Science.gov

Sample records for 3d finite-difference method

  1. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  2. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  3. Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation

    NASA Astrophysics Data System (ADS)

    Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia

    2013-08-01

    Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.

  4. Finite-difference solutions of the 3-D eikonal equation

    SciTech Connect

    Fei, Tong; Fehler, M.C.; Hildebrand, S.T.

    1995-12-31

    Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.

  5. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.

  6. An efficient method of 3-D elastic full waveform inversion using a finite-difference injection method for time-lapse imaging

    NASA Astrophysics Data System (ADS)

    Borisov, Dmitry; Singh, Satish C.; Fuji, Nobuaki

    2015-09-01

    Seismic full waveform inversion is an objective method to estimate elastic properties of the subsurface and is an important area of research, particularly in seismic exploration community. It is a data-fitting approach, where the difference between observed and synthetic data is minimized iteratively. Due to a very high computational cost, the practical implementation of waveform inversion has so far been restricted to a 2-D geometry with different levels of physics incorporated in it (e.g. elasticity/viscoelasticity) or to a 3-D geometry but using an acoustic approximation. However, the earth is three-dimensional, elastic and heterogeneous and therefore a full 3-D elastic inversion is required in order to obtain more accurate and valuable models of the subsurface. Despite the recent increase in computing power, the application of 3-D elastic full waveform inversion to real-scale problems remains quite challenging on the current computer architecture. Here, we present an efficient method to perform 3-D elastic full waveform inversion for time-lapse seismic data using a finite-difference injection method. In this method, the wavefield is computed in the whole model and is stored on a surface above a finite volume where the model is perturbed and localized inversion is performed. Comparison of the final results using the 3-D finite-difference injection method and conventional 3-D inversion performed within the whole volume shows that our new method provides significant reductions in computational time and memory requirements without any notable loss in accuracy. Our approach shows a big potential for efficient reservoir monitoring in real time-lapse experiments.

  7. A new 3D grid method for accurate electronic structure calculation of polyatomic molecules: The Voronoi-cell finite difference method

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Chu, Shih-I.

    2008-05-01

    We introduce a new computational method on unstructured grids in the three-dimensional (3D) spaces to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a simple discrete Laplacian operator on unstructured grids based on Voronoi cells and their natural neighbors. The feature of unstructured grids enables us to choose intuitive pictures for an optimal molecular grid system. The new VFD method achieves highly adaptability by the Voronoi-cell diagram and yet simplicity by the finite difference scheme. It has no limitation in local refinement of grids in the vicinity of nuclear positions and provides an explicit expression at each grid without any integration. This method augmented by unstructured molecular grids is suitable for solving the Schr"odinger equation with the realistic 3D Coulomb potentials regardless of symmetry of molecules. For numerical examples, we test accuracies for electronic structures of one-electron polyatomic systems: linear H2^+ and triangular H3^++. We also extend VFD to the density functional theory (DFT) for many-electron polyatomic molecules.

  8. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  9. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  10. 3D Time-domain wave modeling in fluid-solid coupled media: a cell-based finite-difference method approach

    NASA Astrophysics Data System (ADS)

    Lee, H.; Min, D.; Lim, S.; Yang, J.; Kwon, B.; Yoo, H.

    2009-12-01

    In a conventional marine seismic data analysis, pressure data have been usually interpreted on the basis of acoustic wave equation. The acoustic wave equation, however, only deals with P-wave propagation, and it cannot correctly describe the wave propagation in acoustic-elastic (fluid-solid) coupled media. Recently, in 4C OBC survey (4-component ocean bottom cable), it is possible to acquire both pressure and 3-component displacements (measured at the sea-bottom). Combining pressure and displacement data allows us to interpret subsurface structures more accurately. In order to accurately simulate wave propagation in fluid-solid coupled media, we need an acoustic-elastic coupled modeling algorithm, which deals with displacements in elastic region and pressure in acoustic region. For waveform inversion and reverse-time migration that require a great number of forward modeling, it is essential to develop an efficient scheme that reduces computing time and computer core memory. In this study, we present a 3D time-domain acoustic-elastic coupled modeling algorithm on the basis of the cell-based finite difference method. The cell-based method has proven to properly describe the free-surface boundary, which indicates that it will also properly describe the fluid-solid interface boundaries. In the acoustic-elastic coupled modeling, we first compose cell-based finite differences individually for the 3D acoustic and elastic media, and then combine the differences using the fluid-solid interface boundary conditions. Considering that the 2D acoustic-elastic coupled modeling algorithm gives numerical solutions comparable to analytic solutions, we expect that the 3D acoustic-elastic coupled modeling will correctly describe wave propagation in the fluid-solid coupled media. We apply our algorithm to 3D horizontal two- and three-layer models. Numerical experiments show that the cell-based coupled modeling algorithm properly describes S- and converted waves as well as P-waves. The

  11. 3D Finite Difference Modelling of Basaltic Region

    NASA Astrophysics Data System (ADS)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  12. Onset of Time-Dependent 3-D spherical Mantle Convection using a Radial Basis Function-Pseudospectral Method ; Spectral-Finite Volume ; Spectral Higher-Order Finite- Difference Methods

    NASA Astrophysics Data System (ADS)

    Wright, G.; Flyer, N.; Yuen, D. A.; Monnereau, M.; Zhang, S.; Wang, S. M.

    2009-05-01

    Many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and spectral methods have been employed to study 3-D mantle convection. All have their own strengths, but also serious weaknesses. Spectrally accurate methods do not practically allow for node refinement and often involve cumbersome algebra while finite difference, volume, or element methods are generally low-order, adding excessive numerical diffusion to the model. For the 3-D mantle convection problem, we have introduced a new mesh-free approach, using radial basis functions (RBF). This method has the advantage of being algorithmic simple, spectrally accurate for arbitrary node layouts in multi-dimensions and naturally allows for node-refinement. One virtue of the RBF scheme allows the user to use a simple Cartesian geometry, while implementing the required boundary conditions for the temperature, velocities and stress components on a spherical surface at both the planetary surface and the core-mantle boundary. We have studied time- dependent mantle convection, using both a RBF-pseudospectral code and a code which uses spherical- harmonics in the angular direction and second-order finite volume in the radial direction. We have employed a third code , which uses spherical harmonics and higher-order finite-difference method a la Fornberg in the radial coordinate.We first focus on the onset of time-dependence at Rayleigh number Ra of 70,000. We follow the development of stronger time-dependence to a Ra of one million, using high enough resolution with 120 to 200 points in the radial direction and 128 to 256 spherical harmonics.

  13. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    SciTech Connect

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  14. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    SciTech Connect

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  15. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  16. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  17. Propagation of premixed laminar flames in 3D narrow open ducts using RBF-generated finite differences

    NASA Astrophysics Data System (ADS)

    Bayona, Victor; Kindelan, Manuel

    2013-10-01

    Laminar flame propagation is an important problem in combustion modelling for which great advances have been achieved both in its theoretical understanding and in the numerical solution of the governing equations in 2D and 3D. Most of these numerical simulations use finite difference techniques on simple geometries (channels, ducts, ...) with equispaced nodes. The objective of this work is to explore the applicability of the radial basis function generated finite difference (RBF-FD) method to laminar flame propagation modelling. This method is specially well suited for the solution of problems with complex geometries and irregular boundaries. Another important advantage is that the method is independent of the dimension of the problem and, therefore, it is very easy to apply in 3D problems with complex geometries. In this work we use the RBF-FD method to compute 2D and 3D numerical results that simulate premixed laminar flames with different Lewis numbers propagating in open ducts.

  18. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed

  19. Software suite for finite difference method models.

    PubMed

    Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J

    2006-01-01

    We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057

  20. Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling

    NASA Astrophysics Data System (ADS)

    Shantsev, Daniil V.; Maaø, Frank A.

    2015-02-01

    We present a rigorous method for interpolation of electric and magnetic fields close to an interface with a conductivity contrast. The method takes into account not only a well-known discontinuity in the normal electric field, but also discontinuity in all the normal derivatives of electric and magnetic tangential fields. The proposed method is applied to marine 3-D controlled-source electromagnetic modelling (CSEM) where sources and receivers are located close to the seafloor separating conductive seawater and resistive formation. For the finite-difference scheme based on the Yee grid, the new interpolation is demonstrated to be much more accurate than alternative methods (interpolation using nodes on one side of the interface or interpolation using nodes on both sides, but ignoring the derivative jumps). The rigorous interpolation can handle arbitrary orientation of interface with respect to the grid, which is demonstrated on a marine CSEM example with a dipping seafloor. The interpolation coefficients are computed by minimizing a misfit between values at the nearest nodes and linear expansions of the continuous field components in the coordinate system aligned with the interface. The proposed interpolation operators can handle either uniform or non-uniform grids and can be applied to interpolation for both sources and receivers.

  1. FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography

    NASA Astrophysics Data System (ADS)

    Champagne, Nathan J.; Berryman, James G.; Buettner, H. Michael

    2001-07-01

    A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.

  2. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  3. Local site-effects for the city of Thessaloniki (N. Greece) using a 3-D finite-difference method: a case of complex dependence on source and model parameters

    NASA Astrophysics Data System (ADS)

    Skarlatoudis, A. A.; Papazachos, C. B.; Theodoulidis, N.; Kristek, J.; Moczo, P.

    2010-07-01

    The site effects of seismic motion in the metropolitan area of the city of Thessaloniki (Northern Greece) are investigated using a 3-D finite-difference modelling approach. Three different seismic scenarios are assumed with two different focal mechanisms for each one. Standard spectral ratios (SSR) are calculated from 3-D synthetics and compared with the ratios from the recorded motion, as well as ratios obtained from 1-D and 2-D modelling by other researchers. The average SSR curves from the six scenarios are in good agreement with the empirical ones, whereas the SSR results from 3-D modelling are different from those from 1-D modelling, exhibiting higher fundamental frequencies and larger amplification amplitudes, in much better agreement with observed SSR ratios. Comparisons of Fourier amplitude spectra obtained for various scenarios for the broader area of Thessaloniki show considerable dependence of the site effects on the source properties (position, depth and fault-plane solution), as well as on the local structure.

  4. Comparison of finite-difference and analytic microwave calculation methods

    SciTech Connect

    Friedlander, F.I.; Jackson, H.W.; Barmatz, M.; Wagner, P.

    1996-12-31

    Normal modes and power absorption distributions in microwave cavities containing lossy dielectric samples were calculated for problems of interest in materials processing. The calculations were performed both using a commercially available finite-difference electromagnetic solver and by numerical evaluation of exact analytic expressions. Results obtained by the two methods applied to identical physical situations were compared. The studies validate the accuracy of the finite-difference electromagnetic solver. Relative advantages of the analytic and finite-difference methods are discussed.

  5. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  6. 3D acoustic wave modelling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sen, Mrinal K.

    2011-09-01

    Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of

  7. 3D Finite-Difference Modeling of Strong Ground Motion in the Upper Rhine Graben - 1356 Basel Earthquake

    NASA Astrophysics Data System (ADS)

    Oprsal, I.; Faeh, D.; Giardini, D.

    2002-12-01

    The disastrous Basel earthquake of October 18, 1356 (I0=X, M ≈ 6.9), appeared in, today seismically modest, Basel region (Upper Rhine Graben). The lack of strong ground motion seismic data can be effectively supplied by numerical modeling. We applied the 3D finite differences (FD) to predict ground motions which can be used for microzonation and hazard assessment studies. The FD method is formulated for topography models on irregular rectangular grids. It is a 3D explicit FD formulation of the hyperbolic partial differential equation (PDE). Elastodynamic PDE is solved in the time domain. The Hooke's isotropic inhomogeneous medium contains discontinuities and a topographic free surface. The 3D elastic FD modeling is applied on a newly established P and S-wave velocities structure model. This complex structure contains main interfaces and gradients inside some layers. It is adjacent to the earth surface and includes topography (Kind, Faeh and Giardini, 2002, A 3D Reference Model for the Area of Basel, in prep.). The first attempt was done for a double-couple point source and relatively simple source function. Numerical tests are planned for several finite-extent source histories because the 1356 Basel earthquake source features have not been well determined, yet. The presumed finite-extent source is adjacent to the free surface. The results are compared to the macroseismic information of the Basel area.

  8. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  9. Accurate 3-D finite difference computation of traveltimes in strongly heterogeneous media

    NASA Astrophysics Data System (ADS)

    Noble, M.; Gesret, A.; Belayouni, N.

    2014-12-01

    Seismic traveltimes and their spatial derivatives are the basis of many imaging methods such as pre-stack depth migration and tomography. A common approach to compute these quantities is to solve the eikonal equation with a finite-difference scheme. If many recently published algorithms for resolving the eikonal equation do now yield fairly accurate traveltimes for most applications, the spatial derivatives of traveltimes remain very approximate. To address this accuracy issue, we develop a new hybrid eikonal solver that combines a spherical approximation when close to the source and a plane wave approximation when far away. This algorithm reproduces properly the spherical behaviour of wave fronts in the vicinity of the source. We implement a combination of 16 local operators that enables us to handle velocity models with sharp vertical and horizontal velocity contrasts. We associate to these local operators a global fast sweeping method to take into account all possible directions of wave propagation. Our formulation allows us to introduce a variable grid spacing in all three directions of space. We demonstrate the efficiency of this algorithm in terms of computational time and the gain in accuracy of the computed traveltimes and their derivatives on several numerical examples.

  10. Compact finite difference method for American option pricing

    NASA Astrophysics Data System (ADS)

    Zhao, Jichao; Davison, Matt; Corless, Robert M.

    2007-09-01

    A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.

  11. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  12. 3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Aldridge, D. F.; Jensen, R. P.

    2013-12-01

    Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture

  13. Finite element and finite difference methods in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Morgan, Michael A.

    Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.

  14. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  15. Test of two methods for faulting on finite-difference calculations

    USGS Publications Warehouse

    Andrews, D.J.

    1999-01-01

    Tests of two fault boundary conditions show that each converges with second order accuracy as the finite-difference grid is refined. The first method uses split nodes so that there are disjoint grids that interact via surface traction. The 3D version described here is a generalization of a method I have used extensively in 2D; it is as accurate as the 2D version. The second method represents fault slip as inelastic strain in a fault zone. Offset of stress from its elastic value is seismic moment density. Implementation of this method is quite simple in a finite-difference scheme using velocity and stress as dependent variables.

  16. Finite-difference lattice-Boltzmann methods for binary fluids.

    PubMed

    Xu, Aiguo

    2005-06-01

    We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910

  17. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  18. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  19. High Order Finite Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2002-01-01

    The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the following points: (1) Linear stability for constant coefficients; (2) Linear stability for variable coefficients; (3) Non-linear stability; and (4) Stability at discontinuities. We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by step.

  20. Introduction to finite-difference methods for numerical fluid dynamics

    SciTech Connect

    Scannapieco, E.; Harlow, F.H.

    1995-09-01

    This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.

  1. Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

    PubMed Central

    Amirali, I.; Amiraliyev, G. M.; Cakir, M.; Cimen, E.

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  2. Explicit finite difference methods for the delay pseudoparabolic equations.

    PubMed

    Amirali, I; Amiraliyev, G M; Cakir, M; Cimen, E

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  3. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  4. Arrayed waveguide grating using the finite difference beam propagation method

    NASA Astrophysics Data System (ADS)

    Toledo, M. C. F.; Alayo, M. I.

    2013-03-01

    The purpose of this work is to analyze by simulation the coupling effects occurring in Arrayed Waveguide Grating (AWG) using the finite difference beam propagation method (FD-BPM). Conventional FD-BPM techniques do not immediately lend themselves to the analysis of large structures such as AWG. Cooper et al.1 introduced a description of the coupling between the interface of arrayed waveguides and star couplers using the numerically-assisted coupled-mode theory. However, when the arrayed waveguides are spatially close, such that, there is strong coupling between them, and coupled-mode theory is not adequate. On the other hand, Payne2 developed an exact eigenvalue equation for the super modes of a straight arrayed waveguide which involve a computational overhead. In this work, an integration of both methods is accomplished in order to describe the behavior of the propagation of light in guided curves. This new method is expected to reduce the necessary effort for simulation while also enabling the simulation of large and curved arrayed waveguides using a fully vectorial finite difference technique.

  5. A finite-difference method for transonic airfoil design.

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  6. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  7. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance

  8. Preliminary simulation of a M6.5 earthquake on the Seattle Fault using 3D finite-difference modeling

    USGS Publications Warehouse

    Stephenson, William J.; Frankel, Arthur D.

    2000-01-01

    A three-dimensional finite-difference simulation of a moderate-sized (M 6.5) thrust-faulting earthquake on the Seattle fault demonstrates the effects of the Seattle Basin on strong ground motion in the Puget lowland. The model area includes the cities of Seattle, Bremerton and Bellevue. We use a recently developed detailed 3D-velocity model of the Seattle Basin in these simulations. The model extended to 20-km depth and assumed rupture on a finite fault with random slip distribution. Preliminary results from simulations of frequencies 0.5 Hz and lower suggest amplification can occur at the surface of the Seattle Basin by the trapping of energy in the Quaternary sediments. Surface waves generated within the basin appear to contribute to amplification throughout the modeled region. Several factors apparently contribute to large ground motions in downtown Seattle: (1) radiation pattern and directivity from the rupture; (2) amplification and energy trapping within the Quaternary sediments; and (3) basin geometry and variation in depth of both Quaternary and Tertiary sediments

  9. Elastic finite-difference method for irregular grids

    SciTech Connect

    Oprsal, I.; Zahradnik, J.

    1999-01-01

    Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.

  10. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130

  11. A finite-difference contrast source inversion method

    NASA Astrophysics Data System (ADS)

    Abubakar, A.; Hu, W.; van den Berg, P. M.; Habashy, T. M.

    2008-12-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium.

  12. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.

    PubMed

    Yang, Chun; Tang, Dalin; Atluri, Satya

    2011-01-01

    Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression

  13. Multigrid methods and high order finite difference for flow in transition - Effects of isolated and distributed roughness elements

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.

    1993-01-01

    The high order finite difference and multigrid methods have been successfully applied to direct numerical simulation (DNS) for flow transition in 3D channels and 3D boundary layers with 2D and 3D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semicoarsening multigrid method associated with line distributive relaxation scheme, and a new treatment of the outflow boundary condition, which needs only a very short buffer domain to damp all wave reflection, are developed. These approaches make the multigrid DNS code very accurate and efficient. This makes us not only able to do spatial DNS for the 3D channel and flat plate at low computational costs, but also able to do spatial DNS for transition in the 3D boundary layer with 3D single and multiple roughness elements. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments.

  14. Optimization of a finite difference method for nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Chen, Miaochao

    2013-07-01

    Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.

  15. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  16. A non-linear constrained optimization technique for the mimetic finite difference method

    SciTech Connect

    Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico; Frego, Marco

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  17. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  18. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  19. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Lisitsa, Vadim; Tcheverda, Vladimir; Botter, Charlotte

    2016-04-01

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.

  20. A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Vanrumste, Bart; Van Hese, Peter; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik

    2005-08-01

    Many implementations of electroencephalogram (EEG) dipole source localization neglect the anisotropical conductivities inherent to brain tissues, such as the skull and white matter anisotropy. An examination of dipole localization errors is made in EEG source analysis, due to not incorporating the anisotropic properties of the conductivity of the skull and white matter. First, simulations were performed in a 5 shell spherical head model using the analytical formula. Test dipoles were placed in three orthogonal planes in the spherical head model. Neglecting the skull anisotropy results in a dipole localization error of, on average, 13.73 mm with a maximum of 24.51 mm. For white matter anisotropy these values are 11.21 mm and 26.3 mm, respectively. Next, a finite difference method (FDM), presented by Saleheen and Kwong (1997 IEEE Trans. Biomed. Eng. 44 800-9), is used to incorporate the anisotropy of the skull and white matter. The FDM method has been validated for EEG dipole source localization in head models with all compartments isotropic as well as in a head model with white matter anisotropy. In a head model with skull anisotropy the numerical method could only be validated if the 3D lattice was chosen very fine (grid size <=2 mm).

  1. Curvilinear Grid Finite-Difference Method to Simulate Seismic Wave Propagation with Topographic Fluid-Solid Interface at Sea Bottom

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Zhang, W.; Chen, X.

    2014-12-01

    This paper presents a curvilinear grid finite difference method for modeling seismic wave propagation with topographic fluid (acoustic) and solid (elastic) interface. The curvilinear grid finite difference method has been successfully used for seismic wave simulation with free surface topography and earthquake dynamics with complex falut geometry. For seismic wave simulation with topographic sea bottom, we use the curvilinear grid to conform the grid to the sea bottom to avoid artifical scatterings due to stair-case approximation. We solve the acoustic wave equation in the water layer and the elastic wave equation in the solid below the sea bottom. The fluid-solid interface condition is implemented by decomposing velocity and stress components to normal and parallel directions of the sea bottom. The results exhibit high accuracy by comparsion with analytical solutions for flat interfaces and also work very well when the fluid-solid interface is topographic. The scheme can be easily extended to 3-D situation.

  2. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method

    NASA Astrophysics Data System (ADS)

    Choi, S. J.; Kim, J.; Shin, S.

    2014-12-01

    In this presentation, a new non-hydrostatic (NH) dynamical core using the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization will be presented. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, we can achieve a high level of scalability. Also by using vertical FDM, we provide an easy way for coupling the dynamics and existing physics packages. The Euler equations used here are in a flux form based on the hybrid sigma hydrostatic pressure vertical coordinate, which are similar to those used in the Weather Research and Forecasting (WRF) model. Within these Euler equations, we use a time-split third-order Runge-Kutta (RK3) for the time discretization. In order to establish robustness, firstly the NH dynamical core is verified in a simplified two dimensional (2D) slice framework by conducting widely used standard benchmark tests, and then we verify the global three dimensional (3D) dynamical core on the cubed-sphere grid with several test cases introduced by Dynamical Core Model Intercomparison Project (DCMIP).

  3. A software implementation for detailed volume conductor modelling in electrophysiology using finite difference method.

    PubMed

    Kauppinen, P; Hyttinen, J; Laarne, P; Malmivuo, J

    1999-02-01

    There is an evolving need for new information available by employing patient tailored anatomically accurate computer models of the electrical properties of the human body. Because construction of a computer model can be difficult and laborious to perform sufficiently well, devised models have varied greatly in the level of anatomical accuracy incorporated in them. This has restricted the validity of conducted simulations. In the present study, a versatile software package was developed to transform anatomic voxel data into accurate finite difference method volume conductor models conveniently and in a short time. The package includes components for model construction, simulation, visualisation and detailed analysis of simulation output based on volume conductor theory. Due to the methods developed, models can comprise more anatomical details than the prior computer models. Several models have been constructed, for example, a highly detailed 3-D anatomically accurate computer model of the human thorax as a volume conductor utilising the US National Library of Medicine's (NLM) Visible Human Man (VHM) digital anatomy data. Based on the validation runs the developed software package is readily applicable in analysis of a wide range of bioelectric field problems. PMID:10092033

  4. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  5. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...

  6. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...

  7. Numerical solution of a diffusion problem by exponentially fitted finite difference methods.

    PubMed

    D'Ambrosio, Raffaele; Paternoster, Beatrice

    2014-01-01

    This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver. PMID:26034665

  8. Finite-difference, spectral and Galerkin methods for time-dependent problems

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1983-01-01

    Finite difference, spectral and Galerkin methods for the approximate solution of time dependent problems are surveyed. A unified discussion on their accuracy, stability and convergence is given. In particular, the dilemma of high accuracy versus stability is studied in some detail.

  9. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  10. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  11. A coarse-mesh nodal method-diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  12. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  13. A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem

    PubMed Central

    Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D.

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  14. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  15. Projection methods for incompressible flow problems with WENO finite difference schemes

    NASA Astrophysics Data System (ADS)

    de Frutos, Javier; John, Volker; Novo, Julia

    2016-03-01

    Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.

  16. Transient analysis of printed lines using finite-difference time-domain method

    SciTech Connect

    Ahmed, Shahid

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  17. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  18. Numerical Solutions of Electromagnetic Problems by Integral Equation Methods and Finite-Difference Time - Method.

    NASA Astrophysics Data System (ADS)

    Min, Xiaoyi

    This thesis first presents the study of the interaction of electromagnetic waves with three-dimensional heterogeneous, dielectric, magnetic, and lossy bodies by surface integral equation modeling. Based on the equivalence principle, a set of coupled surface integral equations is formulated and then solved numerically by the method of moments. Triangular elements are used to model the interfaces of the heterogeneous body, and vector basis functions are defined to expand the unknown current in the formulation. The validity of this formulation is verified by applying it to concentric spheres for which an exact solution exists. The potential applications of this formulation to a partially coated sphere and a homogeneous human body are discussed. Next, this thesis also introduces an efficient new set of integral equations for treating the scattering problem of a perfectly conducting body coated with a thin magnetically lossy layer. These electric field integral equations and magnetic field integral equations are numerically solved by the method of moments (MoM). To validate the derived integral equations, an alternative method to solve the scattering problem of an infinite circular cylinder coated with a thin magnetic lossy layer has also been developed, based on the eigenmode expansion. Results for the radar cross section and current densities via the MoM and the eigenmode expansion method are compared. The agreement is excellent. The finite difference time domain method is subsequently implemented to solve a metallic object coated with a magnetic thin layer and numerical results are compared with that by the MoM. Finally, this thesis presents an application of the finite-difference time-domain approach to the problem of electromagnetic receiving and scattering by a cavity -backed antenna situated on an infinite conducting plane. This application involves modifications of Yee's model, which applies the difference approximations of field derivatives to differential

  19. Determine the Dispersion Relation of an A6 Magnetron Using Conformal Finite Difference Time Domain Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Nieter, C.; Stoltz, P. H.; Smithe, D. N.

