Zone across the Mojave Desert, where a number damaging earthquakes occurred in the past decades.

  6. Modeling 3D facial shape from DNA.

    PubMed

    Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D

    2014-03-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.

  7. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  8. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  9. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  10. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  11. Modeling cell migration in 3D: Status and challenges.

    PubMed

    Rangarajan, Rajagopal; Zaman, Muhammad H

    2008-01-01

    Cell migration is a multi-scale process that integrates signaling, mechanics and biochemical reaction kinetics. Various mathematical models accurately predict cell migration on 2D surfaces, but are unable to capture the complexities of 3D migration. Additionally, quantitative 3D cell migration models have been few and far between. In this review we look and characterize various mathematical models available in literature to predict cell migration in 3D matrices and analyze their strengths and possible changes to these models that could improve their predictive capabilities.

  12. 3D PIC Modeling of Microcavity Discharge

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  13. Kongsfjorden-MIKE 3D model

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir

    2014-05-01

    Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  14. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  15. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  16. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  17. 3D-model building of the jaw impression

    NASA Astrophysics Data System (ADS)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  18. Summary on several key techniques in 3D geological modeling.

    PubMed

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  19. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  20. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  1. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  2. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    NASA Astrophysics Data System (ADS)

    Robson, A. G.; King, R. C.; Holford, S. P.

    2016-08-01

    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  3. 3D Modeling from Photos Given Topological Information.

    PubMed

    Kim, Young Min; Cho, Junghyun; Ahn, Sang Chul

    2016-09-01

    Reconstructing 3D models given a single-view 2D information is inherently an ill-posed problem and requires additional information such as shape prior or user input.We introduce a method to generate multiple 3D models of a particular category given corresponding photographs when the topological information is known. While there is a wide range of shapes for an object of a particular category, the basic topology usually remains constant.In consequence, the topological prior needs to be provided only once for each category and can be easily acquired by consulting an existing database of 3D models or by user input. The input of topological description is only connectivity information between parts; this is in contrast to previous approaches that have required users to interactively mark individual parts. Given the silhouette of an object and the topology, our system automatically finds a skeleton and generates a textured 3D model by jointly fitting multiple parts. The proposed method, therefore, opens the possibility of generating a large number of 3D models by consulting a massive number of photographs. We demonstrate examples of the topological prior and reconstructed 3D models using photos.

  4. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  5. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  6. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Pitcher, Eleanor; Imber, Jonathan

    2016-04-01

    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  7. Quasi-3D Algorithm in Multi-scale Modeling Framework

    NASA Astrophysics Data System (ADS)

    Jung, J.; Arakawa, A.

    2008-12-01

    As discussed in the companion paper by Arakawa and Jung, the Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic vector vorticity equation model (VVM) applied to a Q3D network of horizontal grid points. This paper presents an outline of the recently revised Q3D algorithm and a highlight of the results obtained by application of the algorithm to an idealized model setting. The Q3D network of grid points consists of two sets of grid-point arrays perpendicular to each other. For a scalar variable, for example, each set consists of three parallel rows of grid points. Principal and supplementary predictions are made on the central and the two adjacent rows, respectively. The supplementary prediction is to allow the principal prediction be three-dimensional at least to the second-order accuracy. To accommodate a higher-order accuracy and to make the supplementary predictions formally three-dimensional, a few rows of ghost points are added at each side of the array. Values at these ghost points are diagnostically determined by a combination of statistical estimation and extrapolation. The basic structure of the estimation algorithm is determined in view of the global stability of Q3D advection. The algorithm is calibrated using the statistics of past data at and near the intersections of the two sets of grid- point arrays. Since the CRM in the Q3D MMF extends beyond individual GCM boxes, the CRM can be a GCM by itself. However, it is better to couple the CRM with the GCM because (1) the CRM is a Q3D CRM based on a highly anisotropic network of grid points and (2) coupling with a GCM makes it more straightforward to inherit our experience with the conventional GCMs. In the coupled system we have selected, prediction of thermdynamic variables is almost entirely done by the Q3D CRM with no direct forcing by the GCM. The coupling of the dynamics between the two components is through mutual

  8. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  9. Gis-Based Smart Cartography Using 3d Modeling

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  10. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  11. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  12. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  13. 3D Bioprinting of Tissue/Organ Models.

    PubMed

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.

  14. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    SciTech Connect

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  15. 3D web visualization of huge CityGML models

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  16. 3D microstructure modeling of compressed fiber-based materials

    NASA Astrophysics Data System (ADS)

    Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker

    2014-07-01

    A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.

  17. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  18. Perception-based shape retrieval for 3D building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao

    2013-01-01

    With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance

  19. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  20. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  1. Mechanisms of clay smear formation in unconsolidated sediments - insights from 3-D observations of excavated normal faults

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Thronberens, Sebastian; Juarez, Oscar; Lajos Urai, Janos; Ziegler, Martin; Asmus, Sven; Kruger, Ulrich

    2016-05-01

    Clay smears in normal faults can form seals for hydrocarbons and groundwater, and their prediction in the subsurface is an important problem in applied and basic geoscience. However, neither their complex 3-D structure, nor their processes of formation or destruction are well understood, and outcrop studies to date are mainly 2-D. We present a 3-D study of an excavated normal fault with clay smear, together with both source layers, in unlithified sand and clay of the Hambach open-cast lignite mine in Germany. The faults formed at a depth of 150 m, and have shale gouge ratios between 0.1 and 0.3. The fault zones are layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. The thickness of clay smears in two excavated fault zones of 1.8 and 3.8 m2 is approximately log-normal, with values between 5 mm and 5 cm, without holes. The 3-D thickness distribution is heterogeneous. We show that clay smears are strongly affected by R and R' shears, mostly at the footwall side. These shears can locally cross and offset clay smears, forming holes in the clay smear, while thinning of the clay smear by shearing in the fault core is less important. The thinnest parts of the clay smears are often located close to source layer cut-offs. Locally, the clay smear consists of overlapping patches of sheared clay, separated by sheared sand. More commonly, it is one amalgamated zone of sheared sand and clay. A microscopic study of fault-zone samples shows that grain-scale mixing can lead to thickening of the low permeability smears, which may lead to resealing of holes.

  2. 3D Printing of Biomolecular Models for Research and Pedagogy.

    PubMed

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-03-13

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.

  3. Potential of 3D City Models to assess flood vulnerability

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  4. 3D head model classification using optimized EGI

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  5. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  6. 3D model of amphioxus steroid receptor complexed with estradiol

    SciTech Connect

    Baker, Michael E.; Chang, David J.

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  7. Air Pollution Modeling Using A 3-d Hemispheric Nested Model

    NASA Astrophysics Data System (ADS)

    Frohn, L. M.; Christensen, J. H.; Brandt, J.; Hertel, O.

    A 3-D Eulerian transport-chemistry model based on modules and parameterisations from models developed over the last decade at the National Environmental Research Institute (DREAM, DEHM, ACDEP and DEOM) has been developed. The model is hemispheric with currently two nests implemented. The horizontal resolution in the mother domain is 150 km x 150 km. First nest covers the European area wit,h a 50 km x 50 km resolution, second covers the Scandinavian area with a resolution of 16.67 km x 16.67 km. The model employs a chemical scheme (originally 53 species) which has been modified to include a detailed description of the nitrogen chemistry. The concentration of air pollutants, such as sulfur and nitrogen in various forms, has been calculated with the model, applying no nesting as well as one and two nests. The calculated values have been validated by comparison to measurements from more than 200 EMEP monitoring stations. Furthermore deposition of nitrogen to marine waters has been estimated with the model. The goal is to obtain an improved description of spatial and temporal variations in the nutrient deposition to the marine environment. In the presentation the physics and chemistry of the model will be shortly described. Validations of the model calculations by comparison to EMEP measurements will be shown and discussed together with the results of the deposition calculations.

  8. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  9. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  10. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  11. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  12. 3D Model Generation From the Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  13. Space Partitioning for Privacy Enabled 3D City Models

    NASA Astrophysics Data System (ADS)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  14. 3-D world modeling for an autonomous robot

    SciTech Connect

    Goldstein, M.; Pin, F.G.; Weisbin, C.R.

    1987-08-01

    This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into ''objects'' that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition. 20 refs., 14 figs.

  15. An Analytical Solution for Depletion-induced Principal Stress Rotations In 3D and its Implications for Fault Stability

    NASA Astrophysics Data System (ADS)

    Jin, L.; Zoback, M. D.

    2015-12-01

    Depletion-induced faulting in hydrocarbon reservoirs has mostly been attributed to poroelastic effects: in-situ stresses are coupled with a pore pressure change according to a stress path. As a result, for a fault of certain orientation, the shear stress and normal stress resolved on the fault increase in a manner such that the stress state exceeds the shear failure envelop. An underlying assumption associated with this mechanism is that homogeneous pore pressure depletion occurs on both sides of the fault. This study addresses an additional mechanism for depletion-induced faulting in cases where the pore pressure reduction is bounded by a hydraulically impermeable fault. We assume that the overburden and shear stresses are decoupled from pore pressure, while the two horizontal principal stresses are coupled with pore pressure by their respective stress paths (we show that the poroelastic coupling effect is anisotropic). Unbalanced pore pressure changes on the two sides of the fault, in conjunction with the poroelastic response, cause redistribution of the stress state. Given a fault that is arbitrarily oriented with respect to the original stress field, we derive a generalized 3D analytical solution for the new state of stress after depletion. We then quantify the magnitude change and the rotation of the three principal stresses. Finally, we compare the corresponding Coulomb Failure Functions and Mohr circles before and after depletion. For demonstration purposes, we determine the stress path tensor using poroelastic plane strain solutions in conjunction with frictional equilibrium for three different stress regimes. Our hypothetical case studies show that, for bounded reservoirs, depletion-induced principal stress rotation and magnitude changes have a significant impact on fault stability, and are a complex function of fault orientation, the original in-situ stress state and pore pressure, the degree of depletion, and the degree of poroelastic coupling.

  16. 3D geological modeling of the Trujillo block: Insights for crustal escape models of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Dhont, Damien; Monod, Bernard; Hervouët, Yves; Backé, Guillaume; Klarica, Stéphanie; Choy, José E.

    2012-11-01

    The Venezuelan Andes form a N50°E-trending mountain belt extending from the Colombian border in the SW to the Caribbean Sea in the NE. The belt began to rise since the Middle Miocene in response to the E-W collision between the Maracaibo block to the NW and the Guyana shield belonging to South America to the SE. This oblique collision led to strain partitioning with (1) shortening along opposite-vergent thrust fronts, (2) right-lateral slip along the Boconó fault crossing the belt more or less along-strike and (3) crustal escape of the Trujillo block moving towards the NE in between the Boconó fault and the N-S-striking left-lateral Valera fault. The geology of the Venezuelan Andes is well described at the surface, but its structure at depth remains hypothetic. We investigated the deep geometry of the Mérida Andes by a 3D model newly developed from geological and geophysical data. The 3D fault model is restricted to the crust and is mainly based on the surface data of outcropping fault traces. The final model reveals the orogenic float concept where the mountain belt is decoupled from its underlying lithosphere over a horizontal décollement located either at the upper/lower crust boundary. The reconstruction of the Boconó and Valera faults results in a 3D shape of the Trujillo block, which floats over a mid-crustal décollement horizon emerging at the Boconó-Valera triple junction. Motion of the Trujillo block is accompanied by a widespread extension towards the NE accommodated by normal faults with listric geometries such as for the Motatan, Momboy and Tuñame faults. Extension is explained by the gravitational spreading of the upper crust during the escape process.

  17. Coronal roots of solar wind streams: 3-D MHD modeling

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    Weak (discontinuous) solutions of the 3-D MHD equations look like a promising tool to model the transonic solar wind with structural elements: current sheets, coronal plumes etc. Using the observational information about various coronal emissions one can include these structural elements into the 3-D MHD solar wind model by embedding the discontinuities of given type. Such 3-D MHD structured solar wind is calculated self-consistently: variants are examined via numerical experiments. In particular, the behavior of coronal plumes in the transonic solar wind flow, is modeled. The input information for numerical modeling (for example, the magnetic field map at the very base of the solar corona) can be adjusted so that fast stream arises over the center of the coronal hole, over the coronal hole boundaries and, even, over the region with closed magnetic topology. 3-D MHD equations have the analytical solution which can serve as a model of supersonic trans-alfvenic solar wind in the (5-20) solar radii heliocentric distance interval. The transverse, nonradial total (gas + magnetic field) pressure balance in the flow is the corner-stone of this solution. The solution describes the filamentation (ray-like structure of the solar corona) and streaming (formation of high-speed streams with velocities up to 800 km/sec) as a consequence of the magnetic field spatial inhomogeneous structure and trans-alfvenic character of the flow. The magnetic field works in the model as a 'controller' for the solar wind streaming and filamentation.

