3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
The 3D Flow Field Around an Embedded Planet
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin
2015-10-01
3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.
Determining 3D Flow Fields via Multi-camera Light Field Imaging
Truscott, Tadd T.; Belden, Jesse; Nielson, Joseph R.; Daily, David J.; Thomson, Scott L.
2013-01-01
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet. PMID:23486112
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
3-D Numerical Modeling of MHD Flows in Variable Magnetic Field
NASA Astrophysics Data System (ADS)
Abdullina, K. I.; Bogovalov, S. V.
3-D numerical simulation of the liquid metal flow affected by the electromagnetic field in the magnetohydrodynamic (MHD) devices is performed. Software package ANSYS has been used for the numerical calculations. The non-stationary problem has been solved taking into account the influence of the metal flow on the electromagnetic field and nonlinear magnetic permeability of the ferromagnetic cores. Simplified calculations with constant magnetic permeability of the ferromagnetic cores have been performed as well. Comparison of these calculations shows that the simulation of the MHD pump can be performed in the linear approximation. The pump performance curve has been derived in this approximation.
NASA Astrophysics Data System (ADS)
Harlander, U.; Wright, G. B.; Egbers, C.
2012-04-01
In the earth's atmosphere baroclinic instability is responsible for the heat and momentum transport from low to high latitudes. In the fifties, Raymond Hide used a rather simple laboratory experiment to study such vortices in the lab. The experiment is comprised by a cooled inner and heated outer cylinder mounted on a rotating platform, which mimics the heated tropical and cooled polar regions of the earth's atmosphere. The experiment shows rich dynamics that have been studied by varying the radial temperature difference and the rate of annulus revolution. At the Brandenburg University of Technology (BTU) Cottbus the differentially heated rotating annulus is a reference experiment of the DFG priority program 'MetStröm'. The 3D structure of the annulus flow field has been numerically simulated but, to our knowledge, has not been measured in the laboratory. In the present paper we use novel interpolation techniques to reconstruct the 3D annulus flow field from synchronous Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements. The PIV system is used to measure the horizontal velocity components at 40, 60, 80, 100, and 120 mm above the bottom. The uppermost level is thus 15 mm below the fluid's surface. The surface temperature is simultaneously measured by an infrared (IR) camera. The PIV and infrared cameras have been mounted above the annulus and they co-rotate with the annulus. From the PIV observations alone a coherent 3D picture of the flow cannot be constructed since the PIV measurements have been taken at different instants of time. Therefore a corresponding IR image has been recorded for each PIV measurement. These IR images can be used to reconstruct the correct phase of the measured velocity fields. Each IR and PIV image for which t>0 is rotated back to the position at t=0. Then all surface waves have the same phase. In contrast, the PIV velocity fields generally have different phases since they have been taken at different vertical
Flow properties along field lines in a 3-D tilted-dipole geometry
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1995-01-01
A 3-D MHD simulation of a global, tilted-dipole solar wind flow pattern is analyzed to determine flow properties along individual magnetic field lines. In the model, flow conditions near the Sun are chosen to provide a reasonable match to the interplanetary configuration prevailing during the recent south polar passage by Ulysses, i.e., a streamer belt inclined approximately 30 deg to the solar equator and speeds ranging from 325-800 km/s. Field lines all across the stream pattern are traced from 1 to 10 AU by following the motion of marker particles embedded in the flow. It is found that those field lines threading the core of the interaction region are subject to significant latitudinal and relative longitudinal displacement over this range of heliocentric distance. Thus, observations taken at a fixed latitude in the inner solar system sample, over the course of a solar rotation, field lines which connect to a range of latitudes in the outer heliosphere. Maps of the field line displacements are presented to help visualize these connections. In addition, it is found that depending upon the location relative to the CIR structure, the radial evolution of fluid elements frozen to different field lines can deviate considerably from that of the canonical solar wind. That is, for selected subsets of field lines, large speed changes (not just at shocks) can be experienced; the density variation can be far from 1/r(exp 2), and the magnetic field intensity need not decay monotonically with distance.
RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.
Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D
2003-01-01
We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
CFD Simulation of 3D Flow field in a Gas Centrifuge
Dongjun Jiang; Shi Zeng
2006-07-01
A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)
Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J
2015-11-01
We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed. PMID:26486364
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of
Numerical simulation of internal and external inviscid and viscous 3-D flow fields
NASA Astrophysics Data System (ADS)
Leicher, Stefan
1986-11-01
A numerical method for solving the 3-D Euler equations in geometrical complex domains was developed. The approach divides the computational space into multiple blocks whose structure follows the natural lines of the conficuration. A systematic, multi-block grid generation scheme is used to produce the grid. The flow solutions are obtained by solving the Euler equations by a finite volume discretization and a Runge-Kutta time stepping scheme. The main advantage of this method is the applicability to complex geometries, for example complete aircraft configurations including wing, fuselage, canard and tail. The coupling with a 3-D boundary layer method allows to account for viscous effects. Another application for the method was the simulation of flows in the presence of a propeller.
LDA measurement of the passage flow field in a 3-D airfoil cascade
NASA Technical Reports Server (NTRS)
Stauter, R. C.; Fleeter, S.
1986-01-01
Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.
Numerical program for analysis of three-dimensional supersonic exhaust flow fields (CHAR 3D)
NASA Technical Reports Server (NTRS)
Dash, S.; Guidice, P. D.; Ferri, A.; Roffe, G.
1974-01-01
Choice of reference plane orientation depends on specific nozzle geometry, with different configurations requiring different reference plane systems. In addition, for given configuration several reference systems may be used in different regions of flow field, so each system is locally aligned with flow.
3D FEM analyses on flow field characteristics of the valveless piezoelectric pump
NASA Astrophysics Data System (ADS)
Huang, Jun; Zhang, Jianhui; Shi, Weidong; Wang, Yuan
2016-06-01
Due to the special transportation and heat transfer characteristics, the fractal-like Y-shape branching tube is used in valveless piezoelectric pumps as a no-moving-part valve. However, there have been little analyses on the flow resistance of the valveless piezoelectric pump, which is critical to the performance of the valveless piezoelectric pump with fractal-like Y-shape branching tubes. Flow field of the piezoelectric pump is analyzed by the finite element method, and the pattern of the velocity streamlines is revealed, which can well explain the difference of total flow resistances of the piezoelectric pump. Besides, simplified numerical method is employed to calculate the export flow rate of piezoelectric pump, and the flow field of the piezoelectric pump is presented. The FEM computation shows that the maximum flow rate is 16.4 mL/min. Compared with experimental result, the difference between them is just 55.5%, which verifies the FEM method. The reasons of the difference between dividing and merging flow resistance of the valveless piezoelectric pump with fractal-like Y-shape branching tubes are also investigated in this method. The proposed research provides the instruction to design of novel piezoelectric pump and a rapid method to analyse the pump flow rate.
Temporal Evolution of the 3-D Flow Field In a Mixing Tank with a Two-Bladed Impeller
NASA Astrophysics Data System (ADS)
Choi, Woong-Chul; Guezennec, Yann G.
1998-11-01
The evolution of the 3-D flow field inside a cylindrical mixing vessel was measured using 3-D Cinematic Particle Tracking Velocimetry. The mixing vessel consisted of a cylindrical chamber with a two-bladed impeller axially centered in the vessel. The impeller was a simple paddle wheel-type and its height in the vessel could be externally adjusted. The fluid inside the chamber was seeded by small neutrally buoyant particles. The entire vessel volume was illuminated by a high-power, collimated strobe light located under the vessel and the particle motion was imaged by a pair of synchronized high-speed (up to 500 fps) digital cameras. Prior to the actual experiments, an in situ calibration of the cameras was performed to automatically account for the optical distortion resulting from the curved vessel boundaries and index of refraction mismatch. The long, high-speed video sequences were analyzed using the FloDyne(tm) 3-D Particle Tracking software. This typically resulted in 500-600 instantaneous 3-D velocity vectors over the entire vessel. The image sequences were then processed for a large number of impeller rotations (50, typically). The resulting velocity fields were then post-processed to obtain the evolution of the phase-averaged 3-D velocity field as well as estimates of the intrinsic turbulence intensities. Animation of the reconstructed 3-D flow fields will be shown. Under some geometrical configurations of the impeller at low Reynolds numbers, the results show the presence of quasi-stable recirculating regions inhibiting the overall mixing.
Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields
NASA Technical Reports Server (NTRS)
Becker, Friedhelm; Yu, Yung H.
1987-01-01
A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.
New Method for the Characterization of 3D Preferential Flow Paths at the Field
Technology Transfer Automated Retrieval System (TEKTRAN)
Preferential flow paths development in the field is the result of the complex interaction of multiple processes relating to the soil's structure, moisture condition, stress level, and biological activities. Visualizing and characterizing the cracking behavior and preferential paths evolution with so...
3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow
NASA Astrophysics Data System (ADS)
Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J.
2015-11-01
We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface.
Field observations of swash zone flow patterns and 3D morphodynamics
Puelo, Jack A.; Holland, K. Todd; Kooney, Timothy N.; Sallenger,, Asbury H., Jr.
2001-01-01
Rapid video measurements of foreshore morphology and velocity were collected at Duck, NC in 1997 to investigate sediment transport processes in the swash zone. Estimates of foreshore evolution over a roughly 30 m cross-shore by 80 m alongshore study area were determined using a stereogrammetric technique. During the passage of a small storm (offshore wave heights increased from 1.4 to 2.5 m), the foreshore eroded nearly 40 cm in less than 4 hours. Dense, horizontal surface velocities were measured over a sub-region (roughly 30 m by 40 m) of the study area using a new particle image velocimetry technique. This technique was able to quantify velocities across the bore front approaching 5 m s–1 as well as the rapid velocities in the very shallow backwash flows. The velocity and foreshore topography measurements were used to test a three-dimensional energetics-based sediment transport model. Even though these data represent the most extensive and highly resolved swash measurements to date, the results showed that while the model could predict some of the qualitative trends in the observed foreshore change, it was a poor predictor of the observed magnitudes of foreshore change. Model — data comparisons differed by roughly an order of magnitude with observed foreshore changes on the order of 10's of centimeters and model predictions on the order of meters. This poor comparison suggests that future models of swash-zone sediment transport may require the inclusion of other physical processes such as bore turbulence, fluid accelerations and skewness, infiltration/exfiltration, water depth variations, and variable friction factors (to name a few).
Influence of shallow flow on the deep geothermal field of Berlin - Results from 3D models
NASA Astrophysics Data System (ADS)
Frick, Maximilian; Sippel, Judith; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Hassanzadegan, Alireza
2015-04-01
The goal of this study is to quantify the influence of fluid-driven heat transport on the subsurface temperature distribution of the city of Berlin, Germany. Berlin is located in the Northeast German Basin filled with several kilometers of sediments. Two of the clastic sedimentary units, namely the Middle Buntsandstein and the Sedimentary Rotliegend are of particular interest for geothermal exploration. Previous studies in the Northeast German Basin have already shown that subsurface temperature distributions are highly dependent on the geometries and properties of the geological units. Our work benefits strongly from these studies that involve numerical modeling of coupled conductive and convective heat transport. We follow a two-step approach where we first improve an existing structural model by integrating newly available 57 geological cross-sections, well data and deep seismics (down to ~4 km). Secondly, we perform a sensitivity analysis in which we investigate the effects of varying physical fluid and rock properties as well as hydraulic and thermal boundary conditions on the resulting temperature configuration. Computed temperatures are validated via comparison with existing well temperature measurements in the area. Of special interest for this study is the influence of the shallow aquifer systems on the subsurface temperature field. The major constituents of this system are the Quaternary silts and sands, the Tertiary Rupelian clay and the Tertiary sands beneath the Rupelian. These units have different hydraulic properties. The Rupelian clay represents a major aquitard in this respect hydraulically disconnecting the pre- and post-Rupelian succession. This aquitard shows a heterogeneous thickness distribution locally characterized by different hydrogeological windows (i.e. domains of no thickness) enabling intra-aquifer groundwater circulation at depth thus having a first-order effect on the shallow thermal field. As result of the simulations, we present
Lerch, C.S.; Johnston, J.R.; Juedeman, M.E.
1996-12-31
Prospect Mars is a major Gulf of Mexico deep water oil discovery made under joint partnership between operator Shell Offshore Inc. and partner British Petroleum Inc. The discovery lies in 3000 feet of water, located 130 miles southeast of New Orleans, Louisiana. The field was discovered in 1989 and to date 14 significant reservoir intervals from 10,000 to 19000 feet below sea level have been penetrated. Estimated recoverable reserves for the first phase of field development are in excess of 500 MMBE and development plans include installation of a 24 slot tension leg platform and two subsea wells, with first production in mid-1996. Over a two year period a comprehensive effort was directed at creating a new set of reservoir models utilizing an integrated software package developed at Shell E&P Technology Co. This package is able to incorporate pertinent geological, geophysical, and petrophysical data into 3-D reservoir models which can be used to: (1) estimate reservoir quantity, quality, and continuity, (2) predict reservoir production performance, (3) select development well locations, and (4) facilitate reserve estimation. This software allows interpretations from 3-D seismic, well control, and analog outcrops to be effectively integrated and passed to the reservoir model for flow simulation. This integrated effort at modeling ensured a more realistic reservoir picture upon which to base field development. Almost all the development wells pre-drilled prior to platform installation have been affected or designed based on these reservoir models and well results have been used to keep the models updated and evergreen.
Lerch, C.S.; Johnston, J.R.; Juedeman, M.E. )
1996-01-01
Prospect Mars is a major Gulf of Mexico deep water oil discovery made under joint partnership between operator Shell Offshore Inc. and partner British Petroleum Inc. The discovery lies in 3000 feet of water, located 130 miles southeast of New Orleans, Louisiana. The field was discovered in 1989 and to date 14 significant reservoir intervals from 10,000 to 19000 feet below sea level have been penetrated. Estimated recoverable reserves for the first phase of field development are in excess of 500 MMBE and development plans include installation of a 24 slot tension leg platform and two subsea wells, with first production in mid-1996. Over a two year period a comprehensive effort was directed at creating a new set of reservoir models utilizing an integrated software package developed at Shell E P Technology Co. This package is able to incorporate pertinent geological, geophysical, and petrophysical data into 3-D reservoir models which can be used to: (1) estimate reservoir quantity, quality, and continuity, (2) predict reservoir production performance, (3) select development well locations, and (4) facilitate reserve estimation. This software allows interpretations from 3-D seismic, well control, and analog outcrops to be effectively integrated and passed to the reservoir model for flow simulation. This integrated effort at modeling ensured a more realistic reservoir picture upon which to base field development. Almost all the development wells pre-drilled prior to platform installation have been affected or designed based on these reservoir models and well results have been used to keep the models updated and evergreen.
3D Numerical Simulation on Thermal Flow Coupling Field of Stainless Steel During Twin-Roll Casting
NASA Astrophysics Data System (ADS)
Liu, Lianlian; Liao, Bo; Guo, Jing; Liu, Ligang; Hu, Hongyan; Zhang, Yue; Yang, Qingxiang
2014-01-01
The surface crack and lateral crack of the AISI 304 stainless steel thin strip produced by twin-roll casting were observed. The temperature at the center of outlet during twin-roll-casting process was determined by infrared thermometer. In order to avoid the surface cracks of the casting strip, the thermal flow coupling field of AISI 304 stainless steel during twin-roll-casting process was simulated by a 3D fluid-structure coupling model. According to the simulation result, the effect of the casting speed on thermal flow field was analyzed and the process parameters were optimized. Moreover, by studying heat flux curves, the heat transfer mechanism between molten pool and roll was analyzed. The results show that, with the increase of the casting speed, the temperature of the molten pool increases and the solidification point moves toward the outlet. Meanwhile, the whirlpool above gets larger. Based on the solidification front position, the optimized process parameters are 1500 °C and 0.37 m/s. The heat transfer mechanism between molten pool and roll contains direct contacting heat transfer and air gap heat transfer.
NASA Astrophysics Data System (ADS)
James, M. R.; Farquharson, J.; Tuffen, H.
2014-12-01
The 2011-2012 eruption at Cordón-Caulle, Chile, afforded the opportunity to observe and measure active rhyolitic lava for the first time. In 2012 and 2013, ~2500 photos were acquired on foot, parallel to flow fronts on the north and north-east of the flow field. Image suites were then processed into 3-D point clouds using Structure-from-Motion Multi-view Stereo (SfM-MVS) freeware. Interpolating these clouds into digital elevation models for dates in 2012-13 enabled analysis of the changing flow field dimensions [1], from which velocity, depth and rheological parameters, e.g.viscosity, could be estimated [see Fig. 1]. Viscosities ranged from 7.5 x109 to 1.1 x1011Pa s, allowing for uncertainties in slope, surface displacement and velocity. Temperatures were modeled using a 1D finite difference method; in concert with viscosities of flow units these values compared well with published non-Arrhenian viscosity models. Derived thermodynamic and force ratios confirmed flow characteristics inferred from the image analyses. SfM-MVS represents an effective method of quantifying and displaying variation in the flow field, indicating several parallels between rhyolite emplacement and that of low-silica lavas. Initially channelised lava spread laterally and stagnated due to topography and the influence of the surface crust. Continued effusion resulted in iterative emplacement of breakout lobes, promoting lateral extension of the flow field. Insulation of the flow core by the viscous crust allowed this process to continue after effusion had ceased, creating features comparable to low-silica lavas, despite high viscosity and low effusion rates. This suggests that compound flow emplacement may be described by universal, cross-compositional models encompassing rheological differences of many orders of magnitude. Tuffen et al. 2013, Nat. Comms., 4, 2709, doi:10.1038/ncomms3709
L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor
NASA Technical Reports Server (NTRS)
Fagan, John R., Jr.; Fleeter, Sanford
1989-01-01
The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.
NASA Astrophysics Data System (ADS)
Vizman, D.; Dadzis, K.; Friedrich, J.
2013-10-01
The role of various growth and process conditions (Lorentz force, temperature gradients in the melt and the crystal, steady-state crystallization velocity) in directional solidification of multicrystalline silicon in a traveling magnetic field is analyzed for a research-scale furnace (melt size of 22×22×11 cm3). The influence on the melt flow pattern, the typical melt flow velocity, the oscillation amplitude of the velocity and the temperature, the shape of the crystallization interface is determined using three-dimensional (3D) numerical calculations with the STHAMAS3D software and a local quasi steady-state model. It was found that both the interface shape and the melt flow are sensitive to the variation of the considered growth and process parameters.
Palacios field: A 3-D case history
McWhorter, R.; Torguson, B.
1994-12-31
In late 1992, Mitchell Energy Corporation acquired a 7.75 sq mi (20.0 km{sup 2}) 3-D seismic survey over Palacios field. Matagorda County, Texas. The company shot the survey to help evaluate the field for further development by delineating the fault pattern of the producing Middle Oligocene Frio interval. They compare the mapping of the field before and after the 3-D survey. This comparison shows that the 3-D volume yields superior fault imaging and interpretability compared to the dense 2-D data set. The problems with the 2-D data set are improper imaging of small and oblique faults and insufficient coverage over a complex fault pattern. Whereas the 2-D data set validated a simple fault model, the 3-D volume revealed a more complex history of faulting that includes three different fault systems. This discovery enabled them to reconstruct the depositional and structural history of Palacios field.
Slope instability in complex 3D topography promoted by convergent 3D groundwater flow
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.
2012-12-01
Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both
Structured light field 3D imaging.
Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z
2016-09-01
In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639
NASA Astrophysics Data System (ADS)
Krzemianowski, Z.; Puzyrewski, R.
2014-08-01
The paper presents the main parameters of the flow field behind the guide vane cascade designed by means of 2D inverse problem and following check by means of 3D commercial program ANSYS/Fluent applied for a direct problem. This approach of using different models reflects the contemporary design procedure for non-standardized turbomachinery stage. Depending on the model, the set of conservation equation to be solved differs, although the physical background remains the same. The example of computations for guide vane cascade for a low head hydraulic turbine is presented.
Magnetosheath Flow Anomalies in 3-D
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080
NASA Astrophysics Data System (ADS)
Pederzani, Jean-Noel; Haj-Hariri, Hossein
2012-11-01
An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI.
Hodgdon, M.L.; Oona, H.; Martinez, A.R.; Salon, S.; Wendling, P.; Krahenbuhl, L.; Nicolas, A.; Nicolas, L.
1989-01-01
We present herein the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. Our third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic field problems in cases of special and ideal geometries, the solutions of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations. In earlier studies, computer models have been proposed, several based on research oriented hydrocodes to which uncoupled or partially coupled Maxwell's equations solvers are added. Although the hydrocode models address the problem of moving, deformable conductors, they are not useful for electromagnetic analysis, nor can they be considered design tools. For our studies, we take advantage of the commercial, electromagnetic computer-aided design software packages FLUX2D nd PHI3D that were developed for motor manufacturers and utilities industries. 4 refs., 6 figs.
Joint 3d Estimation of Vehicles and Scene Flow
NASA Astrophysics Data System (ADS)
Menze, M.; Heipke, C.; Geiger, A.
2015-08-01
driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.
NASA Astrophysics Data System (ADS)
Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard
2012-11-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / η ~ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. (http://arxiv.org/abs/1205.2181) This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.
NASA Astrophysics Data System (ADS)
Klein, Simon; Gibert, Mathieu; Bérut, Antoine; Bodenschatz, Eberhard
2013-02-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation and the rotation of finite-size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/η ≈ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ≈ 400). We show, using the mixed (particle/fluid) Eulerian second-order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
3D Flow reconstruction using ultrasound PIV
NASA Astrophysics Data System (ADS)
Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.
2011-04-01
Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
3D flow focusing for microfluidic flow cytometry with ultrasonics
NASA Astrophysics Data System (ADS)
Gnyawali, Vaskar; Strohm, Eric M.; Daghighi, Yasaman; van de Vondervoort, Mia; Kolios, Michael C.; Tsai, Scott S. H.