    2009-05-01

    This work introduces a conformal finite difference time domain (CFDTD) method to accurately determine the dispersion relation of an A6 relativistic magnetron. The accuracy is measured by comparing with accurate SUPERFISH calculations based on finite element method. The results show that an accuracy of 99.4% can be achieved by using only 10,000 mesh points with Dey-Mittra algorithm. By comparison, a mesh number of 360,000 is needed to preserve 99% accuracy using conventional FDTD method. This suggests one can efficiently and accurately study the hot tests of microwave tubes using CFDTD particle-in-cell method instead of conventional FDTD one.

  20. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  1. Finite difference methods with non-uniform meshes for nonlinear fractional differential equations

    NASA Astrophysics Data System (ADS)

    Li, Changpin; Yi, Qian; Chen, An

    2016-07-01

    In this article, finite difference methods with non-uniform meshes for solving nonlinear fractional differential equations are presented, where the non-equidistant stepsize is non-decreasing. The rectangle formula and trapezoid formula are proposed based on the non-uniform meshes. Combining the above two methods, we then establish the predictor-corrector scheme. The error and stability analysis are carefully investigated. At last, numerical examples are carried out to verify the theoretical analysis. Besides, the comparisons between non-uniform and uniform meshes are given, where the non-uniform meshes show the better performance when dealing with the less smooth problems.

  2. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo

    1987-02-01

    An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.

  3. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally

  4. Serpentine: Finite Difference Methods for Wave Propagation in Second Order Formulation

    SciTech Connect

    Petersson, N A; Sjogreen, B

    2012-03-26

    second order system is significantly smaller. Another issue with re-writing a second order system into first order form is that compatibility conditions often must be imposed on the first order form. These (Saint-Venant) conditions ensure that the solution of the first order system also satisfies the original second order system. However, such conditions can be difficult to enforce on the discretized equations, without introducing additional modeling errors. This project has previously developed robust and memory efficient algorithms for wave propagation including effects of curved boundaries, heterogeneous isotropic, and viscoelastic materials. Partially supported by internal funding from Lawrence Livermore National Laboratory, many of these methods have been implemented in the open source software WPP, which is geared towards 3-D seismic wave propagation applications. This code has shown excellent scaling on up to 32,768 processors and has enabled seismic wave calculations with up to 26 Billion grid points. TheWPP calculations have resulted in several publications in the field of computational seismology, e.g.. All of our current methods are second order accurate in both space and time. The benefits of higher order accurate schemes for wave propagation have been known for a long time, but have mostly been developed for first order hyperbolic systems. For second order hyperbolic systems, it has not been known how to make finite difference schemes stable with free surface boundary conditions, heterogeneous material properties, and curvilinear coordinates. The importance of higher order accurate methods is not necessarily to make the numerical solution more accurate, but to reduce the computational cost for obtaining a solution within an acceptable error tolerance. This is because the accuracy in the solution can always be improved by reducing the grid size h. However, in practice, the available computational resources might not be large enough to solve the problem with a

  5. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach.

    PubMed

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518

  6. Finite Difference Methods for Option Pricing under Lévy Processes: Wiener-Hopf Factorization Approach

    PubMed Central

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518

  7. High order finite difference methods with subcell resolution for advection equations with stiff source terms

    SciTech Connect

    Wang, Wei; Shu, Chi-Wang; Yee, H.C.; Sjögreen, Björn

    2012-01-01

    A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.

  8. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  9. High order finite difference and multigrid methods for spatially evolving instability in a planar channel

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.

    1993-01-01

    The fourth-order finite-difference scheme with fully implicit time-marching presently used to computationally study the spatial instability of planar Poiseuille flow incorporates a novel treatment for outflow boundary conditions that renders the buffer area as short as one wavelength. A semicoarsening multigrid method accelerates convergence for the implicit scheme at each time step; a line-distributive relaxation is developed as a robust fast solver that is efficient for anisotropic grids. Computational cost is no greater than that of explicit schemes, and excellent agreement with linear theory is obtained.

  10. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture

  11. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  12. A moving mesh finite difference method for equilibrium radiation diffusion equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  13. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2015-07-01

    Numerical methods for space-fractional diffusion equations often generate dense or even full stiffness matrices. Traditionally, these methods were solved via Gaussian type direct solvers, which requires O (N3) of computational work per time step and O (N2) of memory to store where N is the number of spatial grid points in the discretization. In this paper we develop a preconditioned fast Krylov subspace iterative method for the efficient and faithful solution of finite difference methods (both steady-state and time-dependent) space-fractional diffusion equations with fractional derivative boundary conditions in one space dimension. The method requires O (N) of memory and O (Nlog ⁡ N) of operations per iteration. Due to the application of effective preconditioners, significantly reduced numbers of iterations were achieved that further reduces the computational cost of the fast method. Numerical results are presented to show the utility of the method.

  14. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  15. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  16. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  17. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.

    PubMed

    Semenikhin, Igor; Zanuccoli, Mauro

    2013-12-01

    In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method. PMID:24323014

  18. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGESBeta

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  19. A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems

    NASA Astrophysics Data System (ADS)

    Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.

    2008-09-01

    A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.

  20. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  1. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    SciTech Connect

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  2. Modelling the core convection using finite element and finite difference methods

    NASA Astrophysics Data System (ADS)

    Chan, K. H.; Li, Ligang; Liao, Xinhao

    2006-08-01

    Applications of both parallel finite element and finite difference methods to thermal convection in a rotating spherical shell modelling the fluid dynamics of the Earth's outer core are presented. The numerical schemes are verified by reproducing the convection benchmark test by Christensen et al. [Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wilcht, J., Zhang, K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25-34.]. Both global average and local characteristics agree satisfactorily with the benchmark solution. With the element-by-element (EBE) parallelization technique, the finite element code demonstrates nearly optimal linear scalability in computational speed. The finite difference code is also efficient and scalable by utilizing a parallel library Aztec [Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official AZTEC User's Guide: Version 2.1.].

  3. Methods for comparing 3D surface attributes

    NASA Astrophysics Data System (ADS)

    Pang, Alex; Freeman, Adam

    1996-03-01

    A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.

  4. Overview of finite difference Hartree-Fock method algorithm, implementation and application

    NASA Astrophysics Data System (ADS)

    Kobus, J.

    2012-12-01

    Two-dimensional, finite difference Hartree-Fock method has been in constant usage and development over the last two decades. The method has proved stable and efficient enough to be applied to dozens of diatomic molecules, even to systems as large as the thorium fluoride. Its latest version is presented and the dependence of its accuracy on the grid size and efficiency on the overrelaxation parameters are discussed. The method has been mainly used to develop and calibrate sequences of universal even-tempered and polarization-consistent basis sets and assess basis set truncation and superposition errors. Its modified version has proved useful in testing various exchange-correlation potentials within the density functional theory. The method has turned out to be a valuable source of reference values of total energies, multipole moments, static polarizabilities and hyperpolarizabilities (αzz, βzzz, γzzzz, Az,zz and Bzz,zz) for atoms, diatomic molecules and their ions. Recently, it has been modified to allow to calculate the electrical properties of homonuclear molecules and the results for the Li2, N2, F2 and O2 systems are presented. Electrical properties of the AlF, CS, KCl diatomics and of highly ionized krypton atom (Kr+32) are reported as well. Accuracy of both the matrix Hartree-Fock employing universal even-tempered basis sets and the finite difference Hartree-Fock methods is discussed and the basis set superposition errors of the dipole polarizability and the first hyperpolarizability of the FH molecule is reexamined. Basis set superposition errors are also discussed in case of the dipole polarizability and the second hyperpolarizability of the F2 system.

  5. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    NASA Technical Reports Server (NTRS)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  6. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  7. Finite difference method to find period-one gait cycles of simple passive walkers

    NASA Astrophysics Data System (ADS)

    Dardel, Morteza; Safartoobi, Masoumeh; Pashaei, Mohammad Hadi; Ghasemi, Mohammad Hassan; Navaei, Mostafa Kazemi

    2015-01-01

    Passive dynamic walking refers to a class of bipedal robots that can walk down an incline with no actuation or control input. These bipeds are sensitive to initial conditions due to their style of walking. According to small basin of attraction of passive limit cycles, it is important to start with an initial condition in the basin of attraction of stable walking (limit cycle). This paper presents a study of the simplest passive walker with point and curved feet. A new approach is proposed to find proper initial conditions for a pair of stable and unstable period-one gait limit cycles. This methodology is based on finite difference method which can solve the nonlinear differential equations of motion on a discrete time. Also, to investigate the physical configurations of the walkers and the environmental influence such as the slope angle, the parameter analysis is applied. Numerical simulations reveal the performance of the presented method in finding two stable and unstable gait patterns.

  8. Combined Immersed-Boundary/High-Order Finite Difference Methods For Simulations of Acoustic Scattering

    NASA Astrophysics Data System (ADS)

    Arias-Ramirez, Walter; Olson, Britton; Wolf, William; Lawrence Livermore National Laboratory Team; University of Campinas Team

    2015-11-01

    The suitability of a continuing forcing immersed boundary method (IBM) combined with a high-order finite difference method is examined on several acoustic scattering problems. A suite of two-dimensional numerical simulations of canonical cases are conducted with the aim of analyzing the error behavior associated with the IBM, through wave reflection, wave diffraction, and the shock-boundary layer interaction phenomena. The compressible Navier-Stokes equations are solved using the Miranda code developed at Lawrence Livermore National Laboratory. Comparison of analytical solution against numerical results is shown for different flow parameters. Preliminary results indicate that the continuing forcing approach has the largest error in wave reflection compared to analytical solution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  10. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  11. Numerical analysis of polarization gratings using the finite-difference time-domain method

    SciTech Connect

    Oh, Chulwoo; Escuti, Michael J.

    2007-10-15

    We report the first full numerical analysis of polarization gratings (PGs), and study their most general properties and limits by using the finite-difference time-domain (FDTD) method. In this way, we avoid limiting assumptions on material properties or grating dimensions (e.g., no paraxial approximations) and provide a more complete understanding of PG diffraction behavior. We identify the fundamental delineation between diffraction regimes (thin versus thick) for anisotropic gratings and determine the conditions for {approx_equal}100% diffraction efficiency in the framework of the coupled-wave {rho} and Q parameters. Diffraction characteristics including the efficiency, spectral response, and polarization sensitivity are investigated for the two primary types of PGs with linear and circular birefringence. The angular response and finite-grating behavior (i.e., pixelation) are also examined. Comparisons with previous analytic approximations, where applicable, show good agreement.

  12. Non-Reflecting Regions for Finite Difference Methods in Modeling of Elastic Wave Propagation in Plates

    NASA Technical Reports Server (NTRS)

    Kishoni, Doron; Taasan, Shlomo

    1994-01-01

    Solution of the wave equation using techniques such as finite difference or finite element methods can model elastic wave propagation in solids. This requires mapping the physical geometry into a computational domain whose size is governed by the size of the physical domain of interest and by the required resolution. This computational domain, in turn, dictates the computer memory requirements as well as the calculation time. Quite often, the physical region of interest is only a part of the whole physical body, and does not necessarily include all the physical boundaries. Reduction of the calculation domain requires positioning an artificial boundary or region where a physical boundary does not exist. It is important however that such a boundary, or region, will not affect the internal domain, i.e., it should not cause reflections that propagate back into the material. This paper concentrates on the issue of constructing such a boundary region.

  13. Low-dispersion finite difference methods for acoustic waves in a pipe

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1991-01-01

    A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.

  14. Free transverse vibration of a wrinkled annular thin film by using finite difference method

    NASA Astrophysics Data System (ADS)

    Wang, C. G.; Liu, Y. P.; Lan, L.; Tan, H. F.

    2016-02-01

    This paper investigates the free transverse vibration of a wrinkled annular thin film. The non-dimensional Hamilton motion equation of the wrinkled annular thin film is established, which is solved by using the finite difference method to acquire the vibration frequency and mode. The predicted vibration characteristics are verified by the experimental measurements based on the digital image correlation (DIC) technique. The results show that wrinkles have great effects on the vibration of the annular thin film. Especially for the heavily wrinkled cases, the local-global interactive mode dominates the vibration of the annular thin film. The frequency increases as the wrinkling level increases which is mainly due to the increased nonlinear geometric stiffness. The results provide favorable supports for understanding the role of nonlinear wrinkling on the vibration of thin films.

  15. Effect of increase in intraperitoneal pressure on fluid distribution in tissue using finite difference method

    NASA Astrophysics Data System (ADS)

    Putri, Selmi; Arif, Idam; Khotimah, Siti Nurul

    2015-04-01

    In this study, peritoneal dialysis transport system was numerically simulated using finite difference method. The increase in the intraperitoneal pressure due to coughing has a high value outside the working area of the void volume fraction of the hydrostatic pressure θ(P). Therefore to illustrate the effects of the pressure increment, the pressure of working area is chosen between 1 and 3 mmHg. The effects of increased pressure in peritoneal tissue cause more fluid to flow into the blood vessels and lymph. Furthermore, the increased pressure in peritoneal tissue makes the volumetric flux jv and solute flux js across the tissue also increase. The more fluid flow into the blood vessels and lymph causes the fluid to flow into tissue qv and the glucose flow qs to have more negative value and also decreases the glucose concentration CG in the tissue.

  16. CUDA Fortran acceleration for the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hadi, Mohammed F.; Esmaeili, Seyed A.

    2013-05-01

    A detailed description of programming the three-dimensional finite-difference time-domain (FDTD) method to run on graphical processing units (GPUs) using CUDA Fortran is presented. Two FDTD-to-CUDA thread-block mapping designs are investigated and their performances compared. Comparative assessment of trade-offs between GPU's shared memory and L1 cache is also discussed. This presentation is for the benefit of FDTD programmers who work exclusively with Fortran and are reluctant to port their codes to C in order to utilize GPU computing. The derived CUDA Fortran code is compared with an optimized CPU version that runs on a workstation-class CPU to present a realistic GPU to CPU run time comparison and thus help in making better informed investment decisions on FDTD code redesigns and equipment upgrades. All analyses are mirrored with CUDA C simulations to put in perspective the present state of CUDA Fortran development.

  17. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mccoy, M. J.

    1980-01-01

    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  18. A block interface flux reconstruction method for numerical simulation with high order finite difference scheme

    NASA Astrophysics Data System (ADS)

    Gao, Junhui

    2013-05-01

    Overlap grid is usually used in numerical simulation of flow with complex geometry by high order finite difference scheme. It is difficult to generate overlap grid and the connectivity information between adjacent blocks, especially when interpolation is required for non-coincident overlap grids. In this study, an interface flux reconstruction (IFR) method is proposed for numerical simulation using high order finite difference scheme with multi-block structured grids. In this method the neighboring blocks share a common face, and the fluxes on each block are matched to set the boundary conditions for each interior block. Therefore this method has the promise of allowing discontinuous grids on either side of an interior block interface. The proposed method is proven to be stable for 7-point central DRP scheme coupled with 4-point and 5-point boundary closure schemes, as well as the 4th order compact scheme coupled with 3rd order boundary closure scheme. Four problems are numerically solved with the developed code to validate the interface flux reconstruction method in this study. The IFR method coupled with the 4th order DRP scheme or compact scheme is validated to be 4th order accuracy with one and two dimensional waves propagation problems. Two dimensional pulse propagation in mean flow is computed with wavy mesh to demonstrate the ability of the proposed method for non-uniform grid. To demonstrate the ability of the proposed method for complex geometry, sound scattering by two cylinders is simulated and the numerical results are compared with the analytical data. It is shown that the numerical results agree well with the analytical data. Finally the IFR method is applied to simulate viscous flow pass a cylinder at Reynolds number 150 to show its capability for viscous problem. The computed pressure coefficient on the cylinder surface, the frequency of vortex shedding, the lift and drag coefficients are presented. The numerical results are compared with the data

  19. Mimetic finite difference method for the stokes problem on polygonal meshes

    SciTech Connect

    Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  20. Recognition methods for 3D textured surfaces

    NASA Astrophysics Data System (ADS)

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  1. On a finite-difference method for solving transient viscous flow problems

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1983-01-01

    A method has been developed to solve the unsteady, compressible Navier-Stokes equation with the property of consistency and the ability of minimizing the equation stiffness. It relies on innovative extensions of the state-of-the-art finite-difference techniques and is composed of: (1) the upwind scheme for split-flux and the central scheme for conventional flux terms in the inviscid and viscous regions, respectively; (2) the characteristic treatment of both inviscid and viscous boundaries; (3) an ADI procedure compatible with interior and boundary points; and (4) a scalar matrix coefficient including viscous terms. The performance of this method is assessed with four sample problems; namely, a standing shock in the Laval duct, a shock reflected from the wall, the shock-induced boundary-layer separation, and a transient internal nozzle flow. The results from the present method, an existing hybrid block method, and a well-known two-step explicit method are compared and discussed. It is concluded that this method has an optimal trade-off between the solution accuracy and computational economy, and other desirable properties for analyzing transient viscous flow problems.

  2. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  3. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  4. Coupled finite difference and boundary element methods for fluid flow through a vessel with multibranches in tumours.

    PubMed

    Sun, Qiang; Wu, Guo Xiong

    2013-03-01

    A mathematical model and a numerical solution procedure are developed to simulate flow field through a 3D permeable vessel with multibranches embedded in a solid tumour. The model is based on Poisseuille's law for the description of the flow through the vessels, Darcy's law for the fluid field inside the tumour interstitium, and Starling's law for the flux transmitted across the vascular walls. The solution procedure is based on a coupled method, in which the finite difference method is used for the flow in the vessels and the boundary element method is used for the flow in the tumour. When vessels meet each other at a junction, the pressure continuity and mass conservation are imposed at the junction. Three typical representative structures within the tumour vasculature, symmetrical dichotomous branching, asymmetrical bifurcation with uneven radius of daughter vessels and trifurcation, are investigated in detail as case studies. These results have demonstrated the features of tumour flow environment by the pressure distributions and flow velocity field. PMID:23345121

  5. Simulations of SH wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawahara, J.; Okamoto, T.; Miyashita, K.

    2006-05-01

    We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media in cluding traction-freecracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based oncomparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 01. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.

  6. An exploratory study of a finite difference method for calculating unsteady transonic potential flow

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1979-01-01

    A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.

  7. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  8. Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Ye, Zhengyin

    2015-12-01

    Despite significant progress in recent computational techniques, the accurate numerical simulations, such as direct-numerical simulation and large-eddy simulation, are still challenging. For accurate calculations, the high-order finite difference method (FDM) is usually adopted with coordinate transformation from body-fitted grid to Cartesian grid. But this transformation might lead to failure in freestream preservation with the geometric conservation law (GCL) violated, particularly in high-order computations. GCL identities, including surface conservation law (SCL) and volume conservation law (VCL), are very important in discretization of high-order FDM. To satisfy GCL, various efforts have been made. An early and successful approach was developed by Thomas and Lombard [6] who used the conservative form of metrics to cancel out metric terms to further satisfy SCL. Visbal and Gaitonde [7] adopted this conservative form of metrics for SCL identities and satisfied VCL identity through invoking VCL equation to acquire the derivative of Jacobian in computation on moving and deforming grids with central compact schemes derived by Lele [5]. Later, using the metric technique from Visbal and Gaitonde [7], Nonomura et al. [8] investigated the freestream and vortex preservation properties of high-order WENO and WCNS on stationary curvilinear grids. A conservative metric method (CMM) was further developed by Deng et al. [9] with stationary grids, and detailed discussion about the innermost difference operator of CMM was shown with proof and corresponding numerical test cases. Noticing that metrics of CMM is asymmetrical without coordinate-invariant property, Deng et al. proposed a symmetrical CMM (SCMM) [12] by using the symmetric forms of metrics derived by Vinokur and Yee [10] to further eliminate asymmetric metric errors with stationary grids considered only. The research from Abe et al. [11] presented new asymmetric and symmetric conservative forms of time metrics and

  9. Conservative high-order-accurate finite-difference methods for curvilinear grids

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Chakrvarthy, Sukumar

    1993-01-01

    Two fourth-order-accurate finite-difference methods for numerically solving hyperbolic systems of conservation equations on smooth curvilinear grids are presented. The first method uses the differential form of the conservation equations; the second method uses the integral form of the conservation equations. Modifications to these schemes, which are required near boundaries to maintain overall high-order accuracy, are discussed. An analysis that demonstrates the stability of the modified schemes is also provided. Modifications to one of the schemes to make it total variation diminishing (TVD) are also discussed. Results that demonstrate the high-order accuracy of both schemes are included in the paper. In particular, a Ringleb-flow computation demonstrates the high-order accuracy and the stability of the boundary and near-boundary procedures. A second computation of supersonic flow over a cylinder demonstrates the shock-capturing capability of the TVD methodology. An important contribution of this paper is the dear demonstration that higher order accuracy leads to increased computational efficiency.

  10. Simulation of optical devices using parallel finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Li, Kang; Kong, Fanmin; Mei, Liangmo; Liu, Xin

    2005-11-01

    This paper presents a new parallel finite-difference time-domain (FDTD) numerical method in a low-cost network environment to stimulate optical waveguide characteristics. The PC motherboard based cluster is used, as it is relatively low-cost, reliable and has high computing performance. Four clusters are networked by fast Ethernet technology. Due to the simplicity nature of FDTD algorithm, a native Ethernet packet communication mechanism is used to reduce the overhead of the communication between the adjacent clusters. To validate the method, a microcavity ring resonator based on semiconductor waveguides is chosen as an instance of FDTD parallel computation. Speed-up rate under different division density is calculated. From the result we can conclude that when the decomposing size reaches a certain point, a good parallel computing speed up will be maintained. This simulation shows that through the overlapping of computation and communication method and controlling the decomposing size, the overhead of the communication of the shared data will be conquered. The result indicates that the implementation can achieve significant speed up for the FDTD algorithm. This will enable us to tackle the larger real electromagnetic problem by the low-cost PC clusters.

  11. Use of the finite-difference time-domain method in electromagnetic dosimetry

    SciTech Connect

    Sullivan, D.M.

    1987-01-01

    Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N)/sup 2/, and computation time on the order of (3N)/sup 3/ where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane.

  12. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  13. Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows

    SciTech Connect

    Fu, S.C.; So, R.M.C.; Leung, W.W.F.

    2010-08-20

    With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out.

  14. Electromagnetic Wave Propagation in Body Area Networks Using the Finite-Difference-Time-Domain Method

    PubMed Central

    Bringuier, Jonathan N.; Mittra, Raj

    2012-01-01

    A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data. PMID:23012575

  15. Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

    NASA Astrophysics Data System (ADS)

    Nikkar, Samira; Nordström, Jan

    2015-06-01

    A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary and initial conditions using Simultaneously Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative finite difference scheme. We show how to construct a time-dependent SAT formulation that automatically imposes boundary conditions, when and where they are required. We also prove that a uniform flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds automatically by using SBP-SAT in time and space. The developed technique is illustrated by considering an application using the linearized Euler equations: the sound generated by moving boundaries. Numerical calculations corroborate the stability and accuracy of the new fully discrete approximations.

  16. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  17. STEALTH: a Lagrange explicit finite-difference code for solid, structural, and thermohydraulic analysis. Volume 8B. STEALTH/WHAMSE: a 3-D fluid-structure interaction code

    SciTech Connect

    Not Available

    1984-10-01

    STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structure response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.

  18. An Adaptive Finite Difference Method for Hyperbolic Systems in OneSpace Dimension

    SciTech Connect

    Bolstad, John H.

    1982-06-01

    Many problems of physical interest have solutions which are generally quite smooth in a large portion of the region of interest, but have local phenomena such as shocks, discontinuities or large gradients which require much more accurate approximations or finer grids for reasonable accuracy. Examples are atmospheric fronts, ocean currents, and geological discontinuities. In this thesis we develop and partially analyze an adaptive finite difference mesh refinement algorithm for the initial boundary value problem for hyperbolic systems in one space dimension. The method uses clusters of uniform grids which can ''move'' along with pulses or steep gradients appearing in the calculation, and which are superimposed over a uniform coarse grid. Such refinements are created, destroyed, merged, separated, recursively nested or moved based on estimates of the local truncation error. We use a four-way linked tree and sequentially allocated deques (double-ended queues) to perform these operations efficiently. The local truncation error in the interior of the region is estimated using a three-step Richardson extrapolation procedure, which can also be considered a deferred correction method. At the boundaries we employ differences to estimate the error. Our algorithm was implemented using a portable, extensible Fortran preprocessor, to which we added records and pointers. The method is applied to three model problems: the first order wave equation, the second order wave equation, and the inviscid Burgers equation. For the first two model problems our algorithm is shown to be three to five times more efficient (in computing time) than the use of a uniform coarse mesh, for the same accuracy. Furthermore, to our knowledge, our algorithm is the only one which adaptively treats time-dependent boundary conditions for hyperbolic systems.

  19. Finite difference and lead field methods in designing implantable ECG monitor.

    PubMed

    Väisänen, Juho; Hyttinen, Jari; Malmivuo, Jaakko

    2006-10-01

    To minimize time-consuming and expensive in vitro and in vivo testing, information regarding the effects of implantation and the implants on measurements should be available during the designing of active implantable devices measuring bioelectric signals such as electrocardiograms (ECG). Modeling offers a fairly inexpensive and effective means of studying and demonstrating the effects of implantation on ECG measurements prior to any in vivo tests, and can thus provide the designer with valuable information. Finite difference model (FDM) and lead field approaches offer straightforward and effective modeling methods supporting the designing of active implantable ECG devices. The present study demonstrates such methods in developing and studying ECG implants. They were applied in demonstrating the effects of implant dimensions and of electrode implantation on the measurement sensitivity of the ECG device. The results of the simulations indicated that the interelectrode distance is the factor of the implant design determining the lead sensitivity. Other parameters related implant dimensions and shape have minor effect on the morphology of the ECG or on the average sensitivity of the measurement. This is shown for example when the interelectrode distance was reduced to 1/3 of original the average lead sensitivity decreased by 69.1% while larger relative changes in other dimensions produced clearly smaller changes. It was also observed here that implanting the electrodes deeper under the skin has major effects on the local sensitivities in heart muscle and thus affect to the morphology of the ECG. The study indicated also that non-conducting medium (i.e. implant insulated body) between the electrodes increases the sensitivity on heart muscle compared to cases where only electrodes are implanted. PMID:17031715

  20. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    NASA Astrophysics Data System (ADS)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a

  1. A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    NASA Technical Reports Server (NTRS)

    Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1977-01-01

    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.

