Science.gov

Sample records for 3d geologic map

  1. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  2. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  3. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the

  4. Exploration criteria for mineral target mapping based on 3D geological modeling in the Taebaek mineralized belt in Korea

    NASA Astrophysics Data System (ADS)

    Oh, H. J.; Kihm, Y. H.; Cho, S. J.

    2015-12-01

    We constructed a three-dimensional (3D) geological model based on a 1:50,000-scaled geologic map and determined the exploration criteria for skarn deposit target mapping in the Taebaek mineralized belt. All available geological and geophysical data were compiled in a 3D computing environment using GOCAD software. Twenty-four stratigraphic horizons and more than 100 fault surfaces are defined in the 3D geological model. The primary geological criteria for skarn mineralization in the Taebaek mineralized belt included the presence of an NE-oriented strike-slip fault, key stratigraphic horizons, and a high magnetic susceptibility anomaly based on 3D inversion of magnetic data. The 3D geological criteria were extracted from the 3D geological model for skarn deposit target mapping in the belt. The distance values of the three criteria (NE strike-slip fault, limestone horizon, and area of high magnetic susceptibility) were divided into four classes based on cutoff values determined by experts. The weight values for all of the geological criteria and the score value for each class of the distance criteria were also estimated based on expert knowledge. The weights and scores of geological criteria derived from expert knowledge serve as useful guides for target mapping in the Taebaek mineralized belt.

  5. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    NASA Astrophysics Data System (ADS)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  6. 3D geological modelling and geothermal mapping - the first results of the transboundary Polish - Saxon project "TransGeoTherm"

    NASA Astrophysics Data System (ADS)

    Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario

    2014-05-01

    TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series

  7. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  8. Sustainable growth in America's heartland; 3-D geologic maps as the foundation

    USGS Publications Warehouse

    ,; ,; ,; ,; ,; ,

    1999-01-01

    The central Great Lakes states of Illinois, Indiana, Michigan, and Ohio constitute one of the most productive and economically important regions in the country--America's heartland. The agriculture, industry, business, recreation, and ecology of these states are based on a common geologic heritage. During the last 1.8 million years, glaciers repeatedly advanced and retreated across the region, leaving behind a thick, complex blanket of intermixed layers of mud, clay, silt, sand, and gravel. Decisionmakers need knowledge of the glacial deposits--their characteristics, three-dimensional distribution, and thickness. To provide this knowledge, a coalition of state and federal geological surveys has formed to conduct the necessary studies in these four states to depict the three-dimensional nature of these glacial deposits and to interpret these data in cooperation with the user community for specific societal needs.

  9. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  10. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  11. Managing Geological Profiles in Databases for 3D Visualisation

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.

    2016-10-01

    Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.

  12. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  13. Pushing the Limits of Geological Mapping Outside the Earth: 3D Modeling of Strike-Slip and Extensional Fault Systems in Meridiani Planum Region, Mars.

    NASA Astrophysics Data System (ADS)

    Vidal Royo, O.

    2014-12-01

    GIS and geological modeling software have radically changed the means by which geological mapping is produced, published and visualized. This type of software environment normally requires a spatially aware reference system to position data and interpretation, often referred as georeferenced data (i.e. geographic data referenced on the Earth). However, for this study we coin the term areoreferenced data (i.e. Mars-referenced "geographic" data). Thanks to the wealth of areoreferenced data made available by the NASA and the HiRise at University of Arizona it is now possible to carry out 3D areographic and areologic (i.e. related to the topography and geology of Mars, respectively) reconstructions in great detail. The present work benefits from the availability of software and areographic data, and presents the results of an areologic map and 3D model of the fault systems in the Meridiani Planum of Mars. The work has been carried out in Move™ (developed by Midland Valley Exploration), a geological modeling toolkit that allows for easy data loading in a wide range of formats as well as straightforward 2D/3D model building tools of geological bodies. Initial data consisted of Digital Terrain Model and orthoimages (NASA/JPL/University of Arizona/USGS). From these we have interpreted several structural domains: right-lateral strike-slip systems with associated releasing bends, which gave room to an extensional event causing a horizontal-axis rotation of the bedding. Bedding ranges from subhorizontal in the southern domain where strike-slip prevails to nearly 40º in the central and northern domains, where a more complex interaction between strike-slip and extensional faults is described. The stratigraphic sequence is mainly composed by moderately rounded well laminated basaltic sandstones (Squyres et al., 2004) in which a high component of sulfurs (e.g. sulfate anhydrate, hexahydrite, epsomite, gypsum) and salts (e.g. halite) has been described (Squyres et al., 2004

  14. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  15. 3D Geologic Model of the San Diego Area

    NASA Astrophysics Data System (ADS)

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  16. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  17. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  18. Mapping the 3D Geometry of the San Leandro Block of the Hayward Fault Zone Using Geologic, Geophysical and Remote Sensing Data, California State University, East Bay Campus

    NASA Astrophysics Data System (ADS)

    McEvilly, A.; Abimbola, A.; Chan, J. H.; Strayer, L. M.

    2015-12-01

    California State University, East Bay (CSUEB), located in Hayward, California, lies atop the San Leandro block (SLB) in the Hayward fault zone. The SLB is a J-K aged lithotectonic assemblage dominated by gabbro and intercalated with minor volcanics and sediments. It is bound by the subparallel northwest-trending western Hayward and eastern Chabot (CF) faults and pervasively cut by anastomosing secondary faults. The block itself is ~30 km along strike and 2-3 km wide. Previous studies suggest the block dips steeply to the northeast and extends to a depth of at least 7 km. In May of 2015, as part of an ongoing collaborative effort led by the USGS to create a 3D velocity model of the San Francisco Bay Area, researchers from CSUEB and the USGS conducted a seismic survey on the CSUEB campus. The primary goal of this pilot study was to locate the trace of the CF on the CSUEB campus and to determine bedrock depth. We deployed a 60-channel, 300m profile using 4.5Hz sensors spaced at 5m intervals. Active seismic sources were used at each geophone location. A 226kg accelerated weight-drop was used to generate P and Rayleigh waves for P-wave tomography and multichannel analysis of surface waves (MASW), and a 3.5kg sledgehammer and block were used to generate S and Love waves for S-wave tomography and multichannel analysis of Love waves (MALW). Preliminary P-wave tomography, MASW, and MALW results from this pilot study suggest the location of an eastward-dipping CF as well as the presence of a high-velocity unit at about 20m depth, presumably an unmapped sliver of bedrock from the San Leandro block. Further studies planned for the fall of 2015 include additional seismic lines and surface mapping along the Chabot fault on and near the CSUEB campus. These new geophysical, GPS, and field geological data will be integrated with LiDAR imagery and existing geological, gravity and magnetic maps to create a 3-dimensional model of the portion of the SLB that contains the CSUEB campus.

  19. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  20. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  1. 3D Geologic Model of the Southern Great Basin

    NASA Astrophysics Data System (ADS)

    Wagoner, J. L.; Myers, S. C.

    2006-12-01

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous

  2. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  3. 3-D seismic imaging of complex geologies

    NASA Astrophysics Data System (ADS)

    Womble, David E.; Dosanjh, Sudip S.; Vandyke, John P.; Oldfield, Ron A.; Greenberg, David S.

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  4. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  5. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  6. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    NASA Astrophysics Data System (ADS)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  7. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  8. Geodiversity: Exploration of 3D geological model space

    NASA Astrophysics Data System (ADS)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  9. West Flank Coso, CA FORGE 3D geologic model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  10. State-Of of 3d National Mapping in 2016

    NASA Astrophysics Data System (ADS)

    Stoter, Jantien; Vallet, Bruno; Lithen, Thomas; Pla, Maria; Wozniak, Piotr; Kellenberger, Tobias; Streilein, Andre; Ilves, Risto; Ledoux, Hugo

    2016-06-01

    Techniques for 3D mapping are maturing. At the same time the need for 3D data is increasing. This has pushed national (and regional) mapping agencies (NMAs) to consider extending their traditional task of providing topographic data into the third dimension. To show how research results in 3D mapping obtained over the past twenty years have been adopted by practice, this paper presents the ongoing work on 3D mapping within seven NMAs, all member of the 3D Special Interest Group of European Spatial Data Research (EuroSDR). The paper shows that some NMAs are still in the initial (experimental) phase of 3D mapping, while others have already built solid databases to maintain 2.5D and 3D topographic data covering their whole country.

  11. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology

    NASA Astrophysics Data System (ADS)

    Kessler, Holger; Mathers, Steve; Sobisch, Hans-Georg

    2009-06-01

    The Geological Surveying and Investigation in 3 Dimensions (GSI3D) software tool and methodology has been developed over the last 15 years. Since 2001 this has been in cooperation with the British Geological Survey (BGS). To-date over a hundred BGS geologists have learned to use the software that is now routinely deployed in building systematic and commercial 3D geological models. The success of the GSI3D methodology and software is based on its intuitive design and the fact that it utilises exactly the same data and methods, albeit in digital forms, that geologists have been using for two centuries in order to make geological maps and cross-sections. The geologist constructs models based on a career of observation of geological phenomena, thereby incorporating tacit knowledge into the model. This knowledge capture is a key element to the GSI3D approach. In BGS GSI3D is part of a much wider set of systems and work processes that together make up the cyberinfrastructure of a modern geological survey. The GSI3D software is not yet designed to cope with bedrock structures in which individual stratigraphic surfaces are repeated or inverted, but the software is currently being extended by BGS to encompass these more complex geological scenarios. A further challenge for BGS is to enable its 3D geological models to become part of the semantic Web using GML application schema like GeoSciML. The biggest benefits of widely available systematic geological models will be an enhanced public understanding of the sub-surface in 3D, and the teaching of geoscience students.

  12. Modelling of 3D fractured geological systems - technique and application

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  13. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  14. Coherence cube technology adds geologic insight to 3-D data

    SciTech Connect

    Morris, D.

    1997-05-01

    Three-dimensional (3-D) seismic technology is now widely applied to assess the risk associated with hydrocarbon trap definition, including faulting, stratigraphic features, and reservoir description. Critical new technologies to exploit the wealth of information contained within 3-D seismic have recently begun to emerge; most notably, coherence cube technology, developed by Amoco Production Research and licensed to Coherence Technology Co. (CTC). Coherence cube processing produces interpretable images of faults and subtle stratigraphic features, such as buried deltas, river channels, and beaches, by quantifying seismic coherence attributes. The technique has important implications for geophysical, geological, and reservoir engineering applications. The paper discusses how coherency works, applications, and an example in delineating southern North Sea faulting.

  15. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  16. 3D reconstruction of complex geological bodies: Examples from the Alps

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  17. Real-time depth map manipulation for 3D visualization

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid

    2009-02-01

    One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).

  18. 3-D Maps and Compasses in the Brain.

    PubMed

    Finkelstein, Arseny; Las, Liora; Ulanovsky, Nachum

    2016-07-01

    The world has a complex, three-dimensional (3-D) spatial structure, but until recently the neural representation of space was studied primarily in planar horizontal environments. Here we review the emerging literature on allocentric spatial representations in 3-D and discuss the relations between 3-D spatial perception and the underlying neural codes. We suggest that the statistics of movements through space determine the topology and the dimensionality of the neural representation, across species and different behavioral modes. We argue that hippocampal place-cell maps are metric in all three dimensions, and might be composed of 2-D and 3-D fragments that are stitched together into a global 3-D metric representation via the 3-D head-direction cells. Finally, we propose that the hippocampal formation might implement a neural analogue of a Kalman filter, a standard engineering algorithm used for 3-D navigation. PMID:27442069

  19. GVIZ BETA VERSION. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W.W.; Stevenson, C.; Patel, K.; Wang, J.

    1997-03-25

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  20. Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet

    2013-04-01

    The past decade has seen the British Geological Survey (BGS) construct over one hundred 3D geological models using software such as GOCAD®, GSI3D, EarthVision and Petrel across the United Kingdom and overseas. These models have been produced for different purposes and at different scales and resolutions in the shallow and deep subsurface. Alongside the construction of these models, the BGS and its collaborators have developed several options for disseminating these 3D geological models to external partners and the public. Initially, the standard formats for disseminating these 3D geological models by the BGS comprised of 2D images of cross-sections, GIS raster data and specialised visualisation software such as the LithoFrame Viewer. The LithoFrame Viewer is a thick-client software that allows the user to explore the 3D geometries of the geological units using a 3D interface, and generate synthetic cross-sections and boreholes on the fly. Despite the increased functionality of the LithoFrame Viewer over the other formats, the most popular data formats distributed remained 2D images of cross-sections, CAD based formats (e.g. DWG and DXF) and GIS raster data of surfaces and thicknesses, as these were the types of data that the external partners were most used too. Since 2009 software for delivering 3D geological models has advanced and types of data available have increased. Feature Manipulation Engine (FME) has been used to increase the number of outputs from 3D geological models. These include: • 3D PDFs (Adobe Acrobat) • KMZ/KML (GoogleEarth) • 3D shapefiles (ESRI) Alongside these later outputs, the BGS has developed other software such as GroundhogTM and Geovisionary (in collaboration with Virtalis). Groundhog is fully a web based application that allows the user to generate synthetic cross-sections, boreholes and horizontal slices from 3D geological models on the fly. Geovisionary provides some of the most advanced visualisation of 3D geological models in

  1. The 3D geological model of the Eastern Romania tectonics and structure

    NASA Astrophysics Data System (ADS)

    Necula, Nicusor; Sorin Baciu, Dorin; Niculita, Mihai; Dumitriu, Tony-Cristian

    2016-04-01

    3D geologic modelling is a modern tool which allow the conceptualization of geologic relations in an interactive environment, strengthening the ability to understand and present tectonic and structural geologic models. We integrated the data available in the literature (wells, maps, cross-sections) for the geological structure of the Eastern Romania, comprising the Eastern Carpathians Orogen and its foreland. The subducting East European plate generated the Eastern Carphatians thrusts. Under the Eastern Carpathians, beside East European plate, the Tornquist-Teysseire zone is caught. East European Craton (Proterozoic), Scythian Platform (Paleozoic), North Dobrogean Orogen (Paleozoic) and Moesian Platform (Paleozoic), all neighbor Tornquist-Teysseire zone (Paleozoic), playing the role of foreland for the Eastern Carpathian Orogen. The Eastern Carphatians Orogen has two flysch belts, the Inner Carpathian called Dacides formed in Cretacic deformations and the Outer Carpathian called Moldavides and formed in Late Badenian to Sarmatian deformations. The modelling was performed in Midland Valley's Move software. The boundaries of all the structural units presented above were modelled, together with the faults which are represented on the various osurces used. The created 3D geological model is seen as a tool to better understand and represent the tectonic and structural model of the Eastern ROmania and will also allow a better quantification of the relations between geology and landforms in Eastern Romania.

  2. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  3. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  4. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. PMID:25261742

  5. Lithologic identification & mapping test based on 3D inversion of magnetic and gravity

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Lv, Qingtian; Qi, Guang; Zhao, Jinhua; Zhang, Yongqian

    2016-04-01

    Though lithologic identification & mapping to achieve ore concentration district transparent within 5km depth is the main way to realize deep fine structures study, to explore deep mineral resources and to reveal metallogenic regularity of large-scale ore district . Owing to the wide covered area, high sampling density and mature three-dimensional inversion algorithm of gravity and magnetic data, so gravity and magnetic inversion become the most likely way to achieve three-dimensional lithologic mapping at the present stage. In this paper, we take Lu-zong(Lujiang county to Zongyang county in Anhui province ,east China) ore district as a case, we proposed lithologic mapping flow based 3D inversion of gravity magnetic and then carry out the lithologic mapping test. Lithologic identification & mapping flow is as follows: 1. Analysis relations between lithology and density and magnetic susceptibility by cross plot. 2.Extracting appropriate residual anomalies from high-precision Bourger gravity and aeromagnetic. 3.Use same mesh, do 3D magnetic and gravity inversion respectively under prior information constrained, and then invert susceptibility and density 3D model. 4. According setp1, construct logical topology operations between density 3D model and susceptibility. 5.Use the logical operations, identify lithogies cell by cell in 3D mesh, and then get 3D lithological model. According this flow, we obtained three-dimensional distribution of five main type lithologies in the Lu-Zong ore district within 5km depth. The result of lithologic mapping not only showed that the shallow characteristics and surface geological mapping are basically Coincide,more importantly ,it reveals the deeper lithologic changes.The lithlogical model make up the insufficient of surface geological mapping. The lithologic mapping test results in Lu-Zong ore concentration district showed that lithological mapping using 3D inversion of gravity and magnetic is a effective method to reveal the

  6. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer

  7. 3D Viewer Platform of Cloud Clustering Management System: Google Map 3D

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Ja; Lee, Gang-Soo

    The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].

  8. Geological characterisation of complex reservoirs using 3D seismic: Case studies

    NASA Astrophysics Data System (ADS)

    Benaissa, Zahia; Benaïssa, Abdelkader; Seghir Baghaoui, Mohamed; Bendali, Mohamed; Chami, Adel; Khelifi Touhami, Médina; Ouadfeul, Sid Ali; Boudella, Amar

    2014-05-01

    3D seismic allows getting a set of numerous closely-spaced seismic lines that provide a high spatially sampled measure of subsurface reflectivity. It leads to an accurate interpretation of seismic reflection data, which is one of the most important stages of a successful hydrocarbons exploration, especially in the reservoirs characterised by complex geological setting. We present here two case studies pertaining to two Algerian hydrocarbon fields. Considering the positive results obtained from 2D seismic interpretation, several wells were drilled. Some of them have proved dry, due certainly to inaccurate seismic interpretation because of non standard geological context. For the first case, the high quality of the 3D seismic data allowed to reveal, on all the inlines and crosslines, the existence of paleovalleys under the top of the Ordovician (unit IV) reservoir. The mapping of these paleovalleys clearly showed that the dry well, contrary to the other wells, was implanted outside paleovalleys. This fact was confirmed by the analysis of well data. The second case study concerns the problem of andesitic eruptive deposits on the top of the Ordovician reservoir, which condition the geometry and continuity of this reservoir and cause uncertainties in the mapping of the Hercynian unconformity. Well data associated with 3D seismic response shows that eruptive deposits generate high impedance anomaly because of the high density and velocity of andesites. We used this information to interpret these eruptive rocks as being responsible of high impedance anomalies, inside the Ordovician reservoir, on the impedance volume generated from the 3D seismic data. A 3D extraction of the anomalies allowed an accurate localisation of the andesites. So, it appears, according to these two case studies, that for an efficient recovery of hydrocarbons, we have to rely, first of all, on an accurate seismic interpretation before we use microscopic measurements. 3D seismic, once again, remains

  9. 3D geological model developed to analyse the aquifer - sewer network interaction in Bucharest city

    NASA Astrophysics Data System (ADS)

    Serpescu, I.; Radu, E.; Gogu, R. G.; Priceputu, A.; Boukhemacha, M. A.; Bica, I.; Gaitanaru, D.

    2012-04-01

    their thickness. Further structural maps have been generated to outline the spatial development of the existing aquifers. By connecting the 3D sewer network to the geology, a qualitative description of the interaction between the aquifer media and the sewer system is obtained as a 3D geometrical model.

  10. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  11. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  12. MSV3d: database of human MisSense Variants mapped to 3D protein structure.

    PubMed

    Luu, Tien-Dao; Rusu, Alin-Mihai; Walter, Vincent; Ripp, Raymond; Moulinier, Luc; Muller, Jean; Toursel, Thierry; Thompson, Julie D; Poch, Olivier; Nguyen, Hoan

    2012-01-01

    The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d.