  18. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  19. 3D shape decomposition and comparison for gallbladder modeling

    NASA Astrophysics Data System (ADS)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  20. Enhanced visualization of angiograms using 3D models

    NASA Astrophysics Data System (ADS)

    Marovic, Branko S.; Duckwiler, Gary R.; Villablanca, Pablo; Valentino, Daniel J.

    1999-05-01

    The 3D visualization of intracranial vasculature can facilitate the planning of endovascular therapy and the evaluation of interventional result. To create 3D visualizations, volumetric datasets from x-ray computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are commonly rendered using maximum intensity projection (MIP), volume rendering, or surface rendering techniques. However, small aneurysms and mild stenoses are very difficult to detect using these methods. Furthermore, the instruments used during endovascular embolization or surgical treatment produce artifacts that typically make post-intervention CTA inapplicable, and the presence of magnetic material prohibits the use of MRA. Therefore, standard digital angiography is typically used. In order to address these problems, we developed a visualization and modeling system that displays 2D and 3D angiographic images using a simple Web-based interface. Polygonal models of vasculature were generated from CT and MR data using 3D segmentation of bones and vessels and polygonal surface extraction and simplification. A web-based 3D environment was developed for interactive examination of reconstructed surface models, creation of oblique cross- sections and maximum intensity projections, and distance measurements and annotations. This environment uses a multi- tier client/server approach employing VRML and Java. The 3D surface model and angiographic images can be aligned and displayed simultaneously to permit better perception of complex vasculature and to determine optical viewing positions and angles before starting an angiographic sessions. Polygonal surface reconstruction allows interactive display of complex spatial structures on inexpensive platforms such as personal computers as well as graphic workstations. The aneurysm assessment procedure demonstrated the utility of web-based technology for clinical visualization. The resulting system facilitated the treatment of serious vascular

  1. A workflow for 3D model building in fold-thrust belts

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    3D geological models can be used in fold-thrust belts for many purposes such as analysing geometric variation in folds, kinematic modelling to restore fold surfaces, generating strain distribution maps and predicting fracture network distribution. We present a workflow for 3D model building using outcrop bedding data, geological maps, Digital Terrain Models (DTM's), air photos and field photographs. We discuss the challenges of software limitations for 3D kinematic restoration and forward modelling in fold-thrust belt settings. We then discuss the sensitivity of model building approaches to the application of 3D geological models in fold-thrust belts for further analysis e.g. changes in along strike fold geometry, restoration using kinematic and geomechanical modelling, strain prediction and Discrete Fracture Network (DFN) modelling. To create 3D models geological maps and bedding data are digitised using Move software; digitised maps and data are then draped onto DTM's. A series of closely spaced cross section lines are selected; the orientation of these is calculated by determining the average orientation of bedding dip direction. Fault and horizon line intersections, along with bedding data from within a narrow margin of the section lines are projected onto each cross section. Field photographs and sketches are integrated into the cross sections to determine thrust angles at the surface. Horizon lines are then constructed using bedding data. Displacement profiles for thrusts are plotted to ensure thrust displacements are valid with respect to neighbouring cross section interpretations; any discrepancies are alleviated by making minor adjustments to horizon and thrust lines, while ensuring that resultant cross section geometries still adhere to bedding data and other field observations. Once the cross sections have been finalised, 3D surfaces are created using the horizon and thrust line interpretations on each cross section. The simple curvature of 3D surfaces

  2. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    PubMed

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  3. 3D geometry of growth strata in a fault-propagation fold: insights into space-time evolution of the Crevillente Fault (Abanilla-Alicante sector), Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, I.; Alfaro, P.; Estévez, A.

    2015-07-01

    This work presents a 3D geometric model of growth strata cropping out in a fault-propagation fold associated with the Crevillente Fault (Abanilla-Alicante sector) from the Bajo Segura Basin (eastern Betic Cordillera, southern Spain). The analysis of this 3D model enables us to unravel the along-strike and along-section variations of the growth strata, providing constraints to assess the fold development, and hence, the fault kinematic evolution in space and time. We postulate that the observed along-strike dip variations are related to lateral variation in fault displacement. Along-section variations of the progressive unconformity opening angles indicate greater fault slip in the upper Tortonian-Messinian time span; from the Messinian on, quantitative analysis of the unconformity indicate a constant or lower tectonic activity of the Crevillente Fault (Abanilla-Alicante sector); the minor abundance of striated pebbles in the Pliocene-Quaternary units could be interpreted as a decrease in the stress magnitude and consequently in the tectonic activity of the fault. At a regional scale, comparison of the growth successions cropping out in the northern and southern limits of the Bajo Segura Basin points to a southward migration of deformation in the basin. This means that the Bajo Segura Fault became active after the Crevillente Fault (Abanilla-Alicante sector), for which activity on the latter was probably decreasing according to our data. Consequently, we propose that the seismic hazard at the northern limit of the Bajo Segura Basin should be lower than at the southern limit.

  4. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  5. Enhanced LOD Concepts for Virtual 3d City Models

    NASA Astrophysics Data System (ADS)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  6. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  7. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  8. Modeling the Properties of 3D Woven Composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian N.

    1995-01-01

    An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.

  9. Performance and Cognitive Assessment in 3-D Modeling

    ERIC Educational Resources Information Center

    Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.

    2011-01-01

    The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…

  10. Coarse-grained modeling of RNA 3D structure.

    PubMed

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.

  11. Assessment of 3D Models Used in Contours Studies

    ERIC Educational Resources Information Center

    Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes

    2015-01-01

    This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…

  12. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.

  13. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  14. 3D Strucutural Geological Model of the Alpi Mt. Area (Southern Italy)

    NASA Astrophysics Data System (ADS)

    La Bruna, Vincenzo; Lamarche, Juliette; Viseur, Sophie; Agosta, Fabrizio; Prosser, Giacomo

    2016-04-01

    The study area is located in the inner portion of the southern Apennines fold-and-thrust belt. The Alpi Mt. is the only portion of the Apulian domain cropping in this sector. In fact, it is considered as a structural analogue of the Val d'Agri and Tempa Rossa reservoirs (Basilicata). The Alpi Mt. tectonic unit is composed of two main cronostratigraphic intervals, represented by a 2000m-thick Mesozoic carbonate succession and a Messinian mixed carbonate-terrigenous succession. The Messinian interval is made up of a Lower Messinian sedimentary cycle, wich form a paraconformity with the underlying Mesozoic carbonates, and an Upper Messinian cycle characterized by a marked unconformity at the bottom. This study aims to better understand the role exerted by the precontractional tectonic structures during the Messinian interval, wich are responsible for the development of the sedimentary angular unconformity. To reach this goal, a 3D structural geological model was build up by using the Gocad(R) software. The construction of the 3D model was gained through the integration of several results related to geological field mapping, well log analysis and seismic reflection data. Focusing on the Upper Messinian sedimentary horizon, in order to achieve the true geometry and kinematics of the high-angle extensional faults that bound the sedimentary depocenters, the model was restored through vertical line methodology. This process allows to obtain more information about location, geometry, and sedimentary depocenter orientations. Furthermore, the 3D structural model brings some important results from the 3D fault analysis that are represented by attitude, geometry and dimensional parameters of the fault network that affect the study area.

  15. Understanding North Texas Seismicity: A Joint Analysis of Seismic Data and 3D Pore Pressure Modeling

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Hornbach, M. J.; Ellsworth, W. L.; Oldham, H. R.; Hayward, C.; Stump, B. W.; Frohlich, C.; Olson, J. E.; Luetgert, J. H.

    2014-12-01

    In November 2013, a series of earthquakes began along a mapped ancient fault system near Azle, Texas. The Azle events are the third felt earthquake sequence in the Fort Worth (Barnett Shale) Basin since 2008, and several production and injection wells in the area are drilled to depths near the recent seismic activity. Understanding if and/or how injection and removal of fluids in the crystalline crust reactivates faults have important implications for seismology, the energy industry, and society. We assessed whether the Azle earthquakes were induced using a joint analysis of the earthquake data, subsurface geology and fault structure, and 3D pore pressure modeling. Using a 12-station temporary seismic deployment, we have recorded and located >300 events large enough to be recorded on multiple stations and 1000s of events during periods of swarm activity. High-resolution locations and focal mechanisms indicate that events occurred on NE-SW trending, steeply dipping normal faults associated with the southern end of the Newark East Fault Zone with hypocenters between 2-8 km depth. We considered multiple causes that might have changed stress along this system. Earthquakes resulting from natural processes, though perhaps unlikely in this historically inactive region, can be neither ruled out nor confirmed due to lack of information on the natural stress state of these faults. Analysis of lake and groundwater variations near Azle showed that no significant stress changes occurred prior to or during the earthquake sequence. In contrast, analysis of pore-pressure models shows that the combination of formation water production and wastewater injection near the fault could have caused pressure increases that induced earthquakes on near-critically stressed faults.

  16. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  17. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  18. Quasi-3D Multi-scale Modeling Framework Development

    NASA Astrophysics Data System (ADS)

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  19. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  20. Grid cells in 3-D: Reconciling data and models.

    PubMed

    Horiuchi, Timothy K; Moss, Cynthia F

    2015-12-01

    It is well documented that place cells and grid cells in echolocating bats show properties similar to those described in rodents, and yet, continuous theta-frequency oscillations, proposed to play a central role in grid/place cell formation, are not present in bat recordings. These comparative neurophysiological data have raised many questions about the role of theta-frequency oscillations in spatial memory and navigation. Additionally, spatial navigation in three-dimensions poses new challenges for the representation of space in neural models. Inspired by the literature on space representation in the echolocating bat, we have developed a nonoscillatory model of 3-D grid cell creation that shares many of the features of existing oscillatory-interference models. We discuss the model in the context of current knowledge of 3-D space representation and highlight directions for future research.

  1. RNA and protein 3D structure modeling: similarities and differences.

    PubMed

    Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M

    2011-09-01

    In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.

  2. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  3. Parallel 3-D viscoelastic finite difference seismic modelling

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas

    2002-10-01

    Computational power has advanced to a state where we can begin to perform wavefield simulations for realistic (complex) 3-D earth models at frequencies of interest to both seismologists and engineers. On serial platforms, however, 3-D calculations are still limited to small grid sizes and short seismic wave traveltimes. To make use of the efficiency of network computers a parallel 3-D viscoelastic finite difference (FD) code is implemented which allows to distribute the work on several PCs or workstations connected via standard ethernet in an in-house network. By using the portable message passing interface standard (MPI) for the communication between processors, running times can be reduced and grid sizes can be increased significantly. Furthermore, the code shows good performance on massive parallel supercomputers which makes the computation of very large grids feasible. This implementation greatly expands the applicability of the 3-D elastic/viscoelastic finite-difference modelling technique by providing an efficient, portable and practical C-program.

  4. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  5. Modeling of 3D Woven Composites Containing Multiple Delaminations

    DTIC Science & Technology

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  6. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin

    NASA Astrophysics Data System (ADS)

    Autin, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.; Marchal, D.