2015-11-01
We are developing a flow cytometer that detects unique acoustic signature waves generated from single cells due to interactions between the cells and ultrasound waves. The generated acoustic waves depend on the size and biomechanical properties of the cells and are sufficient for identifying cells in the medium. A microfluidic system capable of focusing cells through a 10 x 10 μm ultrasound beam cross section was developed to facilitate acoustic measurements of single cells. The cells are streamlined in a hydro-dynamically 3D focused flow in a 300 x 300 μm channel made using PDMS. 3D focusing is realized by lateral sheath flows and an inlet needle (inner diameter 100 μm). The accuracy of the 3D flow focusing is measured using a dye and detecting its localization using confocal microscopy. Each flowing cell would be probed by an ultrasound pulse, which has a center frequency of 375 MHz and bandwidth of 250 MHz. The same probe would also be used for recording the scattered waves from the cells, which would be processed to distinguish the physical and biomechanical characteristics of the cells, eventually identifying them. This technique has potential applications in detecting circulating tumor cells, blood cells and blood-related diseases.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Challenges in Lagrangian transport and predictability in 3D flows
NASA Astrophysics Data System (ADS)
Branicki, M.; Wiggins, S.; Kirwan, A. D.; Malek-Madani, R.
2011-12-01
The interplay between the geometrical theory of dynamical systems and the trajectory-based description of aperiodically time-dependent fluid flows has led to significant advances in understanding the role of chaotic transport in geophysical flows at scales dominated by advection. Lagrangian transport analysis utilizing either the time-dependent geometry of intersecting stable and unstable manifolds of the so-called Distinguished Hyperbolic Trajectories (DHT), or ridges of finite-time Lyapunov exponent fields (LCS), provide a much needed and complementary insight into ephemeral mechanisms responsible for the existence of `leaky' transport barriers and 'leaky' mesoscale eddies. However, to date most oceanic applications have been confined to 2D analysis of near surface regions in 'perfect' flows not accounting for model or measurement error, and with the tacit assumption of negligible vertical velocities. I will systematically address issues concerning the regimes of applicability of two-dimensional analysis in 3D aperiodically time-dependent flows, as well as outstanding challenges in fully 3D Lagrangian transport analysis. Even for perfect horizontal velocities, little is known about the vertical extent of stable/unstable manifolds associated with DHTs and/or other special structures relevant to stratified 3D flows. In particular, their sensitivity to errors in the vertical velocities and data assimilation methods has been little studied. Rigorous results regarding the above issues will be illustrated by revealing and mathematically tractable toy models, as well as examples from a detailed study in an eddy-rich region from the Gulf of Mexico and the Mediterranean. New ways of quantifying the uncertainty in Lagrangian predictions will also be presented.
Recent Advances in Visualizing 3D Flow with LIC
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1998-01-01
Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
View-dependent streamlines for 3D vector fields.
Marchesin, Stéphane; Chen, Cheng-Kai; Ho, Chris; Ma, Kwan-Liu
2010-01-01
This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention. PMID:20975200
Visualizing 3D velocity fields near contour surfaces
Max, N.; Crawfis, R.; Grant, C.
1994-03-01
Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.
Flow over bio-inspired 3D herringbone wall riblets
NASA Astrophysics Data System (ADS)
Chen, Huawei; Rao, Fugang; Shang, Xiaopeng; Zhang, Deyuan; Hagiwara, Ichiro
2014-03-01
Under the inspiration of small riblets of shark skin, the microgroove drag reduction riblets whose direction set along fluid flow have been widely investigated. Herringbone-type riblets of bird flight feather are seldom exploited although bird also has excellent flight performance. Inspired from the flight feather, novel bio-inspired plane-3D (p-3D) and spatial-3D (s-3D) herringbone wall riblets are proposed. Through experiment measurement of drag reduction in water tunnel, maximum drag reduction of p-3D and s-3D herringbone riblets was about 17 and 20 %, higher than traditional microgroove riblets. Moreover, significant change of drag reduction was also found by change of the angle between herringbone riblets. In particular, maximum drag reduction occurred as angle between herringbone riblets was about 60° close to real flight feather, which indicates that microstructure of bird flight feather has great impact on flight performance.
Light field display and 3D image reconstruction
NASA Astrophysics Data System (ADS)
Iwane, Toru
2016-06-01
Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.
A full field, 3-D velocimeter for microgravity crystallization experiments
NASA Technical Reports Server (NTRS)
Brodkey, Robert S.; Russ, Keith M.
1991-01-01
The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.
Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
Numerical analysis of 3-D potential flow in centrifugal turbomachines
NASA Astrophysics Data System (ADS)
Daiguji, H.
1983-09-01
A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method.
3D touchable holographic light-field display.
Yamaguchi, Masahiro; Higashida, Ryo
2016-01-20
We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated. PMID:26835952
USM3D Predictions of Supersonic Nozzle Flow
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.
2014-01-01
This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.
An elliptic calculation procedure for 3-D viscous flow
NASA Astrophysics Data System (ADS)
Moore, J. G.
1985-05-01
The computation of 3-D internal transonic flows by means of a 3-D Euler Code is discussed. A multidomain approach for time hyperbolic system is presented. This technique, based on the decomposition of the computational domain into several subdomains which may overlap one another, makes it possible to simplify some mesh generation problems and to fit discontinuities such as shocks and slip surfaces. A description of the 3-D Euler Code is given. The space discretization method and the treatment of boundary conditions are emphasized. Various applications of this code in turbomachinery are discussed.
NASA Astrophysics Data System (ADS)
Dadzis, K.; Vizman, D.; Friedrich, J.
2013-03-01
Directional solidification of large multi-crystalline silicon ingots is a distinctly unsteady process with a complex interaction between melt flow, crystallization interface, and species transport. Both the different time-scales and the three-dimensional character make numerical simulations of this process a challenging task. The complexity of such simulations increases further if external magnetic fields are used to enhance the melt flow. In this contribution, several three-dimensional coupled unsteady calculations are carried out for a 22×22×11 cm3 silicon melt directionally solidified in a traveling magnetic field. The justification of various approximations in the numerical models is discussed with an emphasis on the frequently used quasi steady-state models for the calculation of the interface shape. It is shown that an upward traveling magnetic field leads to a symmetric concave interface shape while a downward field results in a convex interface with a distinct asymmetry at the current supplies. These results agree in both unsteady and quasi steady-state calculations, but only unsteady calculations reveal the flow-induced local oscillations of the interface. The unsteady segregation process of carbon and oxygen impurities exhibits a non-uniform concentration along the crystallization interface although the bulk concentration is near to the complete mixing limit in the cases with a traveling magnetic field.
Simulation of 3D infrared scenes using random fields model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Zhang, Jianqi
2001-09-01
Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.
Modeling Electric Current Flow in 3D Fractured Media
NASA Astrophysics Data System (ADS)
Demirel, S.; Roubinet, D.; Irving, J.
2014-12-01
The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on
NASA Technical Reports Server (NTRS)
Stanitz, J. D.
1985-01-01
The general design method for three-dimensional, potential, incompressible or subsonic-compressible flow developed in part 1 of this report is applied to the design of simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for turbomachines. The two major inputs to the program are the upstream boundary shape and the lateral velocity distribution on the duct wall. As a result of these inputs, boundary conditions are overprescribed and the problem is ill posed. However, it appears that there are degrees of compatibility between these two major inputs and that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not prescribing the shape of the upstream boundary, the problem presumably becomes well posed, but it is not clear how to formulate a practical design method under this circumstance. Nor does it appear desirable, because the designer usually needs to retain control over the upstream (or downstream) boundary shape. The problem is further complicated by the fact that, unlike the two-dimensional case, and irrespective of the upstream boundary shape, some prescribed lateral velocity distributions do not have proper solutions.
Slat Cove Unsteadiness Effect of 3D Flow Structures
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.
3D Printed Micro Free-Flow Electrophoresis Device.
Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T
2016-08-01
The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively. PMID:27377354
Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles.
Habasaki, Shohei; Lee, Won Chul; Yoshida, Shotaro; Takeuchi, Shoji
2015-12-22
A microfluidics-based method for the 3D fabrication of anisotropic particles is reported. The method uses a vertical microchannel where tunable light patterns solidify photocurable resins for stacking multiple layers of the resins, thus enabling an application of stereolithography concepts to conventional flow lithography. Multilayered, tapered, and angular compartmental microparticles are demonstrated. PMID:26551590
Two-equation turbulence modeling for 3-D hypersonic flows
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Complex flow dynamics around 3D microbot prototypes.
Martínez-Aranda, Sergio; Galindo-Rosales, Francisco J; Campo-Deaño, Laura
2016-02-28
A new experimental setup for the study of the complex flow dynamics around 3D microbot prototypes in a straight microchannel has been developed and assessed. The ultimate aim of this work is focused on the analysis of the morphology of different microbot prototypes to get a better insight into their efficiency when they swim through the main conduits of the human circulatory system. The setup consists of a fused silica straight microchannel with a 3D microbot prototype fastened in the center of the channel cross-section by an extremely thin support. Four different prototypes were considered: a cube, a sphere and two ellipsoids with aspect ratios of 1 : 2 and 1 : 4, respectively. Flow visualization and micro-particle image velocimetry (μPIV) measurements were performed using Newtonian and viscoelastic blood analogue fluids. An efficiency parameter, ℑ, to discriminate the prototypes in terms of flow disturbance has been proposed. PMID:26790959
Measuring Actin Flow in 3D Cell Protrusions
Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico
2013-01-01
Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of
The use of harmonics in 3-D magnetic fields
Caspi, S.; Helm, M.; Laslett, L.J.
1993-09-01
Motivated by the need for new means for specification and determination of 3-D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, the authors have generalized the representation of a 2-D magnetic field to 3-D. They have shown that the 3-D magnetic field components of a multipole magnet in the curl-free divergence-free region near the axis r = 0 can be derived from one dimensional functions A{sub n}(z) and their derivatives. In this report they apply both methods to the ``end`` region of a 40 mm bore SSC quadrupole, calculating first the field harmonics and then reconstructing the field comparing both results with direct Biot-Savart calculation.
Texture splats for 3D vector and scalar field visualization
Crawfis, R.A.; Max, N.
1993-04-06
Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.
Imaging 3D strain field monitoring during hydraulic fracturing processes
NASA Astrophysics Data System (ADS)
Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.
2016-05-01
In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.
Unsteady 3D Turbulent Flow Separation around a ROV Body
NASA Astrophysics Data System (ADS)
Ungureanu, Costel; Lungu, Adrian
2009-09-01
Turbulent separated flows around ellipsoids of various aspect ratios are investigated using a numerical method. The Reynolds averaged equations for continuity and momentum are solved by cell-centered finite-volume method for the primitive variables to describe the 3D turbulent incompressible flow. The objectives of the study are: (a) to investigate the propulsive performances of a moving Remotely Operated Vehicle (ROV hereafter) ellipsoidal body; (b) to validate the computational solutions through comparisons with the experimental data; (c) to investigate the effects of the angle of attack on the separation pattern as well as on the hydrodynamic forces and moments.
Optic flow aided navigation and 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Rollason, Malcolm
2013-10-01
An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.
Three-dimensional potential flows from functions of a 3D complex variable
NASA Technical Reports Server (NTRS)
Kelly, Patrick; Panton, Ronald L.; Martin, E. D.
1990-01-01
Potential, or ideal, flow velocities can be found from the gradient of an harmonic function. An ordinary complex valued analytic function can be written as the sum of two real valued functions, both of which are harmonic. Thus, 2D complex valued functions serve as a source of functions that describe two-dimensional potential flows. However, this use of complex variables has been limited to two-dimensions. Recently, a new system of three-dimensional complex variables has been developed at the NASA Ames Research Center. As a step toward application of this theory to the analysis of 3D potential flow, several functions of a three-dimensional complex variable have been investigated. The results for two such functions, the 3D exponential and 3D logarithm, are presented in this paper. Potential flows found from these functions are investigated. Important characteristics of these flows fields are noted.
3D Magnetotelluric characterization of the COSO GeothermalField
Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.
2005-01-01
Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.
Brien, Dianne L.; Reid, Mark E.
2007-01-01
base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.
Electric field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.
3D Hole Inspection Using Lens with High Field Curvature
NASA Astrophysics Data System (ADS)
Zavyalov, Petr
2015-02-01
One of the actual 3D measurement problems is the optical inspection of various holes. In this respect, the task of plane image formation of holes as extended 3D objects using optical methods turns out to be of primary importance. We have developed specialized lenses that perform such transformations due to specially increased aberrations (field curvature, astigmatism) for the formation of extended objects plane images. The calculations of the lens parameters are presented. The detail analysis of the imaging properties was carried out. The presented hole inspection lens has been designed, constructed and used for inspection of the fuel assembly spacer grids.
Patterns of 3D flow in a rotating cylinder array
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2015-11-01
Experimental data are presented for large arrays of rotating, finite-height cylinders, which show that the three-dimensional flows are strongly dependent on the geometric and rotational configurations of the array. Two geometric configurations of the cylinders, each with two rotational configurations, were examined for a total of four arrays. 2D PIV was conducted in multiple intersecting horizontal and vertical sheets at a location far downstream of the leading edge of the array in order to build up a picture of the 3D developed flow patterns. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders. These horizontal flow patterns, by conservation of mass, drive vertical flows through the top of the array. As the array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines, this planform flux is of particular interest as it would bring down into the array high kinetic energy fluid from above the array, thus increasing the energy resource available to turbines far downstream of the leading edge of the array.
A 3-D measurement of biomagnetic field and its application
NASA Astrophysics Data System (ADS)
Uchikawa, Yoshinori; Kim, Bong-Soo; Kobayashi, Koichiro
2006-09-01
This review paper focuses in the usefulness of three-dimensional (3-D) biomagnetic field measurement for discriminating multiple sources closely located and overlapped in time. We have developed a 3-D second-order gradiometer connected to 39-channel SQUIDs for vector measurement of magnetoencephalogram (MEG), which can simultaneously detect magnetic field components perpendicular and tangential to the scalp. To assess discrimination and separation of multiple sources overlapping in time, we showed both simulation study and 3-D vector measurement of MEG as following; (a) mixed auditory evoked field (AEF) and somatosensory evoked field (SEF), (b) separating second somatosensory (SII) activity from primary somatosensory (SI) activity in SEF. The magnetic field distribution perpendicular to the scalp was not helpful for estimating the location and number of sources, owing to the lack of a dipole pattern, but the magnetic field distribution tangential to the scalp can provide information about new constraint conditions by visual inspection and singular value decomposition (SVD) method. We estimated multiple sources of mixed AEF and SEF from the MEG data of the magnetic field tangential to the scalp, and also estimated multiple sources of SI and SII activity. These results were confirmed by comparison with superimposed source locations in MRI of subject's head.
3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets
NASA Astrophysics Data System (ADS)
Greenwald, Zipi; Greenwald, Shlomo
1997-05-01
A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.
Supersonic turbulence in 3D isothermal flow collision
NASA Astrophysics Data System (ADS)
Folini, Doris; Walder, Rolf; Favre, Jean M.
2014-02-01
Large scale supersonic bulk flows are present in a wide range of astrophysical objects, from O-star winds to molecular clouds, galactic sheets, accretion, or γ-ray bursts. Associated flow collisions shape observable properties and internal physics alike. Our goal is to shed light on the interplay between large scale aspects of such collision zones and the characteristics of the compressible turbulence they harbor. Our model setup is as simple as can be: 3D hydrodynamical simulations of two head-on colliding, isothermal, and homogeneous flows with identical upstream (subscript u) flow parameters and Mach numbers 2 < Mu < 43. The turbulence in the collision zone is driven by the upstream flows, whose kinetic energy is partly dissipated and spatially modulated by the shocks confining the zone. Numerical results are in line with expectations from self-similarity arguments. The spatial scale of modulation grows with the collision zone. The fraction of energy dissipated at the confining shocks decreases with increasing Mu. The mean density is ρm ≈ 20ρu, independent of Mu. The root mean square Mach number is Mrms ≈ 0.25Mu. Deviations toward weaker turbulence are found as the collision zone thickens and for small Mu. The density probability function is not log-normal. The turbulence is inhomogeneous, weaker in the center of the zone than close to the confining shocks. It is also anisotropic: transverse to the upstream flows Mrms is always subsonic. We argue that uniform, head-on colliding flows generally disfavor turbulence that is at the same time isothermal, supersonic, and isotropic. The anisotropy carries over to other quantities like the density variance - Mach number relation. Line-of-sight effects thus exist. Structure functions differ depending on whether they are computed along a line-of-sight perpendicular or parallel to the upstream flow. Turbulence characteristics generally deviate markedly from those found for uniformly driven, supersonic, isothermal
3D vector flow using a row-column addressed CMUT array
NASA Astrophysics Data System (ADS)
Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias; Lei, Anders; Stuart, Mathias Bo; Beers, Christopher; Moesner, Lars Nordahl; Bagge, Jan Peter; Thomsen, Erik Vilain; Jensen, Jørgen Arendt
2016-04-01
This paper presents an in-house developed 2-D capacitive micromachined ultrasonic transducer (CMUT) applied for 3-D blood flow estimation. The probe breaks with conventional transducers in two ways; first, the ultrasonic pressure field is generated from thousands of small vibrating micromachined cells, and second, elements are accessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was used for vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolic flow. The beam-to-flow angle was 90°. The received data was beamformed and processed offline. A transverse oscillation (TO) velocity estimator was used to estimate the 3-D vector flow along a line originating from the center of the transducer. The estimated velocities in the lateral and axial direction were close to zero as expected. In the transverse direction a characteristic parabolic velocity profile was estimated with a peak velocity of 0.48 m/s +/- 0.02 m/s in reference to the expected 0.54 m/s. The results presented are the first 3-D vector flow estimates obtained with a row-column CMUT probe, which demonstrates that the CMUT technology is feasible for 3-D flow estimation.
MPSalsa 3D Simulations of Chemically Reacting Flows
Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).
This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.
High fidelity digital inline holographic method for 3D flow measurements.
Toloui, Mostafa; Hong, Jiarong
2015-10-19
Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm^{3}. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377
3D temperature field reconstruction using ultrasound sensing system
NASA Astrophysics Data System (ADS)
Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei
2016-04-01
3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.
Advancing the field of 3D biomaterial printing.
Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N
2016-02-01
3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications. PMID:26752507
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
3D positional tracking of ellipsoidal particles in a microtube flow using holographic microscopy
NASA Astrophysics Data System (ADS)
Byeon, Hyeok Jun; Seo, Kyung Won; Lee, Sang Joon
2014-11-01
Understanding of micro-scale flow phenomena is getting large attention under advances in micro-scale measurement technologies. Especially, the dynamics of particles suspended in a fluid is essential in both scientific and industrial fields. Moreover, most particles handled in research and industrial fields have non-spherical shapes rather than a simple spherical shape. Under various flow conditions, these non-spherical particles exhibit unique dynamic behaviors. To analyze these dynamic behaviors in a fluid flow, 3D positional information of the particles should be measured accurately. In this study, digital holographic microscopy (DHM) is employed to measure the 3D positional information of non-spherical particles, which are fabricated by stretching spherical polystyrene particles. 3D motions of those particles are obtained by interpreting the holograms captured from particles. Ellipsoidal particles with known size and shape are observed to verify the performance of the DHM technique. In addition, 3D positions of particles in a microtube flow are traced. This DHM technique exhibits promising potential in the analysis of dynamic behaviors of non-spherical particles suspended in micro-scale fluid flows.
3D separation over a wall-mounted hemisphere in steady and pulsatile flow
NASA Astrophysics Data System (ADS)
Carr, Ian A.; Plesniak, Michael W.
2014-11-01
Flow separation over a surface-mounted hemispheriod is prevalent in countless applications, both under steady (constant freestream velocity) and unsteady flow over the protuberance. Previous studies of 3D separation have been limited to steady inflow conditions. In biological and geophysical flows, pulsatile flow conditions are much more commonly observed, yet such conditions have not been well studied. Primarily motivated by previous studies of the flow observed in various human vocal fold pathologies, such as polyps, our research aims to fill the knowledge gap in unsteady 3D flow separation. This is achieved by characterizing surface pressure fields and velocity fields, focused primarily on the vortical flow structures and dynamics that occur around a hemispheroid protuberance under pulsatile flow conditions. Surface static pressure and two-dimensional, instantaneous and phase-averaged, particle image velocimetry data in steady and pulsatile flow are presented and compared. Coherent vortical flow structures have been identified using the λci vortex identification criterion. This analysis has revealed a novel set of flow structures dependent on the pulsatile flow forcing function. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351.
R3D: Reduction Package for Integral Field Spectroscopy
NASA Astrophysics Data System (ADS)
Sánchez, Sebastián. F.
2011-06-01
R3D was developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk. R3D unifies the reduction techniques for the different IFS instruments to a single one, in order to allow the general public to reduce different instruments data in an homogeneus, consistent and simple way. Although still in its prototyping phase, it has been proved to be useful to reduce PMAS (both in the Larr and the PPAK modes), VIMOS and INTEGRAL data. The current version has been coded in Perl, using PDL, in order to speed-up the algorithm testing phase. Most of the time critical algorithms have been translated to C[float=][/float], and it is our intention to translate all of them. However, even in this phase R3D is fast enough to produce valuable science frames in reasonable time.
Widespread 3D seismic survey covers mature field in Gabon
Riley, D.; Fleming, M. ); Delvaux, J. )
1993-12-06
The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.
3D deformation field throughout the interior of materials.
Jin, Huiqing; Lu, Wei-Yang
2013-09-01
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
Simulations of soluble surfactants in 3D multiphase flow
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Tryggvason, Gretar
2014-10-01
A finite-difference/front-tracking method is developed for simulations of soluble surfactants in 3D multiphase flows. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. Simple test cases are designed to validate different parts of the numerical algorithm and the computational results are found to be in a good agreement with the analytical solutions. The numerical algorithm is parallelized using a domain-decomposition method. It is then applied to study the effects of soluble surfactants on the motion of buoyancy-driven bubbles in a straight square channel in nearly undeformable (spherical) and deformable (ellipsoidal) regimes. Finally the method is used to examine the effects of soluble surfactants on the lateral migration of bubbles in a pressure-driven channel flow. It is found that surfactant-induced Marangoni stresses counteract the shear-induced lift force and can reverse the lateral bubble migration completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel when the surfactant-induced Marangoni stresses are sufficiently large.