  13. Geologic Mapping of Mars

    NASA Astrophysics Data System (ADS)

    Price, Katherine H.

    1998-05-01

    Planetary geologic mapping involves integrating a terrestrial-based understanding of surface and subsurface processes and mapping principles to investigate scientific questions. Mars mappers must keep in mind that physical processes, such as wind and flowing water on Mars, are or were different from terrestrial processes because the planetary atmospheres have changed differently over time. Geologic mapping of Mars has traditionally been done by hand using overlays on photomosaics of Viking Orbiter and Mariner images. Photoclinometry and shadow measurements have been used to determine elevations, and the distribution and size of craters have been used to determine the relative ages of surfaces- more densely cratered surfaces are older. Some mappers are now using computer software (ranging from Photoshop to ArcInfo) to facilitate mapping, though their applications must be carefully executed so that registration of the images remains true. Images and some mapping results are now available on the internet, and new data from recent missions to Mars (Pathfinder and Surveyor) will offer clarifying information to mapping efforts. This paper consists chiefly of pictures and diagrams.

  14. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  15. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  16. Self-Discovery of Structural Geology Concepts using Interactive 3D Visualization

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Saunders, J.

    2010-12-01

    Mastering structural geology concepts that depend on understanding three-dimensional (3D) geometries and imagining relationships among unseen subsurface structures are fundamental skills for geologists. Traditionally these skills are developed first, through use of 2D drawings of 3D structures that can be difficult to decipher or 3D physical block models that show only a limited set of relationships on the surfaces of the blocks, followed by application and testing of concepts in field settings. We hypothesize that this learning process can be improved by providing repeated opportunities to evaluate and explore synthetic 3D structures using interactive 3D visualization software. We present laboratory modules designed for undergraduate structural geology curriculum using a self-discovery approach to teach concepts such as: the Rule of V’s, structure separation versus fault slip, and the more general dependence of structural exposure on surface topography. The laboratory modules are structured to allow students to discover and articulate each concept from observations of synthetic data both on traditional maps and using the volume visualization software 3DVisualizer. Modules lead students through exploration of data (e.g., a dipping layered structure exposed in ridge-valley topography or obliquely offset across a fault) by allowing them to interactively view (rotate, pan, zoom) the exposure of structures on topographic surfaces and to toggle on/off the full 3D structure as a transparent colored volume. This tool allows student to easily visually understand the relationships between, for example a dipping structure and its exposure on valley walls, as well as how the structure extends beneath the surface. Using this method gives students more opportunities to build a mental library of previously-seen relationships from which to draw-on when applying concepts in the field setting. These laboratory modules, the data and software are freely available from KeckCAVES.

  17. Will true 3d display devices aid geologic interpretation. [Mirage

    SciTech Connect

    Nelson, H.R. Jr.

    1982-04-01

    A description is given of true 3D display devices and techniques that are being evaluated in various research laboratories around the world. These advances are closely tied to the expected application of 3D display devices as interpretational tools for explorationists. 34 refs.

  18. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  19. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series

  20. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  1. Constructing 3D interaction maps from 1D epigenomes.

    PubMed

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter-promoter, promoter-enhancer and enhancer-enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  2. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  3. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  4. Use Models like Maps in a 3D SDI

    NASA Astrophysics Data System (ADS)

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  5. Geologic map of Io

    USGS Publications Warehouse

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis

  6. Geologic mapping of Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Gorsline, Donn S.; Parker, Timothy J.

    1995-01-01

    This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

  7. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  8. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  9. Using 3D Geologic Models to Synthesize Large and Disparate Datasets for Site Characterization and Verification Purposes

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Rautman, C. A.; Johnson, P. B.; Powers, D. W.

    2008-12-01

    As we are all aware, increases in computing power and efficiency have allowed for the development of many modeling codes capable of processing large and sometimes disparate datasets (e.g., geological, hydrological, geochemical, etc). Because people sometimes have difficulty visualizing in three dimensions (3D) or understanding how multiple figures of various geologic features relate as a whole, 3D geologic models can be excellent tools to illustrate key concepts and findings, especially to lay persons, such as stakeholders, customers, and other concerned parties. In this presentation, we will show examples of 3D geologic modeling efforts using data collected during site characterization and verification work at the Waste Isolation Pilot Plant (WIPP). The WIPP is a U.S. Department of Energy (DOE) facility located in southeastern New Mexico, designed for the safe disposal of transuranic wastes resulting from U.S. defense programs. The 3D geologic modeling efforts focused on refining our understanding of the WIPP site by integrating a variety of geologic data. Examples include: overlaying isopach surfaces of unit thickness and overburden thickness, a map of geologic facies changes, and a transmissivity field onto a 3D structural map of a geologic unit of interest. In addition, we also present a 4D hydrogeologic model of the effects of a large-scale pumping test on water levels. All these efforts have provided additional insights into the controls on transmissivity and flow in the WIPP vicinity. Ultimately, by combining these various types of data we have increased our understanding of the WIPP site's hydrogeologic system, which is a key aspect of continued certification. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental

  10. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  11. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  12. 3D Strucutural Geological Model of the Alpi Mt. Area (Southern Italy)

    NASA Astrophysics Data System (ADS)

    La Bruna, Vincenzo; Lamarche, Juliette; Viseur, Sophie; Agosta, Fabrizio; Prosser, Giacomo

    2016-04-01

    The study area is located in the inner portion of the southern Apennines fold-and-thrust belt. The Alpi Mt. is the only portion of the Apulian domain cropping in this sector. In fact, it is considered as a structural analogue of the Val d'Agri and Tempa Rossa reservoirs (Basilicata). The Alpi Mt. tectonic unit is composed of two main cronostratigraphic intervals, represented by a 2000m-thick Mesozoic carbonate succession and a Messinian mixed carbonate-terrigenous succession. The Messinian interval is made up of a Lower Messinian sedimentary cycle, wich form a paraconformity with the underlying Mesozoic carbonates, and an Upper Messinian cycle characterized by a marked unconformity at the bottom. This study aims to better understand the role exerted by the precontractional tectonic structures during the Messinian interval, wich are responsible for the development of the sedimentary angular unconformity. To reach this goal, a 3D structural geological model was build up by using the Gocad(R) software. The construction of the 3D model was gained through the integration of several results related to geological field mapping, well log analysis and seismic reflection data. Focusing on the Upper Messinian sedimentary horizon, in order to achieve the true geometry and kinematics of the high-angle extensional faults that bound the sedimentary depocenters, the model was restored through vertical line methodology. This process allows to obtain more information about location, geometry, and sedimentary depocenter orientations. Furthermore, the 3D structural model brings some important results from the 3D fault analysis that are represented by attitude, geometry and dimensional parameters of the fault network that affect the study area.

  13. Lidar on small UAV for 3D mapping

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. Michael; Larsson, Hâkan

    2014-10-01

    Small UAV:s (Unmanned Aerial Vehicles) are currently in an explosive technical development phase. The performance of UAV-system components such as inertial navigation sensors, propulsion, control processors and algorithms are gradually improving. Simultaneously, lidar technologies are continuously developing in terms of reliability, accuracy, as well as speed of data collection, storage and processing. The lidar development towards miniature systems with high data rates has, together with recent UAV development, a great potential for new three dimensional (3D) mapping capabilities. Compared to lidar mapping from manned full-size aircraft a small unmanned aircraft can be cost efficient over small areas and more flexible for deployment. An advantage with high resolution lidar compared to 3D mapping from passive (multi angle) photogrammetry is the ability to penetrate through vegetation and detect partially obscured targets. Another advantage is the ability to obtain 3D data over the whole survey area, without the limited performance of passive photogrammetry in low contrast areas. The purpose of our work is to demonstrate 3D lidar mapping capability from a small multirotor UAV. We present the first experimental results and the mechanical and electrical integration of the Velodyne HDL-32E lidar on a six-rotor aircraft with a total weight of 7 kg. The rotating lidar is mounted at an angle of 20 degrees from the horizontal plane giving a vertical field-of-view of 10-50 degrees below the horizon in the aircraft forward directions. For absolute positioning of the 3D data, accurate positioning and orientation of the lidar sensor is of high importance. We evaluate the lidar data position accuracy both based on inertial navigation system (INS) data, and on INS data combined with lidar data. The INS sensors consist of accelerometers, gyroscopes, GPS, magnetometers, and a pressure sensor for altimetry. The lidar range resolution and accuracy is documented as well as the

  14. Bedrock geologic map of Vermont

    USGS Publications Warehouse

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  15. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-02-23

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  16. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-04-24

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  17. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  18. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  19. Sensing and 3D Mapping of Soil Compaction

    PubMed Central

    Tekin, Yücel; Kul, Basri; Okursoy, Rasim

    2008-01-01

    Soil compaction is an important physical limiting factor for the root growth and plant emergence and is one of the major causes for reduced crop yield worldwide. The objective of this study was to generate 2D/3D soil compaction maps for different depth layers of the soil. To do so, a soil penetrometer was designed, which was mounted on the three-point hitch of an agricultural tractor, consisting of a mechanical system, data acquisition system (DAS), and 2D/3D imaging and analysis software. The system was successfully tested in field conditions, measuring soil penetration resistances as a function of depth from 0 to 40 cm at 1 cm intervals. The software allows user to either tabulate the measured quantities or generate maps as soon as data collection has been terminated. The system may also incorporate GPS data to create geo-referenced soil maps. The software enables the user to graph penetration resistances at a specified coordinate. Alternately, soil compaction maps could be generated using data collected from multiple coordinates. The data could be automatically stratified to determine soil compaction distribution at different layers of 5, 10,.…, 40 cm depths. It was concluded that the system tested in this study could be used to assess the soil compaction at topsoil and the randomly distributed hardpan formations just below the common tillage depths, enabling visualization of spatial variability through the imaging software.

  20. 3D Gel Map of Arabidopsis Complex I

    PubMed Central

    Peters, Katrin; Belt, Katharina; Braun, Hans-Peter

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana. PMID:23761796

  1. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  2. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  3. Evolution of 3-D geologic framework modeling and its application to groundwater flow studies

    USGS Publications Warehouse

    Blome, Charles D.; Smith, David V.

    2012-01-01

    In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.

  4. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  5. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  6. Global Geologic Map of Europa

    NASA Technical Reports Server (NTRS)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  7. Estimation of uncertainties in geological 3D raster layer models as integral part of modelling procedures

    NASA Astrophysics Data System (ADS)

    Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge

    2016-04-01

    The Geological Survey of the Netherlands (GSN) develops and maintains subsurface models with regional to national coverage. These models are paramount for petroleum exploration in conventional reservoirs, for understanding the distribution of unconventional reservoirs, for mapping geothermal aquifers, for the potential to store carbon, or for groundwater- or aggregate resources. Depending on the application domain these models differ in depth range, scale, data used, modelling software and modelling technique. Depth uncertainty information is available for the Geological Survey's 3D raster layer models DGM Deep and DGM Shallow. These models cover different depth intervals and are constructed using different data types and different modelling software. Quantifying the uncertainty of geological models that are constructed using multiple data types as well as geological expert-knowledge is not straightforward. Examples of geological expert-knowledge are trend surfaces displaying the regional thickness trends of basin fills or steering points that are used to guide the pinching out of geological formations or the modelling of the complex stratal geometries associated with saltdomes and saltridges. This added a-priori knowledge, combined with the assumptions underlying kriging (normality and second-order stationarity), makes the kriging standard error an incorrect measure of uncertainty for our geological models. Therefore the methods described below were developed. For the DGM Deep model a workflow has been developed to assess uncertainty by combining precision (giving information on the reproducibility of the model results) and accuracy (reflecting the proximity of estimates to the true value). This was achieved by centering the resulting standard deviations around well-tied depths surfaces. The standard deviations are subsequently modified by three other possible error sources: data error, structural complexity and velocity model error. The uncertainty workflow

  8. 3-DIMENSIONAL Geological Mapping and Modeling Activities at the Geological Survey of Norway

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Bang-Kittilsen, A.; Haase, C.; Henderson, I. H. C.; Høgaas, F.; Iversen, S.; Seither, A.

    2015-10-01

    Geology and all geological structures are three-dimensional in space. Geology can be easily shown as four-dimensional when time is considered. Therefore GIS, databases, and 3D visualization software are common tools used by geoscientists to view, analyse, create models, interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. The interest in 3D mapping and modelling has been reflected by the increase of number of groups and researches dealing with 3D in geology within NGU. This paper highlights 3D geological modelling techniques and the usage of these tools in bedrock, geophysics, urban and groundwater studies at NGU, same as visualisation of 3D online. The examples show use of a wide range of data, methods, software and an increased focus on interpretation and communication of geology in 3D. The goal is to gradually expand the geospatial data infrastructure to include 3D data at the same level as 2D.

  9. New software for visualizing 3D geological data in coal mines

    NASA Astrophysics Data System (ADS)

    Lee, Sungjae; Choi, Yosoon

    2015-04-01

    This study developed new software to visualize 3D geological data in coal mines. The Visualization Tool Kit (VTK) library and Visual Basic.NET 2010 were used to implement the software. The software consists of several modules providing functionalities: (1) importing and editing borehole data; (2) modelling of coal seams in 3D; (3) modelling of coal properties using 3D ordinary Kriging method; (4) calculating economical values of 3D blocks; (5) pit boundary optimization for identifying economical coal reserves based on the Lerchs-Grosmann algorithm; and (6) visualizing 3D geological, geometrical and economical data. The software has been applied to a small-scale open-pit coal mine in Indonesia revealed that it can provide useful information supporting the planning and design of open-pit coal mines.

  10. Methods of constructing a 3D geological model from scatter data

    SciTech Connect

    Horsman, J.; Bethel, W.

    1995-04-01

    Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.

  11. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  12. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  13. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    NASA Astrophysics Data System (ADS)

    House, P. K.

    2008-12-01

    extremely useful accompaniment to compilation of field mapping efforts. It can also complement published geologic maps by vastly improving their comprehensibility when field photos, and specific notes can be viewed interactively with them. Other useful applications include GPS tracking/documentation of field traverses; invoking multiple geologic layers; 3-D visualizations of terrain and structure; and online collaboration with colleagues via blogs or wikis. Additional steps towards collaborative geologic mapping on the web may also enhance efficient and open sharing of data and ideas. Geologists are well aware that paper geologic maps can convey tremendous amounts of information. Digital geologic maps linked via a virtual globe with field data, diverse imagery, historical photographs, explanatory diagrams, and 3-D models convey a much greater amount of information and can provide a much richer context for comprehension and interpretation. They can also serve as an efficient, entertaining, and potentially compelling mechanism for fostering inspiration in the minds of budding (and aging) geologists.

  14. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  15. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  16. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  17. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  18. Disaster Prevention Coastal Map Production by MMS & C3D

    NASA Astrophysics Data System (ADS)

    Hatake, Shuhei; Kohori, Yuki; Watanabe, Yasushi

    2016-06-01

    In March 2011, Eastern Japan suffered serious damage of Tsunami caused by a massive earthquake. In 2012, Ministry of Land, Infrastructure and Transport published "Guideline of setting assumed areas of inundation by Tsunami" to establish the conditions of topography data used for simulation of Tsunami. In this guideline, the elevation data prepared by Geographical Survey Institute of Japan and 2m/5m/10m mesh data of NSDI are adopted for land area, while 500m mesh data of Hydrographic and Oceanographic Department of Japan Coast Guard and sea charts are adopted for water area. These data, however, do not have continuity between land area and water area. Therefore, in order to study the possibility of providing information for coastal disaster prevention, we have developed an efficient method to acquire continuous topography over land and water including tidal zone. Land area data are collected by Mobile Mapping System (MMS) and water area depth data are collected by interferometry echo sounder (C3D), and both data are simultaneously acquired on a same boat. Elaborate point cloud data of 1m or smaller are expected to be used for realistic simulation of Tsunami waves going upstream around shoreline. Tests were made in Tokyo Bay (in 2014) and Osaka Bay (in 2015). The purpose the test in Osaka Bay is to make coastal map for disaster prevention as a countermeasure for predicted Nankai massive earthquake. In addition to Tsunami simulation, the continuous data covering land and marine areas are expected to be used effectively for maintenance and repair of aged port and river facilities, maintenance and investigation of dykes, and ecosystem preservation.

  19. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. 3D strength map of the Asia region

    NASA Astrophysics Data System (ADS)

    Rebetskiy, Y. L.; Baranov, A. A.

    2009-04-01

    The Southern and Central Asia is a tectonically complex region which characterized by the great collision between the Asian and Indian plates. Its tectonic evolution is strongly related to the active subduction process along the Pacific border. Stress investigation in the continental crust is a very important problem not only for science but also for the practical purposes. There are four main factors which produce tectonic stresses: gravity anomalies of the crust, density inhomogeneities, deformation from area with intraplate collision, residual elastic deformations and underthrust stresses conditions from convective mantle. We present the stress model of the crust and lithosphere for the Central and Southern Asia on the basis of the finite element modeling. For the crust we take the elasto-plastic rheology with Drucker-Prager criterion. In the lithosphere the elasto-plastic model with von Mises criterion is assumed. We investigated stresses which are produced by the crustal density inhomogeneities and surface relief. The calculations are done using the U-WAY finite element code developed at the Institute of Applied Mechanics Russian Academy of Sciences. (similar to the Nastran program) Density inhomogeneities are based on the AsCRUST-08 crustal model (Baranov, 2008), which has resolution of 1 x 1 degree. AsCRUST-08 was built using the data of deep seismic reflection, refraction and receiver functions studies from published papers. The complex 3D crustal model consists of three layers: upper, middle, and lower crust. Besides depth of the boundaries, we provided average P-wave velocities in the upper, middle and lower parts of the crystalline crust and sediments. The seismic P-velocity data was also recalculated to the densities and the elastic moduli of the crustal layers using the rheological properties and geological constraints. Strength parameters of rocks strongly depend on temperature, tectonic and fluid pressure. Fluid pressure can reduce resistance forces

  1. Dynamic 3D-visualization of merged geophysical and geological data sets from the Arctic

    NASA Astrophysics Data System (ADS)

    Jakobsson, M. E.

    2002-12-01

    Bringing together geophysical and geological data sets in a dynamic 3D-environment can greatly enhance our ability to comprehend earth processes. The relationship between, for example, seafloor topography and measured gravity anomalies can easily be visualized as well as the distribution of magnetic anomalies in oceanic crust and their varying offset due to seafloor spreading. In this presentation the gravity derived from ERS-1 satellite altimetry by Laxon and McAdoo (1994) and the magnetic compilation by Verhoef et al. (1996) of the Arctic Ocean is co-registered with the International Bathymetric Chart of the Arctic Ocean (IBCAO) bathymetry and brought into a dynamic 3D-environment for visualization and analysis. This exercise provides information of great value when we address the geologic origin of the Arctic Ocean physiographic provinces. Furthermore, since the ERS-1 gravity and IBCAO bathymetry are two entirely unrelated datasets the gravity may also be used for validating seafloor features seen in the IBCAO compilation that are based on sparse data. For instance, at the eastern most end of the Gakkel Ridge Axial Valley the IBCAO bathymetry is based on digitized contour information from a Russian bathymetric map published in 1999 by the Russian Federation's Head Department of Navigation and Oceanography (HDNO) with no available trackline sources. In the bathymetry, the Axial Valley is clearly seen to continue towards the continental slope of the Laptev Sea and this continuation is supported by the ERS-1 gravity. Another example of bringing together geological and geophysical data sets is from northern Russia, where huge ice lakes were dammed by the Early Weichselian ice sheet at about 90 000 years ago (Mangerud et al., 2001). The damming resulted from blocking the Russian north flowing rivers, supplying most of the fresh water to the Arctic Ocean, by the Ice Sheet margin. These proglacial lakes are reconstructed in our dynamic 3D-environment based on field

  2. Surface amplitude data: 3D-seismic for interpretation of sea floor geology (Louisiana Slope)

    SciTech Connect

    Roberts, H.H.