  2. LaMEM: a massively parallel 3D staggered-grid finite-difference code for coupled nonlinear themo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2015-04-01

    This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of

  3. Variable grid-size and time-step finite difference method for seismic forward modeling and reverse-time migration

    NASA Astrophysics Data System (ADS)

    Wang, Yue

    A new variable grid-size and time-step finite-difference (FD) method is developed and applied to three different geophysical problems: simulation of tube waves in boreholes, three-dimensional (3-D) ground-motion simulation in sedimentary basin models, and reverse-time migration of multicomponent data. Unlike the conventional FD method, which uses a fixed grid-size and time-step for the entire model region, spatially variable grid-sizes and time-steps are used to achieve the optimal computational efficiency. For tube wave simulations, a fine grid-spacing is used for simulation inside the borehole region, while a coarse grid is used in the exterior region. While the stability condition requires a very fine time step for the fine grid, a variable time-step method provides coarse time steps for simulation in the coarse grid. Variable grid-size and time-step changes are used to achieve both accuracy and efficiency in the simulations. Numerical tests are performed for the Bayou Choctaw salt-flank model with different borehole models. The results show the important borehole effects on the seismic wavefield for a realistic source bandwidth. The combination of variable grid-size and time-step methods reduces computational costs by several orders of magnitude for the borehole models. Viscoelastic 3-D simulations are performed for a three-layer Salt Lake basin model. The near-surface unconsolidated layer is modeled with a fine grid, and the deep part of the model is modeled by a coarse grid. Simulation results show that the 3-D basin features and the shallow layer significantly affect the amplitude and duration time of the ground motion. In the elastic case, the approximation by 2-D modeling is insufficient to simulate the 3-D ground motion response. A basin model without a shallow low-velocity layer underestimates the ground motion duration and cumulative kinetic energy by 50% or more. The simulation of a Bingham Mine blast suggests that a lower S-velocity should be used to

  4. Finite difference numerical methods for boundary control problems governed by hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.

    1983-01-01

    This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.

  5. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  6. Stability analysis of the solution of the one-dimensional Richards equation by the finite difference method

    NASA Astrophysics Data System (ADS)

    Pedrozo, Héctor A.; Rosenberger, Mario R.; Schvezov, Carlos E.

    2016-06-01

    The solution by the Finite Difference Method of the Richards equation written as a function of the degree of saturation of the domain and the matrix potential is obtained and the convergence of the solutions is analyzed. The necessary time and spatial sizes for convergence are obtained and established.

  7. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces

    SciTech Connect

    Appelo, D; Petersson, N A

    2007-12-17

    The isotropic elastic wave equation governs the propagation of seismic waves caused by earthquakes and other seismic events. It also governs the propagation of waves in solid material structures and devices, such as gas pipes, wave guides, railroad rails and disc brakes. In the vast majority of wave propagation problems arising in seismology and solid mechanics there are free surfaces. These free surfaces have, in general, complicated shapes and are rarely flat. Another feature, characterizing problems arising in these areas, is the strong heterogeneity of the media, in which the problems are posed. For example, on the characteristic length scales of seismological problems, the geological structures of the earth can be considered piecewise constant, leading to models where the values of the elastic properties are also piecewise constant. Large spatial contrasts are also found in solid mechanics devices composed of different materials welded together. The presence of curved free surfaces, together with the typical strong material heterogeneity, makes the design of stable, efficient and accurate numerical methods for the elastic wave equation challenging. Today, many different classes of numerical methods are used for the simulation of elastic waves. Early on, most of the methods were based on finite difference approximations of space and time derivatives of the equations in second order differential form (displacement formulation), see for example [1, 2]. The main problem with these early discretizations were their inability to approximate free surface boundary conditions in a stable and fully explicit manner, see e.g. [10, 11, 18, 20]. The instabilities of these early methods were especially bad for problems with materials with high ratios between the P-wave (C{sub p}) and S-wave (C{sub s}) velocities. For rectangular domains, a stable and explicit discretization of the free surface boundary conditions is presented in the paper [17] by Nilsson et al. In summary

  8. A 3D Contact Smoothing Method

    SciTech Connect

    Puso, M A; Laursen, T A

    2002-05-02

    Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.

  9. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  10. Memory cost of absorbing conditions for the finite-difference time-domain method.

    PubMed

    Chobeau, Pierre; Savioja, Lauri

    2016-07-01

    Three absorbing layers are investigated using standard rectilinear finite-difference schemes. The perfectly matched layer (PML) is compared with basic lossy layers terminated by two types of absorbing boundary conditions, all simulated using equivalent memory consumption. Lossy layers present the advantage of being scalar schemes, whereas the PML relies on a staggered scheme where both velocity and pressure are split. Although the PML gives the lowest reflection magnitudes over all frequencies and incidence angles, the most efficient lossy layer gives reflection magnitudes of the same order as the PML from mid- to high-frequency and for restricted incidence angles. PMID:27475200

  11. Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bailey, Harry E.; Beam, Richard M.

    1991-01-01

    Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.

  12. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  13. A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue

    NASA Astrophysics Data System (ADS)

    Russell, Greg; Harkins, Kevin D.; Secomb, Timothy W.; Galons, Jean-Philippe; Trouard, Theodore P.

    2012-02-01

    A new finite difference (FD) method for calculating the time evolution of complex transverse magnetization in diffusion-weighted magnetic resonance imaging and spectroscopy experiments is described that incorporates periodic boundary conditions. The new FD method relaxes restrictions on the allowable time step size employed in modeling which can significantly reduce computation time for simulations of large physical extent and allow for more complex, physiologically relevant, geometries to be simulated.

  14. Performance of preconditioned iterative and multigrid solvers in solving the three-dimensional magnetotelluric modeling problem using the staggered finite-difference method: a comparative study

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Lili; Hao, Tianyao

    2016-02-01

    An effective solver for the large complex system of linear equations is critical for improving the accuracy of numerical solutions in three-dimensional (3D) magnetotelluric (MT) modeling using the staggered finite-difference (SFD) method. In electromagnetic modeling, the formed system of linear equations is commonly solved using preconditioned iterative relaxation methods. We present 3D MT modeling using the SFD method, based on former work. The multigrid solver and three solvers preconditioned by incomplete Cholesky decomposition—the minimum residual method, the generalized product bi-conjugate gradient method and the bi-conjugate gradient stabilized method—are used to solve the formed system of linear equations. Divergence correction for the magnetic field is applied. We also present a comparison of the stability and convergence of these iterative solvers if divergence correction is used. Model tests show that divergence correction improves the convergence of iterative solvers and the accuracy of numerical results. Divergence correction can also decrease the number of iterations for fast convergence without changing the stability of linear solvers. For consideration of the computation time and memory requirements, the multigrid solver combined with divergence correction is preferred for 3D MT field simulation.

  15. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  16. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  17. Finite-difference time-domain methods to analyze ytterbium-doped Q-switched fiber lasers.

    PubMed

    Hattori, Haroldo T; Khaleque, Abdul

    2016-03-01

    Q-switched lasers are widely used in material processing, laser ranging, medicine, and nonlinear optics--in particular, Q-switched lasers in optical fibers are important since they cannot only generate high peak powers but can also concentrate high peak powers in small areas. In this paper, we present new finite-difference time-domain methods that analyze the dynamics of Q-switched fiber lasers, which are more flexible and robust than previous methods. We extend the method to analyze fiber ring lasers and compare the results with our experiments. PMID:26974625

  18. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  19. 3-D dynamic rupture simulations by a finite volume method

    NASA Astrophysics Data System (ADS)

    Benjemaa, M.; Glinsky-Olivier, N.; Cruz-Atienza, V. M.; Virieux, J.

    2009-07-01

    Dynamic rupture of a 3-D spontaneous crack of arbitrary shape is investigated using a finite volume (FV) approach. The full domain is decomposed in tetrahedra whereas the surface, on which the rupture takes place, is discretized with triangles that are faces of tetrahedra. First of all, the elastodynamic equations are described into a pseudo-conservative form for an easy application of the FV discretization. Explicit boundary conditions are given using criteria based on the conservation of discrete energy through the crack surface. Using a stress-threshold criterion, these conditions specify fluxes through those triangles that have suffered rupture. On these broken surfaces, stress follows a linear slip-weakening law, although other friction laws can be implemented. For The Problem Version 3 of the dynamic-rupture code verification exercise conducted by the SCEC/USGS, numerical solutions on a planar fault exhibit a very high convergence rate and are in good agreement with the reference one provided by a finite difference (FD) technique. For a non-planar fault of parabolic shape, numerical solutions agree satisfactorily well with those obtained with a semi-analytical boundary integral method in terms of shear stress amplitudes, stopping phases arrival times and stress overshoots. Differences between solutions are attributed to the low-order interpolation of the FV approach, whose results are particularly sensitive to the mesh regularity (structured/unstructured). We expect this method, which is well adapted for multiprocessor parallel computing, to be competitive with others for solving large scale dynamic ruptures scenarios of seismic sources in the near future.

  20. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    SciTech Connect

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-field technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.

  1. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGESBeta

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  2. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation

    NASA Astrophysics Data System (ADS)

    Tan, Sirui; Huang, Lianjie

    2014-05-01

    For modelling large-scale 3-D scalar-wave propagation, the finite-difference (FD) method with high-order accuracy in space but second-order accuracy in time is widely used because of its relatively low requirements of computer memory. We develop a novel staggered-grid (SG) FD method with high-order accuracy not only in space, but also in time, for solving 2- and 3-D scalar-wave equations. We determine the coefficients of the FD operator in the joint time-space domain to achieve high-order accuracy in time while preserving high-order accuracy in space. Our new FD scheme is based on a stencil that contains a few more grid points than the standard stencil. It is 2M-th-order accurate in space and fourth-order accurate in time when using 2M grid points along each axis and wavefields at one time step as the standard SGFD method. We validate the accuracy and efficiency of our new FD scheme using dispersion analysis and numerical modelling of scalar-wave propagation in 2- and 3-D complex models with a wide range of velocity contrasts. For media with a velocity contrast up to five, our new FD scheme is approximately two times more computationally efficient than the standard SGFD scheme with almost the same computer-memory requirement as the latter. Further numerical experiments demonstrate that our new FD scheme loses its advantages over the standard SGFD scheme if the velocity contrast is 10. However, for most large-scale geophysical applications, the velocity contrasts often range approximately from 1 to 3. Our new method is thus particularly useful for large-scale 3-D scalar-wave modelling and full-waveform inversion.

  3. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.; Scott, Waymond R., Jr.

    1990-07-01

    Two antennas are considered, a cylindrical monopole and a conical monopole. Both are driven through an image plane from a coaxial transmission line. Each of these antennas corresponds to a well-posed theoretical electromagnetic boundary value problem and a realizable experimental model. These antennas are analyzed by a straightforward application of the time-domain finite-difference method. The computed results for these antennas are shown to be in excellent agreement with accurate experimental measurements for both the time domain and the frequency domain. The graphical displays presented for the transient near-zone and far-zone radiation from these antennas provide physical insight into the radiation process.

  4. A users guide for A344: A program using a finite difference method to analyze transonic flow over oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.

    1979-01-01

    The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.

  5. Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Gu, Ning

    2016-05-01

    In this paper, we propose an efficient solution on solving 3-dimensional (3D) time-domain Maxwell equations using the semi-implicit Crank-Nicholson (CN) method for time domain discretization with advantage of unconditional time stability. By applying the idea of fractional steps method (FSM) to the CN scheme, the proposed method provides a much simpler and efficient implementation than a direct implementation of the CN scheme. Compared with the alternating-direction implicit (ADI) method and explicit finite-difference time-domain approach (FDTD), it significantly saves the computational resource like memory and CPU time while remains similar numerical accuracy.

  6. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  7. Second-order explicit finite-difference methods for transient-flow analysis

    NASA Technical Reports Server (NTRS)

    Chaudhry, M. H.; Hussaini, M. Y.

    1983-01-01

    Three second-order accurate numerical methods - MacCormack's method, Lambda scheme and Gabutti scheme - are introduced to solve the quasi-linear, hyperbolic partial differential equations describing transient flows in closed conduits. The details of these methods and the treatment of boundary conditions are presented and the results computed by using these methods for a typical piping system are compared. It is shown that for the same accuracy, second-order methods require considerably lesser number of computational nodes and computer time as compared to those required by the first-order methods.

  8. Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids

    SciTech Connect

    Son, Sang-Kil

    2011-03-01

    We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schroedinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.

  9. A comparative study of finite-difference methods for radiative transfer problems.

    NASA Astrophysics Data System (ADS)

    Mohan Rao, D.; Varghese, B. A.; Srinivasa Rao, M.

    1995-06-01

    The authors have compared the numerical results of two widely used difference methods for the radiative transfer equation in plane-parallel medium. The Discrete Space theory (DS) is based on the direct first-order differential equation for the specific intensity whereas Auer's Hermitian (AH) method used the second order form for the mean-intensity and flux-like variables. The numerical results of these two methods are compared with analytical solutions under the two-stream approximation in a semi-infinite atmosphere. For the multi-stream case, the numerical errors are estimated using the solution of Chandrasekhar's discrete ordinate method.

  10. Convergency analysis of the high-order mimetic finite difference method

    SciTech Connect

    Lipnikov, Konstantin; Veiga Da Beirao, L; Manzini, G

    2008-01-01

    We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments.

  11. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  12. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  13. Eulerian adaptive finite-difference method for high-velocity impact and penetration problems

    SciTech Connect

    Barton, Philip T.; Deiterding, Ralf; Meiron, Daniel I.; Pullin, Dale I

    2013-01-01

    Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell s model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.

  14. Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system.

    PubMed

    Xiao, Jinbiao; Sun, Xiaohan

    2012-09-10

    A vector mode solver for bending waveguides by using a modified finite-difference (FD) method is developed in a local cylindrical coordinate system, where the perfectly matched layer absorbing boundary conditions are incorporated. Utilizing Taylor series expansion technique and continuity condition of the longitudinal field components, a standard matrix eigenvalue equation without the averaged index approximation approach for dealing with the discrete points neighboring the dielectric interfaces is obtained. Complex effective indexes and field distributions of leaky modes for a typical rib bending waveguide and a silicon wire bend are presented, and solutions accord well with those from the film mode matching method, which shows the validity and utility of the established method. PMID:23037277

  15. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  16. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  17. Local Outer Radiating Boundary Conditions for the Finite-Difference Time-Domain Method Applied to Maxwell's Equations.

    NASA Astrophysics Data System (ADS)

    Steich, David James

    1995-01-01

    The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows

  18. A support-operator method for viscoelastic wave modelling in 3-D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2008-01-01

    We apply the method of support operators (SOM) to solve the 3-D, viscoelastic equations of motion for use in earthquake simulations. SOM is a generalized finite-difference method that can utilize meshes of arbitrary structure and incorporate irregular geometry. Our implementation uses a 3-D, logically rectangular, hexahedral mesh. Calculations are second-order in space and time. A correction term is employed for suppression of spurious zero-energy modes (hourglass oscillations). We develop a free surface boundary condition, and an absorbing boundary condition using the method of perfectly matched layers (PML). Numerical tests using a layered material model in a highly deformed mesh show good agreement with the frequency-wavenumber method, for resolutions greater than 10 nodes per wavelength. We also test a vertically incident P wave on a semi-circular canyon, for which results match boundary integral solutions at resolutions greater that 20 nodes per wavelength. We also demonstrate excellent parallel scalability of our code.

  19. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    NASA Technical Reports Server (NTRS)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  20. A note on the leap-frog scheme in two and three dimensions. [finite difference method for partial differential equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, S.; Gottlieb, D.

    1976-01-01

    The paper considers the leap-frog finite-difference method (Kreiss and Oliger, 1973) for systems of partial differential equations of the form du/dt = dF/dx + dG/dy + dH/dz, where d denotes partial derivative, u is a q-component vector and a function of x, y, z, and t, and the vectors F, G, and H are functions of u only. The original leap-frog algorithm is shown to admit a modification that improves on the stability conditions for two and three dimensions by factors of 2 and 2.8, respectively, thereby permitting larger time steps. The scheme for three dimensions is considered optimal in the sense that it combines simple averaging and large time steps.

  1. Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods

    NASA Astrophysics Data System (ADS)

    Ding, H.; Shu, C.; Yeo, K. S.; Xu, D.

    2007-01-01

    In this paper, the mesh-free least square-based finite difference (MLSFD) method is applied to numerically study the flow field around two circular cylinders arranged in side-by-side and tandem configurations. For each configuration, various geometrical arrangements are considered, in order to reveal the different flow regimes characterized by the gap between the two cylinders. In this work, the flow simulations are carried out in the low Reynolds number range, that is, Re=100 and 200. Instantaneous vorticity contours and streamlines around the two cylinders are used as the visualization aids. Some flow parameters such as Strouhal number, drag and lift coefficients calculated from the solution are provided and quantitatively compared with those provided by other researchers.

  2. 3D modelling of the electromagnetic response of geophysical targets using the FDTD method

    SciTech Connect

    Debroux, P.S.

    1996-05-01

    A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.

  3. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  4. Nonstandard finite difference schemes

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1995-01-01

    The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.

  5. 3D scanning modeling method application in ancient city reconstruction

    NASA Astrophysics Data System (ADS)

    Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo

    2015-07-01

    With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.

  6. Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru

    2013-12-01

    We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.

  7. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Dong, XinZhuang; Shu, Chi-Wang

    2015-10-01

    For numerical simulation of detonation, computational cost using uniform meshes is large due to the vast separation in both time and space scales. Adaptive mesh refinement (AMR) is advantageous for problems with vastly different scales. This paper aims to propose an AMR method with high order accuracy for numerical investigation of multi-dimensional detonation. A well-designed AMR method based on finite difference weighted essentially non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A new cell-based data structure is used to organize the adaptive meshes. The new data structure makes it possible for cells to communicate with each other quickly and easily. In order to develop an AMR method with high order accuracy, high order prolongations in both space and time are utilized in the data prolongation procedure. Based on the message passing interface (MPI) platform, we have developed a workload balancing parallel AMR&WENO code using the Hilbert space-filling curve algorithm. Our numerical experiments with detonation simulations indicate that the AMR&WENO is accurate and has a high resolution. Moreover, we evaluate and compare the performance of the uniform mesh WENO scheme and the parallel AMR&WENO method. The comparison results provide us further insight into the high performance of the parallel AMR&WENO method.

  8. An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Kun; Shao, Wei; Shi, Sheng-Bing; Zhang, Yong; Wang, Bing-Zhong

    2015-07-01

    An efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is presented for solving two-dimensional (2D) electromagnetic (EM) scattering problems. The formulation for the 2D transverse-electric (TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit (ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field (TF/SF) boundary and the perfectly matched layer (PML), the radar cross section (RCS) of two 2D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007 and 61471105).

  9. Finite difference method for the arbitrary potential in two dimensions: Application to double/triple quantum dots

    NASA Astrophysics Data System (ADS)

    Ahn, Jai Seok

    2014-01-01

    A finite difference method (FDM) applicable to a two dimensional (2D) quantum dot was developed as a non-conventional approach to the theoretical understandings of quantum devices. This method can be applied to a realistic potential with an arbitrary shape. Using this method, the Hamiltonian in a tri-diagonal matrix could be obtained from any 2D potential, and the Hamiltonian could be diagonalized numerically for the eigenvalues. The legitimacy of this method was first checked by comparing the results with a finite round well with the analytic solutions. Two truncated harmonic wells were examined as a realistic model potential for lateral double quantum dots (DQDs) and for triple quantum dots (TQDs). The successful applications of the 2D FDM were observed with the entanglements in the DQDs. The level-splitting and anticrossing behaviors of the DQDs could be obtained by varying the distance between the dots and by introducing asymmetry in the well-depths. The 2D FDM results for linear/triangular TQDs were compared with the tight binding approximations.

  10. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Carey, Graham F.

    2003-01-01

    A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.

  11. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display. PMID:27136814

  12. On the validity of the modified equation approach to the stability analysis of finite-difference methods

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1987-01-01

    The validity of the modified equation stability analysis introduced by Warming and Hyett was investigated. It is shown that the procedure used in the derivation of the modified equation is flawed and generally leads to invalid results. Moreover, the interpretation of the modified equation as the exact partial differential equation solved by a finite-difference method generally cannot be justified even if spatial periodicity is assumed. For a two-level scheme, due to a series of mathematical quirks, the connection between the modified equation approach and the von Neuman method established by Warming and Hyett turns out to be correct despite its questionable original derivation. However, this connection is only partially valid for a scheme involving more than two time levels. In the von Neumann analysis, the complex error multiplication factor associated with a wave number generally has (L-1) roots for an L-level scheme. It is shown that the modified equation provides information about only one of these roots.

  13. Analytic Coarse-Mesh Finite-Difference Method Generalized for Heterogeneous Multidimensional Two-Group Diffusion Calculations

    SciTech Connect

    Garcia-Herranz, Nuria; Cabellos, Oscar; Aragones, Jose M.; Ahnert, Carol

    2003-05-15

    In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations.

  14. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  15. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  16. 3D face recognition based on a modified ICP method

    NASA Astrophysics Data System (ADS)

    Zhao, Kankan; Xi, Jiangtao; Yu, Yanguang; Chicharo, Joe F.

    2011-11-01

    3D face recognition technique has gained much more attention recently, and it is widely used in security system, identification system, and access control system, etc. The core technique in 3D face recognition is to find out the corresponding points in different 3D face images. The classic partial Iterative Closest Point (ICP) method is iteratively align the two point sets based on repetitively calculate the closest points as the corresponding points in each iteration. After several iterations, the corresponding points can be obtained accurately. However, if two 3D face images with different scale are from the same person, the classic partial ICP does not work. In this paper we propose a modified partial Iterative Closest Point (ICP) method in which the scaling effect is considered to achieve 3D face recognition. We design a 3x3 diagonal matrix as the scale matrix in each iteration of the classic partial ICP. The probing face image which is multiplied by the scale matrix will keep the similar scale with the reference face image. Therefore, we can accurately determine the corresponding points even the scales of probing image and reference image are different. 3D face images in our experiments are acquired by a 3D data acquisition system based on Digital Fringe Projection Profilometry (DFPP). A 3D database consists of 30 group images, three images with the same scale, which are from the same person with different views, are included in each group. And in different groups, the scale of the 3 images may be different from other groups. The experiment results show that our proposed method can achieve 3D face recognition, especially in the case that the scales of probing image and referent image are different.

  17. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  18. 3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS

    SciTech Connect

    J. MOREL; J. MCGHEE; ET AL

    2000-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.

  19. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  20. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  1. Effective finite-difference modelling methods with 2D acoustic wave equation using a combination of cross and rhombus stencils

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang; Sen, Mrinal K.

    2016-07-01

    The 2D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2 M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2 M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional 2nd-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2 M)th-order accuracy in space and (2 N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra computational

  2. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  3. In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI∕CT coregistration

    PubMed Central

    Klose, Alexander D.; Beattie, Bradley J.; Dehghani, Hamid; Vider, Lena; Le, Carl; Ponomarev, Vladimir; Blasberg, Ronald

    2010-01-01

    Purpose: Bioluminescence imaging is a research tool for studying gene expression levels in small animal models of human disease. Bioluminescence light, however, is strongly scattered in biological tissue and no direct image of the light-emitting reporter probe’s location can be obtained. Therefore, the authors have developed a linear image reconstruction method for bioluminescence tomography (BLT) that recovers the three-dimensional spatial bioluminescent source distribution in small animals. Methods: The proposed reconstruction method uses third-order simplified spherical harmonics (SP3) solutions to the equation of radiative transfer for modeling the bioluminescence light propagation in optically nonuniform tissue. The SP3 equations and boundary conditions are solved with a finite-difference (FD) technique on a regular grid. The curved geometry of the animal surface was taken into account with a blocking-off region method for regular grids. Coregistered computed tomography (CT) and magnetic resonance (MR) images provide information regarding the geometry of the skin surface and internal organs. The inverse source problem is defined as an algebraic system of linear equations for the unknown source distribution and is iteratively solved given multiview and multispectral boundary measurements. The average tissue absorption parameters, which are used for the image reconstruction process, were calculated with an evolution strategy (ES) from in vivo measurements using an implanted pointlike source of known location and spectrum. Moreover, anatomical information regarding the location of the internal organs and other tissue structures within the animal’s body are provided by coregistered MR images. Results: First, the authors recovered the wavelength-dependent absorption coefficients (average error of 14%) with the ES under ideal conditions by using a numerical mouse model. Next, they reconstructed the average absorption coefficient of a small animal by using an

  4. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  5. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  6. A method to fabricate disconnected silver nanostructures in 3D.

    PubMed

    Vora, Kevin; Kang, SeungYeon; Mazur, Eric

    2012-01-01

    The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can

  7. Novel frequency domain techniques and advances in Finite Difference Time domain (FDTD) method for efficient solution of multiscale electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Panayappan, Kadappan

    With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these

  8. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  9. Neutron transport with the method of characteristics for 3-D full core boiling water reactor applications

    NASA Astrophysics Data System (ADS)

    Thomas, Justin W.