    2016-04-01

    Following previous work on the Colorado Basin using a 3D crustal structural model, we now investigate the presence of lower crustal bodies at the base of the crust using 3D lithospheric gravity modelling and calculations of the conductive thermal field. Our first study highlighted two fault directions and depocentres associated with thinned crust (NW-SE in the West and NE-SW at the distal margin). Fault relative chronology argues for two periods of extension: (1) NW-SE faulting and thinning in the western Colorado Basin and (2) NE-SW faulting and thinning related to the continental breakup and formation of the NE-SW-striking volcanic margins of the Atlantic Ocean. In this study, the geometry of modelled high-density Lower Crustal Bodies (LCBs) enables the reproduction of the gravimetric field as well as of the temperature measured in wells down to 4500 m. The modelled LCBs correlate with geological observations: (1) NW-SE LCBs below the deepest depocentres in the West, (2) NE-SW LCBs below the distal margin faults and the seaward dipping reflectors. Thus the proposed poly-phased evolution of the margin could as well correspond to two emplacement phases of the LCBs. The calculated conductive thermal field fits the measured temperatures best if the thermal properties (thermal conductivity and radiogenic heat production) assigned to the LCBs correspond to either high-grade metamorphic rocks or to mafic magmatic intrusions. To explain the possible lithology of the LCBs, we propose that the two successive phases of extension are accompanied by magma supply, emplaced (1) in the thinnest crust below the older NW-SE depocentres, then (2) along the NE-SW continentward boundary of the distal margin and below the volcanic seaward dipping reflectors. The South African conjugate margin records only the second NE-SW event and we discuss hypotheses which could explain these differences between the conjugate margins.

  7. Geometric and Colour Data Fusion for Outdoor 3D Models

    PubMed Central

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327

  8. A method for building 3D models of barchan dunes

    NASA Astrophysics Data System (ADS)

    Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu

    2016-01-01

    The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.

  9. Geometric and colour data fusion for outdoor 3D models.

    PubMed

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  10. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  11. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  12. Parallel tempering and 3D spin glass models

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.

  13. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  14. Generation and use of human 3D-CAD models

    NASA Astrophysics Data System (ADS)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  15. Method for modeling post-mortem biometric 3D fingerprints

    NASA Astrophysics Data System (ADS)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  16. 3D cartographic modeling of the Alpine arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  17. Geometric and Textural Blending for 3D Model Stylization.

    PubMed

    Huang, YiJheng; Lin, Wen-Chieh; Yeh, I-Cheng; Lee, Tong-Yee

    2017-01-25

    Stylizing a 3D model with characteristic shapes or appearances is common in product design, particularly in the design of 3D model merchandise, such as souvenirs, toys, furniture, and stylized items. A model stylization approach is proposed in this study. The approach combines base and style models while preserving user-specified shape features of the base model and the attractive features of the style model with limited assistance from a user. The two models are first combined at the topological level. A tree-growing technique is utilized to search for all possible combinations of the two models. Second, the models are combined at textural and geometric levels by employing a morphing technique. Results show that the proposed approach generates various appealing models and allows users to control the diversity of the output models and adjust the blending degree between the base and style models. The results of this work are also experimentally compared with those of a recent work through a user study. The comparison indicates that our results are more appealing, feature-preserving, and reasonable than those of the compared previous study. The proposed system allows product designers to easily explore design possibilities and assists novice users in creating their own stylized models.

  18. 3D geometrical modelling of post-foliation deformations in metamorphic terrains (Syros, Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Le Carlier de Veslud, Christian; Gueydan, Frédéric; Brun, Jean-Pierre; Caumon, Guillaume

    2015-09-01

    Superposed to ductile syn-metamorphic deformations, post-foliation deformations affect metamorphic units during their exhumation. Understanding the role of such deformations in the structuration of metamorphic units is key for understanding the tectonic evolution of convergence zones. We characterize post-foliations deformations using 3D modelling which is a first-order tool to describe complex geological structures, but a challenging task where based only on surface data. We propose a modelling procedure that combines fast draft models (interpolation of orientation data), with more complex ones where the structural context is better understood (implicit modelling), allowing us to build a 3D geometrical model of Syros Island blueschists (Cyclades), based on field data. With our approach, the 3D model is able to capture the complex present-day geometry of the island, mainly controlled by the superposition of three types of post-metamorphic deformations affecting the original metamorphic pile: i) a top-to-South ramp-flat extensional system that dominates the overall island structure, ii) large-scale folding of the metamorphic units associated with ramp-flat extensional system, and iii) steeply-dipping normal faults trending dominantly NNW-SSE and EW. The 3D surfaces produced by this method match outcrop data, are geologically consistent, and provide reasonable estimates of geological structures in poorly constrained areas.

  19. CityGML - Interoperable semantic 3D city models

    NASA Astrophysics Data System (ADS)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  20. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  1. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  2. Joint earthquake source inversions using seismo-geodesy and 3-D earth models

    NASA Astrophysics Data System (ADS)

    Weston, J.; Ferreira, A. M. G.; Funning, G. J.

    2014-08-01

    A joint earthquake source inversion technique is presented that uses InSAR and long-period teleseismic data, and, for the first time, takes 3-D Earth structure into account when modelling seismic surface and body waves. Ten average source parameters (Moment, latitude, longitude, depth, strike, dip, rake, length, width and slip) are estimated; hence, the technique is potentially useful for rapid source inversions of moderate magnitude earthquakes using multiple data sets. Unwrapped interferograms and long-period seismic data are jointly inverted for the location, fault geometry and seismic moment, using a hybrid downhill Powell-Monte Carlo algorithm. While the InSAR data are modelled assuming a rectangular dislocation in a homogeneous half-space, seismic data are modelled using the spectral element method for a 3-D earth model. The effect of noise and lateral heterogeneity on the inversions is investigated by carrying out realistic synthetic tests for various earthquakes with different faulting mechanisms and magnitude (Mw 6.0-6.6). Synthetic tests highlight the improvement in the constraint of fault geometry (strike, dip and rake) and moment when InSAR and seismic data are combined. Tests comparing the effect of using a 1-D or 3-D earth model show that long-period surface waves are more sensitive than long-period body waves to the change in earth model. Incorrect source parameters, particularly incorrect fault dip angles, can compensate for systematic errors in the assumed Earth structure, leading to an acceptable data fit despite large discrepancies in source parameters. Three real earthquakes are also investigated: Eureka Valley, California (1993 May 17, Mw 6.0), Aiquile, Bolivia (1998 February 22, Mw 6.6) and Zarand, Iran (2005 May 22, Mw 6.5). These events are located in different tectonic environments and show large discrepancies between InSAR and seismically determined source models. Despite the 40-50 km discrepancies in location between previous geodetic and

  3. Modeling 3D faces from samplings via compressive sensing

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  4. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2013-12-01

    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  5. 3D modelling of the Black Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Capet, A.; Gregoire, M.; Beckers, J.-M.; Joassin, P.; Naithani, J.; Soetart, K.

    2009-04-01

    A coupled physical-biogeochemical model has been developed to simulate the ecosystem of the Black Sea at the end of the 80's when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The biogeochemical model describes the cycle of carbon, nitrogen, silicate, oxygen and phosphorus through the foodweb from bacteria to gelatinous carnivores and explicitly represents processes in the anoxic layer down to the bottom. For calibration and analyses purposes, the coupled model has first been run in 1D at several places in the Black Sea. The biogeochemical model involves some hundred parameters which have been first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of 15 identifiable parameters. An automatic calibration subroutine has been used to fine tune these parameters. In 1D, the model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modelling of top predators. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The calibrated biogeochemical model is implemented in a 3D hydrodynamical model of the Black Sea. Results of these 3D simulations will be presented and compared with maps of in-situ data reconstructed from available data base using the software DIVA (Data Interpolation and Variational analysis).

  6. West Flank Coso, CA FORGE 3D geologic model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  7. 3D-printer visualization of neuron models.

    PubMed

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  8. 3D-printer visualization of neuron models

    PubMed Central

    McDougal, Robert A.; Shepherd, Gordon M.

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases. PMID:26175684

  9. Right approach to 3D modeling using CAD tools

    NASA Astrophysics Data System (ADS)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  10. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  11. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  12. Modeling and Processing of Continuous 3D Elastic Wavefield Data

    NASA Astrophysics Data System (ADS)

    Milkereit, B.; Bohlen, T.

    2001-12-01

    Continuous seismic wavefields are excited by earthquake clustering, induced seismicity in reservoirs, and mining. In hydrocarbon reservoirs, for example, pore pressure changes and fluid flow (mass transfer) will cause incremental deviatoric stresses sufficient to trigger and sustain seismic activity. Here we address three aspects of seismic wavefields in three-dimensional heterogeneous media triggered by distributed sources in space and time: forward modeling, multichannel data processing, and source location imaging. A power law distribution of seismic sources (such as the Gutenberg-Richter law) is used for the modeling of viscoelastic/elastic wave propagation through a realistic earth model. 3D modeling provides new insight in the interaction of multi-source wavefields and the role of scale-dependend elastic model parameters on transmitted and reflected/back-scattered wavefields. There exists a strong correlation between the spatial properties of the compressional, shear wave and density perturbations and the lateral correlation length of the resulting reflected or transmitted seismic wavefields. Modeling is based on the implementation of 3D elastic/viscoelastic FD codes on massive parallel and/or distributed computing resources using MPI (message passing interface). For parallelization, large grid 3D earth models are decomposed into subvolume processing elements whereby each processing element is updating the wavefield within its portion of the grid. Processing of continuous seismic wavefields excited by multiple distributed sources is based on a combination of crosscorrelated or slowness-transformed array data and Kirchhoff or reverse time migration for source location or source volume imaging. The appearance of slowness in both migration and array data processing suggests the possibility of combining them into a single process. In order to place further constraints on the migration, the directivity properties of 3-component receiver arrays can be included in

  13. 3D flare particle model for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  14. Modeling Extracellular Matrix Reorganization in 3D Environments

    PubMed Central

    Harjanto, Dewi; Zaman, Muhammad H.

    2013-01-01

    Extracellular matrix (ECM) remodeling is a key physiological process that occurs in a number of contexts, including cell migration, and is especially important for cellular form and function in three-dimensional (3D) matrices. However, there have been few attempts to computationally model how cells modify their environment in a manner that accounts for both cellular properties and the architecture of the surrounding ECM. To this end, we have developed and validated a novel model to simulate matrix remodeling that explicitly defines cells in a 3D collagenous matrix. In our simulation, cells can degrade, deposit, or pull on local fibers, depending on the fiber density around each cell. The cells can also move within the 3D matrix. Different cell phenotypes can be modeled by varying key cellular parameters. Using the model we have studied how two model cancer cell lines, of differing invasiveness, modify matrices with varying fiber density in their vicinity by tracking the metric of fraction of matrix occupied by fibers. Our results quantitatively demonstrate that in low density environments, cells deposit more collagen to uniformly increase fibril fraction. On the other hand, in higher density environments, the less invasive model cell line reduced the fibril fraction as compared to the highly invasive phenotype. These results show good qualitative and quantitative agreement with existing experimental literature. Our simulation is therefore able to function as a novel platform to provide new insights into the clinically relevant and physiologically critical process of matrix remodeling by helping identify critical parameters that dictate cellular behavior in complex native-like environments. PMID:23341900

  15. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  16. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  17. 3-D modelling of seamount topography from satellite altimetry

    SciTech Connect

    Baudry, N. ); Calmant, S. )

    1991-06-01

    The authors develop a complete set of algorithms to perform 3D modelling of seamount bathymetry from satellite altimetry. The first stage of the data processing consists in gridding the geoid: to account for the long wavelength errors geoid heights are first bias-adjusted at cross-overs. Then a collocation on a regular grid is performed, accounting for the altimeter errors. In a second stage, geoid heights are converted into bathymetry. No simplifying assumption on the shape and location of the bathymetry highs is necessary. Bathymetric uncertainties due to the data sampling and the parameters of the mechanical and crustal models are evaluated.

  18. 3D Numerical Simulations of the Breakout Model

    NASA Astrophysics Data System (ADS)

    Choe, G. S.; Cheng, C. Z.; Lee, J.; Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2005-05-01

    We present the continuing progress of the numerical simulations of the breakout model for coronal mass ejection initiation. To validate the 3D spherical ARMS code we have run the 2.5D breakout problem and compare the eruption to the published 2D results. The ARMS 2.5D CME also forms a large magnetic island ahead of the erupting plasmoid due to the code's excellent maintenance of equatorial symmetry. Progress on the fully 3D breakout problem is also discussed. To build up enough magnetic free energy for an eruption the active region field must be strong with a steep gradient near the polarity inversion line and the shear must be highly concentrated there. This requires adaptive griding techniques. In the current simulation, the active region to background field ratio is 20-to-1 and the neutral line is long compared to the active region width. We present the evolution of this topology under Br-conserving shearing flow and discuss implications for a 3D eruption. This work is supported by NASA and ONR. BJL is supported by NASA GSRP grant NGT5-50453.