    1996-09-01

    Proliferation of 3D-seismic in support of hydrocarbon exploration/production has created new data for improved interpretation of sea floor and shallow subsurface geology. Processing of digital seismic data to enhance amplitude anomalies produces information for improved assessment of geohazards and identification of sensitive benthic communities protected by environmental regulations. Coupled with high resolution acoustic data and direct observation/sampling using a manned research submersible, surface amplitude maps add critical interpretive information for identification of sea floor features. Non-reflective zones (acoustic wipeouts) are associated with many slope features. Mud diapirs, mud mounds, mud volcanoes, gas-changed sediments, gas hydrates, slump deposits, carbonate hardgrounds, and various types of carbonate mounds are all features that exhibit this common response on high resolution seismic profiles. Amplitude data help make specific identifications. Since 1988, submersible data from mid-to-upper slope features (Garden Banks, Green Canyon, and Mississippi Canyon lease block areas) have been analyzed with conventional high resolution acoustic data and 313-amplitude extraction maps. Areas of rapid venting of sediment and hydrocarbon-charged formation fluids are clearly distinguishable from mud diapirs and areas of carbonate mounds (slow seepage). Gas hydrates occur as mounds and mounded zones along faults; products of moderate flux rates below (approx.) 500 in water depths. Gas hydrates function as stored trophic resources that support sensitive chemosynthetic communities. Amplitude extraction maps clearly identify these features by a strong low impedance amplitude anomaly. Refinement and {open_quotes}field calibration{close_quotes} of the surface amplitude extraction method may eventually lead to a new standard for evaluating geohazards and sensitive benthic communities.

  3. Developing a geological 3D model for the Tanour and Rasoun spring catchment area using ArcGIS and GOCAD

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Benhsinat, Mohamed; Wagner, Bianca; Sauter, Martin

    2016-04-01

    Key words: Karst, 3D model, GOCAD, ArcGIS, Jordan. Tanour and Rasoun karst springs (around 75 km northwest of the capital city of Amman in Jordan) are used as main local water supply for the surrounding villages. Carbonate rocks are the predominant rock type in the study area (Upper Cretaceous age). The karstification degree is moderate to high, with the availability of different karst features like dolines, caves, dry valleys, and highly fractured rocks. During the last years, the water supply from these springs had to be disconnected for several times due to microbial contamination and waste water pollution from local olive oil mills. For better understanding of the geological and the hydrogeological setting of the study area, in addition to the delineation of the groundwater catchment area for Tanour and Rasoun springs, a geological 3D model of the main geological formations within the study area was established using ArcGIS and GOCAD. The model is based on geological maps and well data; it was established for seven geological layers that act as prominent aquifers and aquicludes. ArcGIS software was used for data preparation, processing and interpolation of varying thickness, while GOCAD used for geometrical modeling steps. After the completion of the first modeling steps, major faults are included. Then the subsurface catchments will be delineated and compared with the superficial watersheds. The model still under development and open for further development.

  4. 3D subsurface geological modeling using GIS, remote sensing, and boreholes data

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos

    2016-08-01

    The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.

  5. Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France)

    NASA Astrophysics Data System (ADS)

    Martelet, G.; Calcagno, P.; Gumiaux, C.; Truffert, C.; Bitri, A.; Gapais, D.; Brun, J. P.

    2004-04-01

    This paper combines geological knowledge and geophysical imagery at the crustal scale to model the 3D geometry of a segment of the Hercynian suture zone of western Europe in the Champtoceaux area (Brittany, France). The Champtoceaux complex consists of a stack of metamorphic nappes of gneisses and micaschists, with eclogite-bearing units. The exhumation of the complex, during early Carboniferous times, was accompanied by deformation during regional dextral strike-slip associated with a major Hercynian shear zone (the South Armorican Shear Zone, SASZ). Dextral shearing produced a km-scale antiformal structure with a steeply dipping axial plane and a steeply eastward plunging axis. Armor 2 deep seismic profile shows that the regional structure was cut by a set of faults with northward thrusting components. Based on the seismic constraint, direct 2D crustal-scale modelling was performed throughout the Champtoceaux fold on seven radial gravity profiles, also using geological data, and density measurements from field and drill-hole samples. The 3D integration of the cross-sections, the digitised geological map, and the structural information (foliation dips) insure the geometrical and topological consistency of all sources of data. The 2D information is interpolated to the whole 3D space using a geostatistical analysis. Finally, the 3D gravity contribution of the resulting model is computed taking into account densities for each modelled geological body and compared to the Bouguer anomaly. The final 3D model is thus compatible with the seismic and gravity data, as well as with geological data. Main geological results derived from the modelling are (i) the overall 3D geometry of the south dipping thrust system interpreted on the seismic profile emphasises northward thrusting and folding of the Champtoceaux complex which was coeval with strike-slip along the South Armorican Shear Zone; (ii) the gravity modelling suggests the presence of a relatively dense body below the

  6. 3D geological modeling of the transboundary basin Berzdof-Radomierzyce in Upper Lusatia (Germany/Poland)

    NASA Astrophysics Data System (ADS)

    Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus

    2015-04-01

    Keywords: Numerical modeling, Paradigm GOCAD, Berzdorf basin (Germany), Radomierzyce basin (Poland), Upper Lusatia. The accuracy of three-dimensional (3D) models depends on their data density and quality. Regions with a complex geology can be a challenge to model, especially if detailed models are required to support a further economic exploitation of a region. In this research, a 3D model was created based on the region's complicated geological condition. The focus area, the Berzdorf - Radomierzyce basin, located in Upper Lusatia on the Polish - German border to the south of the city of Görlitz - Zgorzelec, is such a region. The basin is divided by the volcanic threshold into the western part (Berzdorf basin) and its eastern extension (Radomierzyce basin). The connection between both parts is the so called "lignite bridge". The deposit in the Berzdorf has been exploited from 1830 until 1997. In contrast, the Radomierzyce deposit has never been exploited and is still considered as a prospective deposit for the operating Turów coal mine, which is located only around 15 km from the deposit. To represent the geology of the area a 3D modeling of the transboundary deposit was carried out. Moreover, some strategies to overcome numerical interpolation instability of the geological model with many faults were developed. Due to the large amount of data and its compatibility with other software the 3D geomodeling software Paradigm GOCAD was used. A total number of 10,102 boreholes, 60 cross sections and geological maps converted into digital format - were implemented into the model. The data density of the German part of the area of interest was much higher than the data density of the Polish part. The results demonstrate a good fit between the modeled surfaces and the real geological conditions. This is particularly evident by matching the modeled surfaces to borehole data and geological cross sections. Furthermore, simplification of the model does not decrease the

  7. Global geologic map of Ganymede

    USGS Publications Warehouse

    Collins, Geoffrey C.; Patterson, G. Wesley; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Johnathan P.

    2014-01-01

    Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic, and possibly cryovolcanic processes. The history of Ganymede can be divided into three distinct phases: an early phase dominated by impact cratering and mixing of non-ice materials in the icy crust, a phase in the middle of its history marked by great tectonic upheaval, and a late quiescent phase characterized by a gradual drop in heat flow and further impact cratering. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo Mission in orbit around Jupiter (1995–2003). This map represents a synthesis of our understanding of Ganymede geology after the conclusion of the Galileo Mission. We summarize the properties of the imaging dataset used to construct the map, previously published maps of Ganymede, our own mapping rationale, and the geologic history of Ganymede. Additional details on these topics, along with detailed descriptions of the type localities for the material units, may be found in the companion paper to this map (Patterson and others, 2010).

  8. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  9. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  10. GAM & RF for 3D mapping of multinomial peat properties.

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; Aalders, Inge; Morrice, Jane; Hough, Rupert

    2013-04-01

    Different statistical methods have been proposed for fitting the empirical quantitative function linking the soil information to the scorpan factors, while taking into account the spatial structure of the data . Regression kriging extends the methods of kriging and co-kriging and it has been further extended by the use of GAMs (Generalized Additive Models) with the estimation of uncertainty. When multinomial data are modelled, advanced non-parametric methods, such as CART (Classification and Regression Tree), can be used. CARTs have been used widely to estimate soil properties. Bagging trees and Random Forest (RF) approaches have among the best performances among CART methods. CARTs have been used in DSM applications, While RF have often been used in ecological modelling, fewer examples exist in DSM, such as soil erosion occurrence, soil types prediction and soil organic carbon content. In this paper we propose a methodology to map multinomial peat properties in 3D space with a combination of GAMs and RF. The methodology was applied to the humification (according to the VonPost classification) classes in a bog (18 km2) in the north-east of Scotland. A large survey campaign was carried out in 1955 and humification information were collected at 125 points. In order to integrate the information from the GAM in the RT, a series of binary GAMs were fitted using DEM-derived information as covariates. The binary GAMs were fitted assigning 1 if the class considered was present at the location, 0 if the class considered was absent. The probability predictions resulting from the binary GAMs, were included in the pool of covariates used for the RT together with other ancillary covariates. The model diagnostics had a fair to good agreement between measured and modelled values (K statistics). The probability predictions resulting from the binary GAMs proved to be important variables, increasing the agreement of the model. The obtained spatial distribution of values on the

  11. Cognitive 3D geological voxel modelling based on AEM and seismic data - a case from the southern part of Denmark

    NASA Astrophysics Data System (ADS)

    Jørgensen, Flemming; Møller, Rasmus R.; Sandersen, Peter B. E.; Høyer, Anne-Sophie

    2013-04-01

    The highly complex composition of the Quaternary and Tertiary near-surface deposits in Denmark is a challenging environment for 3D modelling. Geological elements like cross-cutting buried valleys, faults, glaciotectonic thrusts and folds, delta units and erosional unconformities are vital to identify and include in 3D geological models, but at the same time they all add to the complexity of the geological picture. Borehole data are rarely sufficient for the modelling; instead much more laterally dense data are needed. Airborne electromagnetic techniques therefore serve as perfect tools for providing an overview and spatial distribution of the geological elements and their composition. Such airborne surveys are perfectly supplemented by seismic data in order to map the stratigraphic framework within a model area. Translating airborne electromagnetic data to geology is a complicated task that requires a significant amount of geophysical and geological insight. It is necessary to implement thorough geological background knowledge in the interpretations while at the same time identify and acknowledge the inherent limitations of the method. In an area covering 730 km2 across the border between Germany and Denmark a combination of an airborne transient electromagnetic survey (3200 line km performed with the SkyTEM system) and a 38 km high-resolution 2D seismic survey has proven very successful for mapping geological elements like the above-mentioned. Although the south-westernmost part of the study area is saturated with saltwater and the TEM data therefore are influenced by increased electrical conductivity, the geology is still revealed here. Geological interpretations are supported by a high number of pre-existing seismic sections originating from hydrocarbon exploration and borehole data, though most of the borehole data and several of the seismic sections have very poor quality. A couple of new 300-m deep exploration boreholes have been drilled in order to obtain

  12. 3-D modeling useful tool for planning. [mapping groundwater and soil pollution and subsurface features

    SciTech Connect

    Calmbacher, C.W. )

    1992-12-01

    Visualizing and delineating subsurface geological features, groundwater contaminant plumes, soil contamination, geological faults, shears and other features can prove invaluable to environmental consultants, engineers, geologists and hydrogeologists. Three-dimensional modeling is useful for a variety of applications from planning remediation to site planning design. The problem often is figuring out how to convert drilling logs, map lists or contaminant levels from soil and groundwater into a 3-D model. Three-dimensional subsurface modeling is not a new requirement, but a flexible, easily applied method of developing such models has not always been readily available. LYNX Geosystems Inc. has developed the Geoscience Modeling System (GMS) in answer to the needs of those regularly having to do three-dimensional geostatistical modeling. The GMS program has been designed to allow analysis, interpretation and visualization of complex geological features and soil and groundwater contamination. This is a powerful program driven by a 30 volume modeling technology engine. Data can be entered, stored, manipulated and analyzed in ways that will present very few limitations to the user. The program has selections for Geoscience Data Management, Geoscience Data Analysis, Geological Modeling (interpretation and analysis), Geostatistical Modeling and an optional engineering component.

  13. Shallow subsurface control on earthquake damage patterns: first results from a 3D geological voxel model study (Tokyo Lowland, Japan)

    NASA Astrophysics Data System (ADS)

    Stafleu, Jan; Busschers, Freek; Tanabe, Susumu

    2016-04-01

    The Tokyo Lowland is situated in a Neogene sedimentary basin near the triple junction of the North American, Pacific, and Philippine tectonic plates. The basin is filled with Neogene and Quaternary sediments up to a thickness of 3 km. In the upper 70 m of the basin, thick sequences of soft Holocene sediments occur which are assumed to have played a key role in the spatial variation of damage intensity during the 1923 Kanto earthquake (Magnitude 7.9 to 8.3). Historical records show this earthquake destroyed large parts of the Tokyo urban area which in that time was largely made up by wooden houses. Although the epicentre was 70 km to the southwest of Tokyo, severe damage occurred north of the city centre, presumably due to ground motion amplification in the soft Holocene sediments in the shallow subsurface. In order to assess the presumed relation between the damage pattern of the 1923 earthquake and the occurrence of soft Holocene sediments in the shallow subsurface, we constructed a 3D geological voxel model of the central part of the Tokyo Lowland. The model was constructed using a methodology originally developed for the lowlands of the Netherlands. The modelling workflow basically consists of three steps. First, some 10,000 borehole descriptions (gathered for geomechanical purposes), were subdivided into geological units that have uniform sediment characteristics, using both lithological and geomechanical (N-value) criteria. Second, 2D bounding surfaces were constructed, representing tops and bases of the geological units. These surfaces were used to place each voxel (100 by 100 by 1 m) within the correct geological unit. The N-values and lithological units in the borehole descriptions were subsequently used to perform a 3D stochastic interpolation of N-value and lithological class within each geological unit. Using a vertical voxel stack analysis, we were able to create a map showing the accumulated thickness of soft muds in the Holocene succession. A

  14. Quality control of 3D Geological Models using an Attention Model based on Gaze

    NASA Astrophysics Data System (ADS)

    Busschers, Freek S.; van Maanen, Peter-Paul; Brouwer, Anne-Marie

    2014-05-01

    The Geological Survey of the Netherlands (GSN) produces 3D stochastic geological models of the upper 50 meters of the Dutch subsurface. The voxel models are regarded essential in answering subsurface questions on, for example, aggregate resources, groundwater flow, land subsidence studies and the planning of large-scale infrastructural works such as tunnels. GeoTOP is the most recent and detailed generation of 3D voxel models. This model describes 3D lithological variability up to a depth of 50 m using voxels of 100*100*0.5m. Due to the expected increase in data-flow, model output and user demands, the development of (semi-)automated quality control systems is getting more important in the near future. Besides numerical control systems, capturing model errors as seen from the expert geologist viewpoint is of increasing interest. We envision the use of eye gaze to support and speed up detection of errors in the geological voxel models. As a first step in this direction we explore gaze behavior of 12 geological experts from the GSN during quality control of part of the GeoTOP 3D geological model using an eye-tracker. Gaze is used as input of an attention model that results in 'attended areas' for each individual examined image of the GeoTOP model and each individual expert. We compared these attended areas to errors as marked by the experts using a mouse. Results show that: 1) attended areas as determined from experts' gaze data largely match with GeoTOP errors as indicated by the experts using a mouse, and 2) a substantial part of the match can be reached using only gaze data from the first few seconds of the time geologists spend to search for errors. These results open up the possibility of faster GeoTOP model control using gaze if geologists accept a small decrease of error detection accuracy. Attention data may also be used to make independent comparisons between different geologists varying in focus and expertise. This would facilitate a more effective use of

  15. The Challenges of Standardized Planetary Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Skinner, J. A.

    2015-06-01

    The process and product of creating standardized geologic maps of planetary bodies has been met with particular challenges. Addressing these challenges helps ensure that benchmark contextual geologic map products remain a reliable community resource.

  16. Sector mapping method for 3D detached retina visualization.

    PubMed

    Zhai, Yi-Ran; Zhao, Yong; Zhong, Jie; Li, Ke; Lu, Cui-Xin; Zhang, Bing

    2016-10-01

    A new sphere-mapping algorithm called sector mapping is introduced to map sector images to the sphere of an eyeball. The proposed sector-mapping algorithm is evaluated and compared with the plane-mapping algorithm adopted in previous work. A simulation that maps an image of concentric circles to the sphere of the eyeball and an analysis of the difference in distance between neighboring points in a plane and sector were used to compare the two mapping algorithms. A three-dimensional model of a whole retina with clear retinal detachment was generated using the Visualization Toolkit software. A comparison of the mapping results shows that the central part of the retina near the optic disc is stretched and its edges are compressed when the plane-mapping algorithm is used. A better mapping result is obtained by the sector-mapping algorithm than by the plane-mapping algorithm in both the simulation results and real clinical retinal detachment three-dimensional reconstruction. PMID:27480739

  17. Mapping the human cerebral cortex using 3-D medial manifolds

    NASA Astrophysics Data System (ADS)

    Szekely, Gabor; Brechbuehler, Christian; Kuebler, Olaf; Ogniewicz, Robert; Budinger, Thomas F.

    1992-09-01

    Novel imaging technologies provide a detailed look at structure and function of the tremendously complex and variable human brain. Optimal exploitation of the information stored in the rapidly growing collection of acquired and segmented MRI data calls for robust and reliable descriptions of the individual geometry of the cerebral cortex. A mathematical description and representation of 3-D shape, capable of dealing with form of variable appearance, is at the focus of this paper. We base our development on the Medial Axis Transformation (MAT) customarily defined in 2-D although the concept generalizes to any number of dimensions. Our implementation of the 3-D MAT combines full 3-D Voronoitesselation generated by the set of all border points with regularization procedures to obtain geometrically and topologically correct medial manifolds. The proposed algorithm was tested on synthetic objects and has been applied to 3-D MRI data of 1 mm isotropic resolution to obtain a description of the sulci in the cerebral cortex. Description and representation of the cortical anatomy is significant in clinical applications, medical research, and instrumentation developments.

  18. Facets : a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J.

    2016-06-01

    Geological planar facets (stratification, fault, joint…) are key features to unravel the tectonic history of rock outcrop or appreciate the stability of a hazardous rock cliff. Measuring their spatial attitude (dip and strike) is generally performed by hand with a compass/clinometer, which is time consuming, requires some degree of censoring (i.e. refusing to measure some features judged unimportant at the time), is not always possible for fractures higher up on the outcrop and is somewhat hazardous. 3D virtual geological outcrop hold the potential to alleviate these issues. Efficiently segmenting massive 3D point clouds into individual planar facets, inside a convenient software environment was lacking. FACETS is a dedicated plugin within CloudCompare v2.6.2 (http://cloudcompare.org/ ) implemented to perform planar facet extraction, calculate their dip and dip direction (i.e. azimuth of steepest decent) and report the extracted data in interactive stereograms. Two algorithms perform the segmentation: Kd-Tree and Fast Marching. Both divide the point cloud into sub-cells, then compute elementary planar objects and aggregate them progressively according to a planeity threshold into polygons. The boundaries of the polygons are adjusted around segmented points with a tension parameter, and the facet polygons can be exported as 3D polygon shapefiles towards third party GIS software or simply as ASCII comma separated files. One of the great features of FACETS is the capability to explore planar objects but also 3D points with normals with the stereogram tool. Poles can be readily displayed, queried and manually segmented interactively. The plugin blends seamlessly into CloudCompare to leverage all its other 3D point cloud manipulation features. A demonstration of the tool is presented to illustrate these different features. While designed for geological applications, FACETS could be more widely applied to any planar

  19. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be

  20. Integrated 3-D quality control of geological interpretation through the use of simple methods and programs

    SciTech Connect

    Chatellier, J.Y.; Gustavo, F.; Magaly, Q.