    2006-12-01

    The Numerical Nuclear Reactor (NNR) is a code suite that is being developed to provide high-fidelity multi-physics capability for the analysis of light water nuclear reactors. The focus of the work here is to extend the capability of the NNR by incorporation of the neutronics module, DeCART, for Boiling Water Reactor (BWR) applications. The DeCART code has been coupled to the NNR fluid mechanics and heat transfer module STAR-CD for light water reactor applications. The coupling has been accomplished via an interface program, which is responsible for mapping the STAR-CD and DeCART meshes, managing communication, and monitoring convergence. DeCART obtains the solution of the 3-D Boltzmann transport equation by performing a series of 2-D modular ray tracing-based method of characteristics problems that are coupled within the framework of 3-D coarse-mesh finite difference. The relatively complex geometry and increased axial heterogeneity found in BWRs are beyond the modeling capability of the original version of DeCART. In this work, DeCART is extended in three primary areas. First, the geometric capability is generalized by extending the modular ray tracing scheme and permitting an unstructured mesh in the global finite difference kernel. Second, numerical instabilities, which arose as a result of the severe axial heterogeneity found in BWR cores, have been resolved. Third, an advanced nodal method has been implemented to improve the accuracy of the axial flux distribution. In this semi-analytic nodal method, the analytic solution to the transverse-integrated neutron diffusion equation is obtained, where the nonhomogeneous neutron source was first approximated by a quartic polynomial. The successful completion of these three tasks has allowed the application of the coupled DeCART/STAR-CD code to practical BWR problems.

  10. A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer

    NASA Technical Reports Server (NTRS)

    Pyle, L. D.; Wheat, S. R.

    1984-01-01

    Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.

  11. Color dithering methods for LEGO-like 3D printing

    NASA Astrophysics Data System (ADS)

    Sun, Pei-Li; Sie, Yuping

    2015-01-01

    Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.

  12. SAMA: A Method for 3D Morphological Analysis

    PubMed Central

    Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M.

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  13. The practical application of a finite difference method for analyzing transonic flow over oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1978-01-01

    Separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances was performed. The steady velocity potential was obtained first from the well known nonlinear equation for steady transonic flow. The unsteady velocity potential was then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. The results of an investigation into the relaxation-solution-instability problem was discussed. Concepts examined include variations in outer boundary conditions, a coordinate transformation so that the boundary condition at infinity may be applied to the outer boundaries of the finite difference region, and overlapping subregions. The general conclusion was that only a full direct solution in which all unknowns are obtained at the same time will avoid the solution instabilities of relaxation. An analysis of the one-dimensional form of the unsteady transonic equation was studied to evaluate errors between exact and finite difference solutions. Pressure distributions were presented for a low-aspect-ratio clipped delta wing at Mach number of 0.9 and for a moderate-aspect-ratio rectangular wing at a Mach number of 0.875.

  14. A method for building 3D models of barchan dunes

    NASA Astrophysics Data System (ADS)

    Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu

    2016-01-01

    The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.

  15. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  16. Optical Sensors and Methods for Underwater 3D Reconstruction.

    PubMed

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  17. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  18. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  19. Lightning Threat Analysis for the Space Shuttle Launch Pad and the Payload Changeout Room Using Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.

    1997-01-01

    This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.

  20. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  1. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  2. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial

  3. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  4. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  5. Reconstruction of 3D structure using stochastic methods: morphology and transport properties

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Gerke, Kirill; Čapek, Pavel; Vasilyev, Roman; Korost, Dmitry; Skvortsova, Elena

    2013-04-01

    One of the main factors defining numerous flow phenomena in rocks, soils and other porous media, including fluid and solute movements, is pore structure, e.g., pore sizes and their connectivity. Numerous numerical methods were developed to quantify single and multi-phase flow in such media on microscale. Among most popular ones are: 1) a wide range of finite difference/element/volume solutions of Navier-Stokes equations and its simplifications; 2) lattice-Boltzmann method; 3) pore-network models, among others. Each method has some advantages and shortcomings, so that different research teams usually utilize more than one, depending on the study case. Recent progress in 3D imaging of internal structure, e.g., X-ray tomography, FIB-SEM and confocal microscopy, made it possible to obtain digitized input pore parameters for such models, however, a trade-off between resolution and sample size is usually unavoidable. There are situations then only standard two-dimensional information of porous structure is known due to tomography high cost or resolution limitations. However, physical modeling on microscale requires 3D information. There are three main approaches to reconstruct (using 2D cut(s) or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other granular packs) and 3) morphological methods. Stochastic reconstructions using correlation functions possess some important advantage - they provide a statistical description of the structure, which is known to have relationships with all physical properties. In addition, this method is more flexible for other applications to characterize porous media. Taking different 3D scans of natural and artificial porous materials (sandstones, soils, shales, ceramics) we choose some 2D cut/s as sources of input correlation functions. Based on different types of correlation functions

  6. Single-camera fixed perspective 360-deg 3D method

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Fergan, Robert K.

    1997-01-01

    The use of 3D methods for such applications as feature locations within a wide field-of-view, such as for automated guided vehicles or large assembly work, offers some distinct challenges. The use of stereo viewing has often been the method of choice due to the wide area coverage and hardware simplicity. However, stereo based methods suffer from a loss of spatial position resolution for more distant object as compared to close objects due to the high demagnification needed to cover large fields-of-view. A long depth-of-field in such systems may also degrade the general ability to perform correlations due to poor focus. In addition, stereo looses distance resolution for features nearing the line of the two cameras, typically requiring movement of the cameras. The paper presents a novel method of obtaining 3D scene information as seen from the center of a cylindrical field. The method described uses a single camera with a view that is rotated through 360 degrees by means of a continuously rotating mirror. The viewing systems uses a constant field of view optical system that provides a constant X-Y resolution of features in the scene over depths of several meters. Comparing successive images with the readout from an encoder on the rotating mirror generates all locations of objects within a limited height cylinder. This paper will discuss the sources of errors and typical capabilities of this approach in light of a real-time part location tracking application useful in assembly systems.

  7. Quantitative validation of the 3D SAR profile of hyperthermia applicators using the gamma method.

    PubMed

    de Bruijne, Maarten; Samaras, Theodoros; Chavannes, Nicolas; van Rhoon, Gerard C

    2007-06-01

    For quality assurance of hyperthermia treatment planning systems, quantitative validation of the electromagnetic model of an applicator is essential. The objective of this study was to validate a finite-difference time-domain (FDTD) model implementation of the Lucite cone applicator (LCA) for superficial hyperthermia. The validation involved (i) the assessment of the match between the predicted and measured 3D specific absorption rate (SAR) distribution, and (ii) the assessment of the ratio between model power and real-world power. The 3D SAR distribution of seven LCAs was scanned in a phantom bath using the DASY4 dosimetric measurement system. The same set-up was modelled in SEMCAD X. The match between the predicted and the measured SAR distribution was quantified with the gamma method, which combines distance-to-agreement and dose difference criteria. Good quantitative agreement was observed: more than 95% of the measurement points met the acceptance criteria 2 mm/2% for all applicators. The ratio between measured and predicted power absorption ranged from 0.75 to 0.92 (mean 0.85). This study shows that quantitative validation of hyperthermia applicator models is feasible and is worth considering as a part of hyperthermia quality assurance procedures. PMID:17505090

  8. 3D reconstruction methods of coronal structures by radio observations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  9. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  10. Comparative Analysis of Modeling a High-Current Relativistic Charged-Particle Beam in a Diode with Magnetic Insulation Using the Finite-Difference Method and the Large-Particle Method

    NASA Astrophysics Data System (ADS)

    Bogdanovich, B. Yu.; Nesterovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.

    2014-08-01

    Results of modeling of a high-current relativistic beam by the finite-difference method are compared with results obtained for a beam with the same parameters using the well-known KARAT code, which is based on the large-particle method. These two methods give similar results, which justifies the use of the finite-difference method for the numerical solution of the equations of motion describing the motion of the beam in its own and an external electromagnetic field.

  11. Study of stress waves in geomedia and effect of a soil cover layer on wave attenuation using a 1-D finite-difference method

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-liang; Li, Yong-chi; Wang, J. G.

    2006-12-01

    The propagation and attenuation of blast-induced stress waves differs between geomedia such as rock or soil mass. This paper numerically studies the propagation and attenuation of blast-induced elastoplastic waves in deep geomedia by using a one-dimensional (1-D) finite-difference code. Firstly, the elastoplastic Cap models for rock and soil masses are introduced into the governing equations of spherical wave motion and a FORTRAN code based on the finite difference method is developed. Secondly, an underground spherical blast is simulated with this code and verified by software, RENEWTO. The propagation of stress-waves in rock and soil masses is numerically investigated, respectively. Finally, the effect of a soil cover layer on the attenuation of stress waves in the rear rock mass is studied. It is determined that large plastic deformation of geomedia can effectively dissipate the energy of stress-waves inward and the developed 1-D finite difference code coupled with elastoplastic Cap models is convenient and effective in the numerical simulations for underground spherical explosion.

  12. Accelerating a 3D finite-difference wave propagation code by a factor of 50 and a spectral-element code by a factor of 25 using a cluster of GPU graphics cards

    NASA Astrophysics Data System (ADS)

    Komatitsch, Dimitri; Michéa, David; Erlebacher, Gordon; Göddeke, Dominik

    2010-05-01

    We first accelerate a three-dimensional finite-difference in the time domain (FDTD) wave propagation code by a factor of about 50 using Graphics Processing Unit (GPU) computing on a cheap NVIDIA graphics card with the CUDA programming language. We implement the code in CUDA in the case of the fully heterogeneous elastic wave equation. We also implement Convolution Perfectly Matched Layers (CPMLs) on the graphics card to efficiently absorb outgoing waves on the fictitious edges of the grid. We show that the code that runs on the graphics card gives the expected results by comparing our results to those obtained by running the same simulation on a classical processor core. The methodology that we present can be used for Maxwell's equations as well because their form is similar to that of the seismic wave equation written in velocity vector and stress tensor. We then implement a high-order finite-element (spectral-element) application, which performs the numerical simulation of seismic wave propagation resulting for instance from earthquakes at the scale of a continent or from active seismic acquisition experiments in the oil industry, on a cluster of NVIDIA Tesla graphics cards using the CUDA programming language and non blocking message passing based on MPI. We compare it to the implementation in C language and MPI on a classical cluster of CPU nodes. We use mesh coloring to efficiently handle summation operations over degrees of freedom on an unstructured mesh, and we exchange information between nodes using non blocking MPI messages. Using non-blocking communications allows us to overlap the communications across the network and the data transfer between the GPU card and the CPU node on which it is installed with calculations on that GPU card. We perform a number of numerical tests to validate the single-precision CUDA and MPI implementation and assess its accuracy. We then analyze performance measurements and in average we obtain a speedup of 20x to 25x.

  13. A perceptual preprocess method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Shi, Yawen; Wang, Yongfang; Wang, Yubing

    2015-08-01

    A perceptual preprocessing method for 3D-HEVC coding is proposed in the paper. Firstly we proposed a new JND model, which accounts for luminance contrast masking effect, spatial masking effect, and temporal masking effect, saliency characteristic as well as depth information. We utilize spectral residual approach to obtain the saliency map and built a visual saliency factor based on saliency map. In order to distinguish the sensitivity of objects in different depth. We segment each texture frame into foreground and background by a automatic threshold selection algorithm using corresponding depth information, and then built a depth weighting factor. A JND modulation factor is built with a linear combined with visual saliency factor and depth weighting factor to adjust the JND threshold. Then, we applied the proposed JND model to 3D-HEVC for residual filtering and distortion coefficient processing. The filtering process is that the residual value will be set to zero if the JND threshold is greater than residual value, or directly subtract the JND threshold from residual value if JND threshold is less than residual value. Experiment results demonstrate that the proposed method can achieve average bit rate reduction of 15.11%, compared to the original coding scheme with HTM12.1, while maintains the same subjective quality.

  14. Development of a S{sub n} transport code based on discontinuous finite element method and coarse mesh finite difference formulation

    SciTech Connect

    Lee, D. W.; Joo, H. G.

    2013-07-01

    The methods and performance of a three-dimensional S{sub n} transport code employing the Discontinuous Finite Element Method (DFEM) and the Coarse Mesh Finite Difference (CMFD) formulation are presented. The mesh generator GMSH and a post processing visualization tool Visit are combined with the code for flexible geometry processing and versatile visualization. The CMFD method for DFEM Sn applications is formulated and the performance of the CMFD acceleration of eigenvalue calculations is demonstrated for a simple set of neutron transport problems. (authors)

  15. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid

    NASA Astrophysics Data System (ADS)

    Bettaibi, Soufiene; Kuznik, Frédéric; Sediki, Ezeddine

    2016-02-01

    This paper presents a numerical study of thermosolutal mixed convection in rectangular enclosure with sliding top lid. The fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method (LBM), whereas the temperature and concentration fields are computed by finite difference method (FDM). The main objective of this study is to investigate the accuracy and the effectiveness of such model to predict thermodynamics for heat and mass transfer in a driven cavity. This model is validated with different numerical methods in the current literature. A good agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of the proposed approach.

  16. 3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh; Song, Heather

    2015-11-01

    Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.

  17. A method of PSF generation for 3D brightfield deconvolution.

    PubMed

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function. PMID:20096049

  18. The COMET method in 3-D hexagonal geometry

    SciTech Connect

    Connolly, K. J.; Rahnema, F.

    2012-07-01

    The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)

  19. 2.5D modelling of a horizontal electric dipole using Finite Difference method with non-uniform grids and preconditioned sparse matrices

    NASA Astrophysics Data System (ADS)

    Miranda, D. D.; Howard, A. Q.

    2012-12-01

    Computational modelling of geophysical data is an important step in the process of hydrocarbon exploration. It consists in simulating the exploratory procedure and realistic geological environments. It allows a preliminary evaluation of the exploration feasibility of a particular terrain or geological model, indicating the best conditions for geophysical surveys. In this paper, we assess the Finite Difference frequency domain method for modelling the electromagnetic response of a horizontal electric dipole in 1D and 2.5D geometries. The non-uniform grid is refined in regions where the electromagnetic fields vary rapidly, namely the regions where we have variation in conductivity distribution and near the source dipole. We chose the horizontal electromagnetic dipole because it is the source normally used in the marine controlled-source electromagnetic surveys (mCSEM), which is the next step in our research. The mCSEM, also known as Sea Bed Logging, is a method for detection and characterization of thin resistive structures, like hydrocarbon reservoirs, often located in regions of deep water. It consists of a mobile electric dipole or a magnetic loop as a source, positioned near the sea floor where an array of electric and magnetic receivers are deployed. The source transmitter uses a low frequency signal on the order of 1Hz, that diffuses both in the ocean and in the sediments beneath it and is captured by the receivers . Amplitude and phase of this signal depend on the electrical conductivity of the seabed environment. The complexity of the environments and the large dimensions of the geological domains that we want to investigate make the modelling procedure extremely demanding, since the Finite Difference method requires a total discretization of the studied domain, resulting in large systems of linear equations, which can make the procedure long and expensive. Non-uniform grids and exploitation of the sparse property of the Finite Difference matrices are example

  20. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Mcknight, R. L.

    1983-01-01

    The objective of this research is to develop an analytical tool capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. The techniques developed must be capable of accommodating large excursions in temperatures with the associated variations in material properties including plasticity and creep. The overall objective of this proposed program is to develop advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost effective analysis of combustors, turbine blades, and vanes. The approach will be to develop four different theories, one linear and three higher order with increasing complexities including embedded singularities.

  1. On 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.

    1986-01-01

    Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  2. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  3. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  4. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  5. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  6. Aspects of numerical and representational methods related to the finite-difference simulation of advective and dispersive transport of freshwater in a thin brackish aquifer

    USGS Publications Warehouse

    Merritt, M.L.

    1993-01-01

    The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.

  7. Study on Low-Frequency Oscillations in a Gyrotron Using a 3D CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2010-11-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. 2D Particle-in-cell simulations quasi-statically model the development of oscillations of the space charge in the adiabatic trap, but the physics of the electron dynamics in the adiabatic trap is only partially understood. Therefore, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a high average power gyrotron. As the CFDTD method exhibits a second order accuracy, complicated structures, such as a magnetron injection gun, can be well described. Employing a highly parallelized computation, the model can be simulated in time domain more realistically.

  8. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface

    NASA Astrophysics Data System (ADS)

    De Basabe, Jonás D.; Sen, Mrinal K.

    2015-01-01

    The numerical simulation of wave propagation in media with solid and fluid layers is essential for marine seismic exploration data analysis. The numerical methods for wave propagation that are applicable to this physical settings can be broadly classified as partitioned or monolithic: The partitioned methods use separate simulations in the fluid and solid regions and explicitly satisfy the interface conditions, whereas the monolithic methods use the same method in all the domain without any special treatment of the fluid-solid interface. Despite the accuracy of the partitioned methods, the monolithic methods are more common in practice because of their convenience. In this paper, we analyse the accuracy of several monolithic methods for wave propagation in the presence of a fluid-solid interface. The analysis is based on grid-dispersion criteria and numerical examples. The methods studied here include: the classical finite-difference method (FDM) based on the second-order displacement formulation of the elastic wave equation (DFDM), the staggered-grid finite difference method (SGFDM), the velocity-stress FDM with a standard grid (VSFDM) and the spectral-element method (SEM). We observe that among these, DFDM and the first-order SEM have a large amount of grid dispersion in the fluid region which renders them impractical for this application. On the other hand, SGFDM, VSFDM and SEM of order greater or equal to 2 yield accurate results for the body waves in the fluid and solid regions if a sufficient number of nodes per wavelength is used. All of the considered methods yield limited accuracy for the surface waves because the proper boundary conditions are not incorporated into the numerical scheme. Overall, we demonstrate both by analytic treatment and numerical experiments, that a first-order velocity-stress formulation can, in general, be used in dealing with fluid-solid interfaces without using staggered grids necessarily.

  9. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  10. 3D simulation of seismic wave propagation around a tunnel using the spectral element method

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Friederich, W.

    2010-05-01

    We model seismic wave propagation in the environment of a tunnel for later application to reconnaissance. Elastic wave propagation can be simulated by different numerical techniques such as finite differences and pseudospectral methods. Their disadvantage is the lack of accuracy on free surfaces, numerical dispersion and inflexibility of the mesh. Here we use the software package SPECFEM3D_SESAME in an svn development version, which is based on the spectral element method (SEM) and can handle complex mesh geometries. A weak form of the elastic wave equation leads to a linear system of equations with a diagonal mass matrix, where the free surface boundary of the tunnel can be treated under realistic conditions and can be effectively implemented in parallel. We have designed a 3D external mesh including a tunnel and realistic features such as layers and holes to simulate elastic wave propagation in the zone around the tunnel. The source is acting at the tunnel surface so that we excite Rayleigh waves which propagate to the front face of the tunnel. A conversion takes place and a high amplitude S-wave is radiated in the direction of the tunnel axis. Reflections from perturbations in front of the tunnel can be measured by receivers implemented on the tunnel face. For a shallow tunnel the land surface has high influence on the wave propagation. By implementing additional receivers at this surface we intent to improve the prediction. It shows that the SEM is very capable to handle the complex geometry of the model and especially incorporates the free surfaces of the model.

  11. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  12. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  13. Two new methods for simulating photolithography development in 3D

    SciTech Connect

    Helmsen, J.; Colella, P.; Dorr, M.; Puckett, E.G.

    1997-01-30

    Two methods are presented for simulating the development of photolithographic profiles during the resist dissolution phase. These algorithms are the volume-of-fluid algorithm, and the steady level-set algorithm. They are compared with the ray-trace, cell, and level-set techniques employed in SAMPLE-3D. The volume-of-fluid algorithm employs an Euclidean Grid with volume fractions. At each time step, the surface is reconstructed by computing an approximation of the tangent plane of the surface in each cell that contains a value between 0 and 1. The geometry constructed in this manner is used to determine flow velocity vectors and the flux across each edge. The material is then advanced by a split advection scheme. The steady Level Set algorithm is an extension of the Iterative Level Set algorithm. The steady Level Set algorithm combines Fast Level Set concepts and a technique for finding zero residual solutions to the ( ) function. The etch time for each cell is calculated in a time ordered manner. Use of heap sorting data structures allows the algorithm to execute extremely quickly. Comparisons of the methods have been performed and results shown.

  14. New method for 3D reconstruction in digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2002-05-01

    Digital tomosynthesis mammography is an advanced x-ray application that can provide detailed 3D information about the imaged breast. We introduce a novel reconstruction method based on simple backprojection, which yields high contrast reconstructions with reduced artifacts at a relatively low computational complexity. The first step in the proposed reconstruction method is a simple backprojection with an order statistics-based operator (e.g., minimum) used for combining the backprojected images into a reconstructed slice. Accordingly, a given pixel value does generally not contribute to all slices. The percentage of slices where a given pixel value does not contribute, as well as the associated reconstructed values, are collected. Using a form of re-projection consistency constraint, one now updates the projection images, and repeats the order statistics backprojection reconstruction step, but now using the enhanced projection images calculated in the first step. In our digital mammography application, this new approach enhances the contrast of structures in the reconstruction, and allows in particular to recover the loss in signal level due to reduced tissue thickness near the skinline, while keeping artifacts to a minimum. We present results obtained with the algorithm for phantom images.

  15. The 3D Shape of the Dendrite by WDT Method

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Mitobe, Kazutaka; Yoshimura, Noboru

    The purpose of this study is use of a three dimension (3D) measuring system that can automatically measure surface condition. We applied the WDT method that is one of the migration acceleration testing methods, to calculate the spatial variation of the electrodes of ion immigration on a glass epoxy printed wiring board. We also investigated the spatial shape and its variation of dendrite after short circuit for the cases of uniform and nonuniform field strength. As a result the phenomenon of immigration peak of separated matter from cathode to anode due to nonuniform was reported.The moving of the peak of the separated matter is supposed to be due to Cu(OH)2's change in accumulation status. Under the nonuniform and uniform situation, the behavior of separated matter will change after occurring short circuit between the electrodes. Therefore in order to avoid the progress of ion immigration, it is necessary to pay attention to the field strength in hardwiring and the curvature so that the field strength of the wiring pattern cannot be very high.

  16. Studying the TEM response of a 3-D conductor at a geological contact using the FDTD method

    SciTech Connect

    Wang, T.; Tripp, A.C.; Hohmann, G.W.

    1995-07-01

    Many mineral targets are located near contact zones. Since the change of resistivity across the contact can distort or obscure the transient electromagnetic (TEM) response of the target, it is important to understand the possible effects. Previous investigators have examined similar problems using scale models. For example, Spies and Parker (1984) studied the TEM responses of fixed-loop and moving-loop configurations to geological contacts with lateral resistivity variations. More recently, Wilt (1991) systematically studied TEM soundings near a geological contact and observed that different survey systems respond to the contact in different ways. This paper will illustrate the use of the finite-difference, time-domain (FDTD) algorithm of Wang and Hohmann (1993) for calculating the TEM response of a 3-D conductive body at a geological contact. The algorithm is based on the Yee staggered grid FDTD method for solving the transient electrical nonmagnetic field responses of a 3-D model. On a suitable computer, a wide range of model responses can be readily calculated, a versatility that scale modeling does not share. This study uses a fixed transmitter loop, roving-receiver configuration. Many other configurations can be regarded as special cases of this survey. It is commonly employed, for instance, by the Newmont EMP (Body and Wiles, 1984), UTEM (West et al., 1984), and Geonics EM37 systems. The configuration also facilitates finite-difference, time-domain modeling because it does not require frequent movement of the source.

  17. A Comparison of Spectral Element and Finite Difference Methods Using Statically Refined Nonconforming Grids for the MHD Island Coalescence Instability Problem

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.

    2009-04-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.

  18. Computational studies of optical textures of twist disclination loops in liquid-crystal films by using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-02-01

    Optical images of textured liquid-crystal films containing various types of twist disclination loops are computed using an approximate matrix method and a direct numerical simulation based on the finite-difference time-domain (FDTD) method. The selected defects introduce large multidirectional spatial gradients in the optic axis, mimicking the orientation textures that arise in the construction and use of biosensors based on liquid-crystal vision. It is shown that under these experimentally relevant conditions, the matrix method fails to capture important signatures in the transmitted light intensity under crossed polarizers. The differences between the predictions by the two methods are analyzed with respect to gradients in the optic axis. We show that the FDTD method is a useful tool to perform computational optics of textured liquid-crystal films.

  19. Finite difference method for solving the Schroedinger equation with band nonparabolicity in mid-infrared quantum cascade lasers

    SciTech Connect

    Cooper, J. D.; Valavanis, A.; Ikonic, Z.; Harrison, P.; Cunningham, J. E.

    2010-12-01

    The nonparabolic Schroedinger equation for electrons in quantum cascade lasers (QCLs) is a cubic eigenvalue problem (EVP) which cannot be solved directly. While a method for linearizing this cubic EVP has been proposed in principle for quantum dots [Hwang et al., Math. Comput. Modell., 40, 519 (2004)] it was deemed too computationally expensive because of the three-dimensional geometry under consideration. We adapt this linearization approach to the one-dimensional geometry of QCLs, and arrive at a direct and exact solution to the cubic EVP. The method is then compared with the well established shooting method, and it is shown to be more accurate and reliable for calculating the bandstructure of mid-infrared QCLs.

  20. Unlocking the scientific potential of complex 3D point cloud dataset : new classification and 3D comparison methods

    NASA Astrophysics Data System (ADS)

    Lague, D.; Brodu, N.; Leroux, J.