ICEd-ALE Treatment of 3-D Fluid Flow.
1999-09-13
Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less
Targeted infill drilling at Stratton field using 3-D seismic
Suydam, J.R.; Reitz, D.T.
1994-12-31
Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg Counties, South Texas. It has produced more than 2.8 Tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow-marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, an 8-mi{sup 2} seismic survey was completed in the southern end of the field, and the resulting structural interpretation presented many more fault traps than were apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.
Targeted infill drilling at Stratton Field using 3-D seismic
Suydam, J.; Reitz, D.
1994-09-01
Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg counties, south Texas. It has produced over 2.8 tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, the Bureau of Economic Geology shot an 8-mi{sup 2} survey in the southern end of the field, and the resulting structural interpretation presented many more fault traps that were not apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch. PMID:16313008
3-D flame temperature field reconstruction with multiobjective neural network
NASA Astrophysics Data System (ADS)
Wan, Xiong; Gao, Yiqing; Wang, Yuanmei
2003-02-01
A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.
New 3-D flow interpolation method on moving ADCP data
NASA Astrophysics Data System (ADS)
Tsubaki, R.; Kawahara, Y.; Muto, Y.; Fujita, I.
2012-05-01
A simple but accurate interpolation procedure for obtaining the three-dimensional distribution of three-component velocity data, from moving acoustic doppler current profiler (ADCP) observation data, is proposed. For understanding actual flow structure within a river with complex bathymetry, the three-dimensional mean velocity field provides a basic picture of the flow. For obtaining the three-dimensional distribution of three-component velocity data, in this work, anisotropic gridding was introduced in order to remove the random component of measured velocity data caused by the turbulence of the flow and measurement error. A continuity correction based on the pressure equation was used to reduce both random and systematic errors. The accuracy of the developed method was evaluated using three-dimensional flow simulation data from a detached-eddy simulation (DES). By using the procedure developed, the complex flow structure surrounding the spur dikes section in the Uji River was successfully visualized and explored. The proposed method shows superiorities in both accuracy and consistency for the interpolated velocity field, as compared to the kriging and inverse-distance weighted (IDW) methods.
3-D magnetic field calculations for wiggglers using MAGNUS-3D
Pissanetzky, S.; Tompkins, P.
1988-01-01
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.
NASA Astrophysics Data System (ADS)
Zhang, Cao; Miorini, Rinaldo; Katz, Joseph
2015-11-01
A system combining tomographic PIV (TPIV) and Mach-Zehnder interferometry (MZI) simultaneously measures the time- resolved 3D flow field and 2D distribution of wall-normal deformation in a turbulent channel flow over a transparent compliant surface. This paper focuses on the experimental techniques and data analysis procedures, but includes sample results. Standard TPIV analysis resolves the log layer of the mean velocity and the linear decrease in total shear stress with distance from the wall. Single-pixel ensemble correlations reveal the buffer layer and top of the viscous sublayer. Analysis of the MZI data consists of two steps, namely critical spatial filtering of interferograms to remove noise and phase demodulation to calculate the surface shape. A new technique to improve the filtration of noise from interferograms based on spatial correlations of small windows is introduced and optimized. Taking advantage of this enhancement, the phase/deformation distribution is calculated directly from arccosines of the intensity, which avoids edge artifacts affecting spectral calculations. Validations using synthetic noisy interferograms indicate that errors associated with correlation-based enhancement are consistently lower and much less sensitive to fringe shape than spectral band-pass filtering. The experimental wavenumber-frequency spectra show that the deformation consists of patterns that are larger than the field of view, surface waves and small-scale patterns. Some of the latter are advected at the freestream velocity, but mostly at 70 % of the freestream, the mean speed at 10 % of the channel half height. Indeed, spatial correlations of the deformation with velocity components peak at this elevation.
Intuitive Visualization of Transient Flow: Towards a Full 3D Tool
NASA Astrophysics Data System (ADS)
Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph
2015-04-01
Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool
Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model
NASA Astrophysics Data System (ADS)
Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.
2008-11-01
Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.
Tuning the 3D plasmon field of nanohole arrays
NASA Astrophysics Data System (ADS)
Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois
2013-11-01
Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been
Evaluation of the 3-D channeling flow in a fractured type of oil/gas reservoir
NASA Astrophysics Data System (ADS)
Ishibashi, T.; Watanabe, N.; Tsuchiya, N.; Tamagawa, T.
2013-12-01
An understanding of the flow and transport characteristics through rock fracture networks is of critical importance in many engineering and scientific applications. These include effective recovery of targeted fluid such as oil/gas, geothermal, or potable waters, and isolation of hazardous materials. Here, the formation of preferential flow path (i.e. channeling flow) is one of the most significant characteristics in considering fluid flow through rock fracture networks; however, the impact of channeling flow remains poorly understood. In order to deepen our understanding of channeling flow, the authors have developed a novel discrete fracture network (DFN) model simulator, GeoFlow. Different from the conventional DFN model simulators, we can characterize each fracture not by a single aperture value but by a heterogeneous aperture distribution in GeoFlow [Ishibashi et al., 2012]. As a result, the formation of 3-D preferential flow paths within fracture network can be considered by using this simulator. Therefore, we would challenge to construct the precise fracture networks whose fractures have heterogeneous aperture distributions in field scale, and to analyze fluid flows through the fracture networks by GeoFlow. In the present study, the Yufutsu oil/gas field in Hokkaido, Japan is selected as the subject area for study. This field is known as the fractured type of reservoir, and reliable DFN models can be constructed for this field based on the 3-D seismic data, well logging, in-situ stress measurement, and acoustic emission data [Tamagawa et al., 2012]. Based on these DFN models, new DFN models for 1,080 (East-West) × 1,080 (North-South) × 1,080 (Depth) m^3, where fractures are represented by squares of 44-346 m on a side, are re-constructed. In these new models, scale-dependent aperture distributions are considered for all fractures constructing the fracture networks. Note that the multi-scale modeling of fracture flow has been developed by the authors
Exploration 3-D Seismic Field Test/Native Tribes Initiative
Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon
1999-04-27
To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations
NASA Astrophysics Data System (ADS)
Šimurda, D.; Fürst, J.; Luxa, M.
2013-08-01
This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic ( M 2is = 0.8) and at transonic ( M 2is = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.
Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.
2016-04-01
We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
3d Modelling of Convective Flow In The Rhine Graben
NASA Astrophysics Data System (ADS)
Bächler, D.; Kohl, T.; Rybach, L.
Detailed investigations of the temperature distribution in the Rhine Graben indi- cate regular pattern of thermal anomalies following major north-south striking faults. These anomalies remain unexplained by conventional Rhine Graben studies based on 2D east-west striking sections. First analytical solutions for convective flow in vertical faults are applied for a clearly observable anomalous temperature pattern along ma- jor Rhine Graben faults. By these calculations the fault height, fault aperture, minimal fault permeability and time to convective onset is derived from the observed distances. Since analytical solutions are limited to simple model geometries further improvement was achieved by numerical model simulations, which allow to assume more com- plex initial and boundary conditions. Using the finite volume code TOUGH2 series of anomalies following the same fault were simulated by a 3D numerical model. Fo- cussing on the predominant north-south permeability structure the model consists of a vertical north-south striking fault and surrounding matrix. The fault geometries are based on the analytically predicted fault geometries (aperture=200m, height=3500m) and on the observed temperatures. Comparison of simulation results with observed temperatures shows that the fault is situated between 500 to 600m and 4200m. The fault permeability is taken as 5*10-13m2 and the fluid velocity in the fault is calcu- lated as 10-9 to 10-10 m/s. These results indicate the importance of our considerations since mass flux is much higher in the faults than across them. The minimal age of the anomaly is considered to be 77'000 years, since steady state is reached after this time span. The study proves that the observed temperature anomaly pattern along the gamma fault at Landau can be explained by north-south striking convection systems within fault zones. Similar situations have been found at Soultz. This may be a hint on a general feature of the major north-south striking
Exact Relativistic Ideal Hydrodynamical Solutions in (1+3)D with Longitudinal and Transverse Flows
Liao, Jinfeng; Koch, Volker
2009-05-20
A new method for solving relativistic ideal hydrodynamics in (1+3)D is developed. Longitudinal and transverse radial flows are explicitly embedded into the ansatz for velocity field and the hydrodynamic equations are reduced to a single equation for the transverse velocity field only, which is analytically more tractable as compared with the full hydrodynamic equations. As an application we use the method to find analytically all possible solutions whose transverse velocity fields have power dependence on proper time and transverse radius. Possible application to the Relativistic Heavy Ion Collisions and possible generalizations of the method are discussed.
3D Magnetotelluic characterization of the Coso GeothermalField
Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika
2007-04-23
-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.
3D crack tip fields for FCC single crystals
Cuitino, A.M.; Ortiz, M.
1995-12-31
Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
On the growth of enstrophy in axisymmetric 3D Euler flows with swirl
NASA Astrophysics Data System (ADS)
Ayala, Diego; Doering, Charles
2015-11-01
By numerically solving suitable PDE-constrained optimization problems, we study a family of axisymmetric vector fields, having the structure of a pair of vortex rings with swirl, that maximize the instantaneous production of enstrophy in the context of 3-dimensional (3D) incompressible Euler flows. The axisymmetric fields are parametrized by their energy K , enstrophy E and helicity H . The imposed symmetry is justified by the results from the seminal work of Doering & Lu (2008), recently confirmed independently by Ayala & Protas (2015), where highly localized pairs of colliding vortex rings were found to be instantaneously optimal for enstrophy production in 3D Navier-Stokes flows. The axial symmetry allows for an exhaustive exploration of the parameter space (K , E , H , as the 3D problem is effectively reduced to a 2-dimensional system of partial differential equations for the modified azimuthal vorticity and the azimuthal circulation density, with the corresponding reduction in computational complexity. Possible connections between these optimal axisymmetric fields with swirl and the ``blow-up'' problem are discussed.
NASA Astrophysics Data System (ADS)
Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M.
2010-12-01
Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with
Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces
ERIC Educational Resources Information Center
Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed
2012-01-01
The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…
Quasi 3D modeling of water flow in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Kuznetsov, M.; Yakirevich, A.; Pachepsky, Y. A.; Sorek, S.; Weisbrod, N.
2012-07-01
SummaryThe complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas the flow and transport through groundwater are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow using quasi 3D Richards' equation and finite difference scheme is presented. The corresponding numerical algorithm and the QUASI-3D computer code were developed. Results of the groundwater level simulations were compared with transient laboratory experimental data for 2D data constant-flux infiltration, quasi-3D HYDRUS-MODFLOW numerical model and a FULL-3D numerical model using Richards' equation. Hypothetical 3D examples of infiltration, pumping and groundwater mound dissipation for different spatial-time scales are presented. Water flow simulation for the Alto Piura aquifer (Peru) demonstrates the QUASI-3D model application at the regional scale. Computationally the QUASI-3D code was found to be more efficient by an order of 10-300%, while being accurate with respect to the benchmark fully 3D variable saturation code, when the capillary fringe was considered.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
Flow measurements in a model centrifugal pump by 3-D PIV
NASA Astrophysics Data System (ADS)
Yang, H.; Xu, H. R.; Liu, C.
2012-11-01
PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity Wr appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity Wr moves from the pressure side to the suction side. At the same time, the tangential component velocity Wθ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.
Recent Enhancements to USM3D Unstructured Flow Solver for Unsteady Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Abdol-Hamid, Khaled S.; Chung, James J.
2004-01-01
The NASA USM3D unstructured flow solver is undergoing extensions to address dynamic flow problems in support of NASA and NAVAIR efforts to study the applicability of Computational Fluid Dynamics tools for the prediction of aircraft stability and control characteristics. The initial extensions reported herein include two second-order time stepping schemes, Detached-Eddy Simulation, and grid motion. This paper reports the initial code verification and validation assessment of the dynamic flow capabilities of USM3D. The cases considered are the classic inviscid shock-tube problem, low Reynolds number wake shedding from a NACA 0012 airfoil, high Reynolds number DES-based wake shedding from a 4-to-1 length-to-diameter cylinder, and forced pitch oscillation of a NACA 0012 airfoil with inviscid and turbulent flow.
3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System
Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P
2002-05-29
Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of
3-D Particle Tracking Velocimetry: Development and Applications in Small Scale Flows
NASA Astrophysics Data System (ADS)
Tien, Wei-Hsin
The thesis contains two parts of studies. In part I, a novel volumetric velocimetry technique is developed to measure the 3-D flow field of small-scale flows. The technique utilizes a color-coded pinhole plate with multiple light sources aligned to each pinhole to achieve high particle image density and large measurable depth on a single lens microscope system. A color separation algorithm and an improved particle identification algorithm are developed to identify individual particle images from each pinhole view. Furthermore, a calibration-based technique based on epi-polar line search method is developed to reconstruct the spatial coordinates of the particle, and a new two-frame tracking particle-tracking algorithm is developed to calculate the velocity field. The system was setup to achieve a magnification of 2.69, resulting in an imaging volume of 3.35 x 2.5 x 1.5 mm3 and showed satisfactory measurement accuracy. The technique was then further miniaturized to achieve a magnification of 10, resulting in a imaging volume of 600 x 600 x 600 microm3. The system was applied to a backward-facing step flow to test its ability to reconstruct the unsteady flow field with two-frame tracking. Finally, this technique was applied to a steady streaming flow field in a microfluidic device used to trap particles. The results revealed the three-dimensional flow structure that has not been observed in previous studies, and provided insights to the design of a more efficient trapping device. In part II, an in-vitro study was carried out to investigate the flow around a prosthetic venous valve. Using 2-D PIV, the dynamics of the valve motion was captured and the velocity fields were measured to investigate the effect of the sinus pocket and the coupling effect of a pair of valves. The PIV and hemodynamic results showed that the sinus pocket around the valve functioned as a flow regulator to smooth the entrained velocity profile and suppress the jet width. For current prosthetic
Navier-Stokes solutions for rotating 3-D duct flows
NASA Astrophysics Data System (ADS)
Srivastava, B. N.
1988-07-01
This paper deals with the computation of three-dimensional viscous turbulent flow in a rotating rectangular duct of low aspect ratio using thin-layer Navier-Stokes equations. Scalar form of an approximate factorization implicit scheme along with a modified q-omega turbulence model has been utilized for mean flow predictions. The predicted mean flow behavior has been favorably compared with the experimental data for mean axial velocity, channel pressure and cross-flow velocities at a flow Mach number of 0.05 and a rotational speed of 300 rpm.
Verification of internal flow analyses in complex 3-D geometries
NASA Astrophysics Data System (ADS)
Choi, S. K.; Buggeln, R. C.
1992-11-01
Analysis of internal flow in advanced rocket propulsion systems is complicated by hardware geometry, high Reynolds numbers, rotation, high frequency phenomena, and near incompressibility. Typical of such a problem is the Space Shuttle Main Engine (SSME) hot gas manifold (HGM). Previous analyses of flow in the SSME HGM have been compared to air flow data and found to be inaccurate with respect to system losses, outer wall static pressures, and transfer duct environments. Such discrepancies could arise from flow measurement methodology, low order algorithms, turbulence modeling, and/or inadequate grid resolution. The objective of this work is to compare internal flow computational analyses to LDV flow measurements for the MSFC HGM pilot model configuration using two grids of different node density in the near wall region. Grids were generated with the EAGLE grid generator and calculations were made with the SRA MINT code. The calculated results were compared with HGM experimental data obtained in the MSFC water flow facility.
3D topographic correction of the BSR heat flow and detection of focused fluid flow
NASA Astrophysics Data System (ADS)
He, Tao; Li, Hong-Lin; Zou, Chang-Chun
2014-06-01
The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
NASA Astrophysics Data System (ADS)
Bocanegra, Humberto; Gorumlu, Seder; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2015-11-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. Existing methods, such as μPIV, suffers from low spatial resolution and fail to track tracer particle motion very close to a rough surface and within roughness elements. In this paper, we present a technique that combines high speed digital holographic microscopy (DHM) with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories. It allows us to obtain a 3D velocity field with an uncertainty of 0.01% and 2D wall shear stress distribution at the resolution of ~ 65 μPa. Applying the technique to a microfluidics with a surface textured by microfibers, we find that the flow is three-dimensional and complex. While the microfibers affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses. The study of effect of microfiber patterns and flow characteristics on skin frictions are ongoing and will be reported.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Harrid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Gas flow environment and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Schulz, R. J.
1982-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is provided. These data are to be used to evaluate, and verify, three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select a computational code and define the capabilities of this code to predict the experimental results obtained. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated. Internal flow in a large rectangular cross-sectioned 90 deg. bend turning duct was studied. The duct construction was designed to allow detailed measurements to be made for the following three duct wall conditions: (1) an isothermal wall with isothermal flow; (2) an adiabatic wall with convective heat transfer by mixing between an unheated surrounding flow; and (3) an isothermal wall with heat transfer from a uniformly hot inlet flow.
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
Gas flow environmental and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Geil, T.; Steinhoff, J.
1983-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows
NASA Astrophysics Data System (ADS)
Xiao, Feng
1999-11-01
A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows.
Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.
2001-01-01
A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.
NASA Astrophysics Data System (ADS)
Matsakos, T.; Chièze, J.-P.; Stehlé, C.; González, M.; Ibgui, L.; de Sá, L.; Lanz, T.; Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.
2014-08-01
The structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas due to the plasma confinement within flux tubes. The corresponding emission is smooth and fully distinguishable from the case of a weak magnetic field (~tenths of Gauss) where the hot slab demonstrates chaotic motion and oscillates periodically.
Incorporating preferential flow into a 3D model of a forested headwater catchment
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian
2016-04-01
Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the
Laser direct writing 3D structures for microfluidic channels: flow meter and mixer
NASA Astrophysics Data System (ADS)
Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.
2015-03-01
The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.
Dynamic scattering theory for dark-field electron holography of 3D strain fields.
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934
Magnetic Damping of g-Jitter Driven Flows: 3-D Calculations
NASA Technical Reports Server (NTRS)
Shang, D. Y.; Li, B. Q.; deGroh, H. C.
1997-01-01
A 3-D numerical model is developed to represent the oscillating natural convection induced in a cylindrical cavity filled with Ga-doped germanium with and without the presence of an external magnetic field. The model is developed based on the penalty-finite element solution of the equations describing the transport of momentum, heat and solutal element as well as the electromagnetic field distribution in the melt pool. Automatic time step control is applied to help speed up the calculations. Numerical simulations are conducted to study the convection and magnetic damping effects as a function of frequency, directions and amplitudes of g-jitter and also the direction and magnitudes of the applied magnetic fields. The results show that the g-jitter driven flow is time dependent and exhibits a complex recirculating convection pattern in three dimensions and that an applied magnetic field can be employed to suppress this deleterious convective flow and both magnitude and orientation of the applied field are important in magnetic damping of the g-jitter induced convective flows.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
Fluid flow pathways study from the 3D seismic data offshore southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, L.; Chi, W. C.; Chiang, H. T.; Lin, S.
2014-12-01
3D seismic reflection data provide detailed information on the physical properties of the crust, which can be used for hydrocarbon exploration. Recently, scientists from Taiwan and Germany are collaborating on a project to use a portable 3D seismic system, called P-Cable, to study gas hydrates offshore southwest Taiwan. We have collected 3 cubes, covering the active and passive margins. At these three sites, there is a wide-spread bottom-simulating reflector (BSR). We use the BSR to study the shallow thermal structures of these prospect sites, and use the temperature field information to study fluid migration patterns. We have also done in-situ heat flow measurements, and found similar results, showing focused fluid flow migrations in some pathways. Some of the high temperature fields also correlate with gas chimneys found through seismic attribute analyses. Preliminary results show that there might be active fluid migration above the BSR in the gas hydrate stability zone. In September and October of 2014, we will collect additional P-Cable datasets to be incorporated into this study. Such results will be used to evaluate some proposed sites for future drilling programs.
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
Integration of real-time 3D capture, reconstruction, and light-field display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
3D-Flow processor for a programmable Level-1 trigger (feasibility study)
Crosetto, D.
1992-10-01
A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.
NASA Astrophysics Data System (ADS)
Shaked, Natan Tzvi
2016-03-01
I present multimodal wide-field interferometric microscopy platform for label-free 3-D imaging of live cells during fast flow. Using holographic optical tweezers, multiple cells can be optically trapped and rapidity rotated on all axes, while acquired using an external off-axis wide-field interferometric module developed in our lab. The interferometric projections are rapidly processed into the 3-D refractive-index profile of the cells using a tomographic phase microscopy algorithms that take into consideration optical diffraction effects. The algorithms for the 3-D refractive-index reconstruction, and for calculating various morphological parameters that should serve for online sorting of cells, are efficiently implemented in a nearly real-time manner. The potential of this new high-throughput imaging technique is for label-free image analysis and sorting of cells during flow, to substitute current cell sorting devices, which are based on external labeling that eventually damages the cell sample.
Eulerian and Lagrangian methods for vortex tracking in 2D and 3D flows
NASA Astrophysics Data System (ADS)
Huang, Yangzi; Green, Melissa
2014-11-01
Coherent structures are a key component of unsteady flows in shear layers. Improvement of experimental techniques has led to larger amounts of data and requires of automated procedures for vortex tracking. Many vortex criteria are Eulerian, and identify the structures by an instantaneous local swirling motion in the field, which are indicated by closed or spiral streamlines or pathlines in a reference frame. Alternatively, a Lagrangian Coherent Structures (LCS) analysis is a Lagrangian method based on the quantities calculated along fluid particle trajectories. In the current work, vortex detection is demonstrated on data from the simulation of two cases: a 2D flow with a flat plate undergoing a 45 ° pitch-up maneuver and a 3D wall-bounded turbulence channel flow. Vortices are visualized and tracked by their centers and boundaries using Γ1, the Q criterion, and LCS saddle points. In the cases of 2D flow, saddle points trace showed a rapid acceleration of the structure which indicates the shedding from the plate. For channel flow, saddle points trace shows that average structure convection speed exhibits a similar trend as a function of wall-normal distance as the mean velocity profile, and leads to statistical quantities of vortex dynamics. Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.
Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method
NASA Astrophysics Data System (ADS)
Podlinski, J.; Niewulis, A.; Mizeraczyk, J.
2009-08-01
This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.
NASA Astrophysics Data System (ADS)
Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan
2016-04-01
Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.
Reacting Multi-Species Gas Capability for USM3D Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Schuster, David M.
2012-01-01
The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1997-01-01
This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.
Poloidal structure of the plasma edge with 3D magnetic fields
NASA Astrophysics Data System (ADS)
Agostini, Matteo; Scarin, Paolo; Carraro, Lorella; Spizzo, Gianluca; Spolaore, Monica; Vianello, Nicola
2015-11-01
In the RFX-mod reversed-field pinch, when the magnetic field spontaneously develops a non axi-symmetric structure, also the plasma edge assumes a three dimensional shape. In previous RFX works, it has been shown that kinetic properties of the plasma (electron pressure, connection lengths, floating potential, influx, plasma flow) closely follow the symmetry of the 3D field, both in amplitude and phase, along the toroidal angle (i.e, the RFP perpendicular direction in the edge). Using a set of poloidally distributed diagnostics, it is shown that these same properties follow the poloidal periodicity (m =1) of the field. However, the behavior of the phase is more difficult to understand. In particular, the 3D modulation of the plasma potential can rotate in the poloidal direction with the typical velocity of 100m/s, similar in value with the phase velocity of the m =1 magnetic mode; or it can jump between inboard and outboard equatorial midplane. Moreover, when the floating potential structure rotates, there are preliminary indications that its direction depends on the plasma density: it follows the m =1 mode at higher density, and rotates in the opposite direction at lower density.
3D fingerprint imaging system based on full-field fringe projection profilometry
NASA Astrophysics Data System (ADS)
Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili
2014-01-01
As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data
NASA Astrophysics Data System (ADS)
Petricca, Patrizio; Carminati, Eugenio
2016-01-01
3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.
Bayesian 3D velocity field reconstruction with VIRBIUS
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem
2016-03-01
I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.
3D-printed devices for continuous-flow organic chemistry
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J
2013-01-01
Summary We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. PMID:23766811
The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Pan, D.
1986-01-01
This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers. PMID:25166809
Model studies of blood flow in basilar artery with 3D laser Doppler anemometer
NASA Astrophysics Data System (ADS)
Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.
2015-03-01
It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope
2012-07-15
A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.
Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner
NASA Astrophysics Data System (ADS)
Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki
The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.
Increasing the depth of field in Multiview 3D images
NASA Astrophysics Data System (ADS)
Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon
2016-06-01
A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.
Mcdaniel, J.C.; Fletcher, D.G.; Hartfield, R.J.; Hollo, S.D. NASA, Ames Research Center, Moffett Field, CA )
1991-12-01
A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported. 25 refs.
Heat pulse propagation is 3-D chaotic magnetic fields
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, D.; Blazevski, D.
2013-10-01
Perturbative transport studies provide valuable time dependent information to construct and test transport models in magnetically confined plasmas. In these studies, the transient response of the plasma to externally applied small perturbations is followed in time. Here we present a numerical study of the radial propagation of edge heat pulse perturbations in the presence of 3-dimensional chaotic magnetic fields in cylindrical geometry. Based on the strong transport anisotropy encountered in magnetized plasmas (χ∥ /χ⊥ ~1010 in fusion plasmas, where χ∥ and χ⊥ are the parallel and perpendicular conductivities) we limit attention to the extreme anisotropic, purely parallel, χ⊥ = 0 , case. Using the Lagrangian-Green's function method we study the dependence of the pulse speed and radial penetration on the level of stochasticity of the magnetic field in regular, and reversed magnetic shear configurations. Of particular interest is the slowing down of the heat pulse due to weak chaos, islands, and shearless cantori. Work supported by the USA Department of Energy.
Resolving stellar populations with crowded field 3D spectroscopy
NASA Astrophysics Data System (ADS)
Kamann, S.; Wisotzki, L.; Roth, M. M.
2013-01-01
We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Time-lapse 3D VSP monitoring of a carbon dioxide injection project at Delhi Field, Louisiana
NASA Astrophysics Data System (ADS)
Lubis, Muhammad Husni Mubarak
Delhi Field is a producing oil field located in northeastern Louisiana. The estimated original oil in place (OOIP) is 357 mmbo and approximately 54% of OOIP has been produced through the primary production and water-flooding. A CO2-EOR program has been implemented since November 2009 to recover an additional 17% of OOIP. Reservoir surveillance using time-lapse 3D seismic data has been conducted to monitor the CO2 sweep efficiency. The goal of this study is to monitor the CO2 flow-path in the area around the injector using time-lapse 3D VSP data. For this purpose, two 3D VSPs acquired in June 2010 and again in August 2011 were processed together. Fluid substitution and VSP modeling were performed to understand the influence of pore-fluid saturation change on VSP records. A cross-equalization was performed to improve the similarity of the datasets. This step is important to reduce the ambiguity in time-lapse observation. The splice of a 3D VSP image into the surface seismic data becomes the key point in determining the reflector of the reservoir. By integrating the observation from the modeling and the splice of 3D VSP image to surface seismic, the CO2 flow-path from injector 164-3 can be identified from 3D time-lapse VSP data. The CO2 was not radially distributed around the injector, but moved toward southwest direction. This finding is also consistent with the flow-path interpreted from surface seismic. This consistency implies that time-lapse 3D VSP surveys at Delhi Field confirm and augment the time-lapse interpretation from surface seismic data.
Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.
NASA Astrophysics Data System (ADS)
Horvath, S.; Duarte, E.; Fernandez, E.
2007-05-01
, chemical composition, type of lava, velocity, etc. With all this information and photographs; real, visual and topographic images of the position and characters of the 1990s and 2000s lava flows, were obtained . An illustrative poster will be presented along with this abstract to show the construction process of such tool. Moreover, 3D animations will be present in the mentioned poster.
3-D explosions: a meditation on rotation (and magnetic fields)
NASA Astrophysics Data System (ADS)
Wheeler, J. C.
This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
NASA Astrophysics Data System (ADS)
Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun
2016-06-01
Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.
3D defect detection using optical wide-field microscopy
NASA Astrophysics Data System (ADS)
Tympel, Volker; Schaaf, Marko; Srocka, Bernd
2007-06-01
We report a method to detect signed differences in two similar data sets representing 3-dimensional intensity profiles recorded by optical wide-field microscopes. The signed differences describe missing or unexpected intensity values, defined as defects. In technical applications like wafer and mask inspection, data sets often represent surfaces. The reported method is able to describe the size and position especially in relation to the neighboring surface and is called Three-Dimension-Aberration (TDA)-Technology. To increase the tool performance and to handle different sizes of defects a scaled bottom-up method is implemented and started with high reduced data sets for the search of large defects. Each analysis contains three steps. The first step is a correlation to calculate the displacement vector between the similar data sets. In the second step a new data set is created. The new data set consists of intensity differences. Extreme values in the data set represent the position of defects. By the use of linear and non-linear filters the stability of detection can be improved. If all differences are below a threshold the bottom-up method starts with the next larger scaled data set. In the other case it is assumed that the defect is detected and step three starts with the detection of the convex hull of the defect and the search of the neighboring surface. As a result the defect is described by a parameter set including the relative position. Because of the layered structure of the data set and the bottom-up technique the method is suitable for multi-core processor architectures.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable
Coloring 3D line fields using Boy's real projective plane immersion.
Demiralp, Cağatay; Hughes, John F; Laidlaw, David H
2009-01-01
We introduce a new method for coloring 3D line fields and show results from its application in visualizing orientation in DTI brain data sets. The method uses Boy's surface, an immersion of RP2 in 3D. This coloring method is smooth and one-to-one except on a set of measure zero, the double curve of Boy's surface. PMID:19834221
A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face
NASA Astrophysics Data System (ADS)
Knupp, P.
A numerical algorithm is described for solving the free-surface groundwater flow equations in 3-D large-scale unconfined aquifers with strongly heterogeneous conductivity and surface recharge. The algorithm uses a moving mesh to track the water-table as it evolves according to kinematic and seepage face boundary conditions. Both steady-state and transient algorithms are implemented in the SECO-Flow 3-D code and demonstrated on stratigraphy based on the Delaware Basin of south-eastern New Mexico.
Using flow information to support 3D vessel reconstruction from rotational angiography
Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.
2008-07-15
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute
3-D model of a radial flow sub-watt methanol fuel processor
Holladay, J. D.; Wang, Y.
2015-10-01
A 3-D model is presented for a novel sub-watt packed bed reactor. The reactor uses an annular inlet flow combined with a radial flow packed bed reactor. The baseline reactor is compared to a reactor with multiple outlets and a reactor with 3 internal fins. Increasing the outlets from 1 to 4 did improve the flow distribution, but did not increase the performance in the simulation. However, inserting fins allowed a decrease in temperature with same inlet flow of approximately 35K. Or the inlet flow rate could be increased by a factor of 2.8x while maintaining >99% conversion.
Combination 3D TOP with 2D PC MRA Techique for cerebral blood flow volume measurement.
Guo, G; Wu, R H; Zhang, Y P; Guan, J T; Guo, Y L; Cheng, Y; terBrugge, K; Mikulis, D J
2006-01-01
To demonstrate the discrepancy of cerebral blood flow volume (BFV) estimation with 2D phase-contrast (2D PC) MRA guided with 3D time-of-flight (3D TOF) MR localization by using an "internal" standard. 20 groups of the common (CCA), internal (ICA), and external (ECA) carotid arteries in 10 healthy subjects were examined with 2D PC MRA guided by 3D TOF MR angiograms. The sum BFV of the internal and external carotid arteries was then compared with the ipsilateral common carotid artery flow. An accurate technique would demonstrate no difference. The difference was therefore a measure of accuracy of the method. 3D TOF MRA localization is presented to allow the determination of a slice orientation to improve the accuracy of 2D PC MRA in estimate the BFV. By using the combined protocols, there was better correlation in BFV estimate between the sum of ICA+ECA with the ipsilateral CCA (R2=0.729, P=0.000). The inconsistency (mean +/- SD) was found to be 6.95 +/- 5.95% for estimate the BFV in ICA+ECA and ipsilateral CCA. The main inconsistency was contributed to the ECA and its branches. Guided with 3D TOF MRA localization, 2D PC MRA is more accurate in the determination of blood flow volume in the carotid arteries. PMID:17946401
One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed
NASA Astrophysics Data System (ADS)
Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.
2016-03-01
Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (<0.05 m/s) and is suitable for applications involving live cells. This microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E
2011-01-01
We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645
Assessment of RELAP5-3D{copyright} using data from two-dimensional RPI flow tests
Davis, C.B.
1998-07-01
The capability of the RELAP5-3D{copyright} computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code`s logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved.
Ghost Particle Velocimetry: Accurate 3D Flow Visualization Using Standard Lab Equipment
NASA Astrophysics Data System (ADS)
Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto
2013-07-01
We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this “ghost particle velocimetry” technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.
A digital holography set-up for 3D vortex flow dynamics
NASA Astrophysics Data System (ADS)
Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme
2016-06-01
In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.
3D Simulation of Velocity Profile of Turbulent Flow in Open Channel with Complex Geometry
NASA Astrophysics Data System (ADS)
Kamel, Benoumessad; Ilhem, Kriba; Ali, Fourar; Abdelbaki, Djebaili
Simulation of open channel flow or river flow presents unique challenge to numerical simulators, which is widely used in the applications of computational fluid dynamics. The prediction is extremely difficult because the flow in open channel is usually transient and turbulent, the geometry is irregular and curved, and the free-surface elevation is varying with time. The results from a 3D non-linear k- ɛ turbulence model are presented to investigate the flow structure, the velocity distribution and mass transport process in a meandering compound open channel and a straight open channel. The 3D numerical model for calculating flow is set up in cylinder coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLE algorithm is applied to acquire the coupling of velocity and pressure. The non-linear k- ɛ turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The main contributions of this study are developing a numerical method that can be applied to predict the flow in river bends with various bend curvatures and different width-depth ratios. This study demonstrates that the 3D non-linear k- ɛ turbulence model can be used for analyzing flow structures, the velocity distribution and pollutant transport in the complex boundary open channel, this model is applicable for real river and wetland problem.
George McMechan; Rucsandra Corbeanu; Craig Forster; Kristian Soegaard; Xiaoxian Zeng; Carlos Aiken; Robert Szerbiak; Janok Bhattacharya; Michael Wizevich; Xueming Xu; Stephen Snelgrove; Karen Roche; Siang Joo Lim; Djuro Navakovic; Christopher White; Laura Crossey; Deming Wang; John Thurmond; William Hammon III; Mamadou BAlde; Ari Menitove
2001-08-31
OAK-B135 (IPLD Cleared) Existing reservoir models are based on 2-D outcrop studies; 3-D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah. The study was conducted at two sites (Corbula Gulch and Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3-D, to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentological features and boundaries.The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of the project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulations through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs.
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
A cross-platform solution for light field based 3D telemedicine.
Wang, Gengkun; Xiang, Wei; Pickering, Mark
2016-03-01
Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324
3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations
NASA Astrophysics Data System (ADS)
Kramar, M.; Lin, H.; Tomczyk, S.
2014-12-01
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.
Research and implementation of visualization techniques for 3D explosion fields
NASA Astrophysics Data System (ADS)
Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen
2015-12-01
The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.
Commercial turbofan engine exhaust nozzle flow analyses using PAB3D
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.
1992-01-01
Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
NASA Astrophysics Data System (ADS)
Timmerman, B. H.; Watt, D. W.; Bryanston-Cross, P. J.
1999-02-01
Using holographic interferometry the three-dimensional structure of unsteady and large-scale motions within subsonic and transonic turbulent jet flows has been studied. The instantaneous 3D flow structure is obtained by tomographic reconstruction techniques from quantitative phase maps recorded using a rapid-switching, double reference beam, double pulse laser system. The reconstruction of the jets studied here reveal a three-dimensional nature of the flow. In particular an increasing complexity can be seen in the turbulence as the flow progresses from the jet nozzle. Furthermore, a coherent three-dimensional, possibly rotating, structure can be seen to exist within these jets. The type of flow features illustrated here are not just of fundamental importance for understanding the behavior of free jet flows, but are also common to a number of industrial applications, ranging from the combustion flow within an IC engine to the transonic flow through the stages of a gas turbine.
3D strain measurement in electronic devices using through-focal annular dark-field imaging.
Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum
2014-11-01
Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-01
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method. PMID:23669981
An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows
NASA Astrophysics Data System (ADS)
Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang
2016-08-01
In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications.
NASA Astrophysics Data System (ADS)
Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri
2013-04-01
PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North
NASA Technical Reports Server (NTRS)
Fleming, J. L.; Simpson, R. L.
1997-01-01
Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.
Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702
Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.
Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero
2016-07-01
We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams. PMID:27367071
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Retrieving 3D Velocity Fields of Glaciers from X-band SAR Data and Comparison with GPS Observations
NASA Astrophysics Data System (ADS)
Magnússon, E.; Nagler, T.; Hetzenecker, M.; Palsson, F.; Scharrer, K.; Floricioiu, D.; Berthier, E.; Gudmundsson, S.; Rott, H.
2013-12-01
We present 3D velocity fields obtained from time series of TerraSAR-X and TanDEM-X images acquired over the ablation area of the Breidamerkurjökull outlet glacier of Vatnjökull Ice Cap (Iceland) in 2008-2012. Coherent and incoherent offset tracking is applied to repeat pass X-Band data to obtain ice displacement in cross and along track direction. Three methods are tested and compared to extract fields of the 3D ice velocity. First, the conventional surface parallel approach, which we consider as an approximation for deriving the horizontal motion rate, but does not reveal a realistic vertical motion. Second, the combination of offset tracking results from almost simultaneous observations from ascending and descending orbits measuring the glacier motion in four different directions, allowing calculation of the 3D velocity fields without any additional approximations. Third, deriving full 3D velocity fields by using the horizontal flow direction, derived from the ascending-descending combination, as constrain on offset tracking results from a single pair of SAR images. The latter two methods reveal a measurement of the vertical ice motion plus ablation, hence equivalent to the vertical motion component measured by GPS station fixed on a platform laying on the ice surface. The results from all methods are compared with such GPS measurements recorded by permanent stations on the glacier in 2008-2012 and the errors of the different methods are calculated. Additionally, we approximate the contribution of these 3D flow fields to elevation changes (emergence/submergence velocity plus net balance) and compare it with elevation changes from surface DEMs obtained in 2008 (SPIRIT), 2010 (airborne LIDAR) and 2012 (TanDEM-X).
A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.
2005-01-01
A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.
2013-12-01
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater
Permanganate oxidation of DNAPL in a large 3-D flow tank
NASA Astrophysics Data System (ADS)
Lee, E.; Seol, Y.; Fang, Y. C.; Schwartz, F. W.
2002-05-01
Potassium permanganate (KMnO4), as a metal-oxo reagent, can attack a double carbon-carbon bond and therefore oxidize common chlorinated ethylenes, such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This feature of metal-oxo reagents facilitates the use of permanganate to remediation of chlorinated solvents in soil and groundwater. In this study, we evaluated the efficiency of TCE removal by permanganate oxidation in large three-dimensional flooding schemes. We constructed a large 3-D flow tank (L x W x D = 180 cm x 60 cm x 90 cm) where TCE source zone was installed in a saturated porous sandy medium. The tank was flushed at a flow rate of 51 L/day with permanganate solution (1,250 mg/L) for 63 days. Using chemical, electrical, and optical monitoring techniques we estimated temporal and areal variations in TCE, permanganate, MnO2 precipitates, conductivity, and chloride concentrations. TCE emplaced as DNAPL in a upstream source zone gradually moved downstream forming a TCE plume of about 120 cm long, 30 cm wide, and 55 cm deep. This TCE plume diminished considerably over time due to the in situ oxidation of the DNAPL. However, TCE was not completely destroyed and TCE concentration remained high (63 to 228 mg/L) in the shrunken TCE plume downstream after 63 days of permanganate flushing. Mass balance calculation indicated about 28% of TCE still remained in the system. This was attributed to the precipitation of low-permeability reaction by-product, i.e., MnO2, which caused flushing to become less efficient with time. Findings of this study are useful for developing a practical technique for enhancing the efficacy of the oxidative treatment of TCE using permanganate in the field conditions.
3D Particle image velocimetry test of inner flow in a double blade pump impeller
NASA Astrophysics Data System (ADS)
Liu, Houlin; Wang, Kai; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Ru, Weimin
2012-05-01
The double blade pump is widely used in sewage treatment industry, however, the research on the internal flow characteristics of the double blade pump with particle image velocimetry (PIV) technology is very little at present. To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions, inner flows in a double blade pump impeller, whose specific speed is 111, are measured under the five off-design conditions and design condition by using 3D PIV test technology. In order to ensure the accuracy of the 3D PIV test, the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied. The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005. Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained. Test results show that vortex exists in each condition, but the location, size and velocity of vortex core are different. Average absolute velocity value of impeller outlet increases at first, then decreases, and then increases again with increase of flow rate. Again average relative velocity values under 0.4, 0.8, and 1.2 design condition are higher than that under 1.0 design condition, while under 0.6 and 1.4 design condition it is lower. Under low flow rate conditions, radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate, while that of relative velocities at the suction side near the pump shaft decreases. Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions. The research results can be applied to instruct the hydraulic optimization design of double blade pumps.
Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields
NASA Astrophysics Data System (ADS)
Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.
2015-12-01
We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.
Simulation of a 3D unsteady flow in an axial turbine stage
NASA Astrophysics Data System (ADS)
Straka, Petr
2012-04-01
The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.
Numerical analysis of the aeroelastic behaviour for the last turbine stage in 3D transonic flow
NASA Astrophysics Data System (ADS)
Gnesin, Vitaly; Kolodyazhnaya, Lyubov
2004-11-01
An understanding of the physics of the mutual interaction between gas flow and oscillating blades, and the development of predictive capabilities is essential for improving overall efficiency, durability and reliability. In this study presented the algorithm proposed involving the coupled solution of 3D unsteady flow through a turbine stage and dynamic problem for rotor blades motion by action of aerodynamic forces without separating outer and inner flow fluctuations. There has been performed the calculations for the last stage of the steam turbine under design and off-design regimes. It has investigated the mutual influence of both outer flow non-uniformity and blades oscillations. It has shown that amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to rotor moving one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row.
Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay.
Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin
2014-07-01
We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria. PMID:24856003
Ultrarapid Detection of Pathogenic Bacteria Using a 3D Immunomagnetic Flow Assay
Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin
2015-01-01
We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria. PMID:24856003
Ababou, R.
1996-12-31
Subsurface flow processes are inherently three-dimensional and heterogeneous over many scales. Taking this into account, for instance assuming random heterogeneity in 3-D space, puts heavy constraints on numerical models. An efficient numerical code has been developed for solving the porous media flow equations, appropriately generalized to account for 3-D, random-like heterogeneity. The code is based on implicit finite differences (or finite volumes), and uses specialized versions of pre-conditioned iterative solvers that take advantage of sparseness. With Diagonally Scaled Conjugate Gradients, in particular, large systems on the order of several million equations, with randomly variable coefficients, have been solved efficiently on Cray-2 and Cray-Y/MP8 machines, in serial mode as well as parallel mode (autotasking). The present work addresses, first, the numerical aspects and computational issues associated with detailed 3-D flow simulations, and secondly, presents a specific application related to the conductivity homogenization problem (identifying a macroscale conduction law, and an equivalent or effective conductivity). Analytical expressions of effective conductivities are compared with empirical values obtained from several large scale simulations conducted for single realizations of random porous media.
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Dahl, David
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.
Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2016-01-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632
Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2016-01-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632
NASA Astrophysics Data System (ADS)
Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2016-06-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.
Nonhydrostatic granular flow over 3-D terrain: New Boussinesq-type gravity waves?
NASA Astrophysics Data System (ADS)
Castro-Orgaz, Oscar; Hutter, Kolumban; Giraldez, Juan V.; Hager, Willi H.
2015-01-01
granular mass flow is a basic step in the prediction and control of natural or man-made disasters related to avalanches on the Earth. Savage and Hutter (1989) pioneered the mathematical modeling of these geophysical flows introducing Saint-Venant-type mass and momentum depth-averaged hydrostatic equations using the continuum mechanics approach. However, Denlinger and Iverson (2004) found that vertical accelerations in granular mass flows are of the same order as the gravity acceleration, requiring the consideration of nonhydrostatic modeling of granular mass flows. Although free surface water flow simulations based on nonhydrostatic depth-averaged models are commonly used since the works of Boussinesq (1872, 1877), they have not yet been applied to the modeling of debris flow. Can granular mass flow be described by Boussinesq-type gravity waves? This is a fundamental question to which an answer is required, given the potential to expand the successful Boussinesq-type water theory to granular flow over 3-D terrain. This issue is explored in this work by generalizing the basic Boussinesq-type theory used in civil and coastal engineering for more than a century to an arbitrary granular mass flow using the continuum mechanics approach. Using simple test cases, it is demonstrated that the above question can be answered in the affirmative way, thereby opening a new framework for the physical and mathematical modeling of granular mass flow in geophysics, whereby the effect of vertical motion is mathematically included without the need of ad hoc assumptions.
NASA Technical Reports Server (NTRS)
Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir
1993-01-01
A time marching Navier-Stokes code called PARC3D was used to study the 3-D viscous flow associated with an advanced ducted propeller (ADP) subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 degrees became unstable at 29 degrees, and separated at 30 degrees. An experimental study with a similar inlet and with no propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller. This tends to indicate that the propeller exerts a favorable effect on the inlet performance. During the through-flow experiment a stationary blockage device was used to successfully simulate the propeller effect on the inlet flow field at angles of attack. In the present numerical study, this flow blockage was modeled via a PARC3D computational boundary condition (BC) called the screen BC. The principle formulation of this BC was based on the one-and-half dimension actuator disk theory. This screen BC was applied at the inlet propeller face station of the computational grid. Numerical results were obtained with and without the screen BC. The application of the screen BC in this numerical study provided results which are similar to the results of past experimental efforts in which either the blockage device or the propeller was used.
NASA Astrophysics Data System (ADS)
Zapiór, Maciej; Martínez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.
Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.
3D-PTV measurement of the phototactic movement of algae in shear flow
NASA Astrophysics Data System (ADS)
Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami
2012-11-01
Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.
Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations
NASA Astrophysics Data System (ADS)
Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
3D imaging of particle-scale rotational motion in cyclically driven granular flows
NASA Astrophysics Data System (ADS)
Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang
Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image
NASA Technical Reports Server (NTRS)
Wang, Cuilan; Newman, Timothy; Gallagher, Dennis
2006-01-01
A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method
NASA Astrophysics Data System (ADS)
Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping
2004-09-01
The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.
3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion
Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio
2007-05-17
The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die.
Calculation by the finite element method of 3-D turbulent flow in a centrifugal pump
NASA Astrophysics Data System (ADS)
Combes, J. F.
1992-02-01
In order to solve industrial flow problems in complex geometries, a finite element code, N3S, was developed. It allows the computation of a wide variety of 2-D or 3-D unsteady incompressible flows, by solving the Reynolds averaged Navier-Stokes equations together with a k-epsilon turbulence model. Some recent developments of this code concern turbomachinery flows, where one has to take into account periodic boundary conditions, as well as Coriolis and centrifugal forces. The numerical treatment is based on a fractional step method: at each time step, an advection step is solved successively by means of a characteristic method; a diffusion step for the scalar terms; and finally, a Generalized Stokes Problem by using a preconditioned Uzawa algorithm. The space discretization uses a standard Galerkin finite element method with a mixed formulation for the velocity and pressure. An application is presented of this code to the flow inside a centrifugal pump which was extensively tested on several air and water test rigs, and for which many quasi-3-D or Euler calculations were reported. The present N3S calculation is made on a finite element mesh comprising about 28000 tetrahedrons and 43000 nodes.
Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Villone, Barbara
2014-09-01
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
NASA Astrophysics Data System (ADS)
Haugen, Benjamin D.
Landslide ground surface displacements vary at all spatial scales and are an essential component of kinematic and hazards analyses. Unfortunately, survey-based displacement measurements require personnel to enter unsafe terrain and have limited spatial resolution. And while recent advancements in LiDAR technology provide the ability remotely measure 3D landslide displacements at high spatial resolution, no single method is widely accepted. A series of qualitative metrics for comparing 3D landslide displacement field measurement methods were developed. The metrics were then applied to nine existing LiDAR techniques, and the top-ranking methods --Iterative Closest Point (ICP) matching and 3D Particle Image Velocimetry (3DPIV) -- were quantitatively compared using synthetic displacement and control survey data from a slow-moving translational landslide in north-central Colorado. 3DPIV was shown to be the most accurate and reliable point cloud-based 3D landslide displacement field measurement method, and the viability of LiDAR-based techniques for measuring 3D motion on landslides was demonstrated.
North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects
NASA Astrophysics Data System (ADS)
Li, Hong-lin; He, Tao; Spence, George D.
2014-01-01
The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
3-D field computation: The near-triumph of commerical codes
Turner, L.R.
1995-07-01
In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
NASA Astrophysics Data System (ADS)
Turunen, M.; Warsta, L.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Nurminen, J.; Myllys, M.; Alakukku, L.; Äijö, H.; Puustinen, M.
2012-12-01
Fluxes of nutrients and other substances from cultivated fields cause eutrophication and deterioration of water quality in aquatic ecosystems worldwide. In order to develop effective strategies to control the environmental impacts of crop cultivation, it is crucial to identify the main transport pathways and the effects of different water management methods on the loads. Reduction of sediment loads is essential since sediment particles typically carry nutrients (especially sorbed phosphorus) and other potentially harmful substances, e.g. pesticides, from the fields to the adjacent surface waters. The novel part of this study was the investigation of suspended sediment transport in soil macropores to the subsurface drains and to the deep groundwater. We applied a 3-D distributed dual-permeability model (FLUSH) using a dataset collected from a subsurface drained, clayey agricultural field (15 ha) to holistically assess water balance, soil erosion and sediment transport from the field to an adjacent stream. The data set included five years of hydrological and water quality measurements from four intensively monitored field sections with different soil properties, topography, drainage systems (drain spacing and drain depth), drain installation methods (trenchless and trench drainage) and drain envelope materials (gravel and fiber). The 3-D model allowed us to quantify how soil erosion and sediment transport differed between the field sections within the field area. The simulations were conducted during snow- and frost-free periods. The simulation results include closure of water balance of the cultivated field, distribution of soil erosion and sediment transport within the field area and the effects of different subsurface drainage systems on sediment loads. The 3-D dual-permeability subsurface flow model was able to reproduce the measured drainflows and sediment fluxes in the clayey field and according to the simulations over 90% of drainflow waters were conveyed to
NASA Astrophysics Data System (ADS)
Tronchin, Thibaut; David, Laurent; Farcy, Alain
2015-01-01
The flow around a flapping wing is characterized by an unsteady evolution of three-dimensional vortices, which are one of the main sources of loads. The difficulty in directly measuring such low forces by means of sensors and the need of the characterization of the evolution of the flow have lead to the evaluation of loads using the integral form of the momentum equation. This paper describes methods for evaluating instantaneous loads and three-dimensional pressure fields using 3D3C velocity fields only. An evaluation of the accuracy of these methods using DNS velocity fields is presented. Loads and pressure fields are then calculated using scanning tomography PIV velocity fields, around a NACA 0012 airfoil for a flapping motion in a water tank at a Reynolds number of 1,000. The results suggest a sufficient accuracy of calculated pressure fields for a global analysis of the topology of the flow and for the evaluation of loads by integrating the calculated pressure field over the surface of the wing.
Investigation of the 3-D actinic flux field in mountainous terrain
NASA Astrophysics Data System (ADS)
Wagner, J. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.
2011-11-01
During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.
Investigation of the 3-D actinic flux field in mountainous terrain
Wagner, J.E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G.P.; Kift, R.; Kreuter, A.; Rieder, H.E.; Simic, S.; Webb, A.; Weihs, P.
2011-01-01
During three field campaigns spectral actinic flux was measured from 290–500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account. PMID:26412915
The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction
NASA Technical Reports Server (NTRS)
Chen, D. Y.; Reynolds, R. S.
1993-01-01
An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.
Flow control on a 3D backward facing ramp by pulsed jets
NASA Astrophysics Data System (ADS)
Joseph, Pierric; Bortolus, Dorian; Grasso, Francesco
2014-06-01
This paper presents an experimental study of flow separation control over a 3D backward facing ramp by means of pulsed jets. Such geometry has been selected to reproduce flow phenomena of interest for the automotive industry. The base flow has been characterised using PIV and pressure measurements. The results show that the classical notchback topology is correctly reproduced. A control system based on magnetic valves has been used to produce the pulsed jets whose properties have been characterised by hot wire anemometry. In order to shed some light on the role of the different parameters affecting the suppression of the slant recirculation area, a parametric study has been carried out by varying the frequency and the momentum coefficient of the jets for several Reynolds numbers. xml:lang="fr"
3-D FEM field analysis in controlled-PM LSM for Maglev vehicle
Yoshida, Kinjiro; Lee, J.; Kim, Y.J.
1997-03-01
The magnetic fields in the controlled-PM LSM for Maglev vehicle, of which the width is not only finite with lateral edges, but also an effective electric-airgap is very large, are accurately analyzed by using 3-D FEM. The lateral airgap-flux due to lateral edges of the machine is made clear and its effects on thrust and lift forces are evaluated quantitatively from the comparison with 2-D FEA. The accuracy of 3-D FEA is verified by comparing the calculated results with the measured values.
Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
2005-01-01
For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.
Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil
NASA Astrophysics Data System (ADS)
Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.
2015-01-01
At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.
HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.
Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin
2016-07-01
An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277
Fast 3D Spatial EPR Imaging Using Spiral Magnetic Field Gradient
Deng, Yuanmu; Petryakov, Sergy; He, Guanglong; Kesselring, Eric; Kuppusamy, Periannan; Zweier, Jay L.
2007-01-01
Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4 to 7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism. PMID:17267252
Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.
Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike
2016-01-01
Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos. PMID:26529743
Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme
NASA Astrophysics Data System (ADS)
Jin-Lian, Ren; Tao, Jiang
2016-02-01
In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
NASA Astrophysics Data System (ADS)
Moortgat, J.; Firoozabadi, A.
2013-12-01
Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.
NASA Astrophysics Data System (ADS)
Brücker, Ch.
1995-08-01
Scanning-Particle-Image-Velocimetry Technique (SPIV), introduced by Brücker (1992) and Brücker and Althaus (1992), offers the quantitative investigation of three-dimensional vortical structures in unsteady flows. On principle, this technique combines classical Particle-Image-Velocimetry (PIV) with volume scanning using a scanning light-sheet. In our previous studies, single scans obtained from photographic frame series were evaluated to show the instantaneous vortical structure of the respective flow phenomena. Here, continuous video recordings are processed to capture also the temporal information for the study of the set-up of 3D effects in the cylinder wake. The flow is continuously sampled in depth by the scanning light-sheet and in each of the parallel planes frame-to-frame cross-correlation of the video images (DPIV) is applied to obtain the 2D velocity field. Because the scanning frequency and repetition rate is high in comparison with the characteristic time-scale of the flow, the evaluation provides a complete time-record of the 3D flow during the starting process. With use of the continuity concept as described by Robinson and Rockwell (1993), we obtained in addition the out-of-plane component of the velocity in spanwise direction. This in view, the described technique enabled the reconstruction of the three-dimensional time-dependent velocity and vorticity field. The visualization of the dynamical behaviour of these quantities as, e.g. by video, gave a good impression of the spanwise flow showing the “tornado-like” suction effect of the starting vortices.
Segmentation of bone structures in 3D CT images based on continuous max-flow optimization
NASA Astrophysics Data System (ADS)
Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.
2015-03-01
In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.
Computing 3-D steady supersonic flow via a new Lagrangian approach
NASA Technical Reports Server (NTRS)
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations
Kuo, I W; Bastea, S; Fried, L E
2010-03-10
We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.
Rotary slanted single wire CTA - a useful tool for 3D flows investigations
NASA Astrophysics Data System (ADS)
Jonáš, P.
2013-04-01
The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA) using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine
NASA Astrophysics Data System (ADS)
Kang, S.; Sotiropoulos, F.
2011-12-01
A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.
Mitiche, Amar; Sekkati, Hicham
2006-11-01
This study investigates a variational, active curve evolution method for dense three-dimentional (3D) segmentation and interpretation of optical flow in an image sequence of a scene containing moving rigid objects viewed by a possibly moving camera. This method jointly performs 3D motion segmentation, 3D interpretation (recovery of 3D structure and motion), and optical flow estimation. The objective functional contains two data terms for each segmentation region, one based on the motion-only equation which relates the essential parameters of 3D rigid body motion to optical flow, and the other on the Horn and Schunck optical flow constraint. It also contains two regularization terms for each region, one for optical flow, the other for the region boundary. The necessary conditions for a minimum of the functional result in concurrent 3D-motion segmentation, by active curve evolution via level sets, and linear estimation of each region essential parameters and optical flow. Subsequently, the screw of 3D motion and regularized relative depth are recovered analytically for each region from the estimated essential parameters and optical flow. Examples are provided which verify the method and its implementation. PMID:17063686
NASA Astrophysics Data System (ADS)
Morgan, J. P.; Hasenclever, J.; Shi, C.
2009-12-01
Computational studies of mantle convection face large challenges to obtain fast and accurate solutions for variable viscosity 3d flow. Recently we have been using parallel (MPI-based) MATLAB to more thoroughly explore possible pitfalls and algorithmic improvements to current ‘best-practice’ variable viscosity Stokes and D’Arcy flow solvers. Here we focus on study of finite-element solvers based on a decomposition of the equations for incompressible Stokes flow: Ku + Gp = f and G’u = 0 (K-velocity stiffness matrix, G-discretized gradient operator, G’=transpose(G)-discretized divergence operator) into a single equation for pressure Sp==G’K^-1Gp =G’K^-1f, in which the velocity is also updated as part of each pressure iteration. The outer pressure iteration is solved with preconditioned conjugate gradients (CG) (Maday and Patera, 1989), with a multigrid-preconditioned CG solver for the z=K^-1 (Gq) step of each pressure iteration. One fairly well-known pitfall (Fortin, 1985) is that constant-pressure elements can generate a spurious non-zero flow under a constant body force within non-rectangular geometries. We found a new pitfall when using an iterative method to solve the Kz=y operation in evaluating each G’K^-1Gq product -- even if the residual of the outer pressure equation converges to zero, the discrete divergence of this equation does not correspondingly converge; the error in the incompressibility depends on roughly the square of the tolerance used to solve each Kz=y velocity-like subproblem. Our current best recipe is: (1) Use flexible CG (cf. Notay, 2001) to solve the outer pressure problem. This is analogous to GMRES for a symmetric positive definite problem. It allows use of numerically unsymmetric and/or inexact preconditioners with CG. (2) In this outer-iteration, use an ‘alpha-bar’ technique to find the appropriate magnitude alpha to change the solution in each search direction. This improvement allows a similar iterative tolerance of
Self-dual Maxwell field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
We study the system of a self-dual Maxwell field coupled to 3D gravity with torsion, with the Maxwell field modified by a topological mass term. General structure of the field equations reveals a new, dynamical role of the classical central charges, and gives a simple correspondence between self-dual solutions with torsion and their Riemannian counterparts. We construct two exact self-dual solutions, corresponding to the sectors with a massless and massive Maxwell field, and calculate their conserved charges.
Decoding 3D search coil signals in a non-homogeneous magnetic field.
Thomassen, Jakob S; Benedetto, Giacomo Di; Hess, Bernhard J M
2010-06-18
We present a method for recording eye-head movements with the magnetic search coil technique in a small external magnetic field. Since magnetic fields are typically non-linear, except in a relative small region in the center small field frames have not been used for head-unrestrained experiments in oculomotor studies. Here we present a method for recording 3D eye movements by accounting for the magnetic non-linearities using the Biot-Savart law. We show that the recording errors can be significantly reduced by monitoring current head position and thereby taking the location of the eye in the external magnetic field into account. PMID:20359490
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.
1995-08-01
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.
Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.
Mock, Raymond Cecil
2007-06-01
The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent
2015-01-01
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. PMID:25557038
Coupled aeroelastic oscillations of a turbine blade row in 3D transonic flow
NASA Astrophysics Data System (ADS)
Gnesin, Vitaly; Kolodyazhnaya, Lyubov; Rzadkowski, Romuald
2001-10-01
This paper presents the mutual time - marching method to predict the aeroelastic stability of an oscillating blade row in 3D transonic flow. The ideal gas flow through a blade row is governed by the time dependent Euler equations in conservative form which are integrated by using the explicit monotonous second order accurate Godunov-Kolgan finite volume scheme and moving hybrid H-O grid. The structure analysis uses the modal approach and 3D finite element dynamic model of blade. The blade movement is assumed as a linear combination of the first modes of blade natural oscillations with the modal coefficients depending on time. To demonstrate the capability and correctness of the method, two experimentally investigated test cases have been selected, in which the blades had performed tuned harmonic bending or torsional vibrations (The 1st and 4th standard configurations of the “Workshop on Aeroelasticity in Turbomachines” by Bolcs and Fransson, 1986). The calculated results of aeroelastic behaviour of the blade row (4th standard configuration), are presented over a wide frequency range under different start regimes of interblade phase angle.
Real-time tracking with a 3D-Flow processor array
Crosetto, D.
1993-06-01
The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was thought to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc., with respect to the CAM approach. The report describes real-time track finding using new computing approach technique based on the 3D-Flow array processor system. This system consists of a fixed interconnection architecture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project.
Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns
NASA Astrophysics Data System (ADS)
von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet
2010-09-01
A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.
Measuring the orientation and rotation rate of 3D printed particles in turbulent flow
NASA Astrophysics Data System (ADS)
Voth, Greg; Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Cole, Brendan
2014-11-01
The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 μm. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow. This research is supported by NSF Grant DMR-1208990.
Measuring the orientation and rotation rate of 3D printed particles in turbulent flow
NASA Astrophysics Data System (ADS)
Voth, Greg; Kramel, Stefan; Cole, Brendan
2015-03-01
The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
3D conformation of a flexible fiber in a turbulent flow
NASA Astrophysics Data System (ADS)
Verhille, Gautier; Bartoli, Adrien
2016-07-01
A growing number of studies is devoted to anisotropic particles in turbulent flows. In most cases, the particles are assumed to be rigid and their deformations are neglected. We present an adaptation of classical computer vision tools to reconstruct from two different images the 3D conformation of a fiber distorted by the turbulent fluctuations in a von Kármán flow. This technique allows us notably to characterize the fiber deformation by computing the correlation function of the orientation of the tangent vector. This function allows us to tackle the analogy between polymers and flexible fibers proposed by Brouzet et al. (Phys Rev Lett 112(7):074501, 2014). We show that this function depends on an elastic length ℓ _e which characterizes the particle flexibility, as is the case for polymers, but also on the fiber length L, contrary to polymers.
A numerical solution of 3D inviscid rotational flow in turbines and ducts
NASA Astrophysics Data System (ADS)
Oktay, Erdal; Akmandor, Sinan; Üçer, Ahmet
1998-04-01
The numerical solutions of inviscid rotational (Euler) flows were obtained using an explicit hexahedral unstructured cell vertex finite volume method. A second-order-accurate, one-step Lax-Wendroff scheme was used to solve the unsteady governing equations discretized in conservative form. The transonic circular bump, in which the location and the strength of the captured shock are well predicted, was used as the first test case. The nozzle guide vanes of the VKI low-speed turbine facility were used to validate the Euler code in highly 3D environment. Despite the high turning and the secondary flows which develop, close agreements have been obtained with experimental and numerical results associated with these test cases.
An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid
NASA Astrophysics Data System (ADS)
Borrelli, A.; Giantesio, G.; Patria, M. C.
2015-01-01
The influence of a non-uniform external magnetic field on the steady three dimensional stagnation-point flow of a micropolar fluid over a rigid uncharged dielectric at rest is studied. The total magnetic field is parallel to the velocity at infinity. It is proved that this flow is possible only in the axisymmetric case. The governing nonlinear partial differential equations are reduced to a system of ordinary differential equations by a similarity transformation, before being solved numerically. The effects of the governing parameters on the fluid flow and on the magnetic field are illustrated graphically and discussed.
A 3-D implicit finite-volume model of shallow water flows
NASA Astrophysics Data System (ADS)
Wu, Weiming; Lin, Qianru
2015-09-01
A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values.
Extension of a three-dimensional viscous wing flow analysis user's manual: VISTA 3-D code
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about three-dimensional (swept and tapered) supercritical wings. A computational procedure for calculating such flow field was developed. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving three-dimensional viscous flow problems. In order to demonstrate the viability of this method, two- and three-dimensional problems are computed. These include the flow over a two-dimensional NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, three-dimensional flow on a flat plate. Although actual three-dimensional flows over wings were not obtained, the ground work was laid for considering such flows. In this report a description of the computer code is given.
Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.
Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study
Gerassimenko, M.
2000-03-01
We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.