  19. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  20. Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy

    NASA Astrophysics Data System (ADS)

    Gori, Stefano; Falcucci, Emanuela; Ladina, Chiara; Marzorati, Simone; Galadini, Fabrizio

    2017-03-01

    The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley-Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene-Early Pleistocene in age, was controlled by the ENE-WSW-striking and SSE-dipping Avezzano-Bussi fault, that determined the formation of an early depocentre towards the N-NW. Subsequently, the main fault became the NW-SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano-Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose

  1. Modeling the GFR with RELAP5-3D

    SciTech Connect

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  2. A 3D gravity and thermal model for the Barents Sea and Kara Sea

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Sippel, Judith; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena

    2016-08-01

    In the frame of this study, we investigate the lithosphere-scale 3D physical state of the Barents Sea and Kara Sea region. Therefore, we test an existing 3D structural model against the gravitational field by considering the heterogeneous upper mantle to further assess the structural and density configuration of the continental crystalline crust. The resulting 3D density configuration of the crust is discussed in terms of its relationships with the spatial distribution of tectonically different domains. In addition, it provides the base for a lithology-controlled parameterisation of the crust with thermal properties to calculate the 3D conductive thermal field. The deeper thermal field is controlled by the depth configuration of the lithosphere-asthenosphere boundary. Accordingly, deeper isotherms such as the 450 °C isotherm deepen from below the rifted SW Barents Sea towards the intracratonic basins of the eastern Barents Sea and Kara Sea, indicating an increase of the lithospheric strength in the same direction. Temperature measurements of the upper 800 m below the SW Barents Sea reveal an increased thermal gradient which cannot be reproduced by a steady-state 3D conductive model alone. Beside fault-induced fluid flow to be active there, an alternative scenario could involve a phase of subsidence long enough to increase the temperature of the upper 800 m, followed by an uplift and erosion phase that prevented the positive thermal anomaly to propagate towards larger depths. The final lithosphere-scale 3D model is the first to integrate the geological, density and thermal configuration of the entire Barents Sea and Kara Sea region and hence provides an ideal base for future thermomechanical studies addressing, for instance, questions on the present-day, past and future relationships between lithospheric strength and deformation.

  3. Testing Mercury Porosimetry with 3D Printed Porosity Models

    NASA Astrophysics Data System (ADS)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  4. DYNA3D Material Model 71 - Solid Element Test Problem

    SciTech Connect

    Zywicz, E

    2008-01-24

    A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

  5. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  6. Complex tephra dispersion from 3D plume modeling using ATHAM

    NASA Astrophysics Data System (ADS)

    Nicholson, B. C.; Kobs-Nawotniak, S. E.

    2014-12-01

    Most volcanic hazard assessments are based on a classic inversion tool for tephra deposits that relies on a simple integral model to explain the eruption plume. While this tool is adequate for first-order predictions of tephra deposition under no-wind conditions, the simplifying assumptions make it unreliable for ambient winds >10 m/s. Advances in computational power now make it possible to improve the inversion tool using 3D fluid dynamics. We do this with the physics-based Active Tracer High-resolution Atmospheric Model (ATHAM) to model tephra dispersion and deposition from volcanic eruption columns. The model, when run in 3D, is able to capture the complex morphology of bent plumes. Tephra distributions produced by these morphologies differ significantly from distributions created by idealized advection solutions, reflecting the effects of counter-rotating vortex pairs, puffing modes, or plume bifurcation. The modeled tephra deposition better captures the complex effects of wind-plume interaction, allowing us to update classic inversion tools with more realistic weak plume conditions consistent with typical historical explosive eruptions.

  7. 3-D physical modeling of a complex salt canopy

    SciTech Connect

    Wiley, R.W.; Sekharan, K.K.

    1996-12-31

    Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

  8. Exploiting Textured 3D Models for Developing Serious Games

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  9. 3D model tools for architecture and archaeology reconstruction

    NASA Astrophysics Data System (ADS)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  10. Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas K.; Sharp, Warren D.; Medialdea, Alicia; Rhodes, Edward J.

    2016-06-01

    Three-dimensional paleoseismology in strike-slip faults with slip rates less than 1 mm per year involves a great methodological challenge. We adapted 3D trenching to track buried channels offset by the Alhama de Murcia seismogenic left-lateral strike-slip fault (SE Iberia). A fault net slip of 0.9 ± 0.1 mm/yr was determined using statistical analysis of piercing lines for one buried channel, whose age is constrained between 15.2 ± 1.1 ka and 21.9-22.3 cal BP. This value is larger and more accurate than the previously published slip rates for this fault. The minimum number of five paleo-earthquakes identified since the deposition of dated layers suggests a maximum average recurrence interval of approximately 5 ka. The combination of both seismic parameters yields a maximum slip per event between 5.3 and 6.3 m. We show that accurately planned trenching strategies and data processing may be key to obtaining robust paleoseismic parameters in low seismicity areas.

  11. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    NASA Astrophysics Data System (ADS)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  12. Modeling moving systems with RELAP5-3D

    SciTech Connect

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.

  13. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  14. Fisheye Lenses for 3d Modeling: Evaluations and Considerations

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-02-01

    Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages) of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  15. 3-d Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    to 05-31-92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS 3-d Periodic Packaging: N00014-90-J-1159 Sodalite , A Model System 6. AUTHOR(S) G.D. Stucky, V.I...assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom cage can be synthesized with...structure of both the frameworks and the clusters within the cages of sodalite structural analogues can be precisely determined. In addition to new

  16. 3-D Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    hfww 05-15-92 Technical 06-1-91 o 05-31-92 ,mA AMU SUBSTIl SI. FUNDING NUMBUS 3-d Periodic Packaging: Sodalite , A Model System N00014-81-K-0598 AUTNO(S...considerable latitude in the assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom...framework electric field. The structure of both the fiameworks and the clusters within the cages of sodalite structural analogues can be precisely

  17. From Tls Point Clouds to 3d Models of Trees: a Comparison of Existing Algorithms for 3d Tree Reconstruction

    NASA Astrophysics Data System (ADS)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2017-02-01

    3D models of tree geometry are important for numerous studies, such as for urban planning or agricultural studies. In climatology, tree models can be necessary for simulating the cooling effect of trees by estimating their evapotranspiration. The literature shows that the more accurate the 3D structure of a tree is, the more accurate microclimate models are. This is the reason why, since 2013, we have been developing an algorithm for the reconstruction of trees from terrestrial laser scanner (TLS) data, which we call TreeArchitecture. Meanwhile, new promising algorithms dedicated to tree reconstruction have emerged in the literature. In this paper, we assess the capacity of our algorithm and of two others -PlantScan3D and SimpleTree- to reconstruct the 3D structure of trees. The aim of this reconstruction is to be able to characterize the geometric complexity of trees, with different heights, sizes and shapes of branches. Based on a specific surveying workflow with a TLS, we have acquired dense point clouds of six different urban trees, with specific architectures, before reconstructing them with each algorithm. Finally, qualitative and quantitative assessments of the models are performed using reference tree reconstructions and field measurements. Based on this assessment, the advantages and the limits of every reconstruction algorithm are highlighted. Anyway, very satisfying results can be reached for 3D reconstructions of tree topology as well as of tree volume.

  18. 3D modelling of salt tectonics with a brittle overburden in an extensional regime

    NASA Astrophysics Data System (ADS)

    Eichheimer, Philipp; Reuber, Georg; Kaus, Boris

    2016-04-01

    Most previous numerical models of salt tectonics only considered 2D cases or did not taken a brittle sedimentary overburden into account, both of which are likely to be important in nature. To get insights into the dynamics of diapiric rise of salt we here present time-dependent high resolution 3D models of salt tectonics in the presence of a brittle overburden and sedimentation. We focus on the internal deformation of an embedded anhydrite layer within a nonlinear viscous salt layer. As salt in nature tends to rise upwards to the surface along fault zones, the salt layer is overlain by a brittle overburden to simulate faulting. The resulting complex folding of the anhydrite layer obtained in our models is consistent with natural observations, e.g. Gorleben [1]. Regarding field examples we vary the shape of the anhydrite layer to understand different modes of deformation [2]. We test the effect of overburden rheology, extension and sedimentation rates on the 3D salt dome patterns and on its internal deformation. [1] O. Bornemann. Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. Bundesamt für Strahlenschutz (1991). [2] Z. Chemia, H. Koyi, and H. Schmeling. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International 172.2 (2008): 798-816.

  19. Computational model of mesenchymal migration in 3D under chemotaxis

    PubMed Central

    Ribeiro, F. O.; Gómez-Benito, M. J.; Folgado, J.; Fernandes, P. R.; García-Aznar, J. M.

    2017-01-01

    Abstract Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell–matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices – collagen and fibrin – and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL−1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency. PMID:27336322

  20. Computational model of mesenchymal migration in 3D under chemotaxis.

    PubMed

    Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M

    2017-01-01

    Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.

  1. Simulation of 3D Global Wave Propagation Through Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.

    2005-12-01

    This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.

  2. Image sequence coding using 3D scene models

    NASA Astrophysics Data System (ADS)

    Girod, Bernd

    1994-09-01

    The implicit and explicit use of 3D models for image sequence coding is discussed. For implicit use, a 3D model can be incorporated into motion compensating prediction. A scheme that estimates the displacement vector field with a rigid body motion constraint by recovering epipolar lines from an unconstrained displacement estimate and then repeating block matching along the epipolar line is proposed. Experimental results show that an improved displacement vector field can be obtained with a rigid body motion constraint. As an example for explicit use, various results with a facial animation model for videotelephony are discussed. A 13 X 16 B-spline mask can be adapted automatically to individual faces and is used to generate facial expressions based on FACS. A depth-from-defocus range camera suitable for real-time facial motion tracking is described. Finally, the real-time facial animation system `Traugott' is presented that has been used to generate several hours of broadcast video. Experiments suggest that a videophone system based on facial animation might require a transmission bitrate of 1 kbit/s or below.

  3. Pose invariant face recognition: 3D model from single photo

    NASA Astrophysics Data System (ADS)

    Napoléon, Thibault; Alfalou, Ayman

    2017-02-01

    Face recognition is widely studied in the literature for its possibilities in surveillance and security. In this paper, we report a novel algorithm for the identification task. This technique is based on an optimized 3D modeling allowing to reconstruct faces in different poses from a limited number of references (i.e. one image by class/person). Particularly, we propose to use an active shape model to detect a set of keypoints on the face necessary to deform our synthetic model with our optimized finite element method. Indeed, in order to improve our deformation, we propose a regularization by distances on graph. To perform the identification we use the VanderLugt correlator well know to effectively address this task. On the other hand we add a difference of Gaussian filtering step to highlight the edges and a description step based on the local binary patterns. The experiments are performed on the PHPID database enhanced with our 3D reconstructed faces of each person with an azimuth and an elevation ranging from -30° to +30°. The obtained results prove the robustness of our new method with 88.76% of good identification when the classic 2D approach (based on the VLC) obtains just 44.97%.

  4. Heralding a new paradigm in 3D tumor modeling.

    PubMed

    Fong, Eliza L S; Harrington, Daniel A; Farach-Carson, Mary C; Yu, Hanry

    2016-11-01

    Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This

  5. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  6. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  7. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  8. 3-D physical models of mitosis (with asters) and cytokinesis.

    PubMed

    Cheng, Kang; Zou, Changhua

    2004-01-01

    First, we define new concepts of Life Objects, Informative Objects and Virtual Objects, Discrete Chromosome Rings (DCR); we introduce a mathematical concept of meridian plane (MP) in a three dimensional (3-D) cylindrical coordinate system (CCS). Based on these concepts, classic mechanics, classic electromagnetism and published biological data, we develop our 3-D physical models of natural and normal mitosis (with asters) and cytokinesis, for animal cells in M phase. We propose following hypotheses: Chromosomes Exclusion: No normally and naturally replicated chromosomes can occupy the same nucleus without growing sizes of the nucleus and the cell. Spontaneous and strong electromagnetic fields (EMF) forces among chromosomes, centrosomes and microtubules split the nucleus and separate the two sets of sister chromatids when they are strong enough. Nuclei Exclusion: No normally and naturally doubled nuclei can occupy the same cell if the doubled size of nuclei is not far smaller than size of the cell. The spontaneous and strong EMF forces in protoplasm (or cortex), separate two sets of chromosomes, spindles and poles, drive contractile proteins to the equator in cell cortex, and continue to guide and to transport free charged objects until complete the cytokinesis. Centrioles Exclusion: No naturally and normally doubled centrioles can occupy the same centrosome. The spontaneous and strong repulsive EMF forces are the primary cause for the exclusions. The principles of our models are also applied to mitosis and cytokinesis for lower plant cells, to that of multiple nuclei or mutant chromosomes, and to meiosis, for both animal cells and lower plant cells.