    2012-12-01

    Ground based lidar and photogrammetric techniques are increasingly used to track the evolution of natural surfaces in 3D at an unprecedented resolution and precision. The range of applications encompass many type of natural surfaces with different geometries and roughness characteristics (landslides, cliff erosion, river beds, bank erosion,....). Unravelling surface change in these contexts requires to compare large point clouds in 2D or 3D. The most commonly used method in geomorphology is based on a 2D difference of the gridded point clouds. Yet this is hardly adapted to many 3D natural environments such as rivers (with horizontal beds and vertical banks), while gridding complex rough surfaces is a complex task. On the other hand, tools allowing to perform 3D comparison are scarce and may require to mesh the point clouds which is difficult on rough natural surfaces. Moreover, existing 3D comparison tools do not provide an explicit calculation of confidence intervals that would factor in registration errors, roughness effects and instrument related position uncertainties. To unlock this problem, we developed the first algorithm combining a 3D measurement of surface change directly on point clouds with an estimate of spatially variable confidence intervals (called M3C2). The method has two steps : (1) surface normal estimation and orientation in 3D at a scale consistent with the local roughness ; (2) measurement of mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing 3D methods based on a closest-point calculation demonstrates the higher precision of the M3C2 method when mm changes needs to be detected. The M3C2 method is also simple to use as it does not require surface meshing or gridding, and is not sensitive to missing data or change in point density. We also present a 3D classification tool (CANUPO) for vegetation removal based on a new geometrical measure: the multi

  1. Methods For Electronic 3-D Moving Pictures Without Glasses

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1987-06-01

    This paper describes implementation approaches in image acquisition and playback for 3-D computer graphics, 3-D television and 3-D theatre movies without special glasses. Projection lamps, spatial light modulators, CRT's and dynamic scanning are all eliminated by the application of an active image array, all static components and a semi-specular screen. The resulting picture shows horizontal parallax with a wide horizontal view field (up to 360 de-grees) giving a holographic appearance in full color with smooth continuous viewing without speckle. Static component systems are compared with dynamic component systems using both linear and circular arrays. Implementation of computer graphic systems are shown that allow complex shaded color images to extend from the viewer's eyes to infinity. Large screen systems visible by hundreds of people are feasible by the use of low f-stops and high gain screens in projection. Screen geometries and special screen properties are shown. Viewing characteristics offer no restrictions in view-position over the entire view-field and have a "look-around" feature for all the categories of computer graphics, television and movies. Standard video cassettes and optical discs can also interface the system to generate a 3-D window viewable without glasses. A prognosis is given for technology application to 3-D pictures without glasses that replicate the daily viewing experience. Super-position of computer graphics on real-world pictures is shown feasible.

  2. A hybrid method for the computation of quasi-3D seismograms.

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    Green's functions are computed using 2D SEM simulation in a 1D Earth model. Such seismograms account for the 3D structure inside the region of interest in a quasi-exact manner. Later we plan to extrapolate the misfit function computed from such seismograms at the stations back into the SEM region in order to compute local adjoint kernels. This opens a new path toward regional adjoint tomography into the deep Earth. Capdeville, Y., et al. (2002). "Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models." Geophysical Journal International 152(1): 34-67. Lekic, V. and B. Romanowicz (2011). "Inferring upper-mantle structure by full waveform tomography with the spectral element method." Geophysical Journal International 185(2): 799-831. Nissen-Meyer, T., et al. (2007). "A two-dimensional spectral-element method for computing spherical-earth seismograms-I. Moment-tensor source." Geophysical Journal International 168(3): 1067-1092. Robertsson, J. O. A. and C. H. Chapman (2000). "An efficient method for calculating finite-difference seismograms after model alterations." Geophysics 65(3): 907-918. Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.

  3. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.

    PubMed

    Raulot, Victorien; Gérard, Philippe; Serio, Bruno; Flury, Manuel; Kress, Bernard; Meyrueis, Patrick

    2010-08-16

    A new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle. PMID:20721184

  4. Improved Field Emission Algorithms for Modeling Field Emission Devices Using a Conformal Finite-Difference Time-Domain Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.

    2013-10-01

    This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.

  5. Comparison of nonhydrostatic and hydrostatic dynamical cores in two regional models using the spectral and finite difference methods: dry atmosphere simulation

    NASA Astrophysics Data System (ADS)

    Jang, Jihyeon; Hong, Song-You

    2016-04-01

    The spectral method is generally assumed to provide better numerical accuracy than the finite difference method. However, the majority of regional models use finite discretization methods due to the difficulty of specifying time-dependent lateral boundary conditions in spectral models. This study evaluates the behavior of nonhydrostatic dynamics with a spectral discretization. To this end, Juang's nonhydrostatic dynamical core for the National Centers for Environmental Prediction (NCEP) regional spectral model has been implemented into the Regional Model Program (RMP) of the Global/Regional Integrated Model system (GRIMs). The behavior of the nonhydrostatic RMP is validated, and compared with that of the hydrostatic core in 2-D idealized experiments: the mountain wave, rising thermal bubble, and density current experiments. The nonhydrostatic effect in the RMP is further validated in comparison with the results from the Weather Research and Forecasting (WRF) model, which uses a finite difference method. The analyses of the experimental results from the RMP generally follow the characteristics found in previous studies without any discernible difference. For example, in both the RMP and the WRF model, the eastward-tilted propagation of mountain waves is very similar in the nonhydrostatic core experiments. Both nonhydrostatic models also efficiently reproduce the motion and deformation of the warm and cold bubbles, but the RMP results contain more small-scale noise. In a 1-km real-case simulation testbed, the lee waves that originate over the eastern flank of the Korean peninsula travel further eastward in the WRF model than in the RMP. It is found that differences of small-scale wave characteristics between the RMP and WRF model are mainly from the numerical techniques used, such as the accuracy of the advection scheme and the magnitude of the numerical diffusion, rather than from discrepancies in the spatial discretization.

  6. Light scattering by irregular shaped cell-like objects using the finite difference time domain method (FDTD)

    NASA Astrophysics Data System (ADS)

    Clifton, Yeaton H.

    We simulated light scattering by objects similar to biological cells using the FDTD method. The characteristics of the cell-like objects were based on electron micrographs of cells grown in vitro. Three homogeneous cell-like objects were created from micrographs depicting normal prostate cells, and three from micrographs depicting malignant prostate cells. These six models used as the basis of our light scattering simulations led to the following conclusions: (1) The populations of normal and abnormal cell-like objects could be distinguished in terms of forward light scattering in a flow cytometry experiment; (2) The phase functions of light scattered by irregular objects averaged over several angles of incidence and several angles of observations are much smoother than the phase function of a perfect sphere; (3) There is a significant decrease in the ratio of scattering cross section of the non-spherical object to the scattering cross-section of the perfect sphere with equal volume, as the ratio of largest axis to smallest axis of the non-spherical object decreases; (4) For certain cell-like objects the phase functions of the scattered light obtained using the Henyey-Greenstein approximation or Mie theory are very different from those generated by FDTD calculations. Further calculations compared a homogeneous cell-like object, to a cell-like object of identical shape with heterogeneities added. The following are the results from the comparison of light scattering by a homogeneous cell-like object to heterogeneous cell-like object: (1) There are indications that there is a smoothing effect on the phase function data (for light scattered by the heterogeneous cell-like object) created by organelles both in data averaged over a range of orientations and in data collected at single orientations. This smoothing effect (unlike the one discussed for homogeneous cell-like objects) is observable from a single azimuth angle of observation and a single orientation of the cell

  7. X3D moving grid methods for semiconductor applications

    SciTech Connect

    Kuprat, A.; Cartwright, D.; Gammel, J.T.; George, D.; Kendrick, B.; Kilcrease, D.; Trease, H.; Walker, R.

    1997-11-01

    The Los Alamos 3D grid toolbox handles grid maintenance chores and provides access to a sophisticated set of optimization algorithms for unstructured grids. The application of these tools to semiconductor problems is illustrated in three examples: grain growth, topographic deposition and electrostatics. These examples demonstrate adaptive smoothing, front tracking, and automatic, adaptive refinement/derefinement.

  8. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  9. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.

    PubMed

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  10. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  11. Finite-difference modelling of wavefield constituents

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse

    2015-11-01

    The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.

  12. Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2005-07-01

    The finite-difference time-domain (FDTD) method is used to compute propagation of light through textured uniaxial nematic-liquid crystal (NLC) films containing various types of twist disclination (defect) lines. Computational modeling by the FDTD method provides an accurate prediction of the optical response in multidimensional and multiscale heterogeneities in NLC films in which significant spatial optic axis gradients are present. The computations based on the FDTD method are compared with those of the classic Berreman matrix-type method. As expected, significant deviations between predictions from the two methods are observed near the twist disclination line defects because lateral optic axis gradients are ignored in the matrix Berreman method. It is shown that the failure of Berreman's method to take into account lateral optic axis gradient effects leads to significant deviations in optical output. In addition, it is shown that the FDTD method is able to distinguish clearly different types of twist disclination lines. The FDTD optical simulation method can be used for understanding fundamental relationships between optical response and complex NLC defect textures in new liquid-crystal applications including liquid-crystal-based biosensors and rheo-optical characterization of flowing liquid crystals.

  13. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  14. Calibration Methods for a 3D Triangulation Based Camera

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Böhnke, Kay

    A sensor in a camera takes a gray level image (1536 x 512 pixels), which is reflected by a reference body. The reference body is illuminated by a linear laser line. This gray level image can be used for a 3D calibration. The following paper describes how a calibration program calculates the calibration factors. The calibration factors serve to determine the size of an unknown reference body.

  15. Parallel 3-D method of characteristics in MPACT

    SciTech Connect

    Kochunas, B.; Dovvnar, T. J.; Liu, Z.

    2013-07-01

    A new parallel 3-D MOC kernel has been developed and implemented in MPACT which makes use of the modular ray tracing technique to reduce computational requirements and to facilitate parallel decomposition. The parallel model makes use of both distributed and shared memory parallelism which are implemented with the MPI and OpenMP standards, respectively. The kernel is capable of parallel decomposition of problems in space, angle, and by characteristic rays up to 0(104) processors. Initial verification of the parallel 3-D MOC kernel was performed using the Takeda 3-D transport benchmark problems. The eigenvalues computed by MPACT are within the statistical uncertainty of the benchmark reference and agree well with the averages of other participants. The MPACT k{sub eff} differs from the benchmark results for rodded and un-rodded cases by 11 and -40 pcm, respectively. The calculations were performed for various numbers of processors and parallel decompositions up to 15625 processors; all producing the same result at convergence. The parallel efficiency of the worst case was 60%, while very good efficiency (>95%) was observed for cases using 500 processors. The overall run time for the 500 processor case was 231 seconds and 19 seconds for the case with 15625 processors. Ongoing work is focused on developing theoretical performance models and the implementation of acceleration techniques to minimize the number of iterations to converge. (authors)

  16. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  17. 3D CSEM data inversion using Newton and Halley class methods

    NASA Astrophysics Data System (ADS)

    Amaya, M.; Hansen, K. R.; Morten, J. P.

    2016-05-01

    For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those

  18. Vorticity vector-potential method for 3D viscous incompressible flows in time-dependent curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Xie, Xilin

    2016-05-01

    E and Liu [J. Comput. Phys. 138 (1997) 57-82] put forward a finite difference method for 3D viscous incompressible flows in the vorticity-vector potential formulation on non-staggered grids. In this paper, we will extend this method to the case of flows in the presence of a deformable surface. By use of two kinds of surface differential operators, the implementation of boundary conditions on a plane is generalized to a curved smooth surface with given velocity distribution, whether this be an inflow/outflow interface or a curved wall. To deal with the irregular and varying physical domain, time-dependent curvilinear coordinates are constructed and the corresponding tensor analysis is adopted in deriving the component form of the governing equations. Therefore, the equations can be discretized and solved in a regular and fixed parametric domain. Numerical results are presented for a 3D lid-driven cavity with a deforming surface and a 3D duct flow with a deforming boundary. A new way to validate numerical simulations is proposed based on an expression for the rate-of-strain tensor on a deformable surface.

  19. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  20. Adaptive finite difference for seismic wavefield modelling in acoustic media

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.

  1. Adaptive finite difference for seismic wavefield modelling in acoustic media

    PubMed Central

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333

  2. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Applications of an exponential finite difference technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Keith, Theo G., Jr.

    1988-01-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  4. A method of multi-view intraoral 3D measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Wang, Zhen; Jiang, Hongzhi; Xu, Yang; Lv, Peijun; Sun, Yunchun

    2015-02-01

    In dental restoration, its important to achieve a high-accuracy digital impression. Most of the existing intraoral measurement systems can only measure the tooth from a single view. Therfore - if we are wilng to acquire the whole data of a tooth, the scans of the tooth from multi-direction ad the data stitching based on the features of the surface are needed, which increases the measurement duration and influence the measurement accuracy. In this paper, we introduce a fringe-projection based on multi-view intraoral measurement system. It can acquire 3D data of the occlusal surface, the buccal surface and the lingual surface of a tooth synchronously, by using a senor with three mirrors, which aim at the three surfaces respectively and thus expand the measuring area. The constant relationship of the three mirrors is calibrated before measurement and can help stitch the data clouds acquired through different mirrors accurately. Therefore the system can obtain the 3D data of a tooth without the need to measure it from different directions for many times. Experiments proved the availability and reliability of this miniaturized measurement system.

  5. Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods

    SciTech Connect

    Chaudhury, Bhaskar; Chaturvedi, Shashank

    2006-12-15

    Power-flow trajectories of electromagnetic waves through a spatially nonuniform plasma have been computed using direct solutions of Maxwell's equations using the three-dimensional finite-difference time-domain (FDTD) method. This method yields accurate information on refraction as well as absorption effects. The method can be used to compute power-flow trajectories for plasmas with arbitrarily varying density profiles, including effects due to arbitrarily shaped conducting or dielectric surfaces bounding the plasma. Furthermore, since FDTD is computationally expensive, especially for parametric studies, it is desirable to use ray tracing to estimate refraction effects. A quantitative comparison is performed between two different methods of obtaining exact and approximate solutions of Maxwell's equations in order to assess their relative utility in different situations. In the present work, we limit ourselves to a cold, collisional, unmagnetized plasma, where the response to electromagnetic waves is fully specified by a dispersion relation based on magnetoionic theory. It is shown that ray tracing in such plasmas yields accurate results only when two conditions are satisfied. Firstly, the density scale length should be long as compared to the free-space wavelength of the incident wave. Secondly, the conduction current should be small as compared to the displacement current in the medium. The second condition is one which has been identified for the first time.

  6. Stochastic finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Smith, Steven Michael

    2011-12-01

    This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.

  7. MOM3D method of moments code theory manual

    NASA Astrophysics Data System (ADS)

    Shaeffer, John F.

    1992-03-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  8. 3D sensitivity of 6-electrode Focused Impedance Method (FIM)

    NASA Astrophysics Data System (ADS)

    Masum Iquebal, A. H.; Siddique-e Rabbani, K.

    2010-04-01

    The present work was taken up to have an understanding of the depth sensitivity of the 6 electrode FIM developed by our laboratory earlier, so that it may be applied judiciously for the measurement of organs in 3D, with electrodes on the skin surface. For a fixed electrode geometry sensitivity is expected to depend on the depth, size and conductivity of the target object. With current electrodes 18 cm apart and potential electrodes 5 cm apart, depth sensitivity of spherical conductors, insulators and of pieces of potato of different diameters were measured. The sensitivity dropped sharply with depth gradually leveling off to background, and objects could be sensed down to a depth of about twice their diameters. The sensitivity at a certain depth increases almost linearly with volume for objects with the same conductivity. Thus these results increase confidence in the use of FIM for studying organs at depths of the body.

  9. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  10. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    SciTech Connect

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  11. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  12. 3D dynamic rupture with anelastic wave propagation using an hp-adaptive Discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Tago, J.; Cruz-Atienza, V. M.; Etienne, V.; Virieux, J.; Benjemaa, M.; Sanchez-Sesma, F. J.

    2010-12-01

    Simulating any realistic seismic scenario requires incorporating physical basis into the model. Considering both the dynamics of the rupture process and the anelastic attenuation of seismic waves is essential to this purpose and, therefore, we choose to extend the hp-adaptive Discontinuous Galerkin finite-element method to integrate these physical aspects. The 3D elastodynamic equations in an unstructured tetrahedral mesh are solved with a second-order time marching approach in a high-performance computing environment. The first extension incorporates the viscoelastic rheology so that the intrinsic attenuation of the medium is considered in terms of frequency dependent quality factors (Q). On the other hand, the extension related to dynamic rupture is integrated through explicit boundary conditions over the crack surface. For this visco-elastodynamic formulation, we introduce an original discrete scheme that preserves the optimal code performance of the elastodynamic equations. A set of relaxation mechanisms describes the behavior of a generalized Maxwell body. We approximate almost constant Q in a wide frequency range by selecting both suitable relaxation frequencies and anelastic coefficients characterizing these mechanisms. In order to do so, we solve an optimization problem which is critical to minimize the amount of relaxation mechanisms. Two strategies are explored: 1) a least squares method and 2) a genetic algorithm (GA). We found that the improvement provided by the heuristic GA method is negligible. Both optimization strategies yield Q values within the 5% of the target constant Q mechanism. Anelastic functions (i.e. memory variables) are introduced to efficiently evaluate the time convolution terms involved in the constitutive equations and thus to minimize the computational cost. The incorporation of anelastic functions implies new terms with ordinary differential equations in the mathematical formulation. We solve these equations using the same order

  13. Analyzing the properties of acceptor mode in two-dimensional plasma photonic crystals based on a modified finite-difference frequency-domain method

    SciTech Connect

    Zhang, Hai-Feng; Ding, Guo-Wen; Lin, Yi-Bing; Chen, Yu-Qing

    2015-05-15

    In this paper, the properties of acceptor mode in two-dimensional plasma photonic crystals (2D PPCs) composed of the homogeneous and isotropic dielectric cylinders inserted into nonmagnetized plasma background with square lattices under transverse-magnetic wave are theoretically investigated by a modified finite-difference frequency-domain (FDFD) method with supercell technique, whose symmetry of every supercell is broken by removing a central rod. A new FDFD method is developed to calculate the band structures of such PPCs. The novel FDFD method adopts a general function to describe the distribution of dielectric in the present PPCs, which can easily transform the complicated nonlinear eigenvalue equation to the simple linear equation. The details of convergence and effectiveness of proposed FDFD method are analyzed using a numerical example. The simulated results demonstrate that the enough accuracy of the proposed FDFD method can be observed compared to the plane wave expansion method, and the good convergence can also be obtained if the number of meshed grids is large enough. As a comparison, two different configurations of photonic crystals (PCs) but with similar defect are theoretically investigated. Compared to the conventional dielectric-air PCs, not only the acceptor mode has a higher frequency but also an additional photonic bandgap (PBG) can be found in the low frequency region. The calculated results also show that PBGs of proposed PPCs can be enlarged as the point defect is introduced. The influences of the parameters for present PPCs on the properties of acceptor mode are also discussed in detail. Numerical simulations reveal that the acceptor mode in the present PPCs can be easily tuned by changing those parameters. Those results can hold promise for designing the tunable applications in the signal process or time delay devices based on the present PPCs.

  14. Exponential Finite-Difference Technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1989-01-01

    Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.

  15. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    PubMed

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723

  16. Method for 3D fibre reconstruction on a microrobotic platform.

    PubMed

    Hirvonen, J; Myllys, M; Kallio, P

    2016-07-01

    Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. PMID:26695385

  17. A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks

    SciTech Connect

    Jacobs, Gustaaf B. Don, W.-S.

    2009-03-20

    A high-order particle-source-in-cell (PSIC) algorithm is presented for the computation of the interaction between shocks, small scale structures, and liquid and/or solid particles in high-speed engineering applications. The improved high-order finite difference weighted essentially non-oscillatory (WENO-Z) method for solution of the hyperbolic conservation laws that govern the shocked carrier gas flow, lies at the heart of the algorithm. Finite sized particles are modeled as points and are traced in the Lagrangian frame. The physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame through momentum and energy exchange, is numerically treated through high-order interpolation and weighing. The centered high-order interpolation of the fluid properties to the particle location is shown to lead to numerical instability in shocked flow. An essentially non-oscillatory interpolation (ENO) scheme is devised for the coupling that improves stability. The ENO based algorithm is shown to be numerically stable and to accurately capture shocks, small flow features and particle dispersion. Both the carrier gas and the particles are updated in time without splitting with a third-order Runge-Kutta TVD method. One and two-dimensional computations of a shock moving into a particle cloud demonstrates the characteristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z computations are not only in excellent agreement with the numerical simulations with a third-order Rusanov based PSIC and physical experiments in [V. Boiko, V.P. Kiselev, S.P. Kiselev, A. Papyrin, S. Poplavsky, V. Fomin, Shock wave interaction with a cloud of particles, Shock Waves, 7 (1997) 275-285], but also show a significant improvement in the resolution of small scale structures. In two-dimensional simulations of the Mach 3 shock moving into forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy of the high-order method is demonstrated

  18. New 3-D flow interpolation method on moving ADCP data

    NASA Astrophysics Data System (ADS)

    Tsubaki, R.; Kawahara, Y.; Muto, Y.; Fujita, I.

    2012-05-01

    A simple but accurate interpolation procedure for obtaining the three-dimensional distribution of three-component velocity data, from moving acoustic doppler current profiler (ADCP) observation data, is proposed. For understanding actual flow structure within a river with complex bathymetry, the three-dimensional mean velocity field provides a basic picture of the flow. For obtaining the three-dimensional distribution of three-component velocity data, in this work, anisotropic gridding was introduced in order to remove the random component of measured velocity data caused by the turbulence of the flow and measurement error. A continuity correction based on the pressure equation was used to reduce both random and systematic errors. The accuracy of the developed method was evaluated using three-dimensional flow simulation data from a detached-eddy simulation (DES). By using the procedure developed, the complex flow structure surrounding the spur dikes section in the Uji River was successfully visualized and explored. The proposed method shows superiorities in both accuracy and consistency for the interpolated velocity field, as compared to the kriging and inverse-distance weighted (IDW) methods.

  19. Filtering method for 3D laser scanning point cloud

    NASA Astrophysics Data System (ADS)

    Liu, Da; Wang, Li; Hao, Yuncai; Zhang, Jun

    2015-10-01

    In recent years, with the rapid development of the hardware and software of the three-dimensional model acquisition, three-dimensional laser scanning technology is utilized in various aspects, especially in space exploration. The point cloud filter is very important before using the data. In the paper, considering both the processing quality and computing speed, an improved mean-shift point cloud filter method is proposed. Firstly, by analyze the relevance of the normal vector between the upcoming processing point and the near points, the iterative neighborhood of the mean-shift is selected dynamically, then the high frequency noise is constrained. Secondly, considering the normal vector of the processing point, the normal vector is updated. Finally, updated position is calculated for each point, then each point is moved in the normal vector according to the updated position. The experimental results show that the large features are retained, at the same time, the small sharp features are also existed for different size and shape of objects, so the target feature information is protected precisely. The computational complexity of the proposed method is not high, it can bring high precision results with fast speed, so it is very suitable for space application. It can also be utilized in civil, such as large object measurement, industrial measurement, car navigation etc. In the future, filter with the help of point strength will be further exploited.

  20. Jacob's Interpretation Method Revisited: Accounting for 3-D Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Riva, M.; Guadagnini, A.; Carrera, J.

    2005-12-01

    Traditional approaches to hydraulic test interpretation provide typically individual aquifer parameters, such as hydraulic conductivity (K) and storativity (S) values. The values obtained somehow incorporate some averaging values of aquifer heterogeneity, while the averaging functions are a direct consequence of the method of analysis employed. In recent years most work, casted in a stochastic framework, focused on the relationship between pumping rate and ensemble mean or variance of drawdown, thus having to pre-specify the parameters characterizing the underlying random spatial function. On the contrary, we contend that additional highly relevant information about heterogeneity can be obtained by looking to the spatial distribution of drawdown in individual realizations of the heterogeneous K field, without the need for invoking ergodic arguments. We present an analysis of the spatial distribution of time-dependent drawdown in a tridimensional aquifer produced by constant rate pumping in a fully penetrating well. The aquifer is considered of infinite extension in the x, y directions, and we assume no-flow boundaries in the aquifer top and bottom. The observation point is a fully penetrating piezometer. We consider an unknown spatial distribution of K(x,y,z), and using a perturbation expansion up to second order, we look at the late-time behavior of drawdown at any given observation vertical line. We conclude that: (1) at any given observation line the late-time behavior of drawdown would display a straight line in a drawdown versus log time plot, thus allowing the use of Jacob's method for test interpretation; (2) the slope of the straight line is the same for each observation line, thus providing a global average of K(x,y,z) through the aquifer; (3) the intercept point of the line in the same plot depends on location and is related to connectivity issues between the pumping and observation locations; (4) the intercept value is a weighted function of the local

  1. Multi-crosswell profile 3D imaging and method

    DOEpatents

    Washbourne, John K.; Rector, III, James W.; Bube, Kenneth P.

    2002-01-01

    Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

  2. An efficient compact fourth order FD method for simulating 3-D mantle convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Wright, G. B.; Barnett, G. A.; Yuen, D. A.

    2009-12-01

    , 533, 1984. Isosurfaces of the temperature field from a 3-D mantle convection simulation at Rayleigh number 10**7 during the transition from a purely conductive state to a double-layer convection state. Simulation was performed using the compact fourth order finite difference scheme at a resolution of 200-by-200-by-100 (length-by-width-by-height).

  3. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    SciTech Connect

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  4. A method of 3-D data information storage with virtual holography

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Liu, Guodong; Ren, Zhong; Zeng, Lüming

    2008-12-01

    In this paper, a new method of 3-D data cube based on virtual holographic storage is presented. Firstly, the data information is encoded in the form of 3-D data cube with a certain algorithm, in which the interval along coordinates between every data is d. Using the plane-scanning method, the 3-D cube can be described as a assembly of slices which are parallel planes along the coordinates at an interval of d. The dot on the slice represents a bit. The bright one means "1", while the dark one means "0". Secondly, a hologram of the 3-D cube is obtained by computer with virtual optics technology. All the information of a 3-D cube can be described by a 2-D hologram. At last, the hologram is inputted in the SLM, and recorded in the recording material by intersecting two coherent laser beams. When the 3-D data is exported, a reference light illuminates the hologram, and a CCD is used to get the object image which is a hologram of the 3-D data. Then the 3-D data is computed with virtual optical technology. Compared with 2-D data page storage, the 3-D data cube storage has outstanding performance in larger capacity of data storage and higher security of data.