    1996-12-31

    Integrating different petroleum geology disciplines gives insight and help in analyzing data and in checking the quality of different interpretations. Simple approaches and affordable programs allow rapid visualization of data in 3-D. Displaying geological data from stratigraphy, diagenesis, and structural geology together, allows identification of anomalies (i.e. development targets) and often gives clues of the controlling processes. Four case studies from world class fields are used to illustrate the vital need to integrate quality control of interpretation across disciplines. Distribution of diagenetic alterations is revealed by visualizing diagenetic and petrographic data against faults in a 3-D statistical program. Faults are transferred from 3-D seismic into such a program and then analyzed against other data. Fault intersections wrongly correlated are also easily picked. Other powerful tools include a modified use of the Bischke Plots that allow the identification of missing sections previously identified as fault cut-outs. The quality of interpretation has sometimes been assessed from the presence of stacked anomalies of various expression. In other cases repeated unexpected isopach trends revealed subtle faults such as riedels sealing and compartmentizing the reservoirs. Occasionally the timing of fault reactivation was assessed precisely whereas all other techniques failed even to identify these hidden features. Unrecognized porosity-depth trends were identified after filtering data for stratigraphy or sedimentology and studying it in its geographical and tectonic context. Three dimensional visualization was needed in cases of quartz overgrowth where grain size, depth, stratigraphy and location with respect to faults were all important.

  1. Integrated 3-D quality control of geological interpretation through the use of simple methods and programs

    SciTech Connect

    Chatellier, J.Y.; Gustavo, F.; Magaly, Q. )

    1996-01-01

    Integrating different petroleum geology disciplines gives insight and help in analyzing data and in checking the quality of different interpretations. Simple approaches and affordable programs allow rapid visualization of data in 3-D. Displaying geological data from stratigraphy, diagenesis, and structural geology together, allows identification of anomalies (i.e. development targets) and often gives clues of the controlling processes. Four case studies from world class fields are used to illustrate the vital need to integrate quality control of interpretation across disciplines. Distribution of diagenetic alterations is revealed by visualizing diagenetic and petrographic data against faults in a 3-D statistical program. Faults are transferred from 3-D seismic into such a program and then analyzed against other data. Fault intersections wrongly correlated are also easily picked. Other powerful tools include a modified use of the Bischke Plots that allow the identification of missing sections previously identified as fault cut-outs. The quality of interpretation has sometimes been assessed from the presence of stacked anomalies of various expression. In other cases repeated unexpected isopach trends revealed subtle faults such as riedels sealing and compartmentizing the reservoirs. Occasionally the timing of fault reactivation was assessed precisely whereas all other techniques failed even to identify these hidden features. Unrecognized porosity-depth trends were identified after filtering data for stratigraphy or sedimentology and studying it in its geographical and tectonic context. Three dimensional visualization was needed in cases of quartz overgrowth where grain size, depth, stratigraphy and location with respect to faults were all important.

  2. Hands-on guide for 3D image creation for geological purposes

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Tisato, Nicola

    2013-04-01

    Geological structures in outcrops or hand specimens are inherently three dimensional (3D), and therefore better understandable if viewed in 3D. While 3D models can easily be created, manipulated, and looked at from all sides on the computer screen (e.g., using photogrammetry or laser scanning data), 3D visualizations for publications or conference posters are much more challenging as they have to live in a 2D-world (i.e., on a sheet of paper). Perspective 2D visualizations of 3D models do not fully transmit the "feeling and depth of the third dimension" to the audience; but this feeling is desirable for a better examination and understanding in 3D of the structure under consideration. One of the very few possibilities to generate real 3D images, which work on a 2D display, is by using so-called stereoscopic images. Stereoscopic images are two images of the same object recorded from two slightly offset viewpoints. Special glasses and techniques have to be used to make sure that one image is seen only by one eye, and the other image is seen by the other eye, which together lead to the "3D effect". Geoscientists are often familiar with such 3D images. For example, geomorphologists traditionally view stereographic orthophotos by employing a mirror-steroscope. Nowadays, petroleum-geoscientists examine high-resolution 3D seismic data sets in special 3D visualization rooms. One of the methods for generating and viewing a stereoscopic image, which does not require a high-tech viewing device, is to create a so-called anaglyph. The principle is to overlay two images saturated in red and cyan, respectively. The two images are then viewed through red-cyan-stereoscopic glasses. This method is simple and cost-effective, but has some drawbacks in preserving colors accurately. A similar method is used in 3D movies, where polarized light or shuttering techniques are used to separate the left from the right image, which allows preserving the original colors. The advantage of red

  3. Geologic Map of Loudoun County, Virginia

    USGS Publications Warehouse

    Southworth, Scott; Burton, William C.; Schindler, J. Stephen; Froelich, Albert J.

    2006-01-01

    Introduction The geology of Loudoun County, Va., was mapped from 1988 through 1991 under a cooperative agreement between the U.S. Geological Survey (USGS) and the Loudoun County Office of Mapping and Geographic Information. This geologic map was compiled in 1993 from a series of detailed published and unpublished field investigations at scales of 1:12,000 and 1:24,000. Some of these same data were compiled as a digital geologic map at 1:100,000 scale (Burton and others, 1992a) and were the basis for a cost-benefit analysis of the societal value of geologic maps (Bernknopf and others, 1993).

  4. Mass Movement Susceptibility in the Western San Juan Mountains, Colorado: A Preliminary 3-D Mapping Approach

    NASA Astrophysics Data System (ADS)

    Kelkar, K. A.; Giardino, J. R.

    2015-12-01

    Mass movement is a major activity that impacts lives of humans and their infrastructure. Human activity in steep, mountainous regions is especially at risk to this potential hazard. Thus, the identification and quantification of risk by mapping and determining mass movement susceptibility are fundamental in protecting lives, resources and ensuring proper land use regulation and planning. Specific mass-movement processes including debris flows, rock falls, snow avalanches and landslides continuously modify the landscape of the San Juan Mountains. Historically, large-magnitude slope failures have repeatedly occurred in the region. Common triggers include intense, long-duration precipitation, freeze-thaw processes, human activity and various volcanic lithologies overlying weaker sedimentary formations. Predicting mass movement is challenging because of its episodic and spatially, discontinuous occurrence. Landslides in mountain terrain are characterized as widespread, highly mobile and have a long duration of activity. We developed a 3-D model for landslide susceptibility using Geographic Information Systems Technology (GIST). The study area encompasses eight USGS quadrangles: Ridgway, Dallas, Mount Sneffels, Ouray, Telluride, Ironton, Ophir and Silverton. Fieldwork consisted of field reconnaissance mapping at 1:5,000 focusing on surficial geomorphology. Field mapping was used to identify potential locations, which then received additional onsite investigation and photographic documentation of features indicative of slope failure. A GIS module was created using seven terrain spatial databases: geology, surficial geomorphology (digitized), slope aspect, slope angle, vegetation, soils and distance to infrastructure to map risk. The GIS database will help determine risk zonation for the study area. Correlations between terrain parameters leading to slope failure were determined through the GIS module. This 3-D model will provide a spatial perspective of the landscape to

  5. Direct inversion of digital 3D Fraunhofer holography maps

    NASA Astrophysics Data System (ADS)

    Podorov, Sergei G.; Förster, Eckhart

    2016-01-01

    The Differential Fourier Holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [1] the Differential Fourier Holography was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional (2D) images. In this article we demonstrate numerically the possibility to apply the DFH also for investigation of unknown 3D Objects. The first simulation is made for a double-spiral structure plus a line as a reference object.

  6. Parameterization of training images for aquifer 3-D facies modeling integrating geological interpretations and statistical inference

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev Kumar; Comunian, Alessandro; Mariethoz, Gregoire; Kelly, Bryce F. J.

    2014-10-01

    We develop a stochastic approach to construct channelized 3-D geological models constrained to borehole measurements as well as geological interpretation. The methodology is based on simple 2-D geologist-provided sketches of fluvial depositional elements, which are extruded in the 3rd dimension. Multiple-point geostatistics (MPS) is used to impair horizontal variability to the structures by introducing geometrical transformation parameters. The sketches provided by the geologist are used as elementary training images, whose statistical information is expanded through randomized transformations. We demonstrate the applicability of the approach by applying it to modeling a fluvial valley filling sequence in the Maules Creek catchment, Australia. The facies models are constrained to borehole logs, spatial information borrowed from an analogue and local orientations derived from the present-day stream networks. The connectivity in the 3-D facies models is evaluated using statistical measures and transport simulations. Comparison with a statistically equivalent variogram-based model shows that our approach is more suited for building 3-D facies models that contain structures specific to the channelized environment and which have a significant influence on the transport processes.

  7. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  8. The Role and Practice of Property Optimisation to Help Evaluate 3D Geological Models using Gravity and Magnetic Data

    NASA Astrophysics Data System (ADS)

    Lane, R.

    2008-12-01

    As the shift from 2D to 3D geological mapping gathers strength and the number of multi-component potential field data sets increases, there is a need for greater sophistication in the gravity and magnetic modelling tools that can be used to help evaluate and refine the properties and geometry of the various units within these models. The hitherto standard approach of 2D forward modelling of selected cross-sections is progressively giving way to full 3D forward modelling. An example of a user-guided optimisation method to streamline what would otherwise be a time-consuming and frustrating manual iterative refinement process in 3D is presented. A combination of the density and magnetic properties assigned to each geological unit is derived such that the total calculated response best matches the supplied scalar, vector or tensor gravity and magnetic field observations, subject to specified levels of uncertainty (bounds) in the properties. Numerical optimisation is achieved with a standard linear least squares routine, subject to equality and bounds constraints. The user is presented with 3 standard options for every property, allowing the property values to be either (a) fixed, (b) free to vary within a specified range, or (c) free vary over a very broad range. Additionally, properties for a group of geological units can be linked so that they all return the same value. The parameterisation of density properties is relatively straight forward with a single property for each geological unit. Magnetic properties present more of a challenge. Three distinct scenarios are identified and a separate option can be selected for each geological unit. These assume (1) only induced susceptibility, (2) a combination of induced susceptibility and remanent magnetisation of know direction, or (3) a combination of induced susceptibility and remanent magnetisation of unknown direction. In this latter case, a solution is obtained for the total effective magnetisation in the form of 3

  9. 3D Road-Mapping in the Endovascular Treatment of Cerebral Aneurysms and Arteriovenous Malformations

    PubMed Central

    Rossitti, S.; Pfister, M.

    2009-01-01

    Summary 3D road-mapping with syngo iPilot was used as an additional tool for assessing cerebral aneurysms and arteriovenous malformations (AVMs) for endovascular therapy. This method provides accurate superimposition of a live fluoroscopic image (native or vascular road-map) and its matching 2D projection of the 3D data set, delivering more anatomic information on one additional display. In the endovascular management of cases with complex anatomy, 3D road-mapping provides excellent image quality at the intervention site. This method can potentially reduce intervention time, the number of DSA runs, fluoroscopy time and the amount of contrast media used in a procedure, with reservation for these factors being mainly operator-dependent. 3D road-mapping probably does not provide any advantage in the treatment of cerebral aneurysms or AVMs with very simple configuration, and it should not be used when acquisition of an optimum 3D data set is not feasible. PMID:20465911

  10. 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations

    NASA Astrophysics Data System (ADS)

    Hillier, Michael; de Kemp, Eric; Schetselaar, Ernst

    2013-06-01

    Interpreting and modelling geometries of complex geologic structures from strike/dip measurements using manually-drafted structural form lines is labour intensive, irreproducible and inherently limited to two dimensions. Herein, the structural field interpolation (SFI) algorithm is presented that overcomes these limitations by constructing 3D structural form lines from the vector components of strike/dip measurements. The SFI interpolation algorithm employs an anisotropic inverse distance weighting scheme derived from eigen analysis of the poles to strike/dip measurements within a neighbourhood of user defined dimension and shape (ellipsoidal to spherical) and honours younging directions, when available. The eigen analysis also provides local estimates of the plunge vector and associated Woodcock distribution properties to assure plunge-normal structural form line reconstruction with unidirectional propagation of form lines across fold and fan structures. The method is advantageous for modelling geometries of geologic structures from a wide range of structurally anisotropic data. Modelled vector fields from three case studies are presented that reproduce the expected bedding-foliation geometry and provide reasonable representation of complex folds from local to regional scales. Results illustrate the potential for using vector fields to support geologic interpretation through the direct visualization of geometric trends of structural features in 3D.

  11. Global Geological Map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  12. Georeferenced LiDAR 3D Vine Plantation Map Generation

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  13. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes.

  14. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  15. Geologic Map of the Umiat Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2004-01-01

    This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.

  16. Beyond data collection in digital mapping: interpretation, sketching and thought process elements in geological map making

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching

  17. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  18. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    PubMed

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.

  19. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  20. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and

  1. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Cody, R. P.; Kassin, A.; Gaylord, A.; Manley, W. F.; Dover, M.; Score, R.

    2012-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. With ARMAP's 2D mapping application, 3D globes, and data services (http://armap.org), users can search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Key information about each project is displayed within the application with links to web pages that provide additional information. The ARMAP 2D mapping application has been significantly enhanced to include support for multiple projections, improved base maps, additional reference data layers, and optimization for better performance. The additional functionality of this tool will increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate the effects of the International Polar Year (IPY) on funding of different research disciplines by the U.S. Government.

  2. The Importance of Communicating Uncertainty to the 3D Geological Framework Model of Alberta

    NASA Astrophysics Data System (ADS)

    MacCormack, Kelsey

    2015-04-01

    The Alberta Geological Survey (AGS) has been tasked with developing a 3-dimensional (3D) geological framework for Alberta (660,000 km2). Our goal is to develop 'The Framework' as a sophisticated platform, capable of integrating a variety of data types from multiple sources enabling the development of multi-scale, interdisciplinary models with built-in feedback mechanisms, allowing the individual components of the model to adapt and evolve over time as our knowledge and understanding of the subsurface increases. The geoscience information within these models is often taken at face value and assumed that the attribute accuracy is equivalent to the digital accuracy recorded by the computer, which can lead to overconfidence in the model results. We need to make sure that decision makers understand that models are simply versions of reality and all contain a certain amount of error and uncertainty. More importantly, it is necessary to convey that error and uncertainty are not bad, and should be quantified and understood rather than ignored. This presentation will focus on how the AGS is quantifying and communicating uncertainty within the Geologic Framework to decision makers and the general public, as well as utilizing uncertainty results to strategically prioritize future work.

  3. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  4. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  5. Maps out, models in at the British Geological Survey!

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; Kessler, Holger

    2013-04-01

    BGS has stopped its' systematic onshore geological surveying programme and the litho-printing of geological maps will cease after a final batch of completed maps are published. In future BGS will undertake integrated mapping and 3D modelling in user defined target areas considering all our available geospatial data (map, boreholes, geophysics etc) assessed in a single 3D workspace. The output will be 3D geological framework models that capture the understanding and interpretation of the survey geologist and honour all available data at the time. As well as building new models in these strategic areas, BGS is collating all existing models assembled over the last 25 years into a common framework to produce a multi-scaled National Geological Model of Britain. comprising crustal, bedrock and quaternary and anthropocene themes (http://www.bgs.ac.uk/research/UKGeology/nationalgeologicalmodel/home.html). Different to the traditional geological map, the national model will not be completed at any specific scale, but at every point in the model there may be a different geological resolution available, depending on the purpose mof the original model or the strategic national need for subsurface information. The need for a complete and robust nested stratigraphic framework (BGS Lexicon) is becoming more important as we advance this model. Archive copies of all legacy models will be approved and stored in their native formats. In addition a newly designed Geological Object Store will hold geological objects such as coverages, surfaces and cross-sections from these models inside a relational database to ensure versioning and long-term security of the National Geological Model. In the mid-term these models will be attributed with physical properties such as porosity and density and form inputs to process models such as groundwater and landslide models to help predict and simulate environmental change. A key challenge for geologists and their systems building the geological

  6. Impacts of a CAREER Award on Advancing 3D Visualization in Geology Education

    NASA Astrophysics Data System (ADS)

    Billen, M. I.

    2011-12-01

    CAREER awards provide a unique opportunity to develop educational activities as an integrated part of one's research activities. This CAREER award focused on developing interactive 3D visualization tools to aid geology students in improving their 3D visualization skills. Not only is this a key skill for field geologists who need to visualize unseen subsurface structures, but it is also an important aspect of geodynamic research into the processes, such as faulting and viscous flow, that occur during subduction. Working with an undergraduate student researcher and using the KeckCAVES developed volume visualization code 3DVisualizer, we have developed interactive visualization laboratory exercises (e.g., Discovering the Rule of Vs) and a suite of mini-exercises using illustrative 3D geologic structures (e.g., syncline, thrust fault) that students can explore (e.g., rotate, slice, cut-away) to understand how exposure of these structures at the surface can provide insight into the subsurface structure. These exercises have been integrated into the structural geology curriculum and made available on the web through the KeckCAVES Education website as both data-and-code downloads and pre-made movies. One of the main challenges of implementing research and education activities through the award is that progress must be made on both throughout the award period. Therefore, while our original intent was to use subduction model output as the structures in the educational models, delays in the research results required that we develop these models using other simpler input data sets. These delays occurred because one of the other goals of the CAREER grant is to allow the faculty to take their research in a new direction, which may certainly lead to transformative science, but can also lead to more false-starts as the challenges of doing the new science are overcome. However, having created the infrastructure for the educational components, use of the model results in future

  7. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is

  8. DIGITAL GEOLOGIC MAP OF THE UNITED STATES.

    USGS Publications Warehouse

    Fulton, Patricia

    1983-01-01

    The geologic map of the United States was published in 1974 by the U. S. Geological Survey. This major publication contains an enormous amount of information on the surficial geology of the United States. Many geologists have used this map as a research tool. Most have needed information from only specific parts of the map, and have manually extracted data from these areas. These data have then been combined with other geological information, much of which - especially that concerning minerals and energy - either is already in machine-readable computer files or is rapidly being converted to that form.

  9. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  10. Mapping Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Yingst, R.; Williams, D. A.; Schenk, P.; Neukum, G.; Mottola, S.; Buczkowski, D.; O'Brien, D. P.; Garry, W. B.; Blewett, D. T.; Denevi, B. W.; Roatsch, T.; Preusker, F.; Nathues, A.; Sierks, H.; Sykes, M. V.; De sanctis, M.; McSween, H. Y.; Keller, H. U.; Marchi, S.