  9. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  10. In Silico 3D Modeling of Binding Activities.

    PubMed

    Moro, Stefano; Sturlese, Mattia; Ciancetta, Antonella; Floris, Matteo

    2016-01-01

    In silico three-dimensional (3D) molecular modeling tools based upon the receptor/enzyme-ligand docking simulation in protein crystal structures and/or homology modeling of receptors have been reliably used in pharmacological research and development for decades. Molecular docking methodologies are helpful for revealing facets of activation and inactivation, thus improving mechanistic understanding and predicting molecular ligand binding activity, and they can have a high level of accuracy, and have also been explored and applied in chemical risk assessment. This computational approach is, however, only applicable for chemical hazard identification situations where the specific target receptor for a given chemical is known and the crystal structure/homology model of the receptor is available.

  11. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  12. Stochastic Modeling of Calcium in 3D Geometry

    PubMed Central

    Mazel, Tomáš; Raymond, Rebecca; Raymond-Stintz, Mary; Jett, Stephen; Wilson, Bridget S.

    2009-01-01

    Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics. PMID:19254531

  13. Development of an aquifer management model AQMAN3D

    USGS Publications Warehouse

    Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.

    1990-01-01

    A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.

  14. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  15. Fault linkages and activities in a transition zone of compression to transpression in Hsinchu area, northwestern Taiwan based on 3-D structural geometry

    NASA Astrophysics Data System (ADS)

    Huang, H.; Hu, J.; Huang, S.; Huang, C.

    2010-12-01

    The Taiwan orogenic belt is resulted from the convergence between Philippine Sea plate and Eurasian plate. Serious earthquakes occurred in west and northwest flanks of main mountain belt of the island in 1935 and 1999, caused more than 5000 deaths in total. In addition, Hsinchu Science and Industrial Park (HSIP) located in northwest Taiwan is one of the world's most important areas for semiconductor manufacturing. There are more than 400 technology companies in this park, and accounted for 10% of Taiwan's GDP. Consequently, active Hsincheng and Hsinchu faults in study area become the major threat of the industrial park, thus the understanding of complex subsurface seismogenic structures are crucial issue of earthquake hazard assessment and mitigation in Hsinchu area. Several geological cross sections have been constructed and discussed to suggest possible deep structures of these two major faults in previous study. However, how subsurface fault system and folding intersect still remains unclear and the evolution of fault and fold geometry in Hsinchu area is not fully understood. The main purpose of this study is to clarify the spatial linkage between the major thrust faults, folds, and adjacent transverse structures. In this study, we first construct the NW-SE trending cross-section which is sub-parallel to the regional shortening direction, and then balance this cross section to derive the structure evolution in Hsinchu area. We also incorporate several cross-sections and relocated seismicity to get detail 3D fault geometry for the numerical modeling in order to assess the interseismic strain accumulation and seismic potential based on geodetic measurements.

  16. Modeling tree crown dynamics with 3D partial differential equations

    PubMed Central

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095

  17. Measurement of Laser Weld Temperatures for 3D Model Input

    SciTech Connect

    Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  18. 3D Tissue-Engineered Model of Ewing Sarcoma

    PubMed Central

    Lamhamedi-Cherradi, Salah-Eddine; Santoro, Marco; Ramammoorthy, Vandhana; Menegaz, Brian A.; Bartholomeusz, Geoffrey; Iles, Lakesla R.; Amin, Hesham M.; Livingston, Andrew J.; Mikos, Antonios G.; Ludwig, Joseph A.

    2015-01-01

    Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine. PMID:25109853

  19. 3D Model of the Eta Carinae Little Homunculus Nebula

    NASA Astrophysics Data System (ADS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2015-01-01

    We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.

  20. Plasticized protein for 3D printing by fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  1. Gene3D: modelling protein structure, function and evolution.

    PubMed

    Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A

    2006-01-01

    The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.

  2. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  3. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  4. Modeling approaches for ligand-based 3D similarity.

    PubMed

    Tresadern, Gary; Bemporad, Daniele

    2010-10-01

    3D ligand-based similarity approaches are widely used in the early phases of drug discovery for tasks such as hit finding by virtual screening or compound design with quantitative structure-activity relationships. Here in we review widely used software for performing such tasks. Some techniques are based on relatively mature technology, shape-based similarity for instance. Typically, these methods remained in the realm of the expert user, the experienced modeler. However, advances in implementation and speed have improved usability and allow these methods to be applied to databases comprising millions of compounds. There are now many reports of such methods impacting drug-discovery projects. As such, the medicinal chemistry community has become the intended market for some of these new tools, yet they may consider the wide array and choice of approaches somewhat disconcerting. Each method has subtle differences and is better suited to certain tasks than others. In this article we review some of the widely used computational methods via application, provide straightforward background on the underlying theory and provide examples for the interested reader to pursue in more detail. In the new era of preclinical drug discovery there will be ever more pressure to move faster and more efficiently, and computational approaches based on 3D ligand similarity will play an increasing role in in this process.

  5. Polygonal Shapes Detection in 3d Models of Complex Architectures

    NASA Astrophysics Data System (ADS)

    Benciolini, G. B.; Vitti, A.

    2015-02-01

    A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering

  6. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  7. 3D magnetotelluric modelling of the Alnö alkaline and carbonatite ring complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Andersson, Magnus; Kalscheuer, Thomas; García Juanatey, María A.; Malehmir, Alireza; Shan, Chunling; Pedersen, Laust B.; Almqvist, Bjarne S. G.

    2016-06-01

    Thirty-four broadband magnetotelluric stations were deployed across the Alnö alkaline and carbonatite ring intrusion in central Sweden. The measurements were designed such that both 2D models along existing seismic profiles and a 3D model can be constructed. Alnö Island and surrounding areas are densely populated and industrialized and in order to reduce the effect of noise, the remote reference technique was utilized in time series processing. Strike and dimensionality analyses together with the induction arrows show that there is no homogeneous regional strike direction in this area. Therefore, only the determinant of the impedance tensor was used for 2D inversion whereas all elements of the impedance tensor were used for 3D inversion. Representative rock samples were collected from existing outcrops and their resistivities were measured in the laboratory to facilitate interpretation of the inversion models. The results from these measurements show that coarse-grained (sövite, white color) and fine-grained (dark color) carbonatites are the most conductive and resistive rock types, respectively. In accordance with the interpretation of the reflection seismic images, the 2D and 3D resistivity models depict the caldera-related ring-type fault system and updoming faulted and fractured systems as major 10-500 Ωm conductors, extending down to about 3 km depth. A central ~ 4000 Ωm resistive unit at about 3 km depth appears to correspond to a solidified fossil magma chamber as speculated from the reflection seismic data and earlier field geological studies.

  8. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  9. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  10. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  11. A 3D Bubble Merger Model for RTI Mixing

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian

    2015-11-01

    In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  12. Quality assessment of watermarked 3D polygonal models

    NASA Astrophysics Data System (ADS)

    Funk, Wolfgang; Prasiswa, Jennifer

    2006-02-01

    In this paper, we present the design and results of subjective tests for evaluating the perceptibility of digital watermarks in 3D polygonal models. Based on the results we investigate different types of metrics with respect to their usefulness as predictors for the perceived visual quality of models that have been modified using a specific watermarking algorithm. We describe two experiments with models that have been watermarked using controlled free form deformations. The first experiment was conducted in supervised mode with still images of rendered models as stimuli and used the Two Alternative Forced Choice (2AFC) method. The second experiment was based on animated sequences and run in 2AFC mode with additional ratings of the perceived differences, but without assistance by the experimenter. We present a transparency analysis of the results and investigate the ability of image-based and geometry-based metrics to predict the perceived quality of the watermarked models. Our results show that the effectiveness of prediction depends on the type of model and in particular on the feature positions selected by the watermarking algorithm. The results of previous experiments with simplified polygonal models are confirmed, in that geometric measures are good predictors of quality ratings. We found that the symmetric Haussdorf distance is a promising candidate to evaluate the visual impact of the watermarking algorithm used in our experiments.

  13. Handheld camera 3D modeling system using multiple reference panels

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Oue, Yasuhiro; Terauchi, Tomoya; Emi, Tetsuichi

    2002-03-01

    A novel 3D modeling system in which a target object is easily captured and modeled by using a hand-held camera with several reference panels is presented in this paper. The reference panels are designed to be able to obtain the camera position and discriminate between each other. A conventional 3D modeling system using a reference panel has several restrictions regarding the target object, specifically the size and its location. Our system uses multiple reference panels, which are set around the target object to remove these restrictions. The main features of this system are as follows: 1) The whole shape and photo-realistic textures of the target object can be digitized based on several still images or a movie captured by using a hand-held camera; as well as each location of the camera that can be calculated using the reference panels. 2) Our system can be provided as a software product only. That means there are no special requirements for hardware; even the reference panels , because they can be printed from image files or software. 3) This system can be applied to digitize a larger object. In the experiments, we developed and used an interactive region selection tool to detect the silhouette on each image instead of using the chroma -keying method. We have tested our system with a toy object. The calculation time is about 10 minutes (except for the capturing the images and extracting the silhouette by using our tool) on a personal computer with a Pentium-III processor (600MHz) and 320MB memory. However, it depends on how complex the images are and how many images you use. Our future plan is to evaluate the system with various kind of objects, specifically, large ones in outdoor environments.

  14. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  15. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  16. 3D model generation using an airborne swarm

    SciTech Connect

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  17. Thickness Reconstruction of Layers by 3D Geometrical Model to Characterize Caledonian Tectonic Complex and Data in Latvia

    NASA Astrophysics Data System (ADS)

    Ukass, J.; Saks, T.; Popovs, K.

    2012-04-01

    In present study we attempt to verify the 3D geological model, which has been built on a variety of heterogeneous data sources for the Baltic Basin (BB). Data describing the displacement along the faults and associated thickness changes of the syntectonic strata is sparse and reflects only regional relevance (Brangulis & Konsins 2002). Borehole logs provide most reliable and comprehensive data source for reconstructing the structural geology of the Latvia sedimentary cover as sufficient quality seismic data is available only for the local scale structures. Based on the thickness analysis of the boreholes rough resolution 3D geological tectonic block model was developed to deconstruct the geological structure of the Latvia Caledonian sedimentary sequence. MOSYS modeling system was used for the geological structure modeling, developed within the PUMA project (Sennikovs et al, 2011). Algorithmic genetic approach was applied to interpolate data of well logs as strata volume and sequentially to reconstruct the post-deformation situation. This approach allows modifying model construction in any step and all processes are fully documented and are repeatable. Geometrical model consists of 33 tectonic blocks bordered by the faults which were distributed by interpreting displacement amount of the blocks along the faults providing an opportunity to characterize common tectonic evolution. The study results indicate insignificant thickness change of the Ordovician and Silurian strata along the faults suggesting that major slip event along the faults occurred during the late Silurian and early Devonian, and some secondary fault reactivation during the middle Devonian Narva time. Uplift of the territory during this time is confirmed by the presence of the regional unconformity. Constructed rough resolution 3D geometrical model suggests shortening along the horizontal axis approximately 10 - 20% but most of the shortening has occurred in the central-west part of Latvia where it

  18. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  19. Energy flow in passive and active 3D cochlear model

    SciTech Connect

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  20. Energy flow in passive and active 3D cochlear model

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  1. Appearance-based color face recognition with 3D model

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhang; Bai, Xiaoming

    2013-03-01

    Appearance-based face recognition approaches explore color cues of face images, i.e. grey or color information for recognition task. They first encode color face images, and then extract facial features for classification. Similar to conventional singular value decomposition, hypercomplex matrix also exists singular value decomposition on hypercomplex field. In this paper, a novel color face recognition approach based on hypercomplex singular value decomposition is proposed. The approach employs hypercomplex to encode color face information of different channels simultaneously. Hypercomplex singular value decomposition is utilized then to compute the basis vectors of the color face subspace. To improve learning efficiency of the algorithm, 3D active deformable model is exploited to generate virtual face images. Color face samples are projected onto the subspace and projection coefficients are utilized as facial features. Experimental results on CMU PIE face database verify the effectiveness of the proposed approach.