  5. Evaluation of a new method for stenosis quantification from 3D x-ray angiography images

    NASA Astrophysics Data System (ADS)

    Betting, Fabienne; Moris, Gilles; Knoplioch, Jerome; Trousset, Yves L.; Sureda, Francisco; Launay, Laurent

    2001-05-01

    A new method for stenosis quantification from 3D X-ray angiography images has been evaluated on both phantom and clinical data. On phantoms, for the parts larger or equal to 3 mm, the standard deviation of the measurement error has always found to be less or equal to 0.4 mm, and the maximum measurement error less than 0.17 mm. No clear relationship has been observed between the performances of the quantification method and the acquisition FoV. On clinical data, the 3D quantification method proved to be more robust to vessel bifurcations than its 3D equivalent. On a total of 15 clinical cases, the differences between 2D and 3D quantification were always less than 0.7 mm. The conclusion is that stenosis quantification from 3D X-4ay angiography images is an attractive alternative to quantification from 2D X-ray images.

  6. Reconstructing photorealistic 3D models from image sequence using domain decomposition method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.

  7. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI. PMID:23649179

  8. TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method

    SciTech Connect

    Okamura, Yoshimasa; Yamamoto, Yoshito; Fujita, Kazuhiro; Miyoshi, Taiki; Teramoto, Koji; Kawaguchi, Hideki; Kagami, Shin; Furukawa, Masakazu

    2007-07-15

    Numerical studies of microwave propagation properties in a conical horn and an adjustable waveguides, and for plasmas generated under disk-plate windows of a 220 mm diameter and in a vacuum chamber are studied by a finite-difference time-domain (FDTD) method including plasma equations. In the numerical studies, a TM01-mode microwave of 2.45 GHz at a power of 1 kW is supplied from the top of the conical horn waveguide. In addition, numerical results by the FDTD method are compared with experimental results, and a validity of the numerical results is investigated. From the numerical results, it is found that the TM01-mode microwave changes its field shape and propagates along inner surfaces of the conical horn and the adjustable waveguides. Then electromagnetic fields of the TM01-mode microwave concentrate at the center surfaces of the disk-plate windows [quartz ({epsilon}{sub r}=3.8), alumina ({epsilon}{sub r}=9.7), and WG20 ({epsilon}{sub r}=20.0)]. A diameter of higher concentration is within 80 mm, and the orientation of electric field is almost vertical to the disk-plate window. The diameters within 80 mm are equivalent to a diameter at a higher electron density in an oxygen plasma experiment in the volume mode at 1 kW and 133 Pa with a quartz window. When heights of the adjustable waveguide are changed from 64 to 244 mm, peaks of electric fields in the heights, where microwave power is estimated to be strongly absorbed into the plasmas, appear and peak positions of the electric fields are observed periodically in surface-wave mode plasmas as well as the volume mode plasmas. Heights of the peaks increase with increasing dielectric constant and peak-to-peak distances of the peak positions decrease with increasing dielectric constant. The peak positions agree to the minimum microwave power reflections tuned by a combination of an autotuning unit and adjustable waveguide heights in experiments. Furthermore, peak positions of relatively absorbed microwave powers in

  9. A Monte Carlo method for 3D thermal infrared radiative transfer

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liou, K. N.

    2006-09-01

    A 3D Monte Carlo model for specific application to the broadband thermal radiative transfer has been developed in which the emissivities for gases and cloud particles are parameterized by using a single cubic element as the building block in 3D space. For spectral integration in the thermal infrared, the correlated k-distribution method has been used for the sorting of gaseous absorption lines in multiple-scattering atmospheres involving 3D clouds. To check the Monte-Carlo simulation, we compare a variety of 1D broadband atmospheric fluxes and heating rates to those computed from the conventional plane-parallel (PP) model and demonstrate excellent agreement between the two. Comparisons of the Monte Carlo results for broadband thermal cooling rates in 3D clouds to those computed from the delta-diffusion approximation for 3D radiative transfer and the independent pixel-by-pixel approximation are subsequently carried out to understand the relative merits of these approaches.

  10. Use of Finite-Difference Time-Domain Method with AN Anatomically Based Model of a Human for Exposures to Far-Near Fields and Electromagnetic Pulse

    NASA Astrophysics Data System (ADS)

    Chen, Jinyuan

    The three-dimensional finite-difference time-domain (FDTD) method has been used to calculate local, layer-averaged and whole-body averaged specific absorption rates (SARs) and internal radio-frequency (RF) currents in an anatomically -based model of a human for plane-wave (far-field) exposures from 20 to 100 MHz and for spatially variable electromagnetic fields of a parallel-plate applicator representative of RF dielectric heaters used in industry (near-field). The calculated results are in agreement with the experimental data of Hill and others. While the existence of large foot currents has been known previously, substantial RF currents (600-800 mA) induced over much of the body are obtained for E-polarized fields suggested in the 1982 ANSI RF safety guideline. The FDTD method has also been used for simulating Annular Phased Array (APA) of dipole antennas for hyperthermia of deep-seated tumors. Anatomically-based models based on two different regions of the human body (14,417 and 13,133 cells) were used to calculated the SAR distributions with a resolution of 1.31 cm. Annular-phased arrays of eight dipole antennas couple to the human body through either a homogeneous or a tapered water bolus with air assumed outside the ring of dipoles. The objective of the calculations was to focus the energy to a couple of assumed tumor sites in the liver or the prostate. The geometrical optics approximation and principle of focused arrays were used to estimate the phases for individual dipoles to focus the electromagnetic energy into the tumor and its surrounding. Considerably focused power distributions with SARs on the order of 100 W/Kg for input powers of 400-700 W have been obtained for assumed tumor sites in the liver and the prostate using tapered boluses and optimized magnitudes and phases of power to the various dipoles. Lastly the FDTD technique is used to calculate the internal fields and the induced current densities in anatomically based models of a human using 5

  11. A simple method for producing freestanding 3D microstructures by integrated photomask micromolding

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-12-01

    Freestanding three-dimensional (3D) microstructures are widely used in micro-electro-mechanical system (MEMS) applications or can function as microdevices themselves. However, microfabrication methods for freestanding 3D microstructures have limitations in shape, size, cost, and mass production, etc. In this work, integrated photomask micromolding is demonstrated, which uses a portable UV light source and chrome glass micromolding to fabricate 3D microstructures without alignment. Specifically, a chrome layer on one side of the glass micromold shields the excess filling SU-8 photoresist from UV exposure and only the SU-8 photoresist in mold cavities is crosslinked. The 3D microstructures produced using this method have very high dimensional accuracy and the profile error is approximately 1.5%. This method can be used with features of virtually any size and shape and can be integrated into highly-parallel micromolding processes and has potential for MEMS applications.

  12. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  13. 3D modeling method for computer animate based on modified weak structured light method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2010-11-01

    A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.

  14. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  15. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.

    PubMed

    Rutz, Alexandra L; Hyland, Kelly E; Jakus, Adam E; Burghardt, Wesley R; Shah, Ramille N

    2015-03-01

    A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed. PMID:25641220

  16. A practical salient region feature based 3D multi-modality registration method for medical images

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang

    2006-03-01

    We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.

  17. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  18. Enhancement of the computational efficiency of the near-to-far field mapping in the finite-difference method and ray-by-ray method with the fast multi-pole plane wave expansion approach

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Yang, Ping; Sun, Bingqiang; Panetta, R. Lee; Kattawar, George W.

    2016-06-01

    The finite-difference time-domain (FDTD) and ray-by-ray (RBR) methods are techniques used to calculate the optical properties of nonspherical particles for small-to-moderate and large size parameters, respectively. The former is a rigorous method, and the latter is an approximate geometric-physical optics-hybrid method that takes advantage of both high efficiency of the geometric optics approach and high accuracy of the physical optics approach. In these two methods, the far field is calculated by mapping the near field to the far field with consideration of the phase interference. The mapping computation is more time-consuming than the near-field simulation when multiple scattering directions are involved, particularly in the case of the RBR implementation. To overcome the difficulty, in this study the fast multi-pole method is applied to both FDTD and RBR towards accelerating the far-field calculation, without degrading the accuracy of the simulation results.

  19. High efficient methods of content-based 3D model retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Yuanhao; Tian, Ling; Li, Chenggang

    2013-03-01

    Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.

  20. Modified Anderson Method for Accelerating 3D-RISM Calculations Using Graphics Processing Unit.

    PubMed

    Maruyama, Yutaka; Hirata, Fumio

    2012-09-11

    A fast algorithm is proposed to solve the three-dimensional reference interaction site model (3D-RISM) theory on a graphics processing unit (GPU). 3D-RISM theory is a powerful tool for investigating biomolecular processes in solution; however, such calculations are often both memory-intensive and time-consuming. We sought to accelerate these calculations using GPUs, but to work around the problem of limited memory size in GPUs, we modified the less memory-intensive "Anderson method" to give faster convergence to 3D-RISM calculations. Using this method on a Tesla C2070 GPU, we reduced the total computational time by a factor of 8, 1.4 times by the modified Andersen method and 5.7 times by GPU, compared to calculations on an Intel Xeon machine (eight cores, 3.33 GHz) with the conventional method. PMID:26605714

  1. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  2. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  3. Method for making a single-step etch mask for 3D monolithic nanostructures.

    PubMed

    Grishina, D A; Harteveld, C A M; Woldering, L A; Vos, W L

    2015-12-18

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. PMID:26581317

  4. Method for making a single-step etch mask for 3D monolithic nanostructures

    NASA Astrophysics Data System (ADS)

    Grishina, D. A.; Harteveld, C. A. M.; Woldering, L. A.; Vos, W. L.

    2015-12-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures.

  5. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  6. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-05-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  7. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  8. Techniques for correcting approximate finite difference solutions. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1978-01-01

    A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.

  9. Detecting and estimating errors in 3D restoration methods using analog models.

    NASA Astrophysics Data System (ADS)

    José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis

    2015-04-01

    Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values

  10. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2005-08-01

    A numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. The governing equations are discretized on a hybrid staggered/non-staggered grid layout using second-order accurate finite-difference formulas. The discrete equations are integrated in time via a second-order accurate dual-time-stepping, artificial compressibility iteration scheme. Unstructured, triangular meshes are employed to discretize complex immersed boundaries. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the flexible body. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at Cartesian grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. Grid convergence tests are carried out for the flow induced by an oscillating sphere in a cubic cavity, which show that the method is second-order accurate. The method is validated by applying it to calculate flow in a Cartesian domain containing a rigid sphere rotating at constant angular velocity as well as flow induced by a flapping wing. The ability of the method to simulate flows in domains with arbitrarily complex moving bodies is demonstrated by applying to simulate flow past an undulating fish-like body and flow past an anatomically realistic planktonic copepod performing an escape-like maneuver.

  11. A simple method for the production of anti-C3d monoclonal antibody.

    PubMed

    Cruz, Carlos; León, Graciela

    2007-12-01

    Production of monoclonal antibodies to C3d usually involves the purification of protein. Our method does not require C3 purification; it relies on attachment of C3b to mouse erythrocytes by activation of alternative pathways and further conversion in C3d. We prepared human complement-coated mouse red cells and sensitized mice of the same strain with our own schedule of immunization and applied the classical methods to obtain a mouse monoclonal antibody. We obtained a clone called BMS-11 which produces a monoclonal antibody of IgM class, to C3d with a title of 1:500000. The monoclonal antibody obtained has shown that it is suitable for use as an antiglobulin reagent. PMID:18158789

  12. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan

    2016-04-01

    We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.

  13. A Multiscale Constraints Method Localization of 3D Facial Feature Points

    PubMed Central

    Li, Hong-an; Zhang, Yongxin; Li, Zhanli; Li, Huilin

    2015-01-01

    It is an important task to locate facial feature points due to the widespread application of 3D human face models in medical fields. In this paper, we propose a 3D facial feature point localization method that combines the relative angle histograms with multiscale constraints. Firstly, the relative angle histogram of each vertex in a 3D point distribution model is calculated; then the cluster set of the facial feature points is determined using the cluster algorithm. Finally, the feature points are located precisely according to multiscale integral features. The experimental results show that the feature point localization accuracy of this algorithm is better than that of the localization method using the relative angle histograms. PMID:26539244

  14. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    NASA Astrophysics Data System (ADS)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  15. Uncovering the true nature of deformation microstructures using 3D analysis methods

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Quadir, M. Z.; Afrin, N.; Xu, W.; Loeb, A.; Soe, B.; McMahon, C.; George, C.; Bassman, L.

    2015-08-01

    Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper.

  16. Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga

    2015-03-01

    Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.

  17. Methods of constructing a 3D geological model from scatter data

    SciTech Connect

    Horsman, J.; Bethel, W.

    1995-04-01

    Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.

  18. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation

    PubMed Central

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-01-01

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761

  19. Flatbed-type 3D display systems using integral imaging method

    NASA Astrophysics Data System (ADS)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  20. Investigation of Presage 3D Dosimetry as a Method of Clinically Intuitive Quality Assurance and Comparison to a Semi-3D Delta4 System

    NASA Astrophysics Data System (ADS)

    Crockett, Ethan Van

    The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.

  1. Resonant frequency analysis of a Lamé-mode resonator on a quartz plate by the finite-difference time-domain method using the staggered grid with the collocated grid points of velocities

    NASA Astrophysics Data System (ADS)

    Yasui, Takashi; Hasegawa, Koji; Hirayama, Koichi

    2016-07-01

    The finite-difference time-domain (FD-TD) method using a staggered grid with the collocated grid points of velocities (SGCV) was formulated for elastic waves propagating in anisotropic solids and for a rectangular SGCV. Resonant frequency analysis of Lamé-mode resonators on a quartz plate was carried out to confirm the accuracy and validity of the proposed method. The resonant frequencies for the fundamental and higher-order Lamé-modes calculated by the proposed method agreed very well with their theoretical values.

  2. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  3. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  4. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. PMID:22727689

  5. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  6. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  7. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  8. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  9. 2D and 3D Method of Characteristic Tools for Complex Nozzle Development

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2003-01-01

    This report details the development of a 2D and 3D Method of Characteristic (MOC) tool for the design of complex nozzle geometries. These tools are GUI driven and can be run on most Windows-based platforms. The report provides a user's manual for these tools as well as explains the mathematical algorithms used in the MOC solutions.

  10. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  11. 3D Spectral Element Method Simulations Of The Seismic Response of Caracas (Venezuela) Basin

    NASA Astrophysics Data System (ADS)

    Delavaud, E.; Vilotte, J.; Festa, G.; Cupillard, P.

    2007-12-01

    We present here 3D numerical simulations of the response of the Caracas (Venezuela) valley up to 5 Hz for different scenarios of plane wave excitation based on the regional seismicity. Attention is focused on the effects of the 3D basin geometry and of the adjacent regional topography. The simulations are performed using Spectral Element method (SEM) together with an unstructured hexahedral mesh discretization and perfectly matched layers (PML). These simulations show 3D amplification phenomena associated with complex wave reflexion, diffraction and focalisation patterns linked to the geometry of the basin. Time and frequency analysis reveal some interesting features both in terms of amplification and energy residence in the basin. The low frequency amplification pattern is mainly controlled by the early response of the basin to the incident plane wave while the high frequency amplification patterns result mainly from late arrivals where complex 3D wave diffraction phenomena are dominating and the memory of the initial excitation is lost. Interestingly enough, it is shown that H/V method correctly predict the low frequency amplification pattern when apply to the late part of the recorded seismograms. The complex high frequency amplification pattern is shown to be associated with surface wave generation at, and propagation from, sharp edges of the basin. Importance of 3D phenomena is assessed by comparison with simple 2D simulations. Significant differences in terms of time of residence, energy and amplification levels point out the interest of complete 3D modeling. In conclusions some of the limitations associated with the use of unstructured hexahedral meshes will be adressed. Despite the use of unstructured meshing tool, modeling the geometry of geological basins remain a complex and time consuming task. Possible extensions using more elaborate techniques like non conforming domain decomposition will be also discussed in conclusion.

  12. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: a new method of interpolation and analysis of errors

    NASA Astrophysics Data System (ADS)

    Mehl, Steffen; Hill, Mary C.

    2004-09-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size—a coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  13. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  14. A new method of 3D scene recognition from still images

    NASA Astrophysics Data System (ADS)

    Zheng, Li-ming; Wang, Xing-song

    2014-04-01

    Most methods of monocular visual three dimensional (3D) scene recognition involve supervised machine learning. However, these methods often rely on prior knowledge. Specifically, they learn the image scene as part of a training dataset. For this reason, when the sampling equipment or scene is changed, monocular visual 3D scene recognition may fail. To cope with this problem, a new method of unsupervised learning for monocular visual 3D scene recognition is here proposed. First, the image is made using superpixel segmentation based on the CIELAB color space values L, a, and b and on the coordinate values x and y of pixels, forming a superpixel image with a specific density. Second, a spectral clustering algorithm based on the superpixels' color characteristics and neighboring relationships was used to reduce the dimensions of the superpixel image. Third, the fuzzy distribution density functions representing sky, ground, and façade are multiplied with the segment pixels, where the expectations of these segments are obtained. A preliminary classification of sky, ground, and façade is generated in this way. Fourth, the most accurate classification images of sky, ground, and façade were extracted through the tier-1 wavelet sampling and Manhattan direction feature. Finally, a depth perception map is generated based on the pinhole imaging model and the linear perspective information of ground surface. Here, 400 images of Make3D Image data from the Cornell University website were used to test the algorithm. The experimental results showed that this unsupervised learning method provides a more effective monocular visual 3D scene recognition model than other methods.

  15. Statistical properties of polarization image and despeckling method by multiresolution block-matching 3D filter

    NASA Astrophysics Data System (ADS)

    Wen, D. H.; Jiang, Y. S.; Zhang, Y. Z.; Gao, Q.

    2014-03-01

    The theoretical and experimental investigations on the polarization imagery system of speckle statistical characteristics and speckle removing method are researched. A method to obtain two images encoded by polarization degree with a single measurement process is proposed. A theoretical model for polarization imagery system on Müller matrix is proposed. According to modern charge coupled device (CCD) imaging characteristics, speckles are divided into two kinds, namely small speckle and big speckle. Based on this model, a speckle reduction algorithm based on a dual-tree complex wavelet transform (DTCWT) and blockmatching 3D filter (BM3D) is proposed (DTBM3D). Original laser image data transformed by logarithmic compression is decomposed by DTCWT into approximation and detail subbands. Bilateral filtering is applied to the approximation subbands, and a suited BM3D filter is applied to the detail subbands. The despeckling results show that contrast improvement index and edge preserve index outperform those of traditional methods. The researches have important reference value in research of speckle noise level and removing speckle noise.

  16. Gap-filling methods for 3D PlanTIS data.

    PubMed

    Loukiala, A; Tuna, U; Beer, S; Jahnke, S; Ruotsalainen, U

    2010-10-21

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  17. Gap-filling methods for 3D PlanTIS data

    NASA Astrophysics Data System (ADS)

    Loukiala, A.; Tuna, U.; Beer, S.; Jahnke, S.; Ruotsalainen, U.

    2010-10-01

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  18. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    NASA Astrophysics Data System (ADS)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  19. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  20. Charged-particle Gun Design with 3D Finite-element Methods

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2002-04-01

    The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.

  1. Importance of a 3D forward modeling tool for surface wave analysis methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville

    2016-04-01

    Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward

  2. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  3. Flexible 3D reconstruction method based on phase-matching in multi-sensor system.

    PubMed

    Wu, Qingyang; Zhang, Baichun; Huang, Jinhui; Wu, Zejun; Zeng, Zeng

    2016-04-01

    Considering the measuring range limitation of a single sensor system, multi-sensor system has become essential in obtaining complete image information of the object in the field of 3D image reconstruction. However, for the traditional multi-sensors worked independently in its system, there was some point in calibrating each sensor system separately. And the calibration between all single sensor systems was complicated and required a long time. In this paper, we present a flexible 3D reconstruction method based on phase-matching in multi-sensor system. While calibrating each sensor, it realizes the data registration of multi-sensor system in a unified coordinate system simultaneously. After all sensors are calibrated, the whole 3D image data directly exist in the unified coordinate system, and there is no need to calibrate the positions between sensors any more. Experimental results prove that the method is simple in operation, accurate in measurement, and fast in 3D image reconstruction. PMID:27137020

  4. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  5. An improved 3D shape context registration method for non-rigid surface registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie-Claude; Salvado, Olivier

    2010-03-01

    3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust.

  6. Robust method for extracting the pulmonary vascular trees from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2011-03-01

    Segmentation of pulmonary blood vessels from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents a method for extracting the vascular trees of the pulmonary arteries and veins, applicable to both contrast-enhanced and unenhanced 3D MDCT image data. The method finds 2D elliptical cross-sections and evaluates agreement of these cross-sections in consecutive slices to find likely cross-sections. It next employs morphological multiscale analysis to separate vessels from adjoining airway walls. The method then tracks the center of the likely cross-sections to connect them to the pulmonary vessels in the mediastinum and forms connected vascular trees spanning both lungs. A ground-truth study indicates that the method was able to detect on the order of 98% of the vessel branches having diameter >= 3.0 mm. The extracted vascular trees can be utilized for the guidance of safe bronchoscopic biopsy.

  7. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  8. Small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Hayashi, Takumi; Fujigaki, Motoharu; Murata, Yorinobu

    2014-07-01

    3-D shape measurement systems by contactless method are required in the quality inspections of metal molds and electronic parts in industrial fields. A grating projection method with phase-shifting method has advantages of high precision and high speed. Recently, the size of a BGA (ball grid array) becomes smaller. So the pitch of a grating pattern projected onto the specimen should be smaller. In conventional method, fringe pattern is projected using an imaging lens. The focal depth becomes smaller in the case of reduced projection. It is therefore difficult to project a grating pattern with small pitch onto an object with large incident angles. Authors recently proposed a light source stepping method using a linear LED device. It is easy to shrink the projected grating pitch with a lens because this projection method does not use an imaging lens. The pitch of the projected grating depends on the width of the light source. There is a limit to shrink the projected grating pitch according to the size of the LED chip. In this paper, a small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement is proposed. The width of the fiber array is 30μm. It is one digit smaller than the width of the LED chip. The experimental result of 3-D shape measurement with small pitch projection with large incident angles is shown.

  9. Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Hosseininaveh Ahmadabadian, Ali; Robson, Stuart; Boehm, Jan; Shortis, Mark

    2013-04-01

    Multi-View Stereo (MVS) as a low cost technique for precise 3D reconstruction can be a rival for laser scanners if the scale of the model is resolved. A fusion of stereo imaging equipment with photogrammetric bundle adjustment and MVS methods, known as photogrammetric MVS, can generate correctly scaled 3D models without using any known object distances. Although a huge number of stereo images (e.g. 200 high resolution images from a small object) captured of the object contains redundant data that allows detailed and accurate 3D reconstruction, the capture and processing time is increased when a vast amount of high resolution images are employed. Moreover, some parts of the object are often missing due to the lack of coverage of all areas. These problems demand a logical selection of the most suitable stereo camera views from the large image dataset. This paper presents a method for clustering and choosing optimal stereo or optionally single images from a large image dataset. The approach focusses on the two key steps of image clustering and iterative image selection. The method is developed within a software application called Imaging Network Designer (IND) and tested by the 3D recording of a gearbox and three metric reference objects. A comparison is made between IND and CMVS, which is a free package for selecting vantage images. The final 3D models obtained from the IND and CMVS approaches are compared with datasets generated with an MMDx Nikon Laser scanner. Results demonstrate that IND can provide a better image selection for MVS than CMVS in terms of surface coordinate uncertainty and completeness.

  10. Development of direct-inverse 3-D methods for applied aerodynamic design and analysis

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1988-01-01

    Several inverse methods have been compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are presented. These results show that boundary layer displacements must be included in the design process for accurate results.

  11. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.

    PubMed

    Štěpka, Karel; Matula, Pavel; Matula, Petr; Wörz, Stefan; Rohr, Karl; Kozubek, Michal

    2015-08-01

    Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive. PMID:26033916

  12. Shim3d Helmholtz Solution Package

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  13. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  14. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  15. An Application of the Method of Arbitrary Lines to 3D Elastic Stress Analysis

    NASA Astrophysics Data System (ADS)

    Kaminishi, Ken; Ando, Ryuma

    The MAL (Method of Arbitrary Lines) is a technique of reducing a partial differential equation to a system of ordinary differential equations. It is known that relevant use of this procedure yields high accuracy in some problems of two-dimensional elasticity and elastoplasticity. Since the basic concept of MAL is simple and based on generality, it is expected that many problems in other fields will be effectively solvable by this method. In this study, we consider the application of MAL to 3D (three-dimensional) elasticity analysis. We first give a MAL formulation of 3D elasticity problems, and demonstrate its effectiveness and accuracy for a typical problem. The reported numerical results are compared with the exact solution or that of the finite element method (FEM).

  16. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  17. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  18. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  19. Practical aspects of prestack depth migration with finite differences

    SciTech Connect

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.; Romero, L.A.; Burch, C.C.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatial parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.

  20. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  1. Comparison of Parallel MRI Reconstruction Methods for Accelerated 3D Fast Spin-Echo Imaging

    PubMed Central

    Xiao, Zhikui; Hoge, W. Scott; Mulkern, R.V.; Zhao, Lei; Hu, Guangshu; Kyriakos, Walid E.