    2011-12-01

    Observations from the Dawn (Russell et al., 2007) spacecraft enabled deriva-tion of 4Vesta's shape, facilitated mapping of the surface geology and pro-vided the first evidence for Vesta's geological evolution. The Dawn mission is equipped with a framing camera (FC), a visible and infrared mapping spectrometer (VIR) and a gamma-ray and neutron detector (GRaND). So far science data are collected during the approach to the asteroid and protoplanet Vesta, a circular polar orbit at an altitude of 2700 km providing ~ 230 m/pix camera resolution and a lower orbit, at 700 km altitude with a camera resolu-tion of ~ 65 m/pixel. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, regolith and prob-able volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting possible buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest candi-date crater, a ~460 km depression at the south pole, has been shown to con-tain an incomplete inward facing cuspate scarp, and a large central mound surrounded by unusual complex arcuate ridge and groove patterns. Although asymmetric in general form, these characteristics do not contradict an impact origin but may also allow endogenic processes like convective downwelling or hybrid modification of an impact. Rapid rotation of Vesta during impact may explain some anomalous features (Jutzi and Asphaug, 2010). A set of large equatorial troughs may be related to the formation process of the south polar structure or due to stress caused by changes of the rotational axis. The crater size frequency and the chronology function is derived from the lunar chronology, scaled to impact frequencies modeled for Vesta according to (Bottke et al., 1994) and (O'Brien and Sykes, 2011). The northern hemi-sphere is heavily cratered by a large variety of ancient

  11. Approaches of National 3d Mapping: Research Results and Standardisation in Practice

    NASA Astrophysics Data System (ADS)

    Stoter, J. E.; Streilein, A.; Pla, M.; Baella, B.; Capstick, D.; Home, R.; Roensdorf, C.; Lagrange, J. P.

    2013-09-01

    Over the past ten years technologies for generating, maintaining and using 3D geo-information have matured. For national mapping agencies one of the challenges is how to best extend 2D data into 3D data, making best use of research results and available technologies. Some mapping organisations are making serious progress. The question addressed in this paper is how research results achieved in the past ten years are applied in practice and what research problems remain. In addition, the paper explores the potentials of the OGC 3D standard (i.e. CityGML) for 3D national mapping and what developments are further required to make the standard better fit for this purpose. The main conclusions of the paper are that 3D data is more and more available but still suffers from a low level of usage (mainly visualisation) and standards and formats based on CityGML have been stabilised although software support is still in the early stage. Several recommendations are made to meet these problems, including the definition of European CityGML profiles (as the INSPIRE Building profile) to harmonise 3D needs and standardise 3D implementations at international level.

  12. Automated geologic mapping using rock reflectances.

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Rowan, L. C.

    1971-01-01

    Investigation of the feasibility of preparing geologic maps automatically through computer processing of calibrated narrow-band visible and near IR reflectivity data collected with a 12-channel scanner. Five procedures were followed in the computer analysis of the radiances recorded as voltages on analog magnetic tape. Three recognition maps have been generated iteratively using a progressively more complex classification scheme. The overall accuracy of the first recognition map was 80%, but the discrimination of the limestone and dolomite was only 50-60%. All three maps are very accurate outcrop maps. The results demonstrate the feasibility of automated geologic mapping in this relatively simple setting.

  13. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  14. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.

    PubMed

    Gual, Jaume; Puyuelo, Marina; Lloveras, Joaquim

    2015-05-01

    Point, linear and areal elements, which are two-dimensional and of a graphic nature, are the morphological elements employed when designing tactile maps and symbols for visually impaired users. However, beyond the two-dimensional domain, there is a fourth group of elements - volumetric elements - which mapmakers do not take sufficiently into account when it comes to designing tactile maps and symbols. This study analyses the effect of including volumetric, or 3D, symbols within a tactile map. In order to do so, the researchers compared two tactile maps. One of them uses only two-dimensional elements and is produced using thermoforming, one of the most popular systems in this field, while the other includes volumetric symbols, thus highlighting the possibilities opened up by 3D printing, a new area of production. The results of the study show that including 3D symbols improves the efficiency and autonomous use of these products. PMID:25683526

  15. Forward and Reverse Modeling Compressive Deformation in a 3D Geologic Model along the Central San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Roberts, M. A.; Graymer, R. W.; McPhee, D.

    2015-12-01

    During the late Miocene, a small change in the relative motion of the Pacific plate resulted in compressive as well as translational deformation along the central San Andreas Fault (SAF), creating thrust faults and folds throughout this region of California. We constructed a 3D model of an upper crustal volume between Pinnacles National Park and Gold Hill by assembling geologic map data and cross sections, geophysical data, and petroleum well logs in MoveTm, software which has the ability to forward and reverse model movement along faults and folds. For this study, we chose a blind thrust fault west of the SAF near Parkfield to compare deformation produced by MoveTm's forward modeling algorithm with that observed. We chose various synclines east of the SAF to explore the software's ability to unfold (reverse model) units. For the initial round of modeling, strike-slip movement has been omitted as the fault algorithm was designed primarily for extensional or compressional environments. Preliminary forward modeling of originally undeformed strata along the blind thrust produced geometries similar to those in the present-day 3D geologic model. The modeled amount of folding produced in hanging wall strata was less severe, suggesting these units were slightly folded before displacement. Based on these results, the algorithm shows potential in predicting deformation related to blind thrusts. Contraction in the region varies with fold axis location and orientation. MoveTm's unfolding algorithm can allow researchers to measure the amount of contraction a fold represents, and compare that amount across the modeled area as a way of observing regional stress patterns. The unfolding algorithm also allows for passive deformation of strata unconformably underlying the fold; one example reveals a steeper orientation of Cretaceous units prior to late Miocene deformation. Such modeling capabilities can allow for a better understanding of the structural history of the region.

  16. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  17. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  18. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  19. Quantification of carotid arteries atherosclerosis using 3D ultrasound images and area-preserving flattened maps

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Egger, Micaela; Spence, J. David; Parraga, Grace; Fenster, Aaron

    2008-03-01

    Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. 3D ultrasound (US) has been used to monitor the progression of carotid artery plaques in symptomatic and asymptomatic patients. Different methods of measuring various ultrasound phenotypes of atherosclerosis have been developed. In this work, we extended concepts used in intima-media thickness (IMT) measurements based on 2D images and introduced a metric called 3D vessel-wall-plus-plaque thickness (3D VWT), which was obtained by computing the distance between the carotid wall and lumen surfaces on a point-by-point basis in a 3D image of the carotid arteries. The VWT measurements were then superimposed on the arterial wall to produce the VWT map. Since the progression of plaque thickness is important in monitoring patients who are at risk for stroke, we also computed the change of VWT by comparing the VWT maps obtained for a patient at two different time points. In order to facilitate the visualization and interpretation of the 3D VWT and VWT-Change maps, we proposed a technique to flatten these maps in an area-preserving manner.

  20. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  1. Joint 3D inversion of gravity and magnetic data with geological constraints - an alternative approach

    NASA Astrophysics Data System (ADS)

    Prutkin, Ilya; Vajda, Peter; Jentzsch, Gerhard

    2016-04-01

    Quite a popular approach now by interpretation of gravity data is a linear one - an attempt is made to find a density distribution d(x,y,z) below the Earth's surface. This approach has clear disadvantages. First, we face the problem of dimensionality: one looks for 3D function based on 2D data set (measurements on the Earth's surface), the degree of non-uniqueness is extremely high, and no regularization can save the situation. The number of unknowns is many times higher than the number of observations; otherwise, we obtain a very rough model of the lower half-space. Second, the linear approach is not reasonable from the geological point of view. It implies that density varies from one point to another. Usually, we assume big volumes with nearly homogeneous density - layers, blocks, intrusions. It looks more understandable, to search for geometry of density interfaces: 3D topography of contact surfaces and shapes of restricted bodies (intrusions). Third, in the framework of the linear approach even for a synthetic field of two separate objects we obtain clouds of points with slightly increased density. It is hardly ever possible, to isolate objects, particularly when one of them is located above another one. We suggest an alternative approach for the linear one. Our approach has been successfully applied for several case histories including a local gravity anomaly Kolarovo and a bigger area of the Thuringian Basin, where both gravity and magnetic data are inverted. First, we separate sources into deep, intermediate and shallow ones, using subsequent upward and downward continuation. All components are inverted separately. We address a problem which we name the problem of low frequencies: deep objects generate long wavelengths, but the converse implication is not necessarily true. For instance, the effect of the basin structure contributes substantially into low frequencies, though it is caused by shallow sources. However, our numerical experiments with intermediate

  2. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  3. MAP(2.0)3D: a sequence/structure based server for protein engineering.

    PubMed

    Verma, Rajni; Schwaneberg, Ulrich; Roccatano, Danilo

    2012-04-20

    The Mutagenesis Assistant Program (MAP) is a web-based tool to provide statistical analyses of the mutational biases of directed evolution experiments on amino acid substitution patterns. MAP analysis assists protein engineers in the benchmarking of random mutagenesis methods that generate single nucleotide mutations in a codon. Herein, we describe a completely renewed and improved version of the MAP server, the MAP(2.0)3D server, which correlates the generated amino acid substitution patterns to the structural information of the target protein. This correlation aids in the selection of a more suitable random mutagenesis method with specific biases on amino acid substitution patterns. In particular, the new server represents MAP indicators on secondary and tertiary structure and correlates them to specific structural components such as hydrogen bonds, hydrophobic contacts, salt bridges, solvent accessibility, and crystallographic B-factors. Three model proteins (D-amino oxidase, phytase, and N-acetylneuraminic acid aldolase) are used to illustrate the novel capability of the server. MAP(2.0)3D server is available publicly at http://map.jacobs-university.de/map3d.html.

  4. 3D DWT-DCT and Logistic MAP Based Robust Watermarking for Medical Volume Data.

    PubMed

    Li, Jingbing; Liu, Yaoli; Zhong, Jiling

    2014-01-01

    Applying digital watermarking technique for the security protection of medical information systems is a hotspot of research in recent years. In this paper, we present a robust watermarking algorithm for medical volume data using 3D DWT-DCT and Logistic Map. After applying Logistic Map to enhance the security of watermarking, the visual feature vector of medical volume data is obtained using 3D DWT-DCT. Combining the feature vector, the third party concept and Hash function, a zero-watermarking scheme can be achieved. The proposed algorithm can mitigate the illogicality between robustness and invisibility. The experiment results show that the proposed algorithm is robust to common and geometrical attacks.

  5. On 3D world perception: towards a definition of a cognitive map based electronic travel aid.

    PubMed

    Pissaloux, E E; Velazquez, R; Maingreaud, F

    2004-01-01

    This paper addresses a 3D world perception principle and their usage for cognitive map building by visually impaired people. These bases are applied to define a new electronic travel aid named intelligent glasses system (IGS), a wearable system. IGS provides to blind people an information on their nearest 3D environment structure, and especially a tactile stimulating cognitive map of the obstacles located in user's peri-personal space. This paper outlines briefly the IG system, and presents first results on the validation of the proposed representation via psycho-physiological experiments.

  6. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross

  7. Numerical Analysis of Thermal Remediation in 3D Field-Scale Fractured Geologic Media.

    PubMed

    Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C

    2015-01-01

    Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field-scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture-matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10(-17) m(2)). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation. PMID:25040727

  8. Numerical Analysis of Thermal Remediation in 3D Field-Scale Fractured Geologic Media.

    PubMed

    Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C

    2015-01-01

    Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field-scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture-matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10(-17) m(2)). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation.

  9. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China

    NASA Astrophysics Data System (ADS)

    Hou, Weisheng; Yang, Liang; Deng, Dongcheng; Ye, Jing; Clarke, Keith; Yang, Zhijun; Zhuang, Wenming; Liu, Jianxiong; Huang, Jichun

    2016-04-01

    Urban underground spaces (UUS), especially those containing natural resources that have not yet been utilized, have been recognized as important for future sustainable development in large cities. One of the key steps in city planning is to estimate the quality of urban underground space resources, since they are major determinants of suitable land use. Yet geological constraints are rarely taken into consideration in urban planning, nor are the uncertainties in the quality of the available assessments. Based on Fuzzy Set theory and the analytic hierarchy process, a 3D stepwise process for the quality assessment of geotechnical properties of natural resources in UUS is presented. The process includes an index system for construction factors; area partitioning; the extraction of geological attributes; the creation of a relative membership grade matrix; the evaluation of subject and destination layers; and indeterminacy analysis. A 3D geological model of the study area was introduced into the process that extracted geological attributes as constraints. This 3D geological model was coupled with borehole data for Foshan City, Guangdong province, South China, and the indeterminacies caused by the cell size and the geological strata constraints were analyzed. The results of the case study show that (1) a relatively correct result can be obtained if the cell size is near to the average sampling distance of the boreholes; (2) the constraints of the 3D geological model have a major role in establishing the UUS quality level and distribution, especially at the boundaries of the geological bodies; and (3) the assessment result is impacted by an interaction between the cell resolution and the geological model used.

  10. A template for enhanced 3-D geological modelling of wave-dominated deltaic reservoirs from the Tertiary Niger delta

    SciTech Connect

    Smith, S.A. )

    1996-01-01

    Quantitative 3-D geological models of Shell's Niger delta reservoirs are now routinely used for well and field development planning, simulation input and reserves booking. A review of these models, built with Shell's reservoir modelling package Geocap, has highlighted the successes and potential pitfalls of 3D reservoir modelling and has led to a template for better modelling of wave-dominated deltaic reservoirs. The key issues fall into two categories. The first concerns the use of soft geological knowledge. Conceptual models are a prerequisite for quality 3-D reservoir models and meaningful results can be obtained only if the geologist has a mental 3-D picture(s) of the reservoir which is used to steer the modelling. The decision to use stochastic techniques is crucial. In wave-dominated deltaic reservoirs, uncertainty may be better handled by a series of deterministic scenarios rather than many stochastic realizations. Sequence stratigraphic correlation tools and the definition of meaningful and recognizable facies types and flow units also determine the quality of the model. Integration between the petroleum engineering disciplines is the second category. The interface with the reservoir engineer is particularly important; the relevant level of geological detail must be identified and preserved during upscaling and flow simulation. Reservoir engineering and seismological data must be used to refine or validate alternative scenarios in an iterative loop. 3-D modelling is a tremendous business opportunity, but it demands more geological skills as well as a fully integrated, multidisciplinary approach.

  11. A template for enhanced 3-D geological modelling of wave-dominated deltaic reservoirs from the Tertiary Niger delta

    SciTech Connect

    Smith, S.A.

    1996-12-31

    Quantitative 3-D geological models of Shell`s Niger delta reservoirs are now routinely used for well and field development planning, simulation input and reserves booking. A review of these models, built with Shell`s reservoir modelling package Geocap, has highlighted the successes and potential pitfalls of 3D reservoir modelling and has led to a template for better modelling of wave-dominated deltaic reservoirs. The key issues fall into two categories. The first concerns the use of soft geological knowledge. Conceptual models are a prerequisite for quality 3-D reservoir models and meaningful results can be obtained only if the geologist has a mental 3-D picture(s) of the reservoir which is used to steer the modelling. The decision to use stochastic techniques is crucial. In wave-dominated deltaic reservoirs, uncertainty may be better handled by a series of deterministic scenarios rather than many stochastic realizations. Sequence stratigraphic correlation tools and the definition of meaningful and recognizable facies types and flow units also determine the quality of the model. Integration between the petroleum engineering disciplines is the second category. The interface with the reservoir engineer is particularly important; the relevant level of geological detail must be identified and preserved during upscaling and flow simulation. Reservoir engineering and seismological data must be used to refine or validate alternative scenarios in an iterative loop. 3-D modelling is a tremendous business opportunity, but it demands more geological skills as well as a fully integrated, multidisciplinary approach.

  12. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers.

    PubMed

    Ducci, Daniela; Sellerino, Mariangela

    2013-03-01

    The aim of this paper is to apply a methodology in order to reconstruct a lithostratigraphic 3D model of an aquifer so as to define some parameters involved in the evaluation of the aquifer vulnerability to contamination of porous aquifers. The DRASTIC, SINTACS and AVI methods have been applied to an alluvial coastal aquifer of southern Italy. The stratigraphic reconstruction has been obtained by interpolating stratigraphic data from more than one borehole per 2 km. The lithostratigraphic reconstruction of a 3D model has been applied and used for three-dimensional or two-dimensional representations. In the first two methods, the layers of the vadose zone and the aquifer media have been evaluated not only by the interpolation of the single boreholes and piezometers, but also by the 3D model, assigning the scores of the parameters of each layer of the 3D model. The comparison between the maps constructed from the weighted values in each borehole and the maps deriving from the attribution of the values of each layer of the 3D model, highlights that the second representation avoids or minimizes the "bullseye" effect linked to the presence of boreholes with higher or lower values. The study has demonstrated that it is possible to integrate a 3D lithostratigraphic model of an aquifer in the assessment of the parameters involved in the evaluation of the aquifer vulnerability to contamination by Point Count System methods.

  13. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  14. Geologic Mapping in Southern Margaritifer Terra

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2010-01-01

    Margaritifer Terra records a complex geologic history [1-5], and the area from Holden crater through Ladon Valles, Ladon basin, and up to Morava Valles is no exception [e.g., 6-13]. The 1:500,000 geologic map of MTM quadrangles -15027, -20027, -25027, and -25032 (Figs. 1 and 2 [14]) identifies a range of units that delineate the history of water-related activity and regional geologic context.

  15. County digital geologic mapping. Final report

    SciTech Connect

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  16. Lunar Geologic Mapping Program: 2008 Update

    NASA Technical Reports Server (NTRS)

    Gaddis, L.; Tanaka, K.; Skinner, J.; Hawke, B. R.

    2008-01-01

    The NASA Lunar Geologic Mapping Program is underway and a mappers handbook is in preparation. This program for systematic, global lunar geologic mapping at 1:2.5M scale incorporates digital, multi-scale data from a wide variety of sources. Many of these datasets have been tied to the new Unified Lunar Control Network 2005 [1] and are available online. This presentation summarizes the current status of this mapping program, the datasets now available, and how they might be used for mapping on the Moon.

  17. Geologic Mapping of Ascraeus Mons, Mars

    NASA Technical Reports Server (NTRS)

    Mohr, K. J.; Williams, D. A.; Garry, W. B.

    2016-01-01

    Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. We are funded by NASA's Mars Data Analysis Program to complete a digital geologic map based on the mapping style. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objectives for which this mapping is based is to show the different lava flow morphologies across AM to better understand the evolution and geologic history.

  18. 3D Seismic Reflection Data: Has the Geological Hubble Retained Its Focus?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher

    2016-04-01

    In their seminal paper in 2002, Joe Cartwright and Mads Huuse referred to 3D seismic reflection data as the 'Geological Hubble', illustrating how these data had the potential to revolutionise our understanding of the genesis and evolution of sedimentary basins. 14 years on, I will here outline just some of the key recent advances made in our understanding of basin structure and stratigraphy, focusing on: (i) the intrusion and extrusion of igneous rocks; (ii) salt tectonics, with particular emphasis on intrasalt structure and the kinematics and mechanics of diapirism; (iii) the geometry and growth of normal faults; and (iv) the structure and emplacement of mass-transport complexes (MTCs). I will stress that future advances at least partly relies on hydrocarbon exploration companies and government agencies continuing to make their data freely available via easy-to-access data portals. I will issue a clarion call to academics, stressing that 'geodynamicists', sedimentologists, structural geologists and geomorphologists, amongst others, can benefit from utilising what I believe are currently an underused data type.