  2. 3D model atmospheres and the solar photospheric oxygen abundance

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.

    2008-10-01

    In recent years the photospheric solar oxygen abundance experienced a significant downward revision. However, a low photospheric abundance is incompatible with the value in the solar interior inferred from helioseismology. For contributing to the dispute whether the solar oxygen abundance is “high” or “low”, we re-derived its photospheric abundance independently of previous analyses. We applied 3D (CO5BOLD) as well as 1D model atmospheres. We considered standard disc-centre and disc-integrated spectral atlases, as well as newly acquired solar intensity spectra at different heliocentric angles. We determined the oxygen abundances from equivalent width and/or line profile fitting of a number of atomic lines. As preliminary result, we find an oxygen abundance in the range 8.73 8.79, encompassing the value obtained by Holweger (2001), and somewhat higher than the value obtained by Asplund et al. (2005).

  3. Towards Automatic Semantic Labelling of 3D City Models

    NASA Astrophysics Data System (ADS)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  4. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2004-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  5. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2001-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  6. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  7. The Role of Faulting on the Growth of a Carbonate Platform: Evidence from 3D Seismic Analysis and Section Restoration

    NASA Astrophysics Data System (ADS)

    Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard

    2014-05-01

    Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that

  8. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  9. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin

    NASA Astrophysics Data System (ADS)

    Ziegler, Moritz O.; Heidbach, Oliver; Reinecker, John; Przybycin, Anna M.; Scheck-Wenderoth, Magdalena

    2016-09-01

    The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing SHmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases

  10. A multipurpose 3-D grid of stellar models

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    2013-05-01

    The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxiliary variables such as mass and age. Furthermore, I have generated a grid of extinguished magnitudes using the recent Maíz Apellániz et al. (2012) extinction laws and incorporated them into the Bayesian code CHORIZOS (Maíz Apellániz 2004).

  11. 3-D Eutrophication Modeling for Lake Simcoe, Canada

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.

    2006-12-01

    The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.

  12. Automatic paper sliceform design from 3D solid models.

    PubMed

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  13. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B

  14. 3D Printing of Molecular Potential Energy Surface Models

    ERIC Educational Resources Information Center

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  15. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  16. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  17. 3D Finite Difference Modelling of Basaltic Region

    NASA Astrophysics Data System (ADS)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  18. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

  19. 3D finite element modeling of sliding wear

    NASA Astrophysics Data System (ADS)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  20. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    PubMed Central

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  1. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor 3D model atmospheres

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Homeier, D.; Plez, B.

    2017-02-01

    Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D. Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis. Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed. Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model. Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.

  2. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  3. Pros and Cons of ID vs. 3D Modeling

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2012-01-01

    Advances in computing capability have led to tremendous improvements in 3D modeling. Entire active regions are being simulated in what might be described as a first principles way, in which plasma heating is treated self consistently rather than through the specification of heating functions. There are limitations to this approach, however, as actual heating mechanisms on the Sun involve spatial scales orders of magnitude smaller than what these simulations can resolve. Other simulations begin to resolve these scales, but they only treat a tiny volume and do not include the all important coupling with larger scales or with other parts of the atmosphere, and so cannot be readily compared with observations. Finally, ID hydrodynamic models capture the field-aligned evolution of the plasma extremely well and are ideally suited for data comparison, but they treat the heating in a totally ad hoc manner. All of these approaches have important contributions to make, but we must be aware of their limitations. I will highlight some of the strengths. and weaknesses of each.

  4. A 3D world model builder with a mobile robot

    SciTech Connect

    Zhang, Z.; Faugeras, O. )

    1992-08-01

    This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.

  5. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  6. A novel mechanotactic 3D modeling of cell morphology

    NASA Astrophysics Data System (ADS)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  7. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  8. GIS based 3D visualization of subsurface and surface lineaments / faults and their geological significance, northern tamil nadu, India

    NASA Astrophysics Data System (ADS)

    Saravanavel, J.; Ramasamy, S. M.

    2014-11-01

    The study area falls in the southern part of the Indian Peninsular comprising hard crystalline rocks of Archaeozoic and Proterozoic Era. In the present study, the GIS based 3D visualizations of gravity, magnetic, resistivity and topographic datasets were made and therefrom the basement lineaments, shallow subsurface lineaments and surface lineaments/faults were interpreted. These lineaments were classified as category-1 i.e. exclusively surface lineaments, category-2 i.e. surface lineaments having connectivity with shallow subsurface lineaments and category-3 i.e. surface lineaments having connectivity with shallow subsurface lineaments and basement lineaments. These three classified lineaments were analyzed in conjunction with known mineral occurrences and historical seismicity of the study area in GIS environment. The study revealed that the category-3 NNE-SSW to NE-SW lineaments have greater control over the mineral occurrences and the N-S, NNE-SSW and NE-SW, faults/lineaments control the seismicities in the study area.

  9. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.

  10. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  11. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  12. 3D Loop Models and the CPn-1 Sigma Model

    NASA Astrophysics Data System (ADS)

    Nahum, Adam; Chalker, J. T.; Serna, P.; Ortuño, M.; Somoza, A. M.

    2011-09-01

    Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CPn-1 sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.

  13. 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Yolsal-Ćevikbilen, Seda; Biryol, C. Berk; Beck, Susan; Zandt, George; Taymaz, Tuncay; Adıyaman, Hande E.; Özacar, A. Arda

    2012-03-01

    3-D P-wave velocity structure and Vp/Vs variations in the crust along the North Anatolian Fault Zone (NAFZ) in north-central Anatolia were investigated by the inversion of local P- and S-wave traveltimes, to gain a better understanding of the seismological characteristics of the region. The 3-D local earthquake tomography inversions included 5444 P- and 3200 S-wave readings obtained from 168 well-located earthquakes between 2006 January and 2008 May. Dense ray coverage yields good resolution, particularly in the central part of the study area. The 3-D Vp and Vp/Vs tomographic images reveal clear correlations with both the surface geology and significant tectonic units in the region. We observed the lower limit of the seismogenic zone for north-central Anatolia at 15 km depth. Final earthquake locations display a distributed pattern throughout the study area, with most of the earthquakes occurring on the major splays of the NAFZ, rather than its master strand. We identify three major high-velocity blocks in the mid-crust separated by the İzmir-Ankara-Erzincan Suture and interpret these blocks to be continental basement fragments that were accreted onto the margin following the closure of Neo-Tethyan Ocean. These basement blocks may have in part influenced the rupture propagations of the historical 1939, 1942 and 1943 earthquakes. In addition, large variations in the Vp/Vs ratio in the mid-crust were observed and have been correlated with the varying fluid contents of the existing lithologies and related tectonic structures.

  14. EM modeling for GPIR using 3D FDTD modeling codes

    SciTech Connect

    Nelson, S.D.

    1994-10-01

    An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.

  15. Hydrogeophysical characterization and 3D modeling of heterogeneous unsaturated zone of a sandstone quarry

    NASA Astrophysics Data System (ADS)

    Winiarski, T.; Angulo-Jaramillo, R.; Goutaland, D.; Bievre, G.; Thevenin, L.; Sevestre, J.; Lassabatère, L.; Perrodin, Y.

    2008-12-01

    The potentially polluted sediments of the French ports, obtained by dredging maintenance operations, have to be disposed by filling-up open quarries why discontinuities can potentially lead to preferential flow. Indeed, flow anisotropy can be created either by: the original quarry structural discontinuities (faults, joints), the material sedimentary bedding or some anthropogenic effect (i.e., cracking induced by the operation of the quarry). The objective of the study is to estimate the role of the quarry heterogeneity on the unsaturated- zone water flow. A conceptual model based on the 3D structural recognition is proposed to study water flow. It is based on the recognition of the 3D geometric structure by using: (1) sedimentary structural geology principles, (2) geophysical measurements (Ground-Penetrating Radar and seismic refraction) performed on a limited but representative zone of the quarry and (3) in-situ Beerkan infiltration tests for soil hydraulic characterization. This new approach has been tested on a small volume (45m x 30m x 8m) of a Cenomanian sandstone quarry on southern France. The hydrogeophysical approach makes it possible to account for stratigraphic discontinuity non visible from the soil surface. GPR resolution is appropriate to resolve the sedimentary structure (direction, dip and bedding density). The seismic refraction completes the analysis by the water table localization. Both capillary retention and hydraulic conductivity curves have been obtained for uniform geometric elements using the BEST algorithm (Beerkan estimation of soil transfer parameters). The resolution of the Richards equation with 3D COMSOL Multiphysics software seems to emphasize the fractures role according to the sandstone initial conditions. Coupling geophysical and hydrodynamic approaches makes it possible to obtain a 3D in-situ realistic block representative of the studied site. Flow modeling on this block makes it possible to evaluate the risk at the quarry scale.

  16. Prediction models from CAD models of 3D objects

    NASA Astrophysics Data System (ADS)

    Camps, Octavia I.

    1992-11-01

    In this paper we present a probabilistic prediction based approach for CAD-based object recognition. Given a CAD model of an object, the PREMIO system combines techniques of analytic graphics and physical models of lights and sensors to predict how features of the object will appear in images. In nearly 4,000 experiments on analytically-generated and real images, we show that in a semi-controlled environment, predicting the detectability of features of the image can successfully guide a search procedure to make informed choices of model and image features in its search for correspondences that can be used to hypothesize the pose of the object. Furthermore, we provide a rigorous experimental protocol that can be used to determine the optimal number of correspondences to seek so that the probability of failing to find a pose and of finding an inaccurate pose are minimized.

  17. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  18. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  19. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  20. High Rayleigh Number 3d Spherical Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Davies, J. H.

    2003-04-01

    The geochemical and geophysical evidence related to the mantle can potentially be reconciled by a hypothesis of whole mantle convection where the heterogeneity stems from the continuous recycling of oceanic crust, depleted lithospheric mantle and sediments. The mantle is expected to be well but not perfectly stirred, sampled differently in different tectonic settings, and with components having wide-ranging residence times. We might for example expect very long residence times for some buoyant or dense components that can reside in either the upper (lithosphere) or lower boundary (D''). We have started testing whether such a whole mantle convection hypothesis can satisfy wide ranging first order geophysical observations, such as plate velocities, stability of upwellings, geometry of downwellings, etc. The model parameters, including the mantle's viscosity structure, are guided by extensive earlier community work. We use TERRA to model compressible convection in a 3D spherical mantle shell with a depth dependent viscosity structure, where the lower mantle is 40 times more viscous than the upper mantle. A chondritic rate of internal heating of 6 x 10^-12 W/Kg was assumed, leading to Ra(H) = 3.4x10^8. A realistic depth dependent thermal expansivity and Murnaghan equation of state was assumed, with free slip b.c.. The evolution of the system was followed for 2 Billion years. The RMS surface velocity varied from around 4 - 7cm/yr, very similar to recent plate velocities. The structures in the lower mantle are relatively stable and larger length scale in comparison to the upper mantle features. The downwellings and upwellings are linear in planform but the upwellings are dominated by stronger upflow at the columns formed at their intersection. The upwelling features embedded in the lower mantle are very stable, and it is reasonable to expect (though yet to be demonstrated) that with temperature-dependent viscosity the upwellings will be dominated by the cylindrical

  1. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  2. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  3. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  4. Numerical Results of 3-D Modeling of Moon Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity

  5. Induction Heating Process: 3D Modeling and Optimisation

    NASA Astrophysics Data System (ADS)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  6. Orbiter/External Tank Mate 3-D Solid Modeling

    NASA Technical Reports Server (NTRS)

    Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.

    2004-01-01

    This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.