3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries
NASA Astrophysics Data System (ADS)
Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman
2015-10-01
Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not
Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
NASA Astrophysics Data System (ADS)
Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis
2015-08-01
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
Zeinali, Soheila; Çetin, Barbaros; Oliaei, Samad Nadimi Bavil; Karpat, Yiğit
2015-07-01
Microfluidics is the combination of micro/nano fabrication techniques with fluid flow at microscale to pursue powerful techniques in controlling and manipulating chemical and biological processes. Sorting and separation of bio-particles are highly considered in diagnostics and biological analyses. Dielectrophoresis (DEP) has offered unique advantages for microfluidic devices. In DEP devices, asymmetric pair of planar electrodes could be employed to generate non-uniform electric fields. In DEP applications, facing 3D sidewall electrodes is considered to be one of the key solutions to increase device throughput due to the generated homogeneous electric fields along the height of microchannels. Despite the advantages, fabrication of 3D vertical electrodes requires a considerable challenge. In this study, two alternative fabrication techniques have been proposed for the fabrication of a microfluidic device with 3D sidewall electrodes. In the first method, both the mold and the electrodes are fabricated using high precision machining. In the second method, the mold with tilted sidewalls is fabricated using high precision machining and the electrodes are deposited on the sidewall using sputtering together with a shadow mask fabricated by electric discharge machining. Both fabrication processes are assessed as highly repeatable and robust. Moreover, the two methods are found to be complementary with respect to the channel height. Only the manipulation of particles with negative-DEP is demonstrated in the experiments, and the throughput values up to 105 particles / min is reached in a continuous flow. The experimental results are compared with the simulation results and the limitations on the fabrication techniques are also discussed. PMID:25808433
Fajardo, A.A.; Cross, T.A.
1996-12-31
A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.
Fajardo, A.A. ); Cross, T.A. )
1996-01-01
A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Kinetic turbulence in 3D collisionless magnetic reconnection with a guide magnetic field
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Kilian, Patrick; Jain, Neeraj; Büchner, Jörg
2016-04-01
The features of kinetic plasma turbulence developed during non-relativistic 3D collisionless magnetic reconnection are still not fully understood. This is specially true under the influence of a strong magnetic guide field, a scenario common in space plasmas such as in the solar corona and also in laboratory experiments such as MRX or VINETA II. Therefore, we study the mechanisms and micro-instabilities leading to the development of turbulence during 3D magnetic reconnection with a fully kinetic PIC code, emphasizing the role of the guide field with an initial setup suitable for the aforementioned environments. We also clarify the relations between these processes and the generation of non-thermal populations and particle acceleration.
3D Kinetic Simulations of Topography-Induced Electric Fields at Itokawa Asteroid
NASA Astrophysics Data System (ADS)
Zimmerman, M. I.
2015-12-01
Results from a new 3D kinetic simulation code will be presented, showing how Itokawa's interaction with the solar wind plasma creates an ever-evolving electric field structure as the asteroid rotates. The simulations combine (1) a realistic surface shape model of Itokawa, (2) a careful and self-consistent accounting of surface charging processes, and (3) the freely-available FMMLib3d code library implementing the fast multipole method for electric field calculations. Fine details of the surface potential and electric grounding conditions, as revealed by this new code, could provide critical inputs into planning for a future asteroid retrieval mission in which extended, direct contact with the asteroid could occur.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
Technology Transfer Automated Retrieval System (TEKTRAN)
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.
Kim, Boyoung; Naemura, Takeshi
2015-01-01
This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821
ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work
NASA Astrophysics Data System (ADS)
Knopf, George K.; Nelson, Andrew J.
2004-10-01
Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang
2014-08-01
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
Topology method for analyses of 3-D viscous flow structure in transonic turbomachinery
NASA Astrophysics Data System (ADS)
Guo, Yanhu; Wang, Baoguo; Shen, Mengyu
1997-12-01
A topology method is presented in this paper to reveal flow structure occurring inside turbomachinery, in which near wall flow structure is revealed by using wall limiting streamlines and space flow feature is revealed by using space streamlines and cross-section streamlines. As an example, a computational three-dimensional viscous flow field inside a transonic turbine cascade is studied. Through the analysis, the form and evolution of vortex system and the whole process of separation occurring within this cascade are revealed. The application of topology method for analyze flow structure inside turbomachinery is very important for understanding flow features and mechanism of flow loss even for improving the design of turbomachinery and increasing its efficiency.
Patterning process exploration of metal 1 layer in 7nm node with 3D patterning flow simulations
NASA Astrophysics Data System (ADS)
Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Oulmane, Mohamed; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas
2015-03-01
In 7mn node (N7), the logic design requires the critical poly pitch (CPP) of 42-45nm and metal 1 (M1) pitch of 28- 32nm. Such high pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent 3D profile and topology. We use this tool to study the patterning process variations of N7 M1 layer including the overlay control, the critical dimension uniformity (CDU) budget and the lithographic process window (PW). The resulting 3D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field and identify hot spots for dielectric reliability. As an example application, we will report extractions of maximum electric field at M1 tipto- tip which is one of the most critical patterning locations and we will demonstrate the potential of this approach for investigating the impact of process variations on dielectric reliability. We will also present simulations of an alternative M1 patterning flow, with a single exposure block using extreme ultraviolet lithography (EUVL) and analyze its advantages compared to the LE3 block approach.
The mantle wedge's transient 3-D flow regime and thermal structure
NASA Astrophysics Data System (ADS)
Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.
2016-01-01
Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.
Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
NASA Astrophysics Data System (ADS)
Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari
2016-06-01
Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1–6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
A 3D velocimetry study of the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.
2006-11-01
Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.
Simulation of 3D flows past hypersonic vehicles in FlowVision software
NASA Astrophysics Data System (ADS)
Aksenov, A. A.; Zhluktov, S. V.; Savitskiy, D. V.; Bartenev, G. Y.; Pokhilko, V. I.
2015-11-01
A new implicit velocity-pressure split method is discussed in the given presentation. The method implies using conservative velocities, obtained at the given time step, for integration of the momentum equation and other convection-diffusion equations. This enables simulation of super- and hypersonic flows with account of motion of solid boundaries. Calculations of known test cases performed in the FlowVision software are demonstrated. It is shown that the method allows one to carry out calculations at high Mach numbers with integration step essentially exceeding the explicit time step.
NASA Astrophysics Data System (ADS)
Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard
2015-11-01
We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.
Full-field strain measurements on turbomachinery components using 3D SLDV technology
NASA Astrophysics Data System (ADS)
Maguire, Martyn; Sever, Ibrahim
2016-06-01
This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.
Progressive attenuation fields: Fast 2D-3D image registration without precomputation
Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.
2005-09-15
Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-01-01
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-12-15
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm
3D Structure and Internal Circulation of Pancake Vortices in Rotating Stratified Flows
NASA Astrophysics Data System (ADS)
Hassanzadeh, Pedram; Marcus, Philip; Aubert, Oriane; Le Bars, Michael; Le Gal, Patrice
2011-11-01
Jovian vortices, Atlantic meddies, and vortices of the protoplanetrary disks are examples of weakly-forced or unforced long-lived vortices in rotating stratified flows. Knowing the 3D structure and internal circulation of these vortices is essential in understanding their physics, which is not well-understood. For example, the aspect ratio of these vortices has been long thought to be f / N where f is the Coriolis parameter and N is the Brunt-Vaisala frequency. However, our recent theoretical and experimental study has shown that the aspect ratio in fact depends not only on f and N but also on the Rossby number and density mixing inside the vortex. The new scaling law also agrees with the available measurements of the meddies and Jupiter's Great Red Spot. High resolution 3D numerical simulations of the Navier-Stokes equation are carried out to confirm this new scaling law for a slowly (viscously) decaying anticyclonic vortex in which the Rossby number and stratification inside the vortex evolve in time. For a wide range of parameters and different distributions of density anomaly, the secondary circulations within the vortices are studied. The effect of a non-uniform background stratification is investigated, and the small cyclonic vortices that form above and below the anticyclone are studied.
Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal; Brammer, Gabriel B.; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V.; Förster Schreiber, Natascha; Kriek, Mariska; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; and others
2014-10-01
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
Development of a 3D Potential Field Forward Modelling System in Python
NASA Astrophysics Data System (ADS)
Cole, P.
2012-12-01
The collection of potential field data has long been a standard part of geophysical exploration. Specifically, airborne magnetic data is collected routinely in any brown-fields area, because of the low cost and fast acquisition rate compared to other geophysical techniques. However, the interpretation of such data can be a daunting task, especially when 3D models are becoming more necessary. The current trend in modelling software is to follow either the modelling of individual profiles, which are then "joined" up into 3D sections, or to model in a full 3D using polygonal based models (Singh and Guptasarma, 2001). Unfortunately, both techniques have disadvantages. When modelling in 2.5D the impact of other profiles is not truly available on your current profile being modelled, and vice versa. The problem is not present in 3D, but 3D polygonal models, while being easy to construct the initial model, are not as easy to make fast changes to. In some cases, the entire model must be recreated from scratch. The ability to easily change a model is the very basis of forward modelling. With this is mind, the objective of the project was to: 1) Develop software which was truly modelling in 3D 2) Create a system which would allow the rapid changing of the 3D model, without the need to recreate the model. The solution was to adopt a voxel based approach, rather than a polygonal approach. The solution for a cube (Blakely 1996) was used to calculate potential field for each voxel. The voxels are then summed over the entire volume. The language used was python, because of its huge capacity for scientific development. It enables full 3D visualisation as well as complex mathematical routines. Some properties worth noting are: 1) Although 200 rows by 200 columns by 200 layers would imply 8 million calculations, in reality, since the calculation for adjacent voxels produces the same result, only 200 calculations are necessary. 2) Changes to susceptibility and density do not affect
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Potential for 3-D hyporheic exchange flow along a succession of pool-riffle sequences
NASA Astrophysics Data System (ADS)
Käser, Daniel; Binley, Andrew; Krause, Stefan; Heathwaite, Louise
2010-05-01
Pool-riffle sequences are key geomorphological features that can influence the ecology of streams by inducing a flow exchange between surface water and groundwater - a process called hyporheic exchange flow (HEF). The objective of this research was to test the suitability of a simple 3-D groundwater model for characterizing HEF induced by pool-riffle sequences that had been the focus of experimental study. Three reaches of 20 m were modelled separately. While the bed topography was surveyed and represented at a high resolution, the permeability distribution referred to a simple conceptual model consisting of two superposed layers. One hypothesis was that, despite its simplicity, the calibrated model would produce an acceptable fit between observed and simulated heads because its permeability structure resembled the natural system. The potential complexity of hyporheic flow patterns is well-known, yet this study highlights the usefulness of a simple conceptual model coupled to mechanistic flow equations for describing HEF in 3-D. The error structure of the calibrated model provides insight into various site-specific features. The root mean square error between computed and observed hydraulic heads (relative to the head drop over the structure) is comparable to other studies with more elaborate permeability structures. After calibration, a sensitivity analysis was conducted in order to determine the influence of permeability contrast between the layers, depth of the permeability interface, and basal flux on three HEF characteristics: residence time, lateral and vertical extent, and total flux. Results indicate that permeability characteristics can affect HEF in different ways. For example, the vertical extent is deepest in homogeneous conditions, whereas the lateral extent is not significantly affected by permeability contrast, or by the depth of the interface between the two layers. Thus bank piezometers may be insufficient to calibrate groundwater models of HEF
A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography
Schuster, T.; Theis, D.; Louis, A. K.
2008-01-01
3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391
An explicit Runge-Kutta method for 3D turbulent incompressible flows
NASA Technical Reports Server (NTRS)
Sung, Chao-Ho; Lin, Cheng-Wen; Hung, C. M.
1988-01-01
A computer code has been developed to solve for the steady-state solution of the 3D incompressible Reynolds-averaged Navier-Stokes equations. The approach is based on the cell-center, central-difference, finite-volume formulation and an explicit one-step, multistage Runge-Kutta time-stepping scheme. The Baldwin-Lomax turbulence model is used. Techniques to accelerate the rate of convergence to a steady-state solution include the preconditioned method, the local time stepping, and the implicit residual smoothing. Improvements in computational efficiency have been demonstrated in several areas. This numerical procedure has been used to simulate the turbulent horseshoe vortex flow around an airfoil/flat-plate juncture.
Electroosmotic flow through a microparallel channel with 3D wall roughness.
Chang, Long; Jian, Yongjun; Buren, Mandula; Sun, Yanjun
2016-02-01
In this paper, a perturbation method is introduced to study the EOF in a microparallel channel with 3D wall roughness. The corrugations of the two walls are periodic sinusoidal waves of small amplitude in two directions either in phase or half-period out of phase. Based on linearized Poisson-Boltzmann equation, Laplace equation, and the Navier-Stokes equations, the perturbation solutions of velocity, electrical potential, and volume flow rate are obtained. By using numerical computation, the influences of the wall corrugations on the mean velocity are analyzed. The variations of electrical potential, velocity profile, mean velocity, and their dependences on the wave number α and β of wall corrugations in two directions, the nondimensional electrokinetic width K, and the zeta potential ratio between the lower wall and the upper wall ς are analyzed graphically. PMID:26333852
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Generation of 3D Spatially Variable Anisotropy for Groundwater Flow Simulations.
Borghi, Andrea; Renard, Philippe; Courrioux, Gabriel
2015-01-01
Sedimentary units generally present anisotropy in their hydraulic properties, with higher hydraulic conductivity along bedding planes, rather than perpendicular to them. This common property leads to a modeling challenge if the sedimentary structure is folded. In this paper, we show that the gradient of the geological potential used by implicit geological modeling techniques can be used to compute full hydraulic conductivity tensors varying in space according to the geological orientation. For that purpose, the gradient of the potential, a vector normal to the bedding, is used to construct a rotation matrix that allows the estimation of the 3D hydraulic conductivity tensor in a single matrix operation. A synthetic 2D cross section example is used to illustrate the method and show that flow simulations performed in such a folded environment are highly influenced by this rotating anisotropy. When using the proposed method, the streamlines follow very closely the folded formation. This is not the case with an isotropic model. PMID:25648610
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
3D structure and conductive thermal field of the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias
2016-04-01
The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Ergodic theory and experimental visualization of chaos in 3D flows
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Mezic, Igor
2000-11-01
In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river. Copyright 2011 by the American Geophysical Union.
Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
2009-01-01
Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.
Global 3-D Hybrid Simulations of Mars and the Effect of Crustal Magnetic Fields
NASA Astrophysics Data System (ADS)
Brecht, S. H.; Ledvina, S. A.; Luhmann, J. G.
2001-12-01
Mars is not protected from the solar wind by a strong intrinsic magnetic field. Further, Mars is a very small planet. These two aspects of Mars mean that the solar wind interaction with the planet is both direct and kinetic in behavior. The large gyroradius of the incoming solar wind and the large gyroradius of the pick up ions make the solar wind interaction with Mars very unique. Over the years the authors using a 3-D kinetic hybrid particle code have studied this planet. Mars Global Surveyor has produced many exciting discoveries. Probably the most significant and unexpected was the presence of the crustal magnetic fields on the surface of the planet. The presence of these strong crustal fields suggests that the solar wind interaction with Mars will be altered. In fact, it suggests that the loss rate of pick up ions and the shape of the Martian magnetosphere will be substantially changed. Results will be presented from our latest 3-D hybrid particle code simulations of Mars where models for the crustal magnetic field have been inserted into the simulations. Particular emphasis will be placed on changes to the magnetic field topology and the change in the rate of pick up ions.
NASA Astrophysics Data System (ADS)
Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.
2002-12-01
The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn
2008-10-01
A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.
The role of plasma response in divertor footprint modification by 3D fields in NSTX
NASA Astrophysics Data System (ADS)
Ahn, Joonwook; Kim, Kimin; Canal, Gustavo; Gan, Kaifu; Gray, Travis; McLean, Adam; Park, Jong-Kyu; Scotti, Filippo
2015-11-01
In NSTX, the divertor footprints of both heat and particle fluxes are found to be significantly modified by externally applied 3D magnetic perturbations. Striations on the divertor surface, indicating separatrix splitting and formation of magnetic lobes, are observed for both n = 1 and n = 3 perturbation fields. These striations can lead to localized heating of the divertor plates and to the re-attachment of detached plasmas, both of which have to be avoided in ITER for successful heat flux management. In this work, the role of plasma response on the formation of separatrix splitting has been investigated in the ideal framework by comparing measured heat and particle flux footprints with field line tracing calculations with and without contributions from the plasma response calculated by the ideal code IPEC. Simulations show that, n = 3 fields are slightly shielded by the plasma, with the measured helical pattern of striations in good agreement with the results from the vacuum approximation. The n = 1 fields are, however, significantly amplified by the plasma response, which provides a better agreement with the measurements. Resistive plasma response calculations by M3D-C1 are also in progress and the results will be compared with those from the ideal code IPEC. This work was supported by DoE Contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466.
The distribution of 3D superconductivity near the second critical field
NASA Astrophysics Data System (ADS)
Kachmar, Ayman; Nasrallah, Marwa
2016-09-01
We study the minimizers of the Ginzburg–Landau energy functional with a uniform magnetic field in a three dimensional bounded domain. The functional depends on two positive parameters, the Ginzburg–Landau parameter and the intensity of the applied magnetic field, and acts on complex-valued functions and vector fields. We establish a formula for the distribution of the L 2-norm of the minimizing complex-valued function (order parameter). The formula is valid in the regime where the Ginzburg–Landau parameter is large and the applied magnetic field is close to and strictly below the second critical field—the threshold value corresponding to the transition from the superconducting to the normal phase in the bulk of the sample. Earlier results are valid in 2D domains and for the L 4-norm in 3D domains.
3-D Monarch reservoir modelling as a development tool: West Salym field, Western Siberia, Russia
Ainsworth, R.B.; Van Kuyk, A.; Van Lieshout, J.
1996-12-31
The Salym fields are located in the central part of the West Siberia basin. The basin developed during the Triassic and contains an almost complete stratigraphic succession from the Jurassic to the Quaternary. The main oil reserves in the Salym fields are located in the Lower Cretaceous proprading deltaic complex. The principal reservoir section in the West Salym field is interpreted as marginal marine. Shoreface, mouthbar, fluvial channel and crevasse-splay subenvironments are recognised. Due to this range of depositional environments and average (exploration) well spacing of 5 km, 3-D modelling of depositional geometries is essential to determine the reservoir architecture and reservoir property trends prior to full-scale field development.
3-D Monarch reservoir modelling as a development tool: West Salym field, Western Siberia, Russia
Ainsworth, R.B.; Van Kuyk, A.; Van Lieshout, J. )
1996-01-01
The Salym fields are located in the central part of the West Siberia basin. The basin developed during the Triassic and contains an almost complete stratigraphic succession from the Jurassic to the Quaternary. The main oil reserves in the Salym fields are located in the Lower Cretaceous proprading deltaic complex. The principal reservoir section in the West Salym field is interpreted as marginal marine. Shoreface, mouthbar, fluvial channel and crevasse-splay subenvironments are recognised. Due to this range of depositional environments and average (exploration) well spacing of 5 km, 3-D modelling of depositional geometries is essential to determine the reservoir architecture and reservoir property trends prior to full-scale field development.
Effects of 3D Toroidally Asymmetric Magnetic Field on Tokamak Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Lao, L. L.
2005-10-01
The effects of 3D error magnetic field on magnetic surfaces are investigated using the DIII-D internal coils (I-Coils). Slowly rotating n=1 traveling waves at 5 Hz and various amplitudes were applied to systematically perturb the edge surfaces by programming the I-Coil currents. The vertical separatrix location difference between EFIT magnetic reconstructions that assumes toroidal symmetry and Thomson scattering Te measurements responds in phase to the applied perturbed field. The oscillation amplitudes increase with the strength of the applied field but are much smaller than those expected from the applied field alone. The results indicate that plasma response is important. Various plasma response models based on results from the MHD codes MARS and GATO are being developed and compared to the experimental observations. To more accurately evaluate the effects of magnetic measurement errors, a new form of the magnetic uncertainty matrix is also being implemented into EFIT. Details will be presented.
Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs
NASA Astrophysics Data System (ADS)
Čuma, Martin; Zhdanov, Michael S.
2014-01-01
We have recently introduced a massively parallel regularized 3D inversion of potential fields data. This program takes as an input gravity or magnetic vector, tensor and Total Magnetic Intensity (TMI) measurements and produces 3D volume of density, susceptibility, or three dimensional magnetization vector, the latest also including magnetic remanence information. The code uses combined MPI and OpenMP approach that maps well onto current multiprocessor multicore clusters and exhibits nearly linear strong and weak parallel scaling. It has been used to invert regional to continental size data sets with up to billion cells of the 3D Earth's volume on large clusters for interpretation of large airborne gravity and magnetics surveys. In this paper we explain the features that made this massive parallelization feasible and extend the code to add GPU support in the form of the OpenACC directives. This implementation resulted in up to a 22x speedup as compared to the scalar multithreaded implementation on a 12 core Intel CPU based computer node. Furthermore, we also introduce a mixed single-double precision approach, which allows us to perform most of the calculation at a single floating point number precision while keeping the result as precise as if the double precision had been used. This approach provides an additional 40% speedup on the GPUs, as compared to the pure double precision implementation. It also has about half of the memory footprint of the fully double precision version.
Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo
2016-07-01
In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016. PMID:26991030
NASA Astrophysics Data System (ADS)
Meheust, Y.; De Dreuzy, J.; Pichot, G.
2011-12-01
Flow channeling and permeability scaling in fractured media have been classically addressed either at the fracture- or at the network- scales. In the latter case they are linked to the topological structure of the network, while at the fracture scale they are controlled by the variability of the local aperture distribution inside individual fractures. In this study we analyze these two combined effects, investigating how flow localization below the scale of individual fractures influences that at the network scale and the resulting medium permeability. This is done by use of a new highly-resolved 3D discrete fracture network model (DFN). The local apertures of individual fractures are distributed according to a truncated Gaussian law, and exhibit self-affine spatial correlations that are bounded by an upper cutoff scale Lc; Lc and the fracture closure, defined as the ratio of the aperture fluctuations at scale Lc to the mean aperture, are considered homogeneous over the DFN. The network topology is controlled by a homogeneous scalar fracture density and a power law fracture length distribution. We have varied these features to investigate a large variety of DFN topologies, from sparse networks with varying degrees of fracture interconnections, flow bottlenecks and dead-ends (Fig. 1a), to dense well-connected networks (Fig. 1b). We have also investigated a large range of fracture closures, performing extensive simulations of about 105 different DFN realizations. At the fracture scale, accounting for local aperture fluctuations leads to a monotical deviation (which can exceed 50%) of the equivalent fracture transmissivity from the parallel plate behavior. At the network scale we observe a complex interaction between flow channeling within fracture planes and flow localization in the network. This interaction is controlled by the location of fracture interactions with respect to that of low local transmissivity zones (particularly the closed zones), in the fracture
3D Markov Process for Traffic Flow Prediction in Real-Time.
Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi
2016-01-01
Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025
3D Markov Process for Traffic Flow Prediction in Real-Time
Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi
2016-01-01
Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025
USM3D Simulations of Saturn V Plume Induced Flow Separation
NASA Technical Reports Server (NTRS)
Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.
2011-01-01
The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
High-Resolution 3D Seismic Imaging of Fluid Flow Anomalies in the Southwest Barents Sea
NASA Astrophysics Data System (ADS)
Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Assad, M.; Stokke, H. H.
2014-12-01
Fluid flow features imaged as gas flares in the water column, pockmarks and mud volcanoes on the seabed, and high-amplitude cross-cutting reflections and bright spots in the sub-surface are abundant in the SW Barents Sea offshore northern Norway. This region is covered by extensive conventional 2D and 3D deep penetration seismic reflection data and multibeam bathymetry. High-resolution 3D P-Cable seismic data have been acquired in the SW Barents Sea over the past few years to image the uppermost ca. 500 m of the sub-surface. The P-Cable system consist of 12 to 16 short streamers (25 m) that are towed on a cross-cable perpendicular to the vessel's steaming direction. This configuration allows for acquisition of seismic data with high trace density, typically with 6 m in-line separation. The vertical resolution is a good as 1-2 m using conventional site survey air gun configurations. The sedimentary succession in the SW Barents Sea consists of upper Paleozoic evaporites overlaid by Mesozoic and Cenozoic clastic sediments. There are several organic-rich intervals in the sequence, including Paleozoic coals and Triassic and Jurassic marine source rocks that are locally in the oil or gas maturation windows. Glacial erosion has locally removed kilometer thick Cenozoic and Mesozoic successions, leaving the Mesozoic and Paleozoic strata in shallow sub-surface. The new high-resolution 3D surveys have targeted shallow fluid anomalies in the subsurface. These are imaged as high-amplitude reflections in fault blocks and structural highs, locally cross-cutting well-defined Mesozoic reflections. Commonly, disturbed reflections are present in overlying sequences, or high-amplitude reflections are imaged in the glacial overburden sediments. Locally, hundreds of pockmarks are imaged by the seafloor reflection. The deep cross-cutting reflections are interpreted as hydrocarbon accumulations that locally migrate towards the surface. The fluids are stored in shallow gas pockets or
Simulation of bacteria transport processes in a river with Flow3D
NASA Astrophysics Data System (ADS)
Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter
2014-05-01
Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.
NASA Astrophysics Data System (ADS)
Gao, Jian; Katz, Joseph
2015-11-01
In studies of turbulent flows over rough walls, considerable efforts have been put on the overall effects of roughness parameters such as roughness height and spatial arrangement on the mean profiles and turbulence statistics. However there is very little experimental data on the generation, evolution, and interaction among roughness-initiated turbulent structures, which are essential for elucidating the near-wall turbulence production. As a first step, we approach this problem experimentally by applying digital holographic microscopy (DHM) to measure the flow and turbulence around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent channel flow (Reτ = 2000 - 5000). The ratio of half-channel height (h) to cube height (a) is 25, and the cubes are aligned in the spanwise direction, and separated by 1.5 a. DHM provides high-resolution three-dimensional (3D) three-component (3C) velocity distributions. The presentation discusses methods to improve the data accuracy, both during the hologram acquisition and particle tracking phases. First, we compare and mutually validate velocity fields obtained from a two-view DHM system. Subsequently, during data processing, the seven criteria used for particle tracking is validated and augmented by planar tracking of particle image projections. Sample results reveal instantaneous 3D velocity fields and vortical structures resolved in fine details of several wall units. Funded by NSF and ONR.
Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's
White, D; Rieben, R; Wallin, B
2006-09-20
We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.
Magnetic field penetration into a 3D ordered Josephson medium and applicability of the bean model
NASA Astrophysics Data System (ADS)
Zelikman, M. A.
2014-11-01
The results of calculation of penetration of an external magnetic field into a 3D ordered Josephson medium, based on analysis of modification of the configuration in the direction of the decrease in its Gibbs potential, are reported. When the external field slightly exceeds the stability threshold, the Meissner configuration is transformed into a periodic sequence of linear vortices, which are parallel to the boundary of the medium and are located at a certain distance from it. There exists a critical value I C separating two possible regimes of penetration of the external magnetic field into the medium. For I > I C, for any value of the external field, a finite-length boundary current configuration appears, which completely compensates the external field in the bulk of the sample. At the sample boundary, the field decreases with increasing depth almost linearly. The values of the slope of the magnetic field dependence are rational fractions, which remain constant in finite intervals of I. When the value of I exceeds the upper boundary of such an interval, the slope increases and assumes the value of another rational fraction. If, however, I < I C, such a situation takes place only up to a certain value of external field H max. For higher values, the field penetrates into the medium to an infinite depth. These results lead to the conclusion that the Bean assumptions are violated and that Bean's model is inapplicable for analyzing the processes considered here.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.
2015-06-01
A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.
The continuous molecular fields approach to building 3D-QSAR models.
Baskin, Igor I; Zhokhova, Nelly I
2013-05-01
The continuous molecular fields (CMF) approach is based on the application of continuous functions for the description of molecular fields instead of finite sets of molecular descriptors (such as interaction energies computed at grid nodes) commonly used for this purpose. These functions can be encapsulated into kernels and combined with kernel-based machine learning algorithms to provide a variety of novel methods for building classification and regression structure-activity models, visualizing chemical datasets and conducting virtual screening. In this article, the CMF approach is applied to building 3D-QSAR models for 8 datasets through the use of five types of molecular fields (the electrostatic, steric, hydrophobic, hydrogen-bond acceptor and donor ones), the linear convolution molecular kernel with the contribution of each atom approximated with a single isotropic Gaussian function, and the kernel ridge regression data analysis technique. It is shown that the CMF approach even in this simplest form provides either comparable or enhanced predictive performance in comparison with state-of-the-art 3D-QSAR methods. PMID:23719959
High-resolution 3D seismic data characterize fluid flow systems in the SW Barents Sea
NASA Astrophysics Data System (ADS)
Bünz, Stefan; Mienert, Jürgen; Rajan, Anupama
2010-05-01
The flow of fluids through marine sediments is one of the most dominant and pervasive processes in continental margins. These processes control the evolution of a sedimentary basin and its seafloor environment, and have implications for hydrocarbon exploration and seabed ecosystems. Many seep sites at the seafloor are associated with large but complex faunal communities that have received significant attention in recent years. However, there is a need for a better understanding of the driving mechanism of fluid flow in various geological settings, the accumulation of fluids in the subsurface and their focused flow through conduits and/or faults to the seabed. The Barents Sea is a large hydrocarbon-prone basin of the Norwegian Arctic region. A significant portion of the hydrocarbons has leaked or migrated into the shallow subsurface and is now trapped in gas-hydrate and shallow-gas reservoirs. Furthermore, there are few places in the Barents Sea, where methane gas is leaking from the seafloor into the oceanosphere. Accumulations of free gas in the shallow subsurface are considered a geohazard. They constitute a risk for safe drilling operations and they may pose a threat to global climate if the seal that is trapping them is breached. P-Cable 3D high-resolution seismic data from the Ringvassøya Fault Complex and the Polheim Sub-Platform provide new and detailed insight into fluid flow controls and accumulation mechanisms. The data shows a wide variety of fluid flow features, mostly in the form of pockmarks, bright spots, wipe-out zones or vertical zones of disturbed reflectivity. Fluids migrate by both diapiric mechanism and channelized along sedimentary layers. Glacigenic sediments generally form a strong boundary for fluid flow in the very shallow section. However, we can recognize pockmarks not only at the seafloor but also at one subsurface layer approximately 50 m below sea floor indicating a former venting period in the SW Barents Sea. At few locations high
Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2015-11-01
In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Tomsik, Thomas M.
1990-01-01
As part of the National Aero-Space Plane (NASP) project, the multi-dimensional effects of gravitational force, initial tank pressure, initial ullage temperature, and heat transfer rate on the 2-D temperature profiles were studied. FLOW-3D, a commercial finite difference fluid flow model, was used for the evaluation. These effects were examined on the basis of previous liquid hydrogen experimental data with gaseous hydrogen pressurant. FLOW-3D results were compared against an existing 1-D model. In addition, the effects of mesh size and convergence criteria on the analytical results were investigated. Suggestions for future modifications and uses of FLOW-3D for modeling of a NASP tank are also presented.
Noise analysis for near field 3-D FM-CW radar imaging systems
Sheen, David M.
2015-06-19
Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.
TE/TM alternating direction scheme for wake field calculation in 3D
NASA Astrophysics Data System (ADS)
Zagorodnov, Igor; Weiland, Thomas
2006-03-01
In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.
Effect of high magnetic field on a quasi-3D silver dendrite growing system
NASA Astrophysics Data System (ADS)
Tang, Fengzhi; Katsuki, Akio; Tanimoto, Yoshifumi
2006-05-01
The Ag+/Cu liquid-solid redox reaction was investigated in a vertical and inhomogeneous high magnetic field (up to 15 T). According to a comparison between the morphologies of quasi-3D silver dendrites generated under different magnetic flux densities, the imposition of a high magnetic field strongly affected the aggregation process of the silver dendrites. The present experiment used four kinds of liquid-solid boundaries, which are affected by the reaction direction and solution condition, as bases for the diffusion limited aggregation (DLA)-like dendritic growth of silver deposition. Results are interpreted in terms of convections of the aqueous solution and a tentative quantitative analysis of forces acting on particles arising from the magnetic field. A new force is predicted theoretically and is discussed in detail.
Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings
NASA Astrophysics Data System (ADS)
Rosen, Aaron M.
Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.
Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Cooper, C. M.; Lenardic, A.
2010-12-01
Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.
Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.
Günther, David; Jacobson, Alec; Reininghaus, Jan; Seidel, Hans-Peter; Sorkine-Hornung, Olga; Weinkauf, Tino
2014-12-01
Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. PMID:26356972
Investigation on 3D t wake flow structures of swimming bionic fish
NASA Astrophysics Data System (ADS)
Shen, G.-X.; Tan, G.-K.; Lai, G.-J.
2012-10-01
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.
NASA Astrophysics Data System (ADS)
Guo, Y.; Ding, M. D.; Wiegelmann, T.; Li, H.
2008-06-01
The photospheric vector magnetic field of the active region NOAA 10930 was obtained with the Solar Optical Telescope (SOT) on board the Hinode satellite with a very high spatial resolution (about 0.3''). Observations of the two-ribbon flare on 2006 December 13 in this active region provide us a good sample to study the magnetic field configuration related to the occurrence of the flare. Using the optimization method for nonlinear force-free field (NLFFF) extrapolation proposed by Wheatland et al. and recently developed by Wiegelmann, we derive the three-dimensional (3D) vector magnetic field configuration associated with this flare. The general topology can be described as a highly sheared core field and a quasi-potential envelope arch field. The core field clearly shows some dips supposed to sustain a filament. Free energy release in the flare, calculated by subtracting the energy contained in the NLFFF and the corresponding potential field, is 2.4 × 1031 ergs, which is ~2% of the preflare potential field energy. We also calculate the shear angles, defined as the angles between the NLFFF and potential field, and find that they become larger at some particular sites in the lower atmosphere, while they become significantly smaller in most places, implying that the whole configuration gets closer to the potential field after the flare. The Ca II H line images obtained with the Broadband Filter Imager (BFI) of the SOT and the 1600 Å images with the Transition Region and Coronal Explorer (TRACE) show that the preflare heating occurs mainly in the core field. These results provide evidence in support of the tether-cutting model of solar flares.
NASA Astrophysics Data System (ADS)
Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.
2014-09-01
Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.
Mechanisms of clay smear formation in 3D - a field study
NASA Astrophysics Data System (ADS)
Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven
2016-04-01
Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears
Effects of flow control over a 3D turret -- Part II
NASA Astrophysics Data System (ADS)
Wallace, Ryan; Andino, Marlyn; Schmit, Ryan; Camphouse, Chris; Myatt, James; Glauser, Mark
2007-11-01
Building upon the 3D turret work done at Syracuse University an extended study was conducted in the Air Force Research Laboratory's Subsonic Aerodynamic Research Laboratory (SARL) wind tunnel at Wright-Patterson Air Force Base. The SARL experiments were performed at higher Reynolds and Mach numbers and therefore present a more complex, more challenging flow. Synthetic jets mounted upstream of the aperture were used to generate multiple actuation cases in order to provide a rich ensemble for plant model development based on the split POD method of Camphouse (2007). PIV velocity data was acquired along with simultaneous surface pressure data at various planes across the turret with and without open-loop control. In addition, a simple proportional closed-loop control was performed using the bandpass filtered first POD mode coefficient of the surface pressure as the feedback signal. The amplitude of the feedback signal was calibrated using the open-loop results which were the most effective in reducing the separation zone of the turret.
A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0
STRICKLAND, JAMES H.; HOMICZ, GREGORY F.; PORTER, VICKI L.; GOSSLER, ALBERT A.
2002-07-01
This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.
Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, A.; Al-mazidi, M.
2015-12-01
The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.
A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath
NASA Astrophysics Data System (ADS)
Matveichev, A.; Jardy, A.; Bellot, J. P.
2016-07-01
In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.
3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming
Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.
1997-01-01
This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.
3D-NTT: a versatile integral field spectro-imager for the NTT
NASA Astrophysics Data System (ADS)
Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.
2008-07-01
The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT
3D stochastic inversion of potential field data using structural geologic constraints
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman; Schetselaar, Ernst; Bellefleur, Gilles; Marcotte, Denis
2014-12-01
We introduce a new method to include structural orientation constraints into potential field inversion using a stochastic framework. The method considers known geological interfaces and planar orientation data such as stratification estimated from seismic surveys or drill hole information. Integrating prior geological information into inversion methods can effectively reduce ambiguity and improve inversion results. The presented approach uses cokriging prediction with derivatives. The method is applied to two synthetic models to demonstrate its suitability for 3D inversion of potential field data. The method is also applied to the inversion of gravity data collected over the Lalor volcanogenic massive sulfide deposit at Snow Lake, Central Manitoba, Canada. The results show that using a structurally-constrained inversion leads to a better-resolved solution.
Parameter modeling for nanopore lonic field effect transistors in 3-D device simulation.
Park, Jun-Mo; Chun, Honggu; Park, Y Eugene; Park, Byung-Gook; Lee, Jong-Ho
2014-11-01
An Ion Field Effect Transistor (IFET) with nanopore structure was modeled in a conventional 3-dimensional (3-D) device simulator to understand current-voltage (I-V) characteristics and underlying physics of the device. Since the nanopore was filled with positive ions (K+) ions due to the negative interface charge on the insulator surface and negative gate bias condition, we could successfully simulate the IFET structure using modified p-type silicon to mimic KCl solution. We used p-type silicon with a doping concentration of 6.022 x 10(16) cm(-3) which has the same concentration of positive carriers (hole) as in 10(-4) M KCl. By controlling gate electric field effect on the mobility, the I-V curves obtained by the parameter modeling matched very well with the measured data. In addition, the decrease of [V(th)] with increasing V(DS) was physically analyzed. PMID:25958494
Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?
Martin, James E.; Solis, Kyle Jameson
2015-08-01
Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.
NASA Astrophysics Data System (ADS)
Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.
2016-01-01
We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.
Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field
NASA Astrophysics Data System (ADS)
Carvalho, Mariana Fernandes de
Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.
Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B
2016-06-27
We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593
NASA Astrophysics Data System (ADS)
Lacis, K.; Muiznieks, A.; Ratnieks, G.
2005-06-01
A system of three-dimensional numerical models is described to analyse the melt hydrodynamics in the floating zone crystal growth by the needle-eye technique under a rotating magnetic field for the production of high quality silicon single crystals of large diameters big( 100dots 200 mm big). Since the pancake inductor has only one turn, the high frequency (HF) electromagnetic (EM) field and the distribution of heat sources and EM forces on the melt free surface have distinct asymmetric features. This asymmetry together with the displacement of the crystal and feed rod axis and crystal rotation manifests itself as three dimensional hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. Additionally, the rotating magnetic field can be used to influence the melt hydrodynamics and to reduce the flow asymmetry. In the present 3D model system, the shape of the molten zone is obtained from symmetric FZ shape calculations. The asymmetric HF EM field is calculated by the 3D boundary element method. The low-frequency rotating magnetic field and a corresponding force density distribution in the melt are calculated by the 3D finite element method. The obtained asymmetric HF field power distribution on the free melt surface, the corresponding HF EM forces and force density of the rotating magnetic field are used for the coupled calculation of 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with a control volume approach. Beside the EM forces, also the buoyancy and Marangoni forces are considered. After HD calculations a corresponding 3D dopant concentration field is calculated and used to derive the variations resistivity in the grown crystal. The capability of the system of models is illustrated by a calculation example of a realistic FZ system
3D Numerical Analysis of Flow Control on Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Sahni, Onkar; Karaismail, Ertan
2011-11-01
Wind turbine blades are exposed to unsteady and spatially-varying loadings in a real field. These loadings result in fluctuating structural forces which in turn lead to failure of blades as well as gearbox. In this study, we perform numerical analysis of flow over a wind turbine blade placed in a wind tunnel; where dynamic motions are imposed to the blade in order to emulate scenarios observed in a real field. Furthermore, we also study the effect of active flow control (via synthetic-jets) on unsteady aerodynamic characteristics of the blade under dynamic motions; the idea is to be able to control aerodynamic loads and mitigate failures. Numerical analysis is based on massively parallel simulations using hybrid turbulence models. Comparisons with experimental data will also be included.
NASA Astrophysics Data System (ADS)
Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail
2011-04-01
Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique
NASA Astrophysics Data System (ADS)
Huang, S.; Guo, J.; Yang, F. X.
2013-12-01
In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.
Analysis of the TREAT loss-of-flow tests L6 and L7 using SAS3D
Morris, E.E.; Simms, R.; Gruber, E.E.
1985-01-01
The TREAT loss-of-flow tests L6 and L7 have been analyzed using the SAS3D accident analysis code. The impetus for the analysis was the need for experimentally supported fuel motion modeling in whole core accident studies performed in support of licensing of the Clinch River Breeder Reactor Project. The input prescription chosen for the SAS3D/SLUMPY fuel motion model gave reasonable agreement with the test results. Tests L6 and L7, each conducted with a cluster of three fuel pins, were planned to simulate key events in the loss-of-flow accident scenario for the Clinch River homogeneous reactor.
Fine resolution 3D temperature fields off Kerguelen from instrumented penguins
NASA Astrophysics Data System (ADS)
Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André
2004-12-01
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen
Torque-consistent 3D force balance and optimization of non-resonant fields in tokamaks
NASA Astrophysics Data System (ADS)
Park, Jong-Kyu
2015-11-01
A non-axisymmetric magnetic perturbation in tokamaks breaks the toroidal symmetry and produces toroidal torque, which is well known as neoclassical toroidal viscosity (NTV) effects. Although NTV torque is second order, it is the first-order change in the pressure anisotropy that drives currents associated with local torques and thereby modifies the field penetration in force balance. The force operator becomes non-Hermitian, but can be directly solved using parallel, toroidal, and radial force balance, leading to a modified Euler-Lagrange equation. The general perturbed equilibrium code (GPEC), which has been successfully developed to solve the modified Euler-Lagrange equation, gives the torque-consistent 3D force balance as well as self-consistent NTV torque. The self-shielding of the torque becomes apparent in the solutions in high β, which was implied in recent MARS-K applications. Furthermore, the full response matrix including the torque in GPEC provides a new and systematic way of optimizing torque and non-resonant fields. Recently the optimization of 3D fields for torque has been actively studied using the stellarator optimizing tools, but the efficiency and accuracy can be greatly improved by directly incorporating the torque response matrix. There are salient features uncovered by response with the torque, as the response can become invisible in amplitudes but only significant in toroidal phase shift. A perturbation in backward helicity is an example, in which NTV can be induced substantially but quietly without measurable response in amplitudes. A number of other GPEC applications will also be discussed, including the multi-mode responses in high- β tokamak plasmas and the new non-axisymmetric control coil (NCC) design in NSTX-U. This work was supported by DOE Contract DE-AC02-09CH11466.
Engineering a 3D microfluidic culture platform for tumor-treating field application
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.
2016-01-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466
Engineering a 3D microfluidic culture platform for tumor-treating field application.
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D
2016-01-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466
Engineering a 3D microfluidic culture platform for tumor-treating field application
NASA Astrophysics Data System (ADS)
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.
2016-05-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng; Hasegawa, Akira; Nakajima, Junichi
2015-09-01
We develop a 3-D thermal model for the Northeast Japan subduction margin, using a realistic slab geometry for the subducting Pacific plate, and investigate the effects of oblique subduction and 3-D slab geometry on the mantle wedge flow pattern and the thermal structure. In the Tohoku region, the mantle wedge flow pattern is nearly two-dimensional resulting in a thermal structure similar to those obtained by a 2-D model, owing to the simple slab geometry and subduction nearly perpendicular to the margin. However, in Hokkaido, oblique subduction leads to 3-D mantle wedge flow with northerly inflow and west-northwestward outflow and also results in lower temperatures in the shallow part of the mantle wedge than in Tohoku due to lower sinking rate of the slab. Between Hokkaido and Tohoku, the slab has a hinge-like shape due to a relatively sharp change in the dip direction. In this hinge zone, northerly mantle inflow from Hokkaido and westerly mantle inflow from Tohoku converge, discouraging inflow from northwest and resulting in a cooler mantle wedge. The model-predicted mantle wedge flow patterns are consistent with observed seismic anisotropy and may explain the orientations of volcanic cross-chains. The predicted 3-D thermal structure correlates well with the along-arc variations in the location of the frontal arc volcanoes and help to provide new insights into the surface heat flow pattern and the down-dip extent of interplate earthquakes.