  19. A 3D geological model of 67P Churyumov-Gerasimenko northern hemisphere

    NASA Astrophysics Data System (ADS)

    Massironi, Matteo; Penasa, Luca; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2016-04-01

    Stratification appears to be widespread and continuous on the North hemisphere of comet 67P/ Churyumov-Gerasimenko which has been observed by the Rosetta probe since August 2014 (Massironi et al. 2015). This allowed us to reconstruct the true 3D subsurface geology of most of the inner structure of the comet nucleus on the basis of the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) observation and the derived photogrammetric and photo-clinometric shape models. We intend to populate the geo-model with the physical properties assumed for the cometary interior (porosity, density, strength and volatile content) and eventually use it as a base to interpret the radar sounding results obtained by CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission observations) (e.g. Ciarletti et al. 2015). This would give us important hints on the distribution and geometry of primordial structures within the comet interior. Massironi M. et al. 2015, Nature, 526, 402-405. Ciarletti V. et al. 2015, Astronomy & Astrophysic, no. aa26337-15

  20. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  1. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  2. Geologic and structural map of eastern Asia

    SciTech Connect

    Letouzey, J.; Sage, L.

    1986-07-01

    A synthesis of the onshore and offshore geologic data of eastern Asia, prepared by the Institut Francais du Petrole (IFP), has allowed the construction of geologic and structural maps for this region. These maps include three color sheets (scale = 1:2.5 million) and three plates of geologic and structural cross sections. Located between lat. 4/sup 0/ and 35/sup 0/N, and long. 106/sup 0/ and 132/sup 0/E, the maps cover the following geographic areas: East and South China Sea, Sulu Sea, West Philippine basin and onshore neighboring terrains, Kyushu and Ryukyu Islands, the China margin, Taiwan Island, Vietnam, North West Borneo, and the Philippines. The maps synthesize seismic interpretations, oil well data, geologic work in south Japan, Taiwan, Borneo, and the Philippines, and recent data published between 1976 and 1985. Twenty-four geologic cross sections (scale = 1:1.25 million, vertical exaggeration x 6) intersect ocean margins, important basins, and the different structural domains. They are based on seismic profiles, well data, and available onshore and offshore geologic data. These cross sections show basement composition and structures, different tectonic and sedimentary domains, and the structure and thickness of different sedimentary deposits (such as age, unconformities, and geologic structures). Maps and cross sections will be published in early 1987.

  3. The First Global Geological Map of Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  4. A volumetric sensor for real-time 3D mapping and robot navigation

    NASA Astrophysics Data System (ADS)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  5. 3D image copyright protection based on cellular automata transform and direct smart pixel mapping

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei; Kim, Seok-Tae; Lee, In-Kwon

    2014-10-01

    We propose a three-dimensional (3D) watermarking system with the direct smart pixel mapping algorithm to improve the resolution of the reconstructed 3D watermark plane images. The depth-converted elemental image array (EIA) is obtained through the computational pixel mapping method. In the watermark embedding process, the depth-converted EIA is first scrambled by using the Arnold transform, which is then embedded in the middle frequency of the cellular automata (CA) transform. Compared with conventional computational integral imaging reconstruction (CIIR) methods, this proposed scheme gives us a higher resolution of the reconstructed 3D plane images by using the quality-enhanced depth-converted EIA. The proposed method, which can obtain many transform planes for embedding watermark data, uses CA transforms with various gateway values. To prove the effectiveness of the proposed method, we present the results of our preliminary experiments.

  6. The Use of Uas for Rapid 3d Mapping in Geomatics Education

    NASA Astrophysics Data System (ADS)

    Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan

    2016-06-01

    With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.

  7. Mars Global Geologic Mapping: Amazonian Results

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2008-01-01

    We are in the second year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe early mapping results, which include updating of previous northern plains mapping [3], including delineation of mainly Amazonian units and regional fault mapping, as well as other advances.

  8. Geologic and Mineral Resource Map of Afghanistan

    USGS Publications Warehouse

    Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.

    2006-01-01

    Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in

  9. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  10. Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid to spatial data selection

    NASA Astrophysics Data System (ADS)

    Pouliot, Jacynthe; Bédard, Karine; Kirkwood, Donna; Lachance, Bernard

    2008-05-01

    Topological relationships between geological objects are of great interest for mining and petroleum exploration. Indeed, adjacency, inclusion and intersection are common relationships between geological objects such as faults, geological units, fractures, mineralized zones and reservoirs. However, in the context of 3D modeling, actual geometric data models used to store those objects are not designed to manage explicit topological relationships. For example, with Gocad© software, topological analyses are possible but they require a series of successive manipulations and are time consuming. This paper presents the development of a 3D topological query prototype, TQuery, compatible with Gocad© modeling platform. It allows the user to export Gocad© objects to a data storage model that regularizes the topological relationships between objects. The development of TQuery was oriented towards the use of volumetric objects that are composed of tetrahedrons. Exported data are then retrieved and used for 3D topological and spatial queries. One of the advantages of TQuery is that different types of objects can be queried at the same time without restricting the operations to voxel regions. TQuery allows the user to analyze data more quickly and efficiently and does not require a 3D modeling specialist to use it, which is particularly attractive in the context of a decision-making aid. The prototype was tested on a 3D GeoModel of a continental red-bed copper deposit in the Silurian Robitaille Formation (Transfiguration property, Québec, Canada).

  11. Pilot Application of 3d Underwater Imaging Techniques for Mapping Posidonia Oceanica (L.) Delile Meadows

    NASA Astrophysics Data System (ADS)

    Rende, F. S.; Irving, A. D.; Lagudi, A.; Bruno, F.; Scalise, S.; Cappa, P.; Montefalcone, M.; Bacci, T.; Penna, M.; Trabucco, B.; Di Mento, R.; Cicero, A. M.

    2015-04-01

    Seagrass communities are considered one of the most productive and complex marine ecosystems. Seagrasses belong to a small group of 66 species that can form extensive meadows in all coastal areas of our planet. Posidonia oceanica beds are the most characteristic ecosystem of the Mediterranean Sea, and should be constantly monitored, preserved and maintained, as specified by EU Habitats Directive for priority habitats. Underwater 3D imaging by means of still or video cameras can allow a detailed analysis of the temporal evolution of these meadows, but also of the seafloor morphology and integrity. Video-photographic devices and open source software for acquiring and managing 3D optical data rapidly became more and more effective and economically viable, making underwater 3D mapping an easier task to carry out. 3D reconstruction of the underwater scene can be obtained with photogrammetric techniques that require just one or more digital cameras, also in stereo configuration. In this work we present the preliminary results of a pilot 3D mapping project applied to the P. oceanica meadow in the Marine Protected Area of Capo Rizzuto (KR, Calabria Region - Italy).

  12. Geologic Mapping of Arsia and Pavonis Montes

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Garry, W. B.; Bleacher, J. E.; Shean, D.; Greeley, R.

    2012-01-01

    We are funded by the NASA Mars Data Analysis Program (MDAP) to produce 1:1,000,000 scale geologic maps of Arsia Mons and Pavonis Mons, as well as conduct mapping of surrounding regions. In this abstract we discuss progress made during years 1 and 2 of the 4-year project.

  13. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best represented the…

  14. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  15. Geological and geothermal 3D modelling of the Vienna Basin, Austria - pilot area of the project TRANSENERGY

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; Bottig, M.; Zekiri, F.; Fuchsluger, M.; Götzl, G.; Schubert, G.; Brüstle, A.

    2012-04-01

    In general, sedimentary basins show high potential for the use of geothermal energy. Since the Vienna Basin is a densely populated area, (approximately 1.7 million people in the city of Vienna plus surroundings) geothermal power and heat could play a significant role in the future. The Vienna basin is a relatively cold system where the 100 °C isotherm is to be found at a minimum of about 2500 meters. This fact, meaning the need of deep thus expensive wells, adding the problem of space for drillings and geothermal power plants are challenging subjects in terms of exploitation. The aim of the present work is to model the thermal regime of the Vienna basin and take a closer look on two exploitation scenarios in different hydrological systems (parts of the Bajuvaric and Juvavic nappes in the basement and the horizon of Aderklaa conglomerates in the Neogene sediments). In the first phase, a geological 3D model was created using published data (surface geology, interpreted cross sections from drilling and seismic data) as well as markers from selected wells (data derived from OMV). The geometrical model was built in GoCADTM, where in a first step surfaces were created, displaced along major faults and further exported for the following numerical simulations. In total, 14 Surfaces were created, seven Neogene layers and seven structuring the basement. The thermal modelling is realized using the finite-element software COMSOL Multiphysics© and FEFLOW. Major surfaces were imported into COMSOL as geometry objects, which is not practicable for very complex, fine structures. To represent smaller units inside the subdomains, the associated material parameters had to be imported as functions of the three space coordinates. To gain initial values for the exploitation scenario modelling a steady-state solution has to be achieved. For the lower model boundary, a Neumann boundary condition was set using a newly derived heat flow density map (project TRANSENERGY, Geological Survey

  16. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  17. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  18. Digital Geology from field to 3D modelling and Google Earth virtual environment: methods and goals from the Furlo Gorge (Northern Apennines - Italy)

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Susini, Sara

    2014-05-01

    A new map of the Furlo Gorge was surveyed and elaborated in a digital way. In every step of work we used digital tools as mobile GIS and 3D modelling software. Phase 1st Starting in the lab, planning the field project development, base cartography, forms and data base were designed in the way we thought was the best for collecting and store data in order of producing a digital n­-dimensional map. Bedding attitudes, outcrops sketches and description, stratigraphic logs, structural features and other informations were collected and organised in a structured database using rugged tablet PC, GPS receiver, digital cameras and later also an Android smartphone with some survey apps in-­house developed. A new mobile GIS (BeeGIS) was developed starting from an open source GIS (uDig): a number of tools like GPS connection, pen drawing annotations, geonotes, fieldbook, photo synchronization and geotagging were originally designed. Phase 2nd After some month of digital field work, all the informations were elaborated for drawing a geologic map in GIS environment. For that we use both commercial (ArcGIS) and open source (gvSig, QGIS, uDig) without big technical problems. Phase 3rd When we get to the step of building a 3D model (using 3DMove), passing trough the assisted drawing of cross-­sections (2DMove), we discovered a number of problems in the interpretation of geological structures (thrusts, normal faults) and more in the interpretation of stratigraphic thickness and boundaries and their relationships with topography. Phase 4th Before an "on­-armchair" redrawing of map, we decide to go back to the field and check directly what was wrong. Two main vantages came from this: (1) the mistakes we found could be reinterpreted and corrected directly in the field having all digital tools we need; (2) previous interpretations could be stored in GIS layers keeping memory of the previous work (also mistakes). Phase 5th A 3D model built with 3D Move is already almost self

  19. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  20. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    USGS Publications Warehouse

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  1. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    USGS Publications Warehouse

    Miller-Corbett, Cynthia

    2016-01-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  2. Geologic Mapping of Athabasca Valles

    NASA Technical Reports Server (NTRS)

    Keszthelyi, L. P.; Jaeger, W. L.; Tanaka, K.; Hare, T.

    2008-01-01

    Two factors drive us to map the Athabasca Valles area in unusual detail: (1) the extremely well-preserved and exposed surface morphologies and (2) the extensive high resolution imaging. In particular, the near-complete CTX coverage of Athabasca Valles proper and the extensive coverage of its surroundings have been invaluable. The mapping has been done exclusively in ArcGIS, using individual CTX, THEMIS VIS, and MOC frames overlying the THEMIS IR daytime basemap. MOLA shot points and gridded DTMs are also included. It was found that CTX images processed through ISIS are almost always within 300 m of the MOLA derived locations, and usually within tens of meters, with no adjustments to camera pointing. THEMIS VIS images appear to be systematically shifted to the southwest of their correct positions and MOC images are often kilometers off. The good SNR and minimal artifacts make the CTX images vastly more useful than the THEMIS VIS or MOC images. The bulk of the mapping was done at 1:50,000 scale on CTX images. In more complex areas, mapping at 1:24,000 proved necessary. The CTX images were usually simultaneously viewed on a second monitor using the ISIS3 qview program to display the full dynamic range of the CTX data. Where CTX data was not available, mapping was often done at 1:100,000 and most contacts are mapped as approximate.

  3. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  4. 3D maps of the local ISM from inversion of individual color excess measurements

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.

    2014-01-01

    Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends

  5. SU-F-BRF-08: Conformal Mapping-Based 3D Surface Matching and Registration

    SciTech Connect

    Song, Y; Zeng, W; Gu, X; Liu, C

    2014-06-15

    Purpose: Recently, non-rigid 3D surface matching and registration has been used extensively in engineering and medicine. However, matching 3D surfaces undergoing non-rigid deformation accurately is still a challenging mathematical problem. In this study, we present a novel algorithm to address this issue by introducing intrinsic symmetry to the registration Methods: Our computational algorithm for symmetric conformal mapping is divided into three major steps: 1) Finding the symmetric plane; 2) Finding feature points; and 3) Performing cross registration. The key strategy is to preserve the symmetry during the conformal mapping, such that the image on the parameter domain is symmetric and the area distortion factor on the parameter image is also symmetric. Several novel algorithms were developed using different conformal geometric tools. One was based on solving Riemann-Cauchy equation and the other one employed curvature flow Results: Our algorithm was implemented using generic C++ on Windows XP and used conjugate gradient search optimization for acceleration. The human face 3D surface images were acquired using a high speed 3D scanner based on the phase-shifting method. The scanning speed was 30 frames/sec. The image resolution for each frame was 640 × 480. For 3D human face surfaces with different expressions, postures, and boundaries, our algorithms were able to produce consistent result on the texture pattern on the overlapping region Conclusion: We proposed a novel algorithm to improve the robustness of conformal geometric methods by incorporating the symmetric information into the mapping process. To objectively evaluate its performance, we compared it with most existing techniques. Experimental results indicated that our method outperformed all the others in terms of robustness. The technique has a great potential in real-time patient monitoring and tracking in image-guided radiation therapy.

  6. A Bayesian 3D data fusion and unsupervised joint segmentation approach for stochastic geological modelling using Hidden Markov random fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian

    2016-04-01

    It is generally accepted that 3D geological models inferred from observed data will contain a certain amount of uncertainties. The uncertainty quantification and stochastic sampling methods are essential for gaining the insight into the geological variability of subsurface structures. In the community of deterministic or traditional modelling techniques, classical geo-statistical methods using boreholes (hard data sets) are still most widely accepted although suffering certain drawbacks. Modern geophysical measurements provide us regional data sets in 2D or 3D spaces either directly from sensors or indirectly from inverse problem solving using observed signal (soft data sets). We propose a stochastic modelling framework to extract subsurface heterogeneity from multiple and complementary types of data. In the presented work, subsurface heterogeneity is considered as the "hidden link" among multiple spatial data sets as well as inversion results. Hidden Markov random field models are employed to perform 3D segmentation which is the representation of the "hidden link". Finite Gaussian mixture models are adopted to characterize the statistical parameters of the multiple data sets. The uncertainties are quantified via a Gibbs sampling process under the Bayesian inferential framework. The proposed modelling framework is validated using two numerical examples. The model behavior and convergence are also well examined. It is shown that the presented stochastic modelling framework is a promising tool for the 3D data fusion in the communities of geological modelling and geophysics.

  7. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  8. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  9. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  10. 3D mapping of elastic modulus using shear wave optical micro-elastography

    PubMed Central

    Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping

    2016-01-01

    Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map. PMID:27762276

  11. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  12. VizieR Online Data Catalog: 3D interstellar extinct. map within nearest kpc (Gontcharov, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    The product of the previously constructed 3D maps of stellar reddening (2010AstL...36..584G) and Rv variations (2012AstL...38...12G) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. (1 data file).

  13. 3D DWT-DCT and Logistic MAP Based Robust Watermarking for Medical Volume Data

    PubMed Central

    Li, Jingbing; Liu, Yaoli; Zhong, Jiling

    2014-01-01

    Applying digital watermarking technique for the security protection of medical information systems is a hotspot of research in recent years. In this paper, we present a robust watermarking algorithm for medical volume data using 3D DWT-DCT and Logistic Map. After applying Logistic Map to enhance the security of watermarking, the visual feature vector of medical volume data is obtained using 3D DWT-DCT. Combining the feature vector, the third party concept and Hash function, a zero-watermarking scheme can be achieved. The proposed algorithm can mitigate the illogicality between robustness and invisibility. The experiment results show that the proposed algorithm is robust to common and geometrical attacks. PMID:25852783

  14. Geologic Mapping of Athabasca Valles

    NASA Technical Reports Server (NTRS)

    Keszthelyi, L. P.; Jaeger, W. L.; Tanaka, K.; Hare, T.

    2009-01-01

    We are approaching the end of the third year of mapping the Athabasca Valles region of Mars. The linework has been adjusted in response to new CTX images and we are on schedule to submit the 4 MTM quads (05202, 05207, 10202, 10207) and ac-companying paper by the end of this fiscal year.

  15. 3D Mapping of Glacially-Sculpted Bedrock in Central Park

    NASA Astrophysics Data System (ADS)

    Laderman, L.; Stark, C. P.; Creyts, T. T.

    2014-12-01

    The movement of glaciers and ice sheets through sliding over bedrock depends on the configuration of the subglacial hydrological system. Over time, the glacier erodes the bedrock, which in turn changes water drainage pathways, the overall interaction with the ice, and potentially sliding rates. Drainage can take many forms. At the largest scale, subglacial lakes tens of kilometers in length store water, but the individual pathways are often on the order of meters or smaller. Studies at such a fine scale are only possible by looking at deglaciated beds to infer water drainage. 3D mapping can resolve centimeter scale features and inform studies of the processes that created them. In this survey, Agisoft Photoscan's structure from motion algorithm is used to create a map of Umpire Rock in New York's Central Park from digital photographs. Over 3300 photographs are taken at a separation of roughly half a meter to cover the 1000 square meter survey area. The surface is imaged in separate sections and the resulting point clouds are each aligned with a central section using Photoscan's Align Chunks tool. This process allows additional areas to easily be added to the 3D map. The scale of the final model is accurate to 1mm across the survey area and 3D meshes with a surface resolution of up to 5mm can be created. The distribution of striation directions and sizes on surfaces across the outcrop gives the overall flow direction of the ice and, more locally, illustrates how ice deforms around bedrock features. In addition to striations, we identify cavities and subtle drainage features that are oblique to ice flow. This study demonstrates the relative ease of 3D mapping bedrock outcrops from digital photographs, and indicates the utility of applying this process to more recently deglaciated areas.

  16. Integrated geophysical and geological modelling: insights in the 3D structure and kinematics of the Hercynian Suture Zone in the Champtoceaux area (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Martelet, G.; Calcagno, Ph.; Gumiaux, C.; Truffert, C.; Bitri, A.; Gapais, D.; Brun, J. P.

    2003-04-01

    Using the Editeur Géologique, a software specifically developed for the purpose of 3D geological modelling by the French Geological Survey (BRGM), we model a segment of the Hercynian suture zone of western Europe, in Champtoceaux area (Brittany, western France). The area shows exposures of strongly deformed eclogite-bearing gneisses and micaschists. These units were stacked during collision and exhumed during late Devonian to early Carboniferous times. Regional-scale dextral simple shear accompanied strike-slip movements along the SASZ (South Armorican Shear Zone). It produced a km-scale antiformal structure in the Champtoceaux metamorphic units with a steeply-dipping axial plane and a steeply eastward-plunging axis. Interpretation of the recent Armor2 seismic profile shows that the well-recognized north-dipping early lithological structuration is cross-cut by Carboniferous south-dipping inverse tectonics of crustal extension. In order to precise and extend in 3D the structures interpreted in the seismic profile, we model seven radial gravity profiles throughout Champtoceaux periclinal termination, based on data from the French gravity database. Direct 2D modelling is performed at a crustal scale, based on seismic constraints and geological field observations, as well as density measurements on samples or in drill holes. Input in the Editeur Géologique, the consistency of cross-sections, digitized geological map and structural information (foliation dips) is first checked. From the surface to the Moho, available spatialised 2D information is then interpolated in the whole 3D space using adapted geostatistical analysis. Finally, taking into account densities associated to each modelled geological body, the computation of the 3D gravity effect of the model is compared to the measured Bouguer anomaly, which insures that all complex 3D gravity effects are well taken into account. Results emphasise the usefulness of integrated geological and geophysical 3D modelling

  17. The First Field Geologic Maps on Another Planet

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.