  7. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  8. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    NASA Astrophysics Data System (ADS)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  9. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    On the basis of maps of 1: 50,000 and 1: 200,000 3D model Khibiny massif developed. We used software ARC / INFO v10.2 ESRI. This project will be organised to build background for gas pollution monitoring network. We planned to use the model to estimate local heterogeneities in the composition of the atmosphere at the emanation of greenhouse gases in the area, the construction of models of vertical distribution of the content of trace gases in the rock mass. In addition to the project GIS digital elevation model contains layers of geological and tectonic map that allows us to estimate the area of the output of certain petrographic rock groups characterized by different ratios of emitted hydrocarbons (CH4/ H2). The model allows to construct a classification of fault in the array. At first glance, there are two groups of faults - the ancient associated with the formation of the intrusive phases sequence, and the young - due to recent tectonic shifts. Ancient faults form a common semicircular structure of the pluton cause overall asymmetry Khibin heights with the transition to the border area between the Khibiny and Lovoozero. Modern tectonics mainly represented by radial and chord faults which are formed narrow mountain valleys and troughs. It remains an open question as to which system fault (old or young) is more productive to gas emanations? On the one hand the system characterized by a large old depth, on the other hand a young more active faults. Address these issues require further detailed observations. The essential question is to assess the possibility of maintaining a constant concentration gradient of these impurities in the atmosphere due to gas emanations of fracture zones and areas enriched occluded gases. In the simulation of these processes can be used initially set parameters: 1 the flow rate of the gas impurities 2 the value of wind flows in closed and open valley 3 Assessment of thermal diffusion coefficients determined by the temperature gradient

  10. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    visualization in OPNET . . . . . . . . . . . . 13 6. Sample NetViz visualization . . . . . . . . . . . . . . . . . . . 15 7. Realistic 3D terrains...scenario in OPNET . . . 19 10. OPNET 3DNV only displays connectivity . . . . . . . . . . . . 29 11. The digitally connected battlefield...confirmation tool 12 OPNET Optimized Network Evaluation Tool . . . . . . . . . . . . 13 NetViz Network Visualization

  11. 3D genome structure modeling by Lorentzian objective function.

    PubMed

    Trieu, Tuan; Cheng, Jianlin

    2016-11-29

    The 3D structure of the genome plays a vital role in biological processes such as gene interaction, gene regulation, DNA replication and genome methylation. Advanced chromosomal conformation capture techniques, such as Hi-C and tethered conformation capture, can generate chromosomal contact data that can be used to computationally reconstruct 3D structures of the genome. We developed a novel restraint-based method that is capable of reconstructing 3D genome structures utilizing both intra-and inter-chromosomal contact data. Our method was robust to noise and performed well in comparison with a panel of existing methods on a controlled simulated data set. On a real Hi-C data set of the human genome, our method produced chromosome and genome structures that are consistent with 3D FISH data and known knowledge about the human chromosome and genome, such as, chromosome territories and the cluster of small chromosomes in the nucleus center with the exception of the chromosome 18. The tool and experimental data are available at https://missouri.box.com/v/LorDG.

  12. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    ERIC Educational Resources Information Center

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  13. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  14. Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques

    ERIC Educational Resources Information Center

    Wang, Yushun; Zhuang, Yueting

    2008-01-01

    Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…

  15. 3D Gravity Field Modelling of the Lithosphere along the Dead Sea Transform (DESERT 2002)

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; Ebbing, J.; Schmidt, S.; Rykakov, M.; Hassouneh, M.; Hrahsha, M.; El-Kelani, R.; Desert Group

    2003-04-01

    From March to May 2002 a gravity field campaign has to be conducted in the area of Dead Sea Rift/Dead Sea Transform with regard to the isostatic state, the crustal density structure of the transform and the lithospheric rigidity in the Central Arava Valley (Jordan). Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), takes part in the interdisciplinary and international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local scale in the Arava valley and at regional scale along the DESERT seismic line. Station spacing in the area of the Arava valley was 100 - 300 m and in the nearest neighbourhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic studies, and geological mapping which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing density domains. In particular the "dip-curvature" reveal a clear course

  16. Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.

    2002-12-01

    The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing

  17. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  18. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  19. 3D modelling in salt tectonic context: the Crocodile minibasin in Sivas (Turkey)

    NASA Astrophysics Data System (ADS)

    Collon, Pauline; Pichat, Alexandre; Kergaravat, Charlie; Botella, Arnaud; Caumon, Guillaume; Favreau, Océane; Fuss, Gaétan; Godefroy, Gabriel; Lerat, Marine; Mazuyer, Antoine; Parquer, Marion; Charreau, Julien; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    salt surface to consistently disconnect both minibasin parts. This step is performed thanks to a local simplification of the salt surface that consists in replacing pinched parts by an equivalent fault/weld surface. The 3D scalar field is then computed with a Discrete Smooth Interpolation constrained by several information. Those information are weighted consistently with their relative uncertainty. Control points impose locally the scalar field value. They are set on interpreted bedding traces and on a surface located at 5m from the external salt surface boundary to account for the tangency of the sediment deposits in conformable parts of the minibasin. They are completed by constraints on the scalar field gradient orientation using dip measurements and a constant gradient constraint. The result highlights the remarkable geometry of this salt-tectonic related structure and underlines the usefulness of new modelling methods to ease a more automated generation of such tectonic features.

  20. Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Morley, C. K.; Gabdi, S.; Seusutthiya, K.

    2007-04-01

    The Phitsanulok basin, Thailand provides examples of changing fault displacement patterns with time associated with faults of different orientations. In the Northern Phitsanulok basin three main stress states have been identified associated with Late Oligocene-Recent fault development: (1) Late Oligocene-Late Miocene approximately E-W extension (N-S Shmax), 'main rift' stage, (2) Late Miocene-Pliocene transtension to tranpression (?) (E-W to NE-SW Shmax), 'late rift' stage, and (3) Pliocene-Recent very minor faulting, E-W extension, N-S Shmax, 'post-rift' stage. Syn-rift faults tend to strike N-S, but also follow NE-SW and NW-SE trends and are basement involved. The Late Miocene deformation produced a distinctly different type of fault population from the main rift fault set, characterized by numerous, small displacement (tens of metres), faults striking predominantly NE-SW. Most of these faults are convergent, conjugate sets aligned in discrete zones and nucleated within the sedimentary basin. Reactivation of main rift faults trends during the late rift stage favoured strike directions between 350° and 50°. The displacement characteristics of three large faults within the basin show variations depending upon fault orientation. The low-angle (23°-30° dip), Western Boundary Fault (˜7 km throw) displays little discernible difference in the distribution of displacement on fault zone during the different stress states other than increases and decreases in displacement amount. Smaller faults exhibit a more selective reactivation history than the Western Boundary fault and are more informative about fault response to a varying stress field. Activation of the (oblique) NE-SW striking NTM-1 initially produced a fault divided into three segments, splaying into N-S trends. Stress reorientation during the late rift stage finally linked NE-SW striking segments. The partial linkage of the fault zone at the time of oil migration resulted in the southwestern part of the NTM

  1. Fault zone structure of the Wildcat fault in Berkeley, California - Field survey and fault model test -

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Onishi, C. T.; Karasaki, K.; Tanaka, S.; Hamada, T.; Sasaki, T.; Ito, H.; Tsukuda, K.; Ichikawa, K.; Goto, J.; Moriya, T.

    2010-12-01

    gouge and foliated cataclasite show reverse right-slip shear sense. We are performing sandbox experiments to investigate the three-dimensional kinematic evolution of fault systems caused by oblique-slip motion. The geometry of the Wildcat fault in the Berkeley Hills region shows a strong resemblance to our sandbox experimental model. Based on these geological and experimental data, we inferred that the complicated fault systems were dominantly developed within the fault step and the tectonic regime switched from transpression to transtension during the middle to late Miocene along the Wildcat fault.

  2. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    NASA Astrophysics Data System (ADS)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  3. Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-12-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E-W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above

  4. Fast, Automated, 3D Modeling of Building Interiors

    DTIC Science & Technology

    2012-10-30

    of thermographies with laser scanning point clouds [6]. Given the heterogeneous nature of the two modalities, we propose a feature-based approach...extract 2D lines from thermographies , and 3D lines are extracted through segmentation of the point cloud. Feature- matching and the relative pose between... thermographies and point cloud are obtained from an iterative procedure applied to detect and reject outliers; this includes rotation matrix and

  5. Error latency estimation using functional fault modeling

    NASA Technical Reports Server (NTRS)

    Manthani, S. R.; Saxena, N. R.; Robinson, J. P.

    1983-01-01

    A complete modeling of faults at gate level for a fault tolerant computer is both infeasible and uneconomical. Functional fault modeling is an approach where units are characterized at an intermediate level and then combined to determine fault behavior. The applicability of functional fault modeling to the FTMP is studied. Using this model a forecast of error latency is made for some functional blocks. This approach is useful in representing larger sections of the hardware and aids in uncovering system level deficiencies.

  6. 3-D modeling useful tool for planning. [mapping groundwater and soil pollution and subsurface features

    SciTech Connect

    Calmbacher, C.W. )

    1992-12-01

    Visualizing and delineating subsurface geological features, groundwater contaminant plumes, soil contamination, geological faults, shears and other features can prove invaluable to environmental consultants, engineers, geologists and hydrogeologists. Three-dimensional modeling is useful for a variety of applications from planning remediation to site planning design. The problem often is figuring out how to convert drilling logs, map lists or contaminant levels from soil and groundwater into a 3-D model. Three-dimensional subsurface modeling is not a new requirement, but a flexible, easily applied method of developing such models has not always been readily available. LYNX Geosystems Inc. has developed the Geoscience Modeling System (GMS) in answer to the needs of those regularly having to do three-dimensional geostatistical modeling. The GMS program has been designed to allow analysis, interpretation and visualization of complex geological features and soil and groundwater contamination. This is a powerful program driven by a 30 volume modeling technology engine. Data can be entered, stored, manipulated and analyzed in ways that will present very few limitations to the user. The program has selections for Geoscience Data Management, Geoscience Data Analysis, Geological Modeling (interpretation and analysis), Geostatistical Modeling and an optional engineering component.

  7. Jurassic extension and Cenozoic inversion tectonics in the Asturian Basin, NW Iberian Peninsula: 3D structural model and kinematic evolution

    NASA Astrophysics Data System (ADS)

    Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura

    2016-09-01

    We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.

  8. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward

  9. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    SciTech Connect

    Frary, R.; Louie, J.; Pullammanappallil, S.; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  10. Geological evolution of the North Sea: a dynamic 3D model including petroleum system elements

    NASA Astrophysics Data System (ADS)

    Sabine, Heim; Rüdiger, Lutz; Dirk, Kaufmann; Lutz, Reinhardt

    2013-04-01

    This study investigates the sedimentary basin evolution of the German North Sea with a focus on petroleum generation, migration and accumulation. The study is conducted within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)", a joint project of federal (BGR, BSH) and state authorities (LBEG) with partners from industry and scientific institutions. Based on the structural model of the "Geotektonischer Atlas 3D" (GTA3D, LBEG), this dynamic 3D model contains additionally the northwestern part ("Entenschnabel" area) of the German North Sea. Geological information, e.g. lithostratigraphy, facies and structural data, provided by industry, was taken from published research projects, or literature data such as the Southern Permian Basin Atlas (SPBA; Doornenbal et al., 2010). Numerical modeling was carried out for a sedimentary succession containing 17 stratigraphic layers and several sublayers, representing the sedimentary deposition from the Devonian until Present. Structural details have been considered in terms of simplified faults and salt structures, as well as main erosion and salt movement events. Lithology, facies and the boundary conditions e.g. heat flow, paleo water-depth and sediment water interface temperature were assigned. The system calibration is based on geochemical and petrological data, such as maturity of organic matter (VRr) and present day temperature. Due to the maturity of the sedimentary organic matter Carboniferous layers are the major source rocks for gas generation. Main reservoir rocks are the Rotliegend sandstones, furthermore, sandstones of the Lower Triassic and Jurassic can serve as reservoir rocks in areas where the Zechstein salts are absent. The model provides information on the temperature and maturity distribution within the main source rock layers as well as information of potential hydrocarbon generation based on kinetic data for gas liberation. Finally, this dynamic 3D model offers a first

  11. Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes

    NASA Astrophysics Data System (ADS)

    Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent

    2015-12-01

    Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.