    2014-01-01

    Parallel MRI (pMRI) achieves imaging acceleration by partially substituting gradient-encoding steps with spatial information contained in the component coils of the acquisition array. Variable-density subsampling in pMRI was previously shown to yield improved two-dimensional (2D) imaging in comparison to uniform subsampling, but has yet to be used routinely in clinical practice. In an effort to reduce acquisition time for 3D fast spin-echo (3D-FSE) sequences, this work explores a specific nonuniform sampling scheme for 3D imaging, subsampling along two phase-encoding (PE) directions on a rectilinear grid. We use two reconstruction methods—2D-GRAPPA-Operator and 2D-SPACE RIP—and present a comparison between them. We show that high-quality images can be reconstructed using both techniques. To evaluate the proposed sampling method and reconstruction schemes, results via simulation, phantom study, and in vivo 3D human data are shown. We find that fewer artifacts can be seen in the 2D-SPACE RIP reconstructions than in 2D-GRAPPA-Operator reconstructions, with comparable reconstruction times. PMID:18727083

  2. Novel high speed method using gray level vector modulation for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wen; Li, Dong; Tian, Jin-Dong

    2014-11-01

    Binocular Vision Technique is widely used in three-dimensional (3-D) measurement. Matching of pictures captured from two cameras is the most critical and difficult step in 3-D shape reconstruction. The method combines codedstructured light and spatial phase is usually adopted. However, being time consuming in matching, this method could not meet the requirements of real-time 3-D vision. In order to satisfy the high speed characteristic of real-time measurement, a novel method using gray level vector modulation is introduced. Combining binary code with gray coding principle, new coding patterns using gray level vector method is designed and projected onto the object surface. Each pixel corresponds to the designed sequence of gray values as a feature vector. The unique gray level vector is then dimensionally reduced to a resulting value which could be used as characteristic information for binocular matching. Experimental results further demonstrated the correctness and feasibility of the proposed method with fewer component patterns and less computational time.

  3. Earthquake source tensor inversion with the gCAP method and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.

    2013-12-01

    We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.

  4. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    SciTech Connect

    Oldham, Mark; Thomas, Andrew; O'Daniel, Jennifer; Juang, Titania; Ibbott, Geoffrey; Adamovics, John; Kirkpatrick, John P.

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution was measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient

  5. Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-06-01

    RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method

  6. Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, W.; Cheng, H.; Shi, Y.

    2015-12-01

    The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.

  7. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  8. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.

    PubMed

    Cole, Brendan C; Marcus, Guy G; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A

    2016-01-01

    Experimental methods are presented for measuring the rotational and translational motion of anisotropic particles in turbulent fluid flows. 3D printing technology is used to fabricate particles with slender arms connected at a common center. Shapes explored are crosses (two perpendicular rods), jacks (three perpendicular rods), triads (three rods in triangular planar symmetry), and tetrads (four arms in tetrahedral symmetry). Methods for producing on the order of 10,000 fluorescently dyed particles are described. Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four synchronized videos of their motion in a turbulent flow between oscillating grids with Rλ = 91. In this relatively low-Reynolds number flow, the advected particles are small enough that they approximate ellipsoidal tracer particles. We present results of time-resolved 3D trajectories of position and orientation of the particles as well as measurements of their rotation rates. PMID:27404898

  9. Optoranger: A 3D pattern matching method for bin picking applications

    NASA Astrophysics Data System (ADS)

    Sansoni, Giovanna; Bellandi, Paolo; Leoni, Fabio; Docchio, Franco

    2014-03-01

    This paper presents a new method, based on 3D vision, for the recognition of free-form objects in the presence of clutters and occlusions, ideal for robotic bin picking tasks. The method can be considered as a compromise between complexity and effectiveness. A 3D point cloud representing the scene is generated by a triangulation-based scanning system, where a fast camera acquires a blade projected by a laser source. Image segmentation is based on 2D images, and on the estimation of the distances between point pairs, to search for empty areas. Object recognition is performed using commercial software libraries integrated with custom-developed segmentation algorithms, and a database of model clouds created by means of the same scanning system.

  10. A novel 3D constellation-masked method for physical security in hierarchical OFDMA system.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Liu, Deming

    2013-07-01

    This paper proposes a novel 3D constellation-masked method to ensure the physical security in hierarchical optical orthogonal frequency division multiplexing access (OFDMA) system. The 3D constellation masking is executed on the two levels of hierarchical modulation and among different OFDM subcarriers, which is realized by the masking vectors. The Lorenz chaotic model is adopted for the generation of masking vectors in the proposed scheme. A 9.85 Gb/s encrypted hierarchical QAM OFDM signal is successfully demonstrated in the experiment. The performance of illegal optical network unit (ONU) with different masking vectors is also investigated. The proposed method is demonstrated to be secure and efficient against the commonly known attacks in the experiment. PMID:23842348

  11. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  12. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  13. Analysis of the 3D acoustic cloaking problems using optimization method

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Spivak, Yu E.

    2016-06-01

    Control problems for the 3D model of acoustic scattering which describes scattering acoustic waves by a permeable obstacle with the form of a spherical layer are considered. These problems arise while developing the design technologies of acoustic cloaking devices using the wave flow method. The solvability of direct and control problems for the acoustic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.

  14. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D

    2015-01-01

    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for

  15. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  16. Topographical surveys: Classical method versus 3D laser scanning. Case study - An application in civil engineering

    NASA Astrophysics Data System (ADS)

    Grigoraş, I.-R.; Covăsnianu, A.; Pleşu, G.; Benedict, B.

    2009-04-01

    The paper describes an experiment which took place in Iasi town, Romania, consisted in two different topographical survey techniques applied for one and the same objective placed in a block within the city (western part) - a thermal power station. The purpose was to compare those methods and to determine which one is proper to be used in this domain in terms of fastness, optimization and speed of data processing. First technique applied for our survey was the classical one, with a total station. Using the CAD technique, we obtained a final product (a dwg file) and a list of coordinates (a text file). The second method, which we focused our attention more, was the measurement with a very precise 3D laser scanstation, also very suitable in archeology. The data obtained were processed with special software. Result was a 3D model of the thermal power plant composed of measurable cloud point data. Finally, analyzing the advantages and disadvantages of each method, we came to the conclusion that the 3D laser scanning which we used matches well the application, in this case civil engineering, but the future of accepting and implementing this technique is in the hands of Romanian authorities.

  17. Modelling of 3-D electromagnetic responses using the time-wavenumber method

    SciTech Connect

    Lee, S.

    1991-12-01

    The diffusion of electromagnetic fields in time and the three spatial dimensions can be modelled using a new numerical algorithm that is tailored for geophysical applications. The novel feature of the algorithm is that a large part of the computation is done in the wavenumber domain. Here, the spatial Fourier transforms of the vertical magnetic field and the vertical current density are used to define two scalar potentials. For either a vertical electric or a vertical magnetic dipole source at the subsurface these wavenumber potentials can be represented by a simple Gaussian distribution function. In the air, the fields satisfy the Laplace equation. The flow of this algorithm is as follows: the potentials are defined in the wavenumber domain as an initial condition depending on the source configuration, the vector current density J in space is obtained from the potentials using the inverse Fourier transform, the vector electric field E is obtained by multiplying J by resistivity, the updated potentials are then obtained from the forward Fourier transform of E. Using the updated potential as a subsequent initial condition these steps are repeated until the solution reaches the final time. Since spatial derivatives can be exactly evaluated in the wavenumber domain by simple multiplications, this algorithm requires far less memory than the conventional finite difference (FD) method. The conventional FD method needs finer discretization in space in order to minimize the numerical dispersion caused by numerical differentiation in space. The conductivity distribution for this algorithm is piece-wise continuous and bounded in the wavenumber domain.

  18. Comparing a novel automatic 3D method for LGE-CMR quantification of scar size with established methods.

    PubMed

    Woie, Leik; Måløy, Frode; Eftestøl, Trygve; Engan, Kjersti; Edvardsen, Thor; Kvaløy, Jan Terje; Ørn, Stein

    2014-02-01

    Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35-50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (-2.8 ± 2.3 %) and core size (-3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = -0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods. PMID:24249515

  19. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps

    PubMed Central

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  20. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

    PubMed

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  1. Finite-Difference Algorithms For Computing Sound Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  2. A 3D front tracking method on a CPU/GPU system

    SciTech Connect

    Bo, Wurigen; Grove, John

    2011-01-21

    We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

  3. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  4. OPTIMIZATION OF 3-D IMAGE-GUIDED NEAR INFRARED SPECTROSCOPY USING BOUNDARY ELEMENT METHOD

    PubMed Central

    Srinivasan, Subhadra; Carpenter, Colin; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Multimodality imaging systems combining optical techniques with MRI/CT provide high-resolution functional characterization of tissue by imaging molecular and vascular biomarkers. To optimize these hybrid systems for clinical use, faster and automatable algorithms are required for 3-D imaging. Towards this end, a boundary element model was used to incorporate tissue boundaries from MRI/CT into image formation process. This method uses surface rendering to describe light propagation in 3-D using diffusion equation. Parallel computing provided speedup of up to 54% in time of computation. Simulations showed that location of NIRS probe was crucial for quantitatively accurate estimation of tumor response. A change of up to 61% was seen between cycles 1 and 3 in monitoring tissue response to neoadjuvant chemotherapy. PMID:20523751

  5. 3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method.

    PubMed

    Leonard, Fransisca; Godin, Biana

    2016-01-01

    Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics, and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 h. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method. PMID:26820961

  6. 3D measurement method based on combined temporal encoding structured light

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyang; Wang, Yang; Yu, Shuang; Cheng, Hao; Sun, Xiaoming; Yu, Shuchun; Chen, Deyun

    2013-10-01

    Three-dimensional (3D) vision measurement technology based on encoding structured light plays an important role and has become the main development trend in the field of 3D non-contact measurement. However, how to synthetically improve measurement speed, accuracy and sampling density is still a difficult problem. Thus in the present work, a novel 3D measurement method based on temporal encoding structured light by combining trapezoidal phase-shifting pattern and cyclic code pattern is proposed. Due to trapezoidal phase-shifting has the advantages of high sampling density and high-speed, the proposed method can maintain these advantages by using cyclic code to expand the range of trapezoidal phase-shifting. In addition, the correction scheme is designed to solve the problem of cycle dislocation. Finally, simulation experimental platform is built with 3ds max and MATLAB. Experimental analyses and results show that, the maximal error is less than 3 mm in the range from 400 mm to 1100 mm, cycle dislocation correction has a good effect.

  7. A 3D neurovascular bundles segmentation method based on MR-TRUS deformable registration

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Jani, Ashesh B.; Mao, Hui; Ogunleye, Tomi; Curran, Walter J.; Liu, Tian

    2015-03-01

    In this paper, we propose a 3D neurovascular bundles (NVB) segmentation method for ultrasound (US) image by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS deformable registration. First, 3D NVB was contoured by a physician in MR images, and the 3D MRdefined NVB was then transformed into US images using a MR-TRUS registration method, which models the prostate tissue as an elastic material, and jointly estimates the boundary deformation and the volumetric deformations under the elastic constraint. This technique was validated with a clinical study of 6 patients undergoing radiation therapy (RT) treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was less than 2 mm, and the average NVB volume Dice Overlap Coefficient was over 89%. This NVB segmentation technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NVB response to RT, and potentially improve post-RT potency outcomes.

  8. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  9. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    NASA Technical Reports Server (NTRS)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  10. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  11. Availability study of CFD-based Mask3D simulation method for next generation lithography technologies

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Kawabata, Y.; Washitani, T.; Tanaka, S.; Maeda, S.; Mimotogi, S.

    2014-03-01

    In progress of lithography technologies, the importance of Mask3D analysis has been emphasized because the influence of mask topography effects is not avoidable to be increased explosively. An electromagnetic filed simulation method, such as FDTD, RCWA and FEM, is applied to analyze those complicated phenomena. We have investigated Constrained Interpolation Profile (CIP) method, which is one of the Method of Characteristics (MoC), for Mask3D analysis in optical lithography. CIP method can reproduce the phase of propagating waves with less numerical error by using high order polynomial function. The restrictions of grid distance are relaxed with spatial grid. Therefore this method reduces the number of grid points in complex structure. In this paper, we study the feasibility of CIP scheme applying a non-uniform and spatial-interpolated grid to practical mask patterns. The number of grid points might be increased in complex layout and topological structure since these structures require a dense grid to remain the fidelity of each design. We propose a spatial interpolation method based on CIP method same as time-domain interpolation to reduce the number of grid points to be computed. The simulation results of two meshing methods with spatial interpolation are shown.

  12. Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Shao, Weijia; Zhou, Yao; Wang, Huijie; Liu, Xiao; Xu, Xiaoliang

    2013-11-01

    Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.

  13. A Retrospective Research for 1999 Chi-Chi, Taiwan Earthquake by 3-D PI Method

    NASA Astrophysics Data System (ADS)

    Li, H.; Chen, C.; Tiampo, K.; Rundle, J.; Klein, W.

    2007-12-01

    The PI (Pattern Informatics) method was proposed by Tiampo et al., 2002, for the identification of future seismicity in California after 1999. A plausible result was published in Proc. Natl. Acad. Sci. U.S.A. 99, suppl., 2002. Chen et al. modified the calculation of the original PI method to de-emphasize the effect of current events, and applied the modified PI method to make a retrospective analysis for the 1999 Chi-Chi earthquake in Taiwan. In the case study of the Chi-Chi sequence, the main shock and most of the aftershocks were located in and around the ß¡±hot spot ßÆØ region produced by the modified PI method. Tiampo et al. (2007) applied the Thirumalai- Mountain metric to three earthquake catalogs, California, Spain and eastern Canada, which belong to different tectonic environments. Under specific spatial-temporal resolutions, effectively ergodic behaviors of seismic rate all exist in these regions. Ongoing research for Taiwan suggests that, once depth factor is considered in seismic event distribution, a similar effectively ergodicity also exists in the seismicity data. It motivates us to improve the original PI method to a 3-D version on order to consider the depth effect in a very condensed, high seismicity region. In this study, we used 3-D PI method to make a retrospective forecast of the 1999 M=7.3 Chi-Chi earthquake. The CWB (Central Weather Bureau) catalogue was used. An effectively ergodic period chosen from inverse TM metric-time plot was used as the forecast period. The main shock and several large aftershocks, which magnitudes are ß « 6.0, are well located in or near hotspots in this 3-D PI forecast. In a relative operating characteristic test (Jolliffe and Stephenson, 2003), the performance of PI forecast is also better than relative intensity (RI).

  14. A brain-computer interface method combined with eye tracking for 3D interaction.

    PubMed

    Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung

    2010-07-15

    With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI. PMID:20580646

  15. Improved finite-difference vibration analysis of pretwisted, tapered beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.

  16. A cut cell method for the 3D simulation of Crookes radiometer

    SciTech Connect

    Dechriste, Guillaume; Mieussens, Luc

    2014-12-09

    Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.

  17. Shot noise limit of the optical 3D measurement methods for smooth surfaces

    NASA Astrophysics Data System (ADS)

    Pavliček, Pavel; Pech, Miroslav

    2016-03-01

    The measurement uncertainty of optical 3D measurement methods for smooth surfaces caused by shot noise is investigated. The shot noise is a fundamental property of the quantum nature of light. If all noise sources are eliminated, the shot noise represents the ultimate limit of the measurement uncertainty. The measurement uncertainty is calculated for several simple model methods. The analysis shows that the measurement uncertainty depends on the wavelength of used light, the number of photons used for the measurement, and on a factor that is connected with the geometric arrangement of the measurement setup.

  18. One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator

    SciTech Connect

    Shin, H.C.; Kim, Y.H.; Kim, Y.B.

    1999-07-01

    This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.

  19. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  20. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    SciTech Connect

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  1. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  2. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    SciTech Connect

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  3. Computation of dynamic seismic responses to viscous fluid of digitized three-dimensional Berea sandstones with a coupled finite-difference method.

    PubMed

    Zhang, Yang; Toksöz, M Nafi

    2012-08-01

    The seismic response of saturated porous rocks is studied numerically using microtomographic images of three-dimensional digitized Berea sandstones. A stress-strain calculation is employed to compute the velocities and attenuations of rock samples whose sizes are much smaller than the seismic wavelength of interest. To compensate for the contributions of small cracks lost in the imaging process to the total velocity and attenuation, a hybrid method is developed to recover the crack distribution, in which the differential effective medium theory, the Kuster-Toksöz model, and a modified squirt-flow model are utilized in a two-step Monte Carlo inversion. In the inversion, the velocities of P- and S-waves measured for the dry and water-saturated cases, and the measured attenuation of P-waves for different fluids are used. By using such a hybrid method, both the velocities of saturated porous rocks and the attenuations are predicted accurately when compared to laboratory data. The hybrid method is a practical way to model numerically the seismic properties of saturated porous rocks until very high resolution digital data are available. Cracks lost in the imaging process are critical for accurately predicting velocities and attenuations of saturated porous rocks. PMID:22894185

  4. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits

    PubMed Central

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    Purpose: This article presents a new reconstruction method for 3D imaging using a multiple 360° circular orbit cone beam CT system, specifically a way to combine 3D volumes reconstructed with each orbit. The main goal is to improve the noise performance in the combined image while avoiding cone beam artifacts. Methods: The cone beam projection data of each orbit are reconstructed using the FDK algorithm. When at least a portion of the total volume can be reconstructed by more than one source, the proposed combination method combines these overlap regions using weighted averaging in frequency space. The local exactness and the noise performance of the combination method were tested with computer simulations of a Defrise phantom, a FORBILD head phantom, and uniform noise in the raw data. Results: A noiseless simulation showed that the local exactness of the reconstructed volume from the source with the smallest tilt angle was preserved in the combined image. A noise simulation demonstrated that the combination method improved the noise performance compared to a single orbit reconstruction. Conclusions: In CT systems which have overlap volumes that can be reconstructed with data from more than one orbit and in which the spatial frequency content of each reconstruction can be calculated, the proposed method offers improved noise performance while keeping the local exactness of data from the source with the smallest tilt angle. PMID:21089770

  5. Determining canonical views of 3D object using minimum description length criterion and compressive sensing method

    NASA Astrophysics Data System (ADS)

    Chen, Ping-Feng; Krim, Hamid

    2008-02-01

    In this paper, we propose using two methods to determine the canonical views of 3D objects: minimum description length (MDL) criterion and compressive sensing method. MDL criterion searches for the description length that achieves the balance between model accuracy and parsimony. It takes the form of the sum of a likelihood and a penalizing term, where the likelihood is in favor of model accuracy such that more views assists the description of an object, while the second term penalizes lengthy description to prevent overfitting of the model. In order to devise the likelihood term, we propose a model to represent a 3D object as the weighted sum of multiple range images, which is used in the second method to determine the canonical views as well. In compressive sensing method, an intelligent way of parsimoniously sampling an object is presented. We make direct inference from Donoho1 and Candes'2 work, and adapt it to our model. Each range image is viewed as a projection, or a sample, of a 3D model, and by using compressive sensing theory, we are able to reconstruct the object with an overwhelming probability by scarcely sensing the object in a random manner. Compressive sensing is different from traditional compressing method in the sense that the former compress things in the sampling stage while the later collects a large number of samples and then compressing mechanism is carried out thereafter. Compressive sensing scheme is particularly useful when the number of sensors are limited or the sampling machinery cost much resource or time.

  6. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  7. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    NASA Astrophysics Data System (ADS)

    Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.

    2014-10-01

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.

  8. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  9. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    PubMed

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  10. Real-space finite-difference calculation method of generalized Bloch wave functions and complex band structures with reduced computational cost.

    PubMed

    Tsukamoto, Shigeru; Hirose, Kikuji; Blügel, Stefan

    2014-07-01

    Generalized Bloch wave functions of bulk structures, which are composed of not only propagating waves but also decaying and growing evanescent waves, are known to be essential for defining the open boundary conditions in the calculations of the electronic surface states and scattering wave functions of surface and junction structures. Electronic complex band structures being derived from the generalized Bloch wave functions are also essential for studying bound states of the surface and junction structures, which do not appear in conventional band structures. We present a novel calculation method to obtain the generalized Bloch wave functions of periodic bulk structures by solving a generalized eigenvalue problem, whose dimension is drastically reduced in comparison with the conventional generalized eigenvalue problem derived by Fujimoto and Hirose [Phys. Rev. B 67, 195315 (2003)]. The generalized eigenvalue problem derived in this work is even mathematically equivalent to the conventional one, and, thus, we reduce computational cost for solving the eigenvalue problem considerably without any approximation and losing the strictness of the formulations. To exhibit the performance of the present method, we demonstrate practical calculations of electronic complex band structures and electron transport properties of Al and Cu nanoscale systems. Moreover, employing atom-structured electrodes and jellium-approximated ones for both of the Al and Si monatomic chains, we investigate how much the electron transport properties are unphysically affected by the jellium parts. PMID:25122409

  11. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2005-01-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  12. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2004-12-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  13. The image adaptive method for solder paste 3D measurement system

    NASA Astrophysics Data System (ADS)

    Xiaohui, Li; Changku, Sun; Peng, Wang

    2015-03-01

    The extensive application of Surface Mount Technology (SMT) requires various measurement methods to evaluate the circuit board. The solder paste 3D measurement system utilizing laser light projecting on the printed circuit board (PCB) surface is one of the critical methods. The local oversaturation, arising from the non-consistent reflectivity of the PCB surface, will lead to inaccurate measurement. The paper reports a novel optical image adaptive method of remedying the local oversaturation for solder paste measurement. The liquid crystal on silicon (LCoS) and image sensor (CCD or CMOS) are combined as the high dynamic range image (HDRI) acquisition system. The significant characteristic of the new method is that the image after adjustment is captured by specially designed HDRI acquisition system programmed by the LCoS mask. The formation of the LCoS mask, depending on a HDRI combined with the image fusion algorithm, is based on separating the laser light from the local oversaturated region. Experimental results demonstrate that the method can significantly improve the accuracy for the solder paste 3D measurement system with local oversaturation.

  14. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    SciTech Connect

    Koumetz, Serge D. Martin, Patrick; Murray, Hugues

    2014-09-14

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.

  15. Derivation and evaluation of an approximate analysis for three-dimensional viscous subsonic flow with large secondary velocities. [finite difference method

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Briley, W. R.; Mcdonald, H.

    1978-01-01

    An approximate analysis is presented for calculating three-dimensional, low Mach number, laminar viscous flows in curved passages with large secondary flows and corner boundary layers. The analysis is based on the decomposition of the overall velocity field into inviscid and viscous components with the overall velocity being determined from superposition. An incompressible vorticity transport equation is used to estimate inviscid secondary flow velocities to be used as corrections to the potential flow velocity field. A parabolized streamwise momentum equation coupled to an adiabatic energy equation and global continuity equation is used to obtain an approximate viscous correction to the pressure and longitudinal velocity fields. A collateral flow assumption is invoked to estimate the viscous correction to the transverse velocity fields. The approximate analysis is solved numerically using an implicit ADI solution for the viscous pressure and velocity fields. An iterative ADI procedure is used to solve for the inviscid secondary vorticity and velocity fields. This method was applied to computing the flow within a turbine vane passage with inlet flow conditions of M = 0.1 and M = 0.25, Re = 1000 and adiabatic walls, and for a constant radius curved rectangular duct with R/D = 12 and 14 and with inlet flow conditions of M = 0.1, Re = 1000, and adiabatic walls.

  16. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGESBeta

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  17. A novel 3D absorption correction method for quantitative EDX-STEM tomography.

    PubMed

    Burdet, Pierre; Saghi, Z; Filippin, A N; Borrás, A; Midgley, P A

    2016-01-01

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. PMID:26484792

  18. A new 3D shape measurement method using digital fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Jiarui; Zhang, Yingjie; Yu, Mingrang; Xiang, Dehu

    2015-10-01

    This paper proposes a novel optical three-dimensional (3D) measurement method using the traditional space-time stereo system. In the proposed method, the projector not only shoots fringe pattern onto the measurement object to achieve precise matching, but also plays a vital role in the 3D information calculation. With the combination of two cameras and a projector, two digital fringe projection (DFP) measurement systems and one traditional space-time stereo measurement system can be obtained. In another word, the measurand will be measured three times simultaneously, which results in three independent point clouds of the same region of the object to be measured. So it is necessary to register these three sets of points for obtaining one final data set. The iterative closest points (ICP) method, which is known as the most popular registration approach, is sensitive to the initial estimation of the transformation between the two sets of points to be matched. Thus, a robust rough registration, which is introduced from Natasha, is useful for ICP to realize accurate registration. After registration, a scattered point set with redundant and errors, which are caused by overlapping, is obtained. Then some local surfaces are constructed for those overlapping regions using the moving least squares (MLS) method, and the points extracted from those surfaces are used to replace the points of the overlapping regions. Finally, a simplified, precise point cloud can be obtained.

  19. FDIPS: Finite Difference Iterative Potential-field Solver

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; van der Holst, Bartholomeus; Huang, Zhenguang

    2016-06-01

    FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

  20. Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.

    2000-01-01

    Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.

  1. Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo

    The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.

  2. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  3. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  4. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  5. Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian

    2016-09-01

    We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.

  6. ROI-preserving 3D video compression method utilizing depth information

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Xu, Guodong; Guan, Yudong; Teng, Yidan

    2015-09-01

    Efficiently transmitting the extra information of three dimensional (3D) video is becoming a key issue of the development of 3DTV. 2D plus depth format not only occupies the smaller bandwidth and is compatible transmission under the condition of the existing channel, but also can provide technique support for advanced 3D video compression in some extend. This paper proposes an ROI-preserving compression scheme to further improve the visual quality at a limited bit rate. According to the connection between the focus of Human Visual System (HVS) and depth information, region of interest (ROI) can be automatically selected via depth map progressing. The main improvement from common method is that a meanshift based segmentation is executed to the depth map before foreground ROI selection to keep the integrity of scene. Besides, the sensitive areas along the edges are also protected. The Spatio-temporal filtering adapting to H.264 is used to the non-ROI of both 2D video and depth map before compression. Experiments indicate that, the ROI extracted by this method is more undamaged and according with subjective feeling, and the proposed method can keep the key high-frequency information more effectively while the bit rate is reduced.

  7. 3D Multi-spectral Image-guided Near-infrared Spectroscopy using Boundary Element Method

    PubMed Central

    Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Image guided (IG) Near-Infrared spectroscopy (NIRS) has the ability to provide high-resolution metabolic and vascular characterization of tissue, with clinical applications in diagnosis of breast cancer. This method is specific to multimodality imaging where tissue boundaries obtained from alternate modalities such as MRI/CT, are used for NIRS recovery. IG-NIRS is severely limited in 3D by challenges such as volumetric meshing of arbitrary anatomical shapes and computational burden encountered by existing models which use finite element method (FEM). We present an efficient and feasible alternative to FEM using boundary element method (BEM). The main advantage is the use of surface discretization which is reliable and more easily generated than volume grids in 3D and enables automation for large number of clinical data-sets. The BEM has been implemented for the diffusion equation to model light propagation in tissue. Image reconstruction based on BEM has been tested in a multi-threading environment using four processors which provides 60% improvement in computational time compared to a single processor. Spectral priors have been implemented in this framework and applied to a three-region problem with mean error of 6% in recovery of NIRS parameters. PMID:21179380

  8. 3D modeling for solving forward model of no-contact fluorescence diffuse optical tomography method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Chabrier, R.; Torregrossa, M.; Poulet, P.