    2016-06-01

    Field geologic maps have been prepared from in situ ("field") observations during the traverse of Mars Exploration Rovers Spirit and Opportunity. These maps are the first tests of field geologic mapping methods at the human scale on another planet.

  18. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life

    PubMed Central

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  19. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life.

    PubMed

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  20. Low Cost and Efficient 3d Indoor Mapping Using Multiple Consumer Rgb-D Cameras

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, B. S.; Song, S.

    2016-06-01

    Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside each

  1. Large-scale Inference Problems in Astronomy: Building a 3D Galactic Dust Map

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas

    2016-03-01

    The term ''Big Data'' has become trite, as modern technology has made data sets of terabytes or even petabytes easy to store. Such data sets provide a sandbox in which to develop new statistical inference techniques that can extract interesting results from increasingly rich (and large) databases. I will give an example from my work on mapping the interstellar dust of the Milky Way. 2D emission-based maps have been used for decades to estimate the reddening and emission from interstellar dust, with applications from CMB foregrounds to surveys of large-scale structure. For studies within the Milky Way, however, the third dimension is required. I will present our work on a 3D dust map based on Pan-STARRS1 and 2MASS over 3/4 of the sky (http://arxiv.org/abs/1507.01005), assess its usefulness relative to other dust maps, and discuss future work. Supported by the NSF.

  2. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L.; Konikow, L.F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  3. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  4. In vivo isotropic 3D diffusion tensor mapping of the rat brain using diffusion-weighted 3D MP-RAGE MRI.

    PubMed

    Numano, Tomokazu; Homma, Kazuhiro; Iwasaki, Nobuaki; Hyodo, Koji; Nitta, Naotaka; Hirose, Takeshi

    2006-04-01

    The purpose of this study was to examine the potential of diffusion-weighted (DW) three-dimensional (3D) MP-RAGE MRI for diffusion-tensor mapping of the rat brain in vivo. A DW-3D-MP-RAGE (3D-DWI) sequence was implemented at 2.0 T using six gradient orientations and a b value of 1000 s/mm2. In this sequence, the preparation sequence with a "90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF" pulse train (DW driven equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. A centric k-space acquisition order was necessary to minimize saturation effects (T1 contamination) from tissues with short relaxation time. The image matrix was 128x128x128 (interpolated from 64x64x64 acquisitions), which resulted in small isotropic DW image data (voxel size: 0.273x0.273x0.273 mm3). Moreover, 3D-DWI-derived maps of the fractional anisotropy (FA), relative anisotropy (RA) and main-diffusion direction were completely free of susceptibility-induced signal losses and geometric distortions. Two well-known commissural fibers, the corpus callosum and anterior commissure, were indicated and shown to be in agreement with the locations of these known stereotaxic atlases. The experiment took 45 min, and shorter times should be possible in clinical application. The 3D-DWI sequence allows for in vivo 3D diffusion-tensor mapping of the rat brain without motion artifacts and susceptibility to distortion. PMID:16563958

  5. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity

  6. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  7. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  8. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  9. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed.

  10. Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-06-01

    RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method

  11. Geological Mapping Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  12. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  13. 2D Maps, 3D Globes, and OGC Web Services Supporting Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gaylord, A. G.; Brady, J.; Cody, R.; Ramirez, G.; Gonzalez, J. C.; Rubio, C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C.

    2008-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services designed to provide support for Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS), 3D globe applications (Google Earth and ArcGIS Explorer), Open Geospatial Consortium (OGC) Web Map Service (WMS) and Keyhole Markup Language (KML) Service , and a prototype 2D ArcGIS Server Web Mapping Application (WMA). Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. OGC standard web services and metadata) and off the shelf technologies. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of all the ARMAP services and includes US research funded by the National Science Foundation, National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration. With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links to specific information and other web sites associated with particular research projects are included. . The ARMAP suite provides tools for users of various levels of technical ability to interact with data by running text based queries, browsing in 2D or 3D, or importing the KML and OGC web services directly into their own GIS applications and virtual globes. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  14. Digital Field Mapping with the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field

  15. A digital geologic map database for the state of Oklahoma

    USGS Publications Warehouse

    Heran, William D.; Green, Gregory N.; Stoeser, Douglas B.

    2003-01-01

    This dataset is a composite of part or all of the 12 1:250,000 scale quadrangles that make up Oklahoma. The result looks like a geologic map of the State of Oklahoma. But it is only an Oklahoma shaped map clipped from the 1:250,000 geologic maps. This is not a new geologic map. No new mapping took place. The geologic information from each quadrangle is available within the composite dataset.

  16. Environmental benefits vs. costs of geologic mapping

    USGS Publications Warehouse

    Bhagwat, S.B.; Berg, R.C.

    1992-01-01

    Boone and Winnebago Counties, Illinois, U.S.A., were selected for this study, required by the Illinois State Senate, because mapping and environmental interpretations were completed there in 1981. Costs of geologic mapping in these counties in 1990 dollars were $290,000. Two estimates of costs of statewide mapping were made, one extrapolated from Boone and Winnebago Counties ($21 million), the other estimated on the basis of differences between the Boone/Winnebago program and proposed mapping program for the State of Illinois ($55 million). Benefits of geologic information come in the form of future avoided costs for environmental cleanup. Only the quantifiable data, available from a few sites, were included. Data collection, based on 55 personal interviews in Boone and Winnebago Counties, were grouped into four cumulative categories with increasing variability. Geologic maps alone cannot account for all avoided costs of future cleanup. Therefore, estimated benefits were reduced by 50, 75, and 90 percent in three scenarios. To account for delays in proper utilization of knowledge gained from a mapping program, a 10-yr delay in benefit realization was assumed. All benefits were converted to 1990 dollars. In benefit category 4, benefit-cost ratios for Boone/Winnebago Counties ranged between 5 and 55. Statewide projection of benefits was based on county areas and an aquifer contamination potential score for each county. Statewide benefit-cost ratio in benefit category 4 ranged from 1.2 to 14 ($21 million mapping costs) and from 0.5 to 5.4 ($55 million mapping costs). ?? 1992 Springer-Verlag New York Inc.

  17. Global Geologic Mapping of Io: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.; Rathbun, J. A.

    2008-01-01

    A new global geologic map of Jupiter's volcanic moon, Io is being prepared, with the focus being on completion of a draft map by July 2008. Here initial results of the mapping are reported: a preliminary distribution of material units in terms of areas and a visual representation. Additionally, the mapping hopes to address some of the problems in Io geology. Thus far it has been discovered that Io's surface is dominated by plains material, thought to consist of Io's silicate crust covered by pyroclastic deposits and lava flows of silicate and sulfur-bearing composition. Many plains areas contain flow fields that cannot be mapped separately due to a lack of resolution or modification by alteration processes. Discrete lava flows and flow fields are the next most abundant unit, with bright (sulfur?) flows in greater abundance than dark (silicate?) flows. The source of most of Io's heat flow, the paterae, are the least abundant unit in terms of areal extent.Upon completion of the draft map for peer review, it will be used to investigate several specific questions about the geological evolution of Io that previously could not be well addressed, including: comparison of the areas versus the heights of Ionian mountains to assess their stability and evolution; correlation and comparison of Galileo Near-Infrared Mapping Spectrometer and Photopolarimeter-Radiometer hot spot locations with the mapped location of dark versus bright lava flows and patera floors to assess any variations in the types of sources for Io's active volcanism; and the creation of a global inventory of the areal coverage of dark and bright laval flows to assess the relative importance of sulfur versus silicate volcanism in resurfacing Io, and to assess whether there are regional concentrations of either style of volcanism that may have implications on interior processes.

  18. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  19. 3D Mapping of calcite and a demonstration of its relevance to permeability evolution in reactive fractures

    NASA Astrophysics Data System (ADS)

    Ellis, Brian R.; Peters, Catherine A.

    2016-09-01

    There is a need to better understand reaction-induced changes in fluid transport in fractured shales, caprocks and reservoirs, especially in the context of emerging energy technologies, including geologic carbon sequestration, unconventional natural gas, and enhanced geothermal systems. We developed a method for 3D calcite mapping in rock specimens. Such information is critical in reactive transport modeling, which relies on information about the locations and accessible surface area of reactive minerals. We focused on calcite because it is a mineral whose dissolution could lead to substantial pathway alteration because of its high solubility, fast reactivity, and abundance in sedimentary rocks. Our approach combines X-ray computed tomography (XCT) and scanning electron microscopy. The method was developed and demonstrated for a fractured limestone core containing about 50% calcite, which was 2.5 cm in diameter and 3.5 cm in length and had been scanned using XCT. The core was subsequently sectioned and energy dispersive X-ray spectroscopy was used to determine elemental signatures for mineral identification and mapping. Back-scattered electron microscopy was used to identify features for co-location. Finally, image analysis resulted in characteristic grayscale intensities of X-ray attenuation that identify calcite. This attenuation mapping ultimately produced a binary segmented 3D image of the spatial distribution of calcite in the entire core. To demonstrate the value of this information, permeability changes were investigated for hypothetical fractures created by eroding calcite from 2D rock surfaces. Fluid flow was simulated using a 2D steady state model. The resulting increases in permeability were profoundly influenced by the degree to which calcite is contiguous along the flow path. If there are bands of less reactive minerals perpendicular to the direction of flow, fracture permeability may be an order of magnitude smaller than when calcite is contiguous

  20. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  1. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  2. Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain.

    PubMed

    Ng, Lydia; Pathak, Sayan D; Kuan, Chihchau; Lau, Chris; Dong, Hongwei; Sodt, Andrew; Dang, Chinh; Avants, Brian; Yushkevich, Paul; Gee, James C; Haynor, David; Lein, Ed; Jones, Allan; Hawrylycz, Mike

    2007-01-01

    Large scale gene expression studies in the mammalian brain offer the promise of understanding the topology, networks and ultimately the function of its complex anatomy, opening previously unexplored avenues in neuroscience. High-throughput methods permit genome-wide searches to discover genes that are uniquely expressed in brain circuits and regions that control behavior. Previous gene expression mapping studies in model organisms have employed situ hybridization (ISH), a technique that uses labeled nucleic acid probes to bind to specific mRNA transcripts in tissue sections. A key requirement for this effort is the development of fast and robust algorithms for anatomically mapping and quantifying gene expression for ISH. We describe a neuroinformatics pipeline for automatically mapping expression profiles of ISH data and its use to produce the first genomic scale 3-D mapping of gene expression in a mammalian brain. The pipeline is fully automated and adaptable to other organisms and tissues. Our automated study of over 20,000 genes indicates that at least 78.8 percent are expressed at some level in the adult C56BL/6J mouse brain. In addition to providing a platform for genomic scale search, high-resolution images and visualization tools for expression analysis are available at the Allen Brain Atlas web site (http://www.brain-map.org).

  3. Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.

    2015-12-01

    We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.

  4. Digital Geological Mapping for Earth Science Students

    NASA Astrophysics Data System (ADS)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  5. Whole-brain quantitative mapping of metabolites using short echo 3D-proton- MRSI

    PubMed Central

    Lecocq, Angèle; Le Fur, Yann; Maudsley, Andrew A; Le Troter, Arnaud; Sheriff, Sulaiman; Sabati, Mohamad; Donnadieu, Maxime; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Guye, Maxime; Ranjeva, Jean-Philippe

    2014-01-01

    Purpose To improve the extent over which whole brain quantitative 3D-MRSI maps can be obtained and be used to explore brain metabolism in a population of healthy volunteers. Materials and Methods Two short TE (20 ms) acquisitions of 3D Echo Planar Spectroscopic Imaging at two orientations, one in the anterior commissure – posterior commissure (AC-PC) plane and the second tilted in the AC-PC +15° plane were obtained at 3T in a group of ten healthy volunteers. B1+, B1−, and B0 correction procedures and normalization of metabolite signals with quantitative water proton density measurements were performed. A combination of the two spatially normalized 3D-MRSI, using a weighted mean based on the pixel wise standard deviation metabolic maps of each orientation obtained from the whole group, provided metabolite maps for each subject allowing regional metabolic profiles of all parcels of the automated anatomical labeling (AAL) atlas to be obtained. Results The combined metabolite maps derived from the two acquisitions reduced the regional inter-subject variance. The numbers of AAL regions showing NAA SD/Mean ratios lower than 30% increased from 17 in the AC-PC orientation and 41 in the AC-PC+15° orientation, to a value of 76 regions out of 116 for the combined NAA maps. Quantitatively, regional differences in absolute metabolite concentrations (mM) over the whole brain were depicted such as in the GM of frontal lobes (cNAA=10.03+1.71, cCho=1.78±0.55, cCr=7.29±1.69; cmIns=5.30±2.67) and in cerebellum (cNAA=5.28±1.77, cCho=1.60±0.41, cCr=6.95±2.15; cmIns=3.60±0.74). Conclusion A double-angulation acquisition enables improved metabolic characterization over a wide volume of the brain. PMID:25431032

  6. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  7. Mapping 3D Large-Scale Structure at z ˜2 with Lyman-α Forest Tomographic Mapping

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan; Hennawi, J. F.; White, M.; Croft, R. A.; Prochaska, J. X.; Schlegel, D. J.; Suzuki, N.; Kneib, J.; Bailey, S. J.; Spergel, D. N.; Rix, H.; Strauss, M. A.

    2014-01-01

    The Lyman-α (Lyα) forest absorption at z>2 traces the underlying dark-matter distribution, and with a sufficient density of background sightlines can be used to create 3D tomographic maps of large-scale structure. Since the useful Lyα forest in each sightline spans ˜400-500 h-1Mpc, Lyα forest tomography can efficiently map out large-scale structure at z˜2. The Cosmic Lyman-Alpha Program for the Tomographic Reconstruction of Absorption Probes (CLAPTRAP) will be the first survey to attempt this technique. We aim to obtain spectra for a background grid of faint quasars and bright LBGs at 23D map with similar 3 h-1Mpc resolution to be reconstructed from the data. In a recent paper, we have found that spectra with S/N ˜ 4 per Å are sufficient to make excellent-quality tomographic maps that clearly trace the underlying dark-matter distribution at overdensities of order unity. This requires integrations of several hours on moderate-resolution spectrographs mounted on existing 8-10m telescopes, such as LRIS on the Keck-I telescope and VIMOS on the Very Large Telescopes. We aim to observe ˜1500-2000 background sources over 1 sq deg of the COSMOS field with Lyα forest coverage over 2.0map out a total comoving volume of ˜106h-3Mpc3, equivalent to the zCOSMOS and DEEP2 galaxy redshift maps out to z˜1. The total time requirement is 16 nights on either VLT-VIMOS or Keck-LRIS. The resulting tomographic maps will be the first 3D maps of large-scale structure at z>1. In conjunction with the rich multi-wavelength data from the COSMOS survey, these maps will facilitate the study of galaxies in the context of the large-scale environment, reveal the topology of large-scale structure at high-redshifts, and allow the direct detection of galaxy protoclusters at the intersections of the cosmic web. The

  8. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  9. MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures.

    PubMed

    Niknafs, Noushin; Kim, Dewey; Kim, Ryangguk; Diekhans, Mark; Ryan, Michael; Stenson, Peter D; Cooper, David N; Karchin, Rachel

    2013-11-01

    Mutation position imaging toolbox (MuPIT) interactive is a browser-based application for single-nucleotide variants (SNVs), which automatically maps the genomic coordinates of SNVs onto the coordinates of available three-dimensional (3D) protein structures. The application is designed for interactive browser-based visualization of the putative functional relevance of SNVs by biologists who are not necessarily experts either in bioinformatics or protein structure. Users may submit batches of several thousand SNVs and review all protein structures that cover the SNVs, including available functional annotations such as binding sites, mutagenesis experiments, and common polymorphisms. Multiple SNVs may be mapped onto each structure, enabling 3D visualization of SNV clusters and their relationship to functionally annotated positions. We illustrate the utility of MuPIT interactive in rationalizing the impact of selected polymorphisms in the PharmGKB database, somatic mutations identified in the Cancer Genome Atlas study of invasive breast carcinomas, and rare variants identified in the exome sequencing project. MuPIT interactive is freely available for non-profit use at http://mupit.icm.jhu.edu .

  10. Improved Uav-Borne 3d Mapping by Fusing Optical and Laserscanner Data

    NASA Astrophysics Data System (ADS)

    Jutzi, B.; Weinmann, M.; Meidow, J.

    2013-08-01

    In this paper, a new method for fusing optical and laserscanner data is presented for improved UAV-borne 3D mapping. We propose to equip an unmanned aerial vehicle (UAV) with a small platform which includes two sensors: a standard low-cost digital camera and a lightweight Hokuyo UTM-30LX-EW laserscanning device (210 g without cable). Initially, a calibration is carried out for the utilized devices. This involves a geometric camera calibration and the estimation of the position and orientation offset between the two sensors by lever-arm and bore-sight calibration. Subsequently, a feature tracking is performed through the image sequence by considering extracted interest points as well as the projected 3D laser points. These 2D results are fused with the measured laser distances and fed into a bundle adjustment in order to obtain a Simultaneous Localization and Mapping (SLAM). It is demonstrated that an improvement in terms of precision for the pose estimation is derived by fusing optical and laserscanner data.

  11. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  12. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  13. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  14. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  15. New 3D seismicity maps using chromo-stereoscopy with two alternative freewares

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.

    2011-12-01

    Seismicity maps play a key role in an introduction of geosciences studies or outreach programs. Various techniques are used in order to show earthquakes in a three dimensional field. To use "chromo-stereoscopy" is our simple and easier-making solution. The Chroma Depth 3D Glasses are employed for this purpose. The glasses consist of two transparent blazed grating films covered with a paper holder and cost a little (1 US$). Looking through these glasses, the colored chart turns into three dimensional perspective due to the mechanism that the color codes make a depth dimension with dispersion. We use two complementary freewares to make maps, the GMT (Generic Mapping Tools, Wessel and Smith.1988) and the POV-Ray (Persistence of Vision Pty. Ltd. 2004). The two softwares have their own advantages; the GMT is specialized for map making with simple scripts, while the POV-Ray produces realistic 3D rendering images with more complicated scripts. The earthquakes are plotted with the rainbow color codes depending on their depths in a black background as printed or PC images. Therefore, the red colored shallow earthquakes are float in front and blue colored ones sink deeper. This effect is so amazing that the students who first wear these glasses are strongly moved and fascinated with this simple mechanism. The data used here are from JMA seismicity catalogue and USGS (ANSS) catalogue. The POV-Ray version needs coastline data, so we got them from the Coastline Extractor (NGDC) web site. Also, the POR-Ray has no function to draw lines in three dimensions, so we had to make some trials for showing them in relief. The main target of our map is "the Wadati-Beniof zone", in which the sub-ducting oceanic plate surface is fringed by deeper earthquakes colored yellow, green to blue. The active volcanic regions such as the Hawaii islands or the active fault regions such as the San Andreas Fault are also effective targets of our method. However, since their shallow complicated seismic

  16. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  17. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  18. Simulated square kilometre array maps from Galactic 3D-emission models

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2009-11-01

    Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths

  19. 3D geological modeling of the transboundary Berzdorf-Radomierzyce basin in Upper Lusatia (Germany/Poland)

    NASA Astrophysics Data System (ADS)

    Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus

    2016-08-01

    The management of natural resources has to follow the principles of sustainable development. Therefore, before starting new mining activities, it should be checked, whether existing deposits have been completely exploited. In this study, a three-dimensional (3D) cross-border geologic model was created to generalize the existing data of the Neogene Berzdorf-Radomierzyce basin, located in Upper Lusatia on the Polish-German border south of the city of Görlitz-Zgorzelec. The model based on boreholes and cross sections of abandoned and planned lignite fields was extended to the Bernstadt and Neisse-Ręczyn Graben, an important tectonic structure at the southern rim of the basin. The partly detailed stratigraphy of Neogene sequences was combined to five stratigraphic units, considering the lithological variations and the main tectonic structures. The model was used to check the ability of a further utilization of the Bernstadt and Neisse-Ręczyn Graben, containing lignite deposits. Moreover, it will serve as a basis for the construction of a 3D cross-border groundwater model, to investigate the groundwater flow and transport in the Miocene and Quaternary aquifer systems. The large amount of data and compatibility with other software favored the application of the 3D geo-modeling software Paradigm GOCAD. The results demonstrate a very good fit between model and real geological boundaries. This is particularly evident by matching the modeled surfaces to the implemented geological cross sections. The created model can be used for planning of full-scale mining operations in the eastern part of the basin (Radomierzyce).