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
3D stochastic inversion and joint inversion of potential fields for multi scale parameters
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman
In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel
3D Coincidence Imaging Disentangles Intense Field Double Detachment of SF6(–).
Kandhasamy, Durai Murugan; Albeck, Yishai; Jagtap, Krishna; Strasser, Daniel
2015-07-23
The efficient intense field double detachment of molecular anions observed in SF6(–) is studied by 3D coincidence imaging of the dissociation products. The dissociation anisotropy and kinetic energy release distributions are determined for the energetically lowest double detachment channel by virtue of disentangling the SF5(+) + F fragmentation products. The observed nearly isotropic dissociation with respect to the linear laser polarization and surprisingly high kinetic energy release events suggest that the dissociation occurs on a highly excited state. Rydberg (SF6(+))* states composed of a highly repulsive dication core and a Rydberg electron are proposed to explain the observed kinetic energy release, accounting also for the efficient production of all possible cationic fragments at equivalent laser intensities. PMID:26098224
Calibration of Panoramic Cameras with Coded Targets and a 3d Calibration Field
NASA Astrophysics Data System (ADS)
Tommaselli, A. M. G.; Marcato, J., Jr.; Moraes, M. V. A.; Silva, S. L. A.; Artero, A. O.
2014-03-01
The aim of this paper is to present results achieved with a 3D terrestrial calibration field, designed for calibrating digital cameras and omnidirectional sensors. This terrestrial calibration field is composed of 139 ARUCO coded targets. Some experiments were performed using a Nikon D3100 digital camera with 8mm Samyang Bower fisheye lens. The camera was calibrated in this terrestrial test field using a conventional bundle adjustment with the Collinearity and mathematical models specially designed for fisheye lenses. The CMC software (Calibration with Multiple Cameras), developed in-house, was used for the calibration trials. This software was modified to use fisheye models to which the Conrady-Brown distortion equations were added. The target identification and image measurements of its four corners were performed automatically with a public software. Several experiments were performed with 16 images and the results were presented and compared. Besides the calibration of fish-eye cameras, the field was designed for calibration of a catadrioptic system and brief informations on the calibration of this unit will be provided in the paper.
3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Ficenec, Karen
2015-10-01
In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.
Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech
2016-09-01
We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620
A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics
NASA Astrophysics Data System (ADS)
Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.
2015-12-01
A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low
Field calibration of binocular stereo vision based on fast reconstruction of 3D control field
NASA Astrophysics Data System (ADS)
Zhang, Haijun; Liu, Changjie; Fu, Luhua; Guo, Yin
2015-08-01
Construction of high-speed railway in China has entered a period of rapid growth. To accurately and quickly obtain the dynamic envelope curve of high-speed vehicle is an important guarantee for safe driving. The measuring system is based on binocular stereo vision. Considering the difficulties in field calibration such as environmental changes and time limits, carried out a field calibration method based on fast reconstruction of three-dimensional control field. With the rapid assembly of pre-calibrated three-dimensional control field, whose coordinate accuracy is guaranteed by manufacture accuracy and calibrated by V-STARS, two cameras take a quick shot of it at the same time. The field calibration parameters are then solved by the method combining linear solution with nonlinear optimization. Experimental results showed that the measurement accuracy can reach up to +/- 0.5mm, and more importantly, in the premise of guaranteeing accuracy, the speed of the calibration and the portability of the devices have been improved considerably.
NASA Astrophysics Data System (ADS)
Samrock, F.; Kuvshinov, A.; Bakker, J.; Jackson, A.; Fisseha, S.
2015-09-01
The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.
3-D seismic data for field development: Landslide field case study
Raeuchle, S.K.; Carr, T.R.; Tucker, R.D. )
1990-05-01
The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottom hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.
3D Mixing Inside a Neutrally Buoyant Drop Driven by Electrohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Xu, Xiumei; Homsy, G. M.
2007-11-01
For a neutrally buoyant drop subjected to a uniform electric field, the internal flow is the well-known Taylor circulation. In Phys. Fluids 19 013102 (2007), we theoretically studied three dimensional mixing by periodically switching a uniform electric field through an angle α. Periodically switching the field is equivalent to periodically changing the symmetry axis of the Taylor circulation. For α=0.5 π, there is no chaotic mixing because the common heteroclinic trajectories form the separatrix of the flow. For other switching angles, chaotic advection is generated due to perturbations of the heteroclinic trajectory. Experimental investigations of mixing were carried out using a nearly isopycnic silicone oil/castor oil system. For α=0.5 π, our experiments show the existence of symmetry planes. In addition, two blobs of particles are observed to maintain almost invariant shapes for very long time, indicating the absence of chaotic mixing, as predicted by the theory. For other switching angles, experiments show the penetration of symmetry planes by tracer particles. However it is difficult to draw definitive conclusions regarding chaotic mixing because of charge relaxation, long initial transients and drop translation effects.
Analysis of the 3D magnetic field and its errors for undulators with iron poles
Ingold, G.; Bahrdt, J.; Gaupp, A.
1995-12-31
The attainable field strength and field quality, such as the optical phase error, the electron beam displacement within the undulator and higher order multipoles of the magnetic field, are discussed. These issues are critical to the design and construction of short period undulators for use in short wavelength FEL or for operation in third generation light sources. We discuss two approaches: (i) For superferric undulators the construction of a full length device would rely on the optimum sorting of precision machined undulator segments. Magnetic data on segments with 20 periods (period length 8.80mm) will be presented. (ii) For hybrid undulators the sorting has to be done on individual poles and magnets. For this approach typical error sources such as machining tolerances, magnetization errors of the permanent magnet material and assembly errors are modeled in 3D and compared to induced errors on an existing hybrid undulator segment. In case of undulators having a full length of hundred periods at least five times as many individual parts have to be characterized. This should be done automatically where both the mechanical and magnetic data before and after the assembly of the magnetic structure are recorded in one step. A CNC programmable measuring device suitable for this task will shortly be presented.
An analytical algorithm for 3D magnetic field mapping of a watt balance magnet
NASA Astrophysics Data System (ADS)
Fu, Zhuang; Zhang, Zhonghua; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong
2016-04-01
A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e. Li et al (2015 Metrologia 52 445), presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of Li et al (2015 Metrologia 52 445), which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, B r (z). The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.
Programmable real-time applications with the 3D-Flow for input data rate systems of hundreds of MHz
Crosetto, D.
1996-02-01
The applicability of the 3D-Flow system to different experimental setups for real-time applications in the range of hundreds of nanoseconds is described. The results of the simulation of several real-time applications using the 3D-Flow demonstrate the advantages of a simple architecture that carries out operations in a balanced manner using regular connections and exceptionally few replicated components compared to conventional microprocessors. Diverse applications can be found that will benefit from this approach: High Energy Physics (HEP), which typically requires discerning patterns from thousands of accelerator particle collision signals up to 40 Mhz input data rate; Medical Imaging, that requires interactive tools for studying fast occurring biological processes; processing output from high-rate CCD cameras in commercial applications, such as quality control in manufacturing; data compression; speech and character recognition; automatic automobile guidance, and other applications. The 3D-Flow system was conceived for experiments at the Superconducting Super Collider (SSC). It was adopted by the Gamma Electron and Muon (GEM) experiment that was to be used for particle identification. The target of the 3D-Flow system was real-time pattern recognition at 100 million frames/sec.
ERIC Educational Resources Information Center
Caldwell, Karin D.
1988-01-01
Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.
1994-09-01
This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Haas, J. E.; Katsanis, T.
1984-01-01
A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.
Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model
NASA Astrophysics Data System (ADS)
Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin
2016-08-01
This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.
Test-particle Orbit Simulations in Fields from a Realistic 3D MHD Simulation
NASA Astrophysics Data System (ADS)
Decker, R. B.; Opher, M.; Hill, M. E.
2007-05-01
Models designed to explore the global structure of the heliosphere have become increasing sophisticated. Incentives to increase and to further explore the predictive capabilities of such models include the entry of the Voyager spacecraft into the foreshock region of the termination shock (TS), Voyager 1 in mid-2002 and Voyager 2 in late 2004, and the crossing of the TS and passage into the heliosheath (HSH) of Voyager 1 in 2004 day 351. Using the electric and magnetic fields generated by a MHD model of a 3D, asymmetric heliosphere [Opher et al., Ap. J. L., 640, 2006], we have developed full-particle and adiabatic-orbit codes to simulate the motion of test particles in the solar wind, TS, and HSH environments. The full-particle orbits are necessary to investigate energetic ion (e.g., anomalous and galactic cosmic ray) motion at the TS and within the heliospheric current sheet that is included in the MHD model. Adiabatic orbits are used to study particle motion in the much larger volume of the HSH where the non-homogeneous model fields produce complex guiding center motions, including mirroring in local field compressions. We will present results from these orbit computations, which are intended to provide an initial, albeit simplified, look at the propagation of high-energy charged particles, in the scatter-free limit, in the best model of the TS/HSH field configurations currently available. We will also display drift paths of high-energy ions in the HSH fields using the guiding center drift equations that are applicable in the limit of diffusive propagation.
Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept
NASA Astrophysics Data System (ADS)
Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles
2016-09-01
3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.
Quasi 3D modelling of water flow in the sandy soil
NASA Astrophysics Data System (ADS)
Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim
2016-04-01
Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic
The power spectrum of solar convection flows from high-resolution observations and 3D simulations
NASA Astrophysics Data System (ADS)
Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.
2014-03-01
Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used
Transient 3D elastodynamic field in an embedded multilayered anisotropic plate.
Mora, Pierric; Ducasse, Eric; Deschamps, Marc
2016-07-01
The aim of this paper is to study the ultrasonic response to a transient source that radiates ultrasonic waves in a 3D embedded multilayered anisotropic and dissipative plate. The source can be inside the plate or outside, in a fluid loading the plate for example. In the context of Non-Destructive Testing applied to composite materials, our goal is to create a robust algorithm to calculate ultrasonic field, irrespective of the source and receiver positions. The principle of the method described in this paper is well-established. This method is based on time analysis using the Laplace transform. In the present work, it has been customized for computing ultrasonic source interactions with multilayered dissipative anisotropic plates. The fields are transformed in the 2D Fourier wave-vector domain for the space variables related to the plate surface, and they are expressed in the partial-wave basis. Surprisingly, this method has been very little used in the ultrasonic community, while it is a useful tool which complements the much used technique based on generalized Lamb wave decomposition. By avoiding mode analysis - which can be problematic in some cases - exact numerical calculations (i.e., approximations by truncating infinite series that may be poorly convergent are not needed) can be made in a relatively short time for immersed plates and viscoelastic layers. Even for 3D cases, numerical costs are relatively low. Special attention is given to separate up- and down-going waves, which is a simple matter when using the Laplace transform. Numerical results show the effectiveness of this method. Three examples are presented here to investigate the quality of the model and the robustness of the algorithm: first, a comparison of experiment and simulation for a monolayer carbon-epoxy plate, where the diffracted field is due to a source located on the first free surface of the sample, for both dissipative and non-dissipative cases; second, the basic configuration of an
NASA Astrophysics Data System (ADS)
Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.
2015-12-01
The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.
Full-field drift Hamiltonian particle orbits in 3D geometry
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu
2011-02-01
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.
2016-03-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.
2015-11-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
3D Loops Evolutions (Twists And Expansions) And Magnetic Fields Interactions Studied With SOHO/EIT
NASA Astrophysics Data System (ADS)
Portier-Fozzani, Fabrice
1999-10-01
I will present some results from my PHD/Thesis. With SOHO/EIT, 3D Technics such as stereovision and "vision by shape" were developped to study coronal structures evolution. To discribe loops morphology, we adapted with M. Aschwanden a torus fit which include twist evolution. On a quick magnetic flux emergence (August 5th 1997), the twist were decreasing while the loop expand. During a long time evolution (July - August 1996), flaring activities were well correlated with sudden decrease in the twist. These 2 results correspond to the evolution expected with the Parker's formula (1977). Magnetic field lines interactions were also analyzed. From multi-wavelengths observations, we had studied some morphological and topological changes which can be interpreted as interactions between open and closed field lines (ie between Coronal Holes and Active Region Loops). Then, relationship between CME/Flares formation and our different instabilities studied were analyzed in the aim to find, in the futur, good criteria concerning space weather.
Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier
2016-01-01
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was
NASA Astrophysics Data System (ADS)
Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier
2016-01-01
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1989-01-01
A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.
A geometric pore-scale model for predicting the permeability of 3D flow through fibrous porous media
NASA Astrophysics Data System (ADS)
Woudberg, Sonia
2012-05-01
A geometric pore-scale model, based on rectangular geometry, is used to quantify the fluid-solid interaction in fibrous porous media in order to predict the permeability. The analytical modeling procedure is based on sound physical principles. Permeability predictions are presented for flow parallel and perpendicular to the axes of unidirectional fibres. In the latter case maximum possible staggering is introduced. A weighted average is performed to obtain the permeability prediction for 3D flow through fibrous porous media. Effects such as pore blockage at very low porosities and developing flow are incorporated into the predictive equations for the permeability to provide a model that is applicable over the entire porosity range. The resulting 3D model leads to satisfactory agreement with other three-dimensional models and data from the literature.
NASA Astrophysics Data System (ADS)
Kim, Jong Young; Park, Jung Kyu; Hahn, Sei Kwang; Kwon, Tai Hun; Cho, Dong-Woo
2009-10-01
The flow behavior model for 3D scaffold fabrication in the polymer deposition process by the heating method was developed for enhanced efficiency of the deposition process. The analysis of the polymer flow property is very important in the fabrication process of precise micro-structures such as scaffolds. In this study, a deposition model considering fluid mechanics and heat transfer phenomena was built up and introduced for the estimation of the fluid behavior of molten polymer. The effectiveness of the simulation model was verified through comparison with the experimental result in the case of PCL biomaterial. In addition, the effects of various parameters, such as pressure, temperature and nozzle size, were predicted through simulation before experimental approaches. Through the fabrication of 3D scaffold, it is concluded that this model is useful in predicting the flow behavior characteristics in the micro-structure fabrication process, which is based on the heating method.
NASA Astrophysics Data System (ADS)
Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker
2016-04-01
High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer
3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle
NASA Astrophysics Data System (ADS)
Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao
Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Borazjani, Iman; Colby, Jonathan A.; Sotiropoulos, Fotis
2012-04-01
We simulate three-dimensional, turbulent flow past an axial-flow marine hydrokinetic (MHK) turbine mounted on the bed of a rectangular open channel by adapting a computational framework developed for carrying out high-resolution large-eddy simulation (LES) in arbitrarily complex domains involving moving or stationary boundaries. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1,2]. Velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. To demonstrate the capabilities of the model we apply it to simulate the flow past a Gen4 axial flow MHK turbine developed by Verdant Power for the Roosevelt Island Tidal Energy (RITE) project in the East River in New York City, USA. We carry out systematic grid refinement studies, using grids with up to 185 million nodes, for only the turbine rotor placed in an infinite free stream to show that the computed torque converges to a grid insensitive value, which is in good agreement with field measurements. We also carry out LES for the complete turbine configuration, including the pylon, nacelle and rotor, mounted on the bed of a straight rectangular open channel. The computed results illustrate the complexity of the flow and show that the power output of the complete turbine is primarily dependent on the rotor geometry and tip speed ratio, and is not affected by the stationary components of the turbine and the presence of the channel bed. The complete turbine simulation also reveals that the downstream wake of the turbine consists of three main regions: (1) the outer layer with the spiral blade tip vortices rotating in the same direction as the blades; (2) the counter-rotating inner layer surrounded by the spiral tip vortices; and (3) the core layer co-rotating with respect to the tip vortices. This study is the first to report the
McConnell, Amber C.; Fishman, Randy Scott; Miller, Joel S.
2012-01-01
Mean field expressions based on the simple Heisenberg model were derived to correlate the inter- and intralayer exchange coupling to the critical temperatures, Tc, for several TCNE (tetracyanoethylene) based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [MII(TCNE)(NCMe)2]+ (M = Mn, Fe), 3-D antiferromagnetic MnII(TCNE)[C4(CN)8]1/2, and 3-D ferrimagnetic MnII(TCNE)3/2(I3)1/2. The sign and magnitude of the exchange coupling are in accord with previously reported magnetic data.
NASA Astrophysics Data System (ADS)
Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.
2014-10-01
A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.
Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.
1981-06-30
The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.
Ahn, Joon-Wook; Canik, John; Soukhanovskii, V. A.; Maingi, Rajesh; Battaglia, D. J.
2010-04-01
Externally imposed non-axisymmetric magnetic perurbations are observed to alter divertor heat and particle flux profiles in the National Spherical Torus Experiment (NSTX). The divertor profiles are foud to have a modust level of multiple local peaks, characteristic of strike poimt splitting or the "magnetis lob" structure, even before the application of the 3D fields in some (but not all) NSTX discharges. This is thought to be due to the intrinsic error fields. The applied 3D fields augmented the intrinsic strike point splitting, making the ampliture of local peaks, and valleys larger in the divertor profile and striations at the divertor surface brighter. The measured heat flux profile shows that the radial location and spacing of the strations are qualitativel consistent witth a vacuum field tracing calcultion. 3D field application did not change the peak divertor heat and particle fluxes at the toroidal location of measurement. Spatial characteristics of the observed patterns are also reported in the paper.
Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.
2009-11-01
Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.
Full 3D morphology of diatoms flowing in a microfluidic channel by digital holographic microscopy
NASA Astrophysics Data System (ADS)
Savoia, Roberto; Memmolo, Pasquale; Merola, Francesco; Miccio, Lisa; D'Ippolito, Giuliana; Fontana, Angelo; Ferraro, Pietro
2015-07-01
In this paper, we present a new approach for three-dimensional reconstruction and biovolume estimation of some species of diatoms. An optofluidic platform, composed by an optical tweezer and holographic modulus, is employed to retrieve several holograms at different angular positions, which are processed by the shape from silhouette algorithm to estimate the 3D shape of the cells.
Noise analysis for near-field 3D FM-CW radar imaging systems
NASA Astrophysics Data System (ADS)
Sheen, David M.
2015-05-01
Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs
NASA Astrophysics Data System (ADS)
Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.
2007-11-01
Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.
Broadband Near-Field Ground Motion Simulations in 3D Scattering Media
NASA Astrophysics Data System (ADS)
Imperatori, Walter; Mai, Martin
2013-04-01
The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broadband ground-motion calculations, either considering scattering as a semi-stochastic or pure stochastic process. In this study, we simulate broadband (0-10 Hz) ground motions using a 3D finite-difference wave propagation solver using several 3D media characterized by Von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wave-field at short and intermediate distances from the source in terms of ground motion parameters. We also examine other relevant scattering-related phenomena, such as the loss of radiation pattern and the directivity breakdown. We first simulate broadband ground motions for a point-source characterized by a classic omega-squared spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both sub-shear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for PGV calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggest that Von Karman correlation functions with correlation length between several hundred meters and few kilometers, Hurst exponent around 0.3 and standard deviation in the 5-10% range
NASA Astrophysics Data System (ADS)
Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.
2014-12-01
Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014
3-D viscous flow CFD analysis of the propeller effect on an advanced ducted propeller subsonic inlet
NASA Technical Reports Server (NTRS)
Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir
1993-01-01
The time-marching Navier-Stokes code PARC3D was used to study the 3D viscous flow associated with an advanced ducted propeller subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 deg became unstable at 29 deg, and separated at 30 deg. An experimental study with a similar inlet and without propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller, indicating the propeller's favorable effect on inlet performance. In the present numerical study, flow blockage analogous to the propeller was modeled via a PARC3D computational boundary condition (BC), the 'screen BC', based on 1-1/2 dimension actuator disk theory. The application of the screen BC in this numerical study provided results similar to those of past experimental efforts in which either the blockage device or the propeller was used.
NASA Astrophysics Data System (ADS)
Gnesin, V. I.; Kolodyazhnaya, L. V.; Rzadkowski, R.
2005-09-01
In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
A 3D photographic capsule endoscope system with full field of view
NASA Astrophysics Data System (ADS)
Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng
2013-09-01
Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.
SHANK DESIGNS AND SOIL SURFACE TREATMENTS ON 1,3-D EMISSIONS IN A NURSERY FIELD TRIAL
Technology Transfer Automated Retrieval System (TEKTRAN)
In California, tree and grapevine field nurseries must meet the CDFA requirements for nematode-free planting stock. Telone II (1,3-D) is the only methyl bromide alternative accepted by CDFA’s Nursery Stock Nematode Certification program, but its use is subject to environmental regulations. A field t...
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber
NASA Astrophysics Data System (ADS)
Yuen, A.; Bombardelli, F. A.
2014-12-01
Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on
NASA Astrophysics Data System (ADS)
Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.
2015-02-01
We present the application of interactive 3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and forecast wind field resolution. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (three to seven days before take-off).
LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.
2013-12-01
Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system
Crosetto, Dario B.
1998-10-30
The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelf FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.
3D Modelling of Magnetized Star-planet Interactions: Cometary-type Tails and In-spiraling Flows
NASA Astrophysics Data System (ADS)
Matsakos, T.; Uribe, A.; Konigl, A.
2015-01-01
Close-in exoplanets interact with their host stars not only gravitationally but also through magnetized plasma outflows. Here, we identify the different types of such interactions based on the physical parameters that characterize the system. We perform 3D magneto-hydrodynamic (MHD ) numerical simulations to model the evolution of a variety of possible star-planet configurations, incorporating realistic stellar and planetary outflows. We explore a wide range of parameters and analyze the flow structures and magnetic topologies that develop.
Vescovi, D.; Berzi, D.; Richard, P.
2014-05-15
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
NASA Astrophysics Data System (ADS)
Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos
2012-08-01
Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous expe