    2009-07-01

    This paper presents detailed computational aspects of a new 3D modeling for solving the direct problem in a no-contact time-resolved Fluorescent Diffuse Optical Tomography (FDOT) method that rely on near-infrared scattered and fluorescent photons to image the optical properties and distribution of fluorescent probes in small laboratory animals. An optical scanner allowing performing in-vivo measurements in no-contact scheme was built in our laboratory and is presented. We use the three-dimensional Finite Element Method (FEM) to solve the coupled diffusion equations of excitation and fluorescence photons in highly scattering objects. The computed results allowed yielding photon density maps and the temporal profiles of photons on the surface of the small animal. Our 3D modeling of propagation of photons in the void space between the surface of the object and the detectors allows calculating the quantity of photons reaching the optodes. Simulations were carried-out on two test objects: a resin cylinder and a mouse phantom. The results demonstrate the potential applications of the method to pre-clinical imaging.

  9. Calculation by the finite element method of 3-D turbulent flow in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Combes, J. F.

    1992-02-01

    In order to solve industrial flow problems in complex geometries, a finite element code, N3S, was developed. It allows the computation of a wide variety of 2-D or 3-D unsteady incompressible flows, by solving the Reynolds averaged Navier-Stokes equations together with a k-epsilon turbulence model. Some recent developments of this code concern turbomachinery flows, where one has to take into account periodic boundary conditions, as well as Coriolis and centrifugal forces. The numerical treatment is based on a fractional step method: at each time step, an advection step is solved successively by means of a characteristic method; a diffusion step for the scalar terms; and finally, a Generalized Stokes Problem by using a preconditioned Uzawa algorithm. The space discretization uses a standard Galerkin finite element method with a mixed formulation for the velocity and pressure. An application is presented of this code to the flow inside a centrifugal pump which was extensively tested on several air and water test rigs, and for which many quasi-3-D or Euler calculations were reported. The present N3S calculation is made on a finite element mesh comprising about 28000 tetrahedrons and 43000 nodes.

  10. Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method

    PubMed Central

    Yu, Haiqing; Chen, Zhi; Zhang, Heye; Loong Wong, Kelvin Kian; Chen, Yunmei; Liu, Huafeng

    2015-01-01

    This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF). PMID:26398232

  11. Development of 3D Image Measurement System and Stereo-matching Method, and Its Archeological Measurement

    NASA Astrophysics Data System (ADS)

    Kochi, Nobuo; Ito, Tadayuki; Kitamura, Kazuo; Kaneko, Syun'ichi

    The three dimensional measurement & modeling system with digital cameras on PC is now making progress and its need and hope is increasingly felt in terrestrial (close-range) photogrammetry for such sectors as cultural heritage preservation, architecture, civil engineering, manufacturing, measurement etc. Therefore, we have developed a system to improve the accuracy of stereo-matching, which is the very core of 3D measurement. As for stereo-matching method, in order to minimize the mismatching and to be robust in geometric distortions, occlusion, as well as brightness change, we invented Coarse-to-Fine Strategy Method by integrating OCM (Orientation Code Matching) with LSM (Least Squares Matching). Thus this system could attain the accuracy of 0.26mm, when we experimented on a mannequin. And when we actually experimented on the archeological ruins in Greece and Turkey, the accuracy was within the range of 1cm, compared with their blue-print plan. Besides, formally workers used to take at least 1.5 month for this kind of survey operation with the existing method, but now workers need only 3 or 4 days. Thus, its practicality and efficiency was confirmed. This paper demonstrates our new system of 3D measurement and stereo-matching with some concrete examples as its practical application.

  12. Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Wang, Qiao; Zhu, Hongping; Li, Yinping

    2014-01-01

    This paper applies the hybrid boundary node method (Hybrid BNM) for the thermal analysis of 3D composites. A new formulation is derived for the inclusion-based composites. In the new formulation, the unknowns of the interfaces are assembled only once in the final system equation, which can reduce nearly one half of degrees of freedom (DOFs) compared with the conventional multi-domain solver when there are lots of inclusions. A new version of the fast multipole method (FMM) is also coupled with the new formulation and the technique is applied to thermal analysis of composites with many inclusions. In the new fast multipole hybrid boundary node method (FM-HBNM), a diagonal form for translation operators is used and the method presented can be applied to the computation of more than 1,000,000 DOFs on a personal computer. Numerical examples are presented to analyze the thermal behavior of composites with many inclusions.

  13. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  14. Multilevel fast multipole method based on a potential formulation for 3D electromagnetic scattering problems.

    PubMed

    Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome

    2013-06-01

    A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations. PMID:24323115

  15. Multilevel local refinement and multigrid methods for 3-D turbulent flow

    SciTech Connect

    Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.

    1996-12-31

    A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.

  16. Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes

    SciTech Connect

    Barnes, D.C.; Rousculp, C.L.

    1998-10-01

    Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

  17. A novel window based method for approximating the Hausdorff in 3D range imagery.

    SciTech Connect

    Koch, Mark William

    2004-10-01

    Matching a set of 3D points to another set of 3D points is an important part of any 3D object recognition system. The Hausdorff distance is known for it robustness in the face of obscuration, clutter, and noise. We show how to approximate the 3D Hausdorff fraction with linear time complexity and quadratic space complexity. We empirically demonstrate that the approximation is very good when compared to actual Hausdorff distances.

  18. A comparative study for 2D and 3D computer-aided diagnosis methods for solitary pulmonary nodules.

    PubMed

    Yeh, Chinson; Wang, Jen-Feng; Wu, Ming-Ting; Yen, Chen-Wen; Nagurka, Mark L; Lin, Chen-Liang

    2008-06-01

    Many computer-aided diagnosis (CAD) methods, including 2D and 3D approaches, have been proposed for solitary pulmonary nodules (SPNs). However, the detection and diagnosis of SPNs remain challenging in many clinical circumstances. One goal of this work is to investigate the relative diagnostic accuracy of 2D and 3D methods. An additional goal is to develop a two-stage approach that combines the simplicity of 2D and the accuracy of 3D methods. The experimental results show statistically significant differences between the diagnostic accuracy of 2D and 3D methods. The results also show that with a very minor drop in diagnostic performance the two-stage approach can significantly reduce the number of nodules needed to be processed by the 3D method, streamlining the computational demand. PMID:18313899

  19. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  20. Finite difference modeling of rotor flows including wake effects

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Desopper, A.; Tung, C.

    1982-01-01

    Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows.

  1. Determination of 3D Surface Roughness Parameters by Cross-Section Method

    NASA Astrophysics Data System (ADS)

    Rudzitis, J.; Krizbergs, J.; Kumermanis, M.; Mozga, N.; Ancans, A.; Leitans, A.

    2014-04-01

    Currently, in the production engineering the surface roughness parameters are estimated in three dimensions, however, the equipment for these measurements is rather expensive and not always available. In many cases to buy such equipment is not economically justified. Therefore, the 3D surface roughness parameters are usually determined from the well-known 2D profile ones using the existing 2D equipment. This could be done best using the cross-section (or profile) method, especially in the case of nanoroughness estimation, with calculation of the mean values for the roughness height, spacing, and shape. This method - though mainly meant for irregular rough surfaces - can also be used for other types of rough surfaces. Particular emphasis is here given to the correlation between the surface cross-section (profile) parameters and 3D parameters as well as to the choice of the number of cross-cuttings and their orientation on the surface. Mūsdienu ražošanā ir nepieciešams novērtēt virsmas raupjuma parametrus trijās dimensijās, tomēr, aprīkojums šādu mērījumu veikšanai ir ļoti dārgs un ne vienmēr pieejams. Tādēļ bieži rodas nepieciešamība noteikt 3D virsmas raupjuma parametrus pēc labi zināmajiem profila (2D) parametriem, izmantojot eksistējošo 2D mērīšanas aprīkojumu. Labākais risinājums šai problēmai ir izmantot 3D raupjuma parametru noteikšanai šķēlumu jeb profilu metodi. Metode uzrāda labus rezultātus arī novērtējot nanoraupjumu. Iespējams aprēķināt sekojošu virsmas raupjuma mikrotopogrāfisko parametru vidējās vērtības: raupjuma augstumu; soļu parametrus un formu. Metode ir paredzēta izmantošanai virsmām ar neregulāru raksturu, bet var tikt pielāgota arī citu tipu virsmām.

  2. A novel method for vaginal cylinder treatment planning: a seamless transition to 3D brachytherapy

    PubMed Central

    Wu, Vincent; Wang, Zhou; Patil, Sachin

    2012-01-01

    Purpose Standard treatment plan libraries are often used to ensure a quick turn-around time for vaginal cylinder treatments. Recently there is increasing interest in transitioning from conventional 2D radiograph based brachytherapy to 3D image based brachytherapy, which has resulted in a substantial increase in treatment planning time and decrease in patient through-put. We describe a novel technique that significantly reduces the treatment planning time for CT-based vaginal cylinder brachytherapy. Material and methods Oncentra MasterPlan TPS allows multiple sets of data points to be classified as applicator points which has been harnessed in this method. The method relies on two hard anchor points: the first dwell position in a catheter and an applicator configuration specific dwell position as the plan origin and a soft anchor point beyond the last active dwell position to define the axis of the catheter. The spatial location of various data points on the applicator's surface and at 5 mm depth are stored in an Excel file that can easily be transferred into a patient CT data set using window operations and then used for treatment planning. The remainder of the treatment planning process remains unaffected. Results The treatment plans generated on the Oncentra MasterPlan TPS using this novel method yielded results comparable to those generated on the Plato TPS using a standard treatment plan library in terms of treatment times, dwell weights and dwell times for a given optimization method and normalization points. Less than 2% difference was noticed between the treatment times generated between both systems. Using the above method, the entire planning process, including CT importing, catheter reconstruction, multiple data point definition, optimization and dose prescription, can be completed in ~5–10 minutes. Conclusion The proposed method allows a smooth and efficient transition to 3D CT based vaginal cylinder brachytherapy planning. PMID:23349650

  3. Rasterizing geological models for parallel finite difference simulation using seismic simulation as an example

    NASA Astrophysics Data System (ADS)

    Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan

    2016-01-01

    3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.

  4. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo.

    PubMed

    Lin, Ching-Wei; Bachilo, Sergei M; Vu, Michael; Beckingham, Kathleen M; Bruce Weisman, R

    2016-05-21

    Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions. PMID:27140495

  5. A method of 3D object recognition and localization in a cloud of points

    NASA Astrophysics Data System (ADS)

    Bielicki, Jerzy; Sitnik, Robert

    2013-12-01

    The proposed method given in this article is prepared for analysis of data in the form of cloud of points directly from 3D measurements. It is designed for use in the end-user applications that can directly be integrated with 3D scanning software. The method utilizes locally calculated feature vectors (FVs) in point cloud data. Recognition is based on comparison of the analyzed scene with reference object library. A global descriptor in the form of a set of spatially distributed FVs is created for each reference model. During the detection process, correlation of subsets of reference FVs with FVs calculated in the scene is computed. Features utilized in the algorithm are based on parameters, which qualitatively estimate mean and Gaussian curvatures. Replacement of differentiation with averaging in the curvatures estimation makes the algorithm more resistant to discontinuities and poor quality of the input data. Utilization of the FV subsets allows to detect partially occluded and cluttered objects in the scene, while additional spatial information maintains false positive rate at a reasonably low level.

  6. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique. PMID:27410124

  7. A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn

    2008-10-01

    A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.

  8. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H

    2016-07-01

    Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction. PMID:26660897

  9. Microelectro discharge machining: an innovative method for the fabrication of 3D microdevices

    NASA Astrophysics Data System (ADS)

    Lesche, Claudia; Krah, Thomas; Büttgenbach, Stephanus

    2011-06-01

    This paper reports on the potential of microelectro discharge machining (μEDM) as an innovative method for the fabrication of 3D microdevices. To demonstrate the wide capabilities of μEDM two different high-potential 3D microsystems - a microfluidic device for the dispersion of nanoparticles and a star probe for microcoordinate metrology - are presented. For the fabrication of these microdevices a μEDM-milling machine with integrated microwire electro discharge grinding (μWEDG) module is utilized. To gain optimized process conditions as well as a high surface quality an adequate adaption of the single erosion parameters such as energy, pulse frequency and spark gap has to be carried out and are discussed below. The dispersion micromodule is used for pharmaceutical screening applications in a high pressure range up to 2000 bar. At the channel bottom a surface roughness of Ra = 80 nm is achieved. In case of the star probe it is possible to produce shaft and sphere out of one piece. The fabricated stylus elements have sphere diameters of 40-200 μm. For both applications μEDM offers a flexible, precise, effective and cost-efficient fabrication method for the machining of hard and resistant materials.

  10. A coordinate-free method for the analysis of 3D facial change

    NASA Astrophysics Data System (ADS)

    Mao, Zhili; Siebert, Jan Paul; Cockshott, W. Paul; Ayoub, Ashraf Farouk

    2004-05-01

    Euclidean Distance Matrix Analysis (EDMA) is widely held as the most important coordinate-free method by which to analyze landmarks. It has been used extensively in the field of medical anthropometry and has already produced many useful results. Unfortunately this method renders little information regarding the surface on which these points are located and accordingly is inadequate for the 3D analysis of surface anatomy. Here we shall present a new inverse surface flatness metric, the ratio between the Geodesic and the Euclidean inter-landmark distances. Because this metric also only reflects one aspect of three-dimensional shape, i.e. surface flatness, we have combined it with the Euclidean distance to investigate 3D facial change. The goal of this investigation is to be able to analyze three-dimensional facial change in terms of bilateral symmetry as encoded both by surface flatness and by geometric configuration. Our initial study, based on 25 models of surgically managed children (unilateral cleft lip repair) and 40 models of control children at the age of 2 years, indicates that the faces of the surgically managed group were found to be significantly less symmetric than those of the control group in terms of surface flatness, geometric configuration and overall symmetry.

  11. Improvement of advanced nodal method used in 3D core design system

    SciTech Connect

    Rauck, S.; Dall'Osso, A.

    2006-07-01

    This paper deals with AREVA NP progress in the modelling of neutronic phenomena, evaluated through 3D determinist core codes and using 2-group diffusion theory. Our report highlights the advantages of taking into account the assembly environment in the process used for the building of the 2-group collapsed neutronic parameters, such as cross sections or discontinuity factors. The interest of the present method, developed in order to account for the impact of the environment on the above mentioned parameters, resides (i) in the very definition of a global correlation between collapsed neutronic data calculated in an infinite medium and those calculated in a 3D-geometry, and (ii) in the use of a re-homogenization method. Using this approach, computations match better with actual measurements on control rod worth. They also present smaller differences on pin by pin power values compared to the ones computed with another code considered as a reference since it relies on multigroup transport theory. (authors)

  12. Performance comparison of accelerometer calibration algorithms based on 3D-ellipsoid fitting methods.

    PubMed

    Gietzelt, Matthias; Wolf, Klaus-Hendrik; Marschollek, Michael; Haux, Reinhold

    2013-07-01

    Calibration of accelerometers can be reduced to 3D-ellipsoid fitting problems. Changing extrinsic factors like temperature, pressure or humidity, as well as intrinsic factors like the battery status, demand to calibrate the measurements permanently. Thus, there is a need for fast calibration algorithms, e.g. for online analyses. The primary aim of this paper is to propose a non-iterative calibration algorithm for accelerometers with the focus on minimal execution time and low memory consumption. The secondary aim is to benchmark existing calibration algorithms based on 3D-ellipsoid fitting methods. We compared the algorithms regarding the calibration quality and the execution time as well as the number of quasi-static measurements needed for a stable calibration. As evaluation criterion for the calibration, both the norm of calibrated real-life measurements during inactivity and simulation data was used. The algorithms showed a high calibration quality, but the execution time differed significantly. The calibration method proposed in this paper showed the shortest execution time and a very good performance regarding the number of measurements needed to produce stable results. Furthermore, this algorithm was successfully implemented on a sensor node and calibrates the measured data on-the-fly while continuously storing the measured data to a microSD-card. PMID:23566707

  13. Advanced methods for 3-D inelastic structural analysis for hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.

  14. A multi-thread scheduling method for 3D CT image reconstruction using multi-GPU.

    PubMed

    Zhu, Yining; Zhao, Yunsong; Zhao, Xing

    2012-01-01

    As a whole process, we present a concept that the complete reconstruction of CT image should include the computation part on GPUs and the data storage part on hard disks. From this point of view, we propose a Multi-Thread Scheduling (MTS) method to implement the 3D CT image reconstruction such as using FDK algorithm, to trade off the computing and storage time. In this method we use Multi-Threads to control GPUs and a separate thread to accomplish data storage, so that we make the calculation and data storage simultaneously. In addition, we use the 4-channel texture to maintain symmetrical projection data in CUDA framework, which can reduce the calculation time significantly. Numerical experiment shows that the time for the whole process with our method is almost the same as the data storage time. PMID:22635174

  15. Block-Iterative Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore CPUs

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2014-06-01

    Block iterative methods are extremely important as smoothers for multigrid methods, as preconditioners for Krylov methods, and as solvers for diagonally dominant linear systems. Developing robust and efficient smoother algorithms suitable for current and evolving GPU and multicore CPU systems is a significant challenge. We address this issue in the case of constant-coefficient stencils arising in the solution of elliptic partial differential equations on structured 3D uniform and adaptively refined block structured grids. Robust, highly parallel implementations of block Jacobi and chaotic block Gauss-Seidel algorithms with exact inversion of the blocks are developed using different parallelization techniques. Experimental results for NVIDIA Fermi/Kepler GPUs and AMD multicore systems are presented.

  16. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  17. A Tool-Free Calibration Method for Turntable-Based 3D Scanning Systems.

    PubMed

    Pang, Xufang; Lau, Rynson W H; Song, Zhan; Li, Yangyan; He, Shengfeng

    2016-01-01

    Turntable-based 3D scanners are popular but require calibration of the turntable axis. Existing methods for turntable calibration typically make use of specially designed tools, such as a chessboard or criterion sphere, which users must manually install and dismount. In this article, the authors propose an automatic method to calibrate the turntable axis without any calibration tools. Given a scan sequence of the input object, they first recover the initial rotation axis from an automatic registration step. Then they apply an iterative procedure to obtain the optimized turntable axis. This iterative procedure alternates between two steps: refining the initial pose of the input scans and approximating the rotation matrix. The performance of the proposed method was evaluated on a structured light-based scanning system. PMID:25137724

  18. Review on applications of 3D inverse design method for pump

    NASA Astrophysics Data System (ADS)

    Yin, Junlian; Wang, Dezhong

    2014-05-01

    The 3D inverse design method, which methodology is far superior to the conventional design method that based on geometrical description, is gradually applied in pump blade design. However, no complete description about the method is outlined. Also, there are no general rules available to set the two important input parameters, blade loading distribution and stacking condition. In this sense, the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized. And also, several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed. The results indicates that, for centrifugal pump and mixed pump or turbine, the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade, whereas in the aft part, the ratio is decreased to satisfy the same wrap angle for hub and shroud. And the choice of blade loading type depends on the balancing of efficiency and cavitation. If the cavitation is more weighted, the better choice is aft-loaded, otherwise, the fore-loaded or mid-loaded is preferable to improve the efficiency. The stacking condition, which is an auxiliary to suppress the secondary flow, can have great effect on the jet-wake outflow and the operation range for pump. Ultimately, how to link the design method to modern optimization techniques is illustrated. With the know-how design methodology and the know-how systematic optimization approach, the application of optimization design is promising for engineering. This paper summarizes the 3D inverse design method systematically.

  19. An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Helzel, Christiane; Rossmanith, James A.; Taetz, Bertram

    2011-05-01

    Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput. 28 (2006) 1766], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J.O. Langseth, R.J. LeVeque, A wave propagation method for threedimensional hyperbolic conservation laws, J. Comput. Phys. 165 (2000) 126]. In particular, in our extension we take great care to maintain the three most important properties of the 2D scheme: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as cell-centered; (2) we develop a high-resolution wave propagation scheme for evolving the magnetic potential; and (3) we develop a wave limiting approach that is applied during the vector potential evolution, which controls unphysical oscillations in the magnetic field. One of the key numerical difficulties that is novel to 3D is that the transport equation that must be solved for the magnetic vector potential is only weakly hyperbolic. In presenting our numerical algorithm we describe how to numerically handle this problem of weak hyperbolicity, as well as how to choose an appropriate gauge condition. The

  20. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Scheme For Finite-Difference Computations Of Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1992-01-01

    Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.

  2. Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models

    PubMed Central

    Park, Jaymie; Leung, Shannon

    2015-01-01

    Women’s preferences for penis size may affect men’s comfort with their own bodies and may have implications for sexual health. Studies of women’s penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women’s size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average. PMID:26332467

  3. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  4. A coordinate transformation method for calculating the 3D light intensity distribution in ICF hohlraum

    NASA Astrophysics Data System (ADS)

    Lin, Zhili; Li, Xiaoyan; Zhao, Kuixia; Chen, Xudong; Chen, Mingyu; Pu, Jixiong

    2016-06-01

    For an inertial confinement fusion (ICF) system, the light intensity distribution in the hohlraum is key to the initial plasma excitation and later laser-plasma interaction process. Based on the concept of coordinate transformation of spatial points and vector, we present a robust method with a detailed procedure that makes the calculation of the three dimensional (3D) light intensity distribution in hohlraum easily. The method is intuitive but powerful enough to solve the complex cases of random number of laser beams with arbitrary polarization states and incidence angles. Its application is exemplified in the Shenguang III Facility (SG-III) that verifies its effectiveness and it is useful for guiding the design of hohlraum structure parameter.

  5. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  6. A new method using orthogonal two-frequency grating in online 3D measurement

    NASA Astrophysics Data System (ADS)

    Peng, Kuang; Cao, Yiping; Wu, Yingchun; Lu, Mingteng

    2016-09-01

    In online 3D measurement, a new method using orthogonal two-frequency grating based on Phase Measuring Profilometry(PMP) is proposed. The modulation of the entire measured object is used to match pixels and this proposed method successfully resolves the contradiction of the demand for different frequency fringes between the extraction of the modulation information and the phase unwrapping. The high-frequency fringe is used to catch the better modulation patterns for pixel matching, and the low-frequency fringe is used to calculate the phase distribution and avoid phase unwrapping error. In addition, to extract the better modulation patterns for pixel matching, the flat filtering window replaces the circular filtering window to avoid the spectrum aliasing phenomenon. The simulations and experiments show its feasibility.

  7. 3D-DIP-Chip: a microarray-based method to measure genomic DNA damage

    PubMed Central

    Powell, James Rees; Bennett, Mark Richard; Evans, Katie Ellen; Yu, Shirong; Webster, Richard Michael; Waters, Raymond; Skinner, Nigel; Reed, Simon Huw

    2015-01-01

    Genotoxins cause DNA damage, which can result in genomic instability. The genetic changes induced have far-reaching consequences, often leading to diseases such as cancer. A wide range of genotoxins exists, including radiations and chemicals found naturally in the environment, and in man-made forms created by human activity across a variety of industries. Genomic technologies offer the possibility of unravelling the mechanisms of genotoxicity, including the repair of genetic damage, enhancing our ability to develop, test and safely use existing and novel materials. We have developed 3D-DIP-Chip, a microarray-based method to measure the prevalence of genomic genotoxin-induced DNA damage. We demonstrate the measurement of both physical and chemical induced DNA damage spectra, integrating the analysis of these with the associated changes in histone acetylation induced in the epigenome. We discuss the application of the method in the context of basic and translational sciences. PMID:25609656

  8. A projection method to extract biological membrane models from 3D material models.

    PubMed

    Roohbakhshan, Farshad; Duong, Thang X; Sauer, Roger A

    2016-05-01

    This paper presents a projection method for deriving membrane models from the corresponding three-dimensional material models. As a particular example the anisotropic Holzapfel-Gasser-Ogden model is considered. The projection procedure is based on the kinematical and constitutive assumptions of a general membrane theory, considering the membrane to be a general two-dimensional manifold. By assuming zero transverse stress, the Lagrange multiplier associated with the incompressibility constraint can be eliminated from the formulation. The resulting nonlinear model is discretized and linearized within the finite element method. Several numerical examples are shown, considering quadratic Lagrange and NURBS finite elements. These show that the proposed model is in very good agreement with analytical solutions and with full 3D finite element computations. PMID:26455810

  9. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  10. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    PubMed

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established. PMID:18821249

  11. Synthesis of ultralow density 3D graphene-CNT foams using a two-step method.

    PubMed

    Vinod, Soumya; Tiwary, Chandra Sekhar; Machado, Leonardo D; Ozden, Sehmus; Vajtai, Robert; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Here, we report a highly scalable two-step method to produce graphene foams with ordered carbon nanotube reinforcements. In our approach, we first used solution assembly methods to obtain graphene oxide foam. Next, we employed chemical vapor deposition to simultaneously grow carbon nanotubes and thermally reduce the 3D graphene oxide scaffold. The resulting structure presented increased stiffness, good mechanical stability and oil absorption properties. Molecular dynamics simulations were carried out to further elucidate failure mechanisms and to understand the enhancement of the mechanical properties. The simulations showed that mechanical failure is directly associated with bending of vertical reinforcements, and that, for similar length and contact area, much more stress is required to bend the corresponding reinforcements of carbon nanotubes, thus explaining the experimentally observed enhanced mechanical properties. PMID:27546001

  12. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Chr