  20. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  1. Geologic Mapping of Ascraeus Mons, Mars

    NASA Astrophysics Data System (ADS)

    Mohr, K. J.; Williams, D. A.

    2015-12-01

    Ascraeus Mons is one of the three large shield volcanoes in the Tharsis Montes province on Mars. We are conducting geologic mapping of Ascraeus in ArcMap 10.3 at 1:1,000,000 scale using a CTX dataset as a primary basemap. The CTX dataset is supplemented by HRSC, HiRISE, THEMIS, and MOLA data. Our objective is to determine the areal extent, distribution, and age relationships of different lava flow morphologies on the main flank, rift apron, and associated small-vent field of Ascraeus Mons to: (1) identify and understand changes in effusive style across the volcano, and (2) provide insight into martian magma production rates. Our mapping, thus far, at a CTX resolution (~6 m/pixel) shows a variety of effusive styles on the flanks, rift aprons, and plains on and around Ascraeus Mons. Our plan to address (1) is to create a geologic map of Ascraeus Mons. We will use this map to determine where and how different lava flows were emplaced on the flanks and surrounding plains of Ascraeus Mons. We will determine relative ages of units using the emplacement of different geological units, impacts, tectonics, and erosion via superposition relations. We will relate eruptive styles by comparing how different flows are oriented around Ascraeus Mons. Our plan for (2) is to use CTX, MOLA and HRSC datasets to determine volumes of the emplaced lava flows. The volumes will be used to calculate yield strengths and viscosities of each flow. The yield strengths and viscosities will be used to calculate magma production rates. These will prove important to better understand the history and creation of Ascraeus Mons and other volcanoes on other planetary bodies.

  2. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  3. 3d-modelling workflows for trans-nationally shared geological models - first approaches from the project GeoMol

    NASA Astrophysics Data System (ADS)

    Rupf, Isabel

    2013-04-01

    To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the

  4. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  5. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-10-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  6. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  7. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  8. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  9. D Geological Outcrop Characterization: Automatic Detection of 3d Planes (azimuth and Dip) Using LiDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Anders, K.; Hämmerle, M.; Miernik, G.; Drews, T.; Escalona, A.; Townsend, C.; Höfle, B.

    2016-06-01

    Terrestrial laser scanning constitutes a powerful method in spatial information data acquisition and allows for geological outcrops to be captured with high resolution and accuracy. A crucial aspect for numerous geologic applications is the extraction of rock surface orientations from the data. This paper focuses on the detection of planes in rock surface data by applying a segmentation algorithm directly to a 3D point cloud. Its performance is assessed considering (1) reduced spatial resolution of data and (2) smoothing in the course of data pre-processing. The methodology is tested on simulations of progressively reduced spatial resolution defined by varying point cloud density. Smoothing of the point cloud data is implemented by modifying the neighborhood criteria during normals estima-tion. The considerable alteration of resulting planes emphasizes the influence of smoothing on the plane detection prior to the actual segmentation. Therefore, the parameter needs to be set in accordance with individual purposes and respective scales of studies. Fur-thermore, it is concluded that the quality of segmentation results does not decline even when the data volume is significantly reduced down to 10%. The azimuth and dip values of individual segments are determined for planes fit to the points belonging to one segment. Based on these results, azimuth and dip as well as strike character of the surface planes in the outcrop are assessed. Thereby, this paper contributes to a fully automatic and straightforward workflow for a comprehensive geometric description of outcrops in 3D.

  10. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron tomography in combination with electron energy-loss spectroscopy (EELS) experiments and simulations was used to unravel the interplay between structure and plasmonic properties of a silver nanocuboid dimer. The precise 3D geometry of the particles fabricated by means of electron beam lithography was reconstructed through electron tomography, and the full three-dimensional information was used as an input for simulations of energy-loss spectra and plasmon resonance maps. Excellent agreement between experiment and theory was found throughout, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic nanostructures. PMID:26495933

  11. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  12. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

    PubMed

    Rao, Suhas S P; Huntley, Miriam H; Durand, Neva C; Stamenova, Elena K; Bochkov, Ivan D; Robinson, James T; Sanborn, Adrian L; Machol, Ido; Omer, Arina D; Lander, Eric S; Aiden, Erez Lieberman

    2014-12-18

    We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats. PMID:25497547

  13. A standard model for storage of geological map data

    NASA Astrophysics Data System (ADS)

    Bain, K. A.; Giles, J. R. A.

    1997-07-01

    The information presented on a geological map may be represented by a logical model in the form of an entity-relationship diagram. This must show the links between the three-dimensional geology and the two-dimensional expression of that geology which is the map. The principles behind the model created for the British Geological Survey's Digital Map Production System are outlined, and the model's main features explained.

  14. 3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin

    2016-04-01

    Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites

  15. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  16. The Mutual Effect of Reciprocally Moving Geokhod and Geological Environment Studied by the Discrete Element Method in Software PFC3D 5.00

    NASA Astrophysics Data System (ADS)

    Timofeev, V. Yu.; Kust, T. S.; Dronov, A. A.; Beloglazov, I. I.; Ikonnikov, D. A.

    2016-08-01

    A numerical experiment procedure of geokhod traverse in the geological environment, based on software PFC3D 5.00 is presented in the paper; the interpretation of numerical experiment results is provided.

  17. Impact Craters on Mars: Natural 3D Exploration Probes of Geological Evolution

    NASA Technical Reports Server (NTRS)

    Garvin, James B.

    2005-01-01

    Introduction: The population of impact craters preserved on the surface of Mars offers fundamental constraints on the three- dimensional mechanical characteristics of the martian crust, its volatile abundance, and on the styles of erosion that have operated during essentially all epochs of martian geological history. On the basis of the present- day wealth of morphologic and geometric observations of impact landforms on Mars [ 1-31, an emerging understanding of the three-dimensional physical properties of the martian uppermost crust in space and time is at hand. In this summary, the current basis of understanding of the relatively non- degraded population of impact landforms on Mars is reviewed, and new Mars Global Surveyor (MGS)-based (MOLA) measurements of global geometric properties are summarized in the context of upcoming observations by Mars Reconnaissance Orbiter (MRO).

  18. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  19. True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information.

  20. Building a 3D geological near surface model from borehole and laboratory data

    NASA Astrophysics Data System (ADS)

    Sala, P.; Tisato, N.; Pfiffner, O. A.; Frehner, M.

    2012-04-01

    The interpretation of active seismic survey data usually results in a subsurface P-wave velocity model. Such models commonly do not include the near surface, but end a few hundreds of meters beneath the Earth's surface. However, near surface effects, such as low-velocity zones or topography can influence the seismic signal significantly. Therefore, it is important to extend the P-wave velocity model all the way to the Earth's surface. As a test site of this study, we use the underground gas storage facility in Chémery (France), located at the south-western border of the Paris Basin. Velocities and lithological data of the shallow formations can be found in a public dataset, which collects data of a large number of short boreholes (BRGM online catalog: infoterre.brgm.fr/viewer). From the lithological data a structural model defined by surfaces gridded from well markers and faults derived from the analysis of these surfaces, is generated. The generation of the structural model comprised some major challenges, mainly because the borehole data represent 1D vertical pinpoints into the subsurface, rather than 2D sections as it is the case for most seismic surveys. This complicated the cross-correlation between the boreholes and the interpolation of the lithological formations in the 3D space. After the structural model has been generated, the velocity logs were upscaled to the model and interpolated to generate a near-surface P wave velocity model. To better constrain the velocity model, laboratory measurements of P-wave velocity were conducted. We collected 24 hand specimens from outcrops, from which we drilled core plugs. The sampled lithologies are 6 different sedimentary rock types, mostly calcarenites. The measurements were conducted employing the pulse transmission method for compression (Vp) and shear (Vs) waves in dry and fully water saturated conditions. Density and porosity were measured with two different methods: (1) with a helium pycnometer, and (2

  1. FeatureMap3D--a tool to map protein features and sequence conservation onto homologous structures in the PDB.

    PubMed

    Wernersson, Rasmus; Rapacki, Kristoffer; Staerfeldt, Hans-Henrik; Sackett, Peter Wad; Mølgaard, Anne

    2006-07-01

    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB) for structures of homologous proteins. The results are displayed both as an annotated sequence alignment, where the user-provided annotations as well as the sequence conservation between the query and the target sequence are displayed, and also as a publication-quality image of the 3D protein structure with the selected features and sequence conservation enhanced. The results are also returned in a readily parsable text format as well as a PyMol (http://pymol.sourceforge.net/) script file, which allows the user to easily modify the protein structure image to suit a specific purpose. FeatureMap3D can also be used without sequence annotation, to evaluate the quality of the alignment of the input sequences to the most homologous structures in the PDB, through the sequence conservation colored 3D structure visualization tool. FeatureMap3D is available at: http://www.cbs.dtu.dk/services/FeatureMap3D/. PMID:16845115

  2. Observed Human Errors in Interpreting 3D visualizations: implications for Teaching Students how to Comprehend Geological Block Diagrams

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Pirl, E.; Chiang, J.; Tremaine, M.

    2009-12-01

    Block diagrams are commonly used to communicate three dimensional geological structures and other phenomena relevant to geological science (e.g., water bodies in the ocean). However, several recent studies have suggested that these 3D visualizations create difficulties for individuals with low to moderate spatial abilities. We have therefore initiated a series of studies to understand what it is about the 3D structures that make them so difficult for some people and also to determine if we can improve people’s understanding of these structures through web-based training not related to geology or other underlying information. Our first study examined what mistakes subjects made in a set of 3D block diagrams designed to represent progressively more difficult internal structures. Each block was shown bisected by a plane either perpendicular or at an angle to the block sides. Five low to medium spatial subjects were asked to draw the features that would appear on the bisecting plane. They were asked to talk aloud as they solved the problem. Each session was videotaped. Using the time it took subjects to solve the problems, the subject verbalizations of their problem solving and the drawings that were found to be in error, we have been able to find common patterns in the difficulties the subjects had with the diagrams. We have used these patterns to generate a set of strategies the subjects used in solving the problems. From these strategies, we are developing methods of teaching. A problem found in earlier work on geology structures was not observed in our study, that is, one of subjects failing to recognize the 2D representation of the block as 3D and drawing the cross-section as a combined version of the visible faces of the object. We attribute this to our experiment introduction, suggesting that even this simple training needs to be carried out with students encountering 3D block diagrams. Other problems subjects had included difficulties in perceptually

  3. Conflation and integration of archived geologic maps and associated uncertainties

    USGS Publications Warehouse

    Shoberg, Thomas G.

    2016-01-01

    Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.

  4. Automated 3D IR defect mapping system for CZT wafer and tile inspection and characterization

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Heidari, Esmaeil; Abramovich, Gil; Nafis, Christopher; Butt, Amer; Czechowski, Joseph; Harding, Kevin; Tkaczyk, J. Eric

    2011-08-01

    In this paper, the design and evaluation of a 3D stereo, near infrared (IR), defect mapping system for CZT inspection is described. This system provides rapid acquisition and data analysis that result in detailed mapping of CZT crystal defects across the area of wafers up to 100 millimeter diameter and through thicknesses of up to 20 millimeter. In this paper, system characterization has been performed including a close evaluation of the bright field and dark field illumination configurations for both wafer-scale and tile-scale inspection. A comparison of microscope image and IR image for the same sample is performed. As a result, the IR inspection system has successfully demonstrated the capability of detecting and localizing inclusions within minutes for a whole CZT wafer. Important information is provided for selecting defect free areas out of a wafer and thereby ensuring the quality of the tile. This system would support the CZT wafer dicing and assembly techniques that enable the economical production of CZT detectors. This capability can improve the yield and reduce the cost of the thick detector devices that are rarely produced today.

  5. MuPIT Interactive: Webserver for mapping variant positions to annotated, interactive 3D structures

    PubMed Central

    Niknafs, Noushin; Kim, Dewey; Kim, Ryang Guk; Diekhans, Mark; Ryan, Michael; Stenson, Peter D.; Cooper, David N.; Karchin, Rachel

    2013-01-01

    Mutation Position Imaging Toolbox (MuPIT) Interactive is a browser-based application for single nucleotide variants (SNVs), which automatically maps the genomic coordinates of SNVs onto the coordinates of available three-dimensional protein structures. The application is designed for interactive browser-based visualization of the putative functional relevance of SNVs by biologists who are not necessarily experts either in bioinformatics or protein structure. Users may submit batches of several thousand SNVs and review all protein structures that cover the SNVs, including available functional annotations such as binding sites, mutagenesis experiments, and common polymorphisms. Multiple SNVs may be mapped onto each structure, enabling 3D visualization of SNV clusters and their relationship to functionally annotated positions. We illustrate the utility of MuPIT Interactive in rationalizing the impact of selected polymorphisms in the PharmGKB database, somatic mutations identified in the Cancer Genome Atlas study of invasive breast carcinomas, and rare variants identified in the Exome Sequencing Project. MuPIT Interactive is freely available for non-profit use at http://mupit.icm.jhu.edu. PMID:23793516

  6. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing.

    PubMed

    Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E; Pilleul, Frank; Beuf, Olivier

    2013-01-01

    An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

  7. Empirical assessment of the uncertainty in a 3-D geological framework model

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Mathers, Steve; Thorpe, Steve; Arkley, Sarah; Morgan, Dave; Lawrence, Dave

    2013-04-01

    Three-dimensional framework models are the state of the art to present geologists' understanding of a region in a form that can be used to support planning and decision making. However, there is little information on the uncertainty of such framework models. We report a statistically-designed experiment in which each of five geologists independently produced a framework model of a single region in the east of England. Each geologist used a unique set of borehole observations from which to make their model. Each set was made by withholding five unique validation boreholes from the set of all available boreholes. The models were then compared with the validation observations. Between-modeller differences were not a significant source of variation in framework model error. There was no evidence of systematic bias in the modelled depth for any unit, but there was a statistically significant but small tendency for the mean error to increase with depth below the surface. The confidence interval for the predicted height of a surface at a point ranged from ±5.6 m to ±6.4 m. There was some evidence that the variance of the model error increased with depth, but no evidence that it differed between modellers or varied with the number of close-neighbouring boreholes or distance to the outcrop. These results are specific to the area that has been modelled, with relatively simple geology, and they must also reflect the relatively dense set of boreholes available for modelling. The method should be applied under a range of conditions to derive more general conclusions, and benchmark quality measures for three-dimensional models of contrasting terranes.

  8. Interactive editing of 3D geological structures and tectonic history sketching via a rigid element method

    NASA Astrophysics Data System (ADS)

    Laurent, Gautier; Caumon, Guillaume; Jessell, Mark

    2015-01-01

    Numerical models of geological structures are generally built with a geometrical approach, which lacks an explicit representation of the deformation history and may lead to incompatible structures. We advocate that the deformation history should be investigated and represented from the very first steps of the modelling process, provided that a series of rapid, interactive or automated, deformation tools are available for local editing, forward modelling and restoration. In this paper, we define the specifications of such tools and emphasise the need for rapidity and robustness. We briefly review the different applications of deformation tools in geomodelling and the existing deformation algorithms. We select a deformation algorithm based on rigid elements, first presented in the Computer Graphics community, which we refer to as Reed. It is able to rapidly deform any kind of geometrical object, including points, lines or volumes, with an approximated mechanical behaviour. The objects to be deformed are embedded in rigid cells whose displacement is optimised by minimising a global cost function with respect to displacement boundary conditions. This cost function measures the difference in displacement between neighbouring elements. The embedded objects are then deformed based on their original position with respect to the rigid elements. We present the basis of our implementation of this algorithm and highlight its ability to fulfil the specifications we defined. Its application to geomodelling specific problems is illustrated through the construction of a synthetic structural model of multiply deformed layers with a forward modelling approach. A special boundary condition adapted to restore large folds is also presented and applied to the large anticline of Han-sur-Lesse, Belgium, which demonstrates the ability of this method to efficiently perform a volumetric restoration without global projections.

  9. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  10. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    NASA Astrophysics Data System (ADS)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  11. Modeling geologic history with balanced paleogeographic maps

    SciTech Connect

    Shaw, C.A.; Hay, W.W.

    1987-05-01

    Using the principles of uniformitarianism, mass balance, and sedimentary cycling, an erosion-sedimentation-tectonic model has been developed to produce paleogeographic maps to describe the geologic history of the northwest Gulf of Mexico and the Western Interior source areas. The initial inputs are (1) boundaries of the sedimentary system (source and sink); (2) present-day average elevation of 1/sup 0/ squares within the boundaries; and (3) a stratigraphic column for each 1/sup 0/ square. Paleotopography is calculated by an iterative process involving replacement of sediment to the source area and calculation of erosion and uplift rates. The maps are considered properly balanced when erosion of the predicted paleotopography over a given time interval yields the correct sediment volumes in the right places. As far back as the latest Cretaceous, the paleogeography predicted by the model is remarkably close to that suggested by other studies even though no external information on tectonics is supplied. For paleogeographies older than Campanian, input on tectonics outside the boundaries is required to generate realistic maps. The balanced paleogeographic maps are a new tool useful for exploring many aspects of basin development, including thermal history.

  12. Developed Design for Humeral Head Replacement Using 3D Surface Mapping

    NASA Astrophysics Data System (ADS)

    Salah, H. R.

    2014-12-01

    Assessment of dimensional and geometrical data on the humeral head replacement (HHR) objects is essential for solving the relevant designing problems in the physics of reverse engineering (RE). In this work, 2D-assessment for human humerus was performed using the computed tomography (CT) technique within the RE plan, after which the 2D images of humeral objects were converted into 3D images. The conversion was successful and indicated a clear difference in the 2D and 3D estimates of sizes and geometry of the humerus. The authors have analyzed and confirmed experimentally the statistical information on the relevant anatomical objects. The results of finite-element simulation of the compressive stresses affecting the geometry of 3D surface mapping were analyzed using SolidWorks software. For developing the biomechanical design of an HHR object suitable biomaterials were selected, and different metal-based biomaterials are discussed as applied at various loads. New methodology is presented for the size estimation of humeral head - both anatomical and artificial - in 3D-shape. A detailed interpretation is given for the results of CT D-measurements. Izmēru un ģeometrisko datu novērtējums, kas attiecas