  12. The mechanisms of driving lithospheric deformation in India-Asia collision zone: a perspective from 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Kaus, Boris

    2016-04-01

    The mechanism of intraplate deformation remains incompletely understood by plate tectonics theory. The India-Asia collision zone is the largest present-day example of continental collision, which makes it an ideal location to study the processes of continental deformation. Existing models of lithospheric deformation are typically quasi two-dimensional and often assume that the lithosphere is a thin viscous sheet, which deforms homogeneously as a result of the collision, or flows above a partially molten lower crust, which explains the exhumation of Himalayan units and lateral spreading of Tibetan plateau. An opposing view is that most deformation localize in shear zones separating less deformed blocks, requiring the lithosphere to have an elasto-plastic rather than a viscous rheology. In order to distinguish which model best fits the observations we develop a 3-D visco-elasto-plastic model, which can model both distributed and highly localized deformation. In our preliminary result, most of the large-scale strike-slips faults including Altyn-Tagh fault, Xianshuihe fault, Red-River fault, Sagaing fault and Jiali fault can be simulated. The topography is consistent with observations that flat plateau in central Tibet and steep, abrupt margins adjacent to Sichuan basin, and gradual topography in southeast Tibet. These models suggest that the localized large-scale strike-slip faults accommodate the continental deformation. These results show the importance of a weak lower crust and topographic effects, as well as the effect of rheology and temperature structure of the lithosphere on the deformation patterns.

  13. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  14. Analysis of 3D Modeling Software Usage Patterns for K-12 Students

    ERIC Educational Resources Information Center

    Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen

    2016-01-01

    In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…

  15. Developing Fault Models for Space Mission Software

    NASA Technical Reports Server (NTRS)

    Nikora, Allen P.; Munson, John C.

    2003-01-01

    A viewgraph presentation on the development of fault models for space mission software is shown. The topics include: 1) Goal: Improve Understanding of Technology Fault Generation Process; 2) Required Measurement; 3) Measuring Structural Evolution; 4) Module Attributes; 5) Principal Components of Raw Metrics; 6) The Measurement Process; 7) View of Structural Evolution at the System and Module Level; 8) Identifying and Counting Faults; 9) Fault Enumeration; 10) Modeling Fault Content; 11) Modeling Results; 12) Current and Future Work; and 13) Discussion and Conclusions.

  16. ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.

    SciTech Connect

    McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon

    2005-01-01

    This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.

  17. Cloud-resolving component in the quasi-3D multi-scale modeling framework

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2010-05-01

    A quasi-3D multi-scale modeling framework (Q3D MMF), which combines a GCM with a Q3D CRM, is an attempt to include three dimensional cloud effects in a GCM without necessarily using a global cloud-resolving model. The horizontal domain of the Q3D CRM consists of two perpendicular sets of channels crossing at the center of a GCM grid box, each of which includes two grid-point arrays. Through coupling this structure with a GCM, the whole system of the Q3D MMF can converge to a fully 3D global CRM as the GCM's resolution is refined. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application. However, due to the use of very narrow channels for the cloud-resolving component, its prediction algorithm must be specially designed. As a step in developing a Q3D MMF, we have first constructed a prediction algorithm for the Q3D CRM applying a 3D anelastic vector vorticity equation model to the Q3D network of grid points. Preliminary tests of the Q3D CRM have been performed for an idealized small domain. Comparing the results with those of the straightforward application of a 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions and the MMF based on the Q3D CRM will be a useful framework for climate modeling. This paper presents an outline of the Q3D algorithm and highlights of the results.

  18. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    USGS Publications Warehouse

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  19. Alpine fold-and-thrust structures revealed: A 3D model from the Helvetic Zone (Säntis area, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sala, Paola; Pfiffner, Adrian; Frehner, Marcel

    2013-04-01

    To investigate the geometrical relationships between folding and thrust faulting, a 3D model of the Helvetic fold-and-thrust belt in Eastern Switzerland is built from several cross-sections in the Säntis area, between Hoher Kasten and Wildhaus. Existing cross-sections from Schlatter (1941), Kempf (1966), and Pfiffner (2000; 2011) were partly redrawn and cross-checked for line length balancing. Additional cross-sections based on surface geology were newly constructed to fill areas with a low cross-section density and to solve geological problems. The interpolation of the formation interfaces and the thrusts between the cross-sections allowed generating six main surfaces corresponding to the base of the Öhrli and Betlis Limestones, the Helvetic Kieselkalk, the Schrattenkalk and Garschella Formations, and the Seewen Limestone. The main structural elements in the Säntis area, such as the Säntis Thrust or the Sax-Schwende Fault, are also implemented in the model. The 3D model highlights the shape of the main anticline-syncline pairs (e.g., Altmann-Wildseeli, Schafberg-Moor, Roslenfirst-Mutschen, etc...) and how these fold trains vary in amplitude and wavelength along strike. The model also clearly shows the lateral extension, the trend, and the variation in displacement of the principal faults. The reconstruction of 3D horizons allows the geologists investigating cross-sections along any given direction. The 3D model is useful to understand how the changes of the internal nappe structures, namely folds and thrust faults, change along strike. Such changes occur either across transverse faults or in a more gradual manner. The model can and will also be used as a base to perform retrodeformation and strain estimation. Shortening will be calculated using the base Schrattenkalk as the reference horizon. REFERENCES Pfiffner, O.A., 2000: Cross-sections in Funk, H., Habich, J.K., Hantke, R. & Pfiffner, O.A., 2000: Blatt 1115 Säntis - Geologischer Atlas der Schweiz 1

  20. TOPICAL REVIEW: Computational approaches to 3D modeling of RNA

    NASA Astrophysics Data System (ADS)

    Laing, Christian; Schlick, Tamar

    2010-07-01

    Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.

  1. Numerical modeling of shallow fault creep triggered by nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, M.; Liu, Y.; McGuire, J. J.

    2011-12-01

    The 2010 El Mayor-Cucapha Mw 7.2 earthquake is the largest earthquake that strikes southern California in the last 18 years. It has triggered shallow fault creep on many faults in Salton Trough, Southern California, making it at least the 8th time in the last 42 years that a local or regional earthquake has done so. However, the triggering mechanism of fault creep and its implications to seismic hazard and fault mechanics is still poorly understood. For example, what determines the relative importance of static triggering and dynamic triggering of fault creep? What can we learn about the local frictional properties and normal stress from the triggering of fault creep? To understand the triggering mechanism and constrain fault frictional properties, we simulate the triggered fault creep on the Superstition Hills Fault (SHF), Salton Trough, Southern California. We use realistic static and dynamic shaking due to nearby earthquakes as stress perturbations to a 2D (in a 3D medium) planar fault model with rate-and-state frictional property variations both in depth and along strike. Unlike many previous studies, we focus on the simulation of triggered shallow fault creep instead of earthquakes. Our fault model can reproduce the triggering process, by static, dynamic , and combined stress perturbation. Preliminary results show that the magnitude of perturbation relative to the original stress level is an important parameter. In the static case, perturbation of 1% of normal stress trigger delayed fault creep whereas 10% of normal stress generate instantaneous creep. In the dynamic case, a change of two times in magnitude of perturbation can result in difference of triggered creep in several orders of magnitude. We explore combined triggering with different ratio of static and dynamic perturbation. The timing of triggering in a earthquake cycle is also important. With measurements on triggered creep on the SHF, we constrain local stress level and frictional parameters, which

  2. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  3. Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori

    NASA Astrophysics Data System (ADS)

    Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2017-02-01

    Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.

  4. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  5. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  6. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  7. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  8. Large scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-02-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.

  9. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-11-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.

  10. AGSM Functional Fault Models for Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  11. A Quantification of the 3D Modeling Capabilities of the Kinectfusion Algorithm

    DTIC Science & Technology

    2014-03-27

    A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM THESIS Jeremy M. Higbee, Captain, USAF AFIT-ENG-14-M-40 DEPARTMENT OF...subject to copyright protection in the United States. AFIT-ENG-14-M-40 A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM...M-40 A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM Jeremy M. Higbee, BS Captain, USAF Approved: /signed/ Maj Brian

  12. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  13. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Ampuero, J. P.; Dalguer, L. A.; Nissen-Meyer, T.

    2011-12-01

    On March 11th 2011, a Mw 9 earthquake stroke Japan causing 28000 victims and triggering a devastating tsunami that caused severe damage along the Japanese coast. The exceptional amount of data recorded by this earthquake, with thousands of sensors located all over Japan, provides a great opportunity for seismologist and engineers to investigate in detail the rupture process in order to better understand the physics of this type of earthquakes and their associated effects, like tsunamis. Here we investigate, by means of dynamic rupture simulations, a plausible mechanism to explain key observations about the rupture process of the 2011 M9 Tohoku earthquake, including the spatial complementarity between high and low frequency aspects of slip (e.g, Simons et al, Science 2011, Meng et al, GRL 2011). To model the dynamic rupture of this event, we use a realistic non-planar fault geometry of the megathrust interface, using the unstructured 3D spectral element open source code SPECFEM3D-SESAME, in which we recently implemented the dynamic fault boundary conditions. This implementation follows the principles introduced by Ampuero (2002) and Kaneko et al. (2008) and involves encapsulated modules plugged into the code. Our current implementation provides the possibility of modeling dynamic rupture for multiple, non-planar faults governed by slip-weakening friction. We successfully verified the code in several SCEC benchmarks, including a 3D problem with branched faults, as well as modeling the rupture of subduction megathrust with a splay fault, finding results comparable to published results. Our first set of simulations is aimed at testing if the diversity of rupture phenomena during the 2011 M9 Tohoku earthquake (see Ampuero et al in this session) can be overall reproduced by assuming the most basic friction law, linear slip-weakening friction, but prescribing a spatially heterogeneous distribution of the critical slip weakening distance Dc and initial fault stresses. Our

  14. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  15. Fault Slip Rate of the Kazerun Fault System (KFS), Iran, Investigated Using Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Shoorcheh, Bijan; Motagh, Mahdi; Baes, Marzieh; Bahroudi, Abbas

    2015-10-01

    A 3D non-homogenous finite element model (FEM) is developed to investigate the spatial variations of interseismic deformation for the Kazerun Fault System (KFS) in the Zagros Mountains of Iran. The model includes 19 fault segments that were extracted from geological maps and previous studies, and the average slips in the dip and strike directions on these segments were computed. The contemporary surface deformation is simulated using a free horizontal detachment surface. The dip angles of the faults in the model are varied at 90°, 70°, 50° and 30° to simulate different 3D representations of the fault systems. Tectonic loading at the boundaries of the region is applied using predicted GPS velocity vectors to the north (southern part of the Central Iran Block) and south (southern region of the Zagros mountain belt), which were obtained by solving inverse and forward problems. Where possible, the fault slip rates that are obtained using our non-homogeneous finite element model are validated using the long-term geologic and instantaneous GPS slip rates. The model is then used to estimate the dip- and strike-slip rates of the fault segments of the KFS for which no a priori information was available. We derive an upper bound of 1 mm/year for the average dip-slip rate in the region, which is consistent with estimates from geomorphologic observations. The modeling results show that in addition to the 4 main faults (Dena, Kazerun, Kareh Bas and Main Recent), other faults, such as the Zagros Front, Main Front, High Zagros and Mishan faults, accommodate up to 2.5 mm/year of the differential movement between the North and Central Zagros. We also investigated the contrast in rigidity between the southern and northern areas of the Zagros mountain belt and found that a rigidity contrast of 2 best explains the GPS data of contemporary surface deformation. Neglecting to account for the rigidity contrast in the model can lead to biased estimates of the fault slip rate of up to

  16. Developing and Testing a 3d Cadastral Data Model a Case Study in Australia

    NASA Astrophysics Data System (ADS)

    Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.

    2012-07-01

    Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal

  17. Detection of Disease Symptoms on Hyperspectral 3d Plant Models

    NASA Astrophysics Data System (ADS)

    Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz

    2016-06-01

    We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.

  18. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  19. Integration of multi-source and multi-scale datasets for 3D structural modeling for subsurface exploration targeting, Luanchuan Mo-polymetallic district, China

    NASA Astrophysics Data System (ADS)

    Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei

    2017-04-01

    In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.

  20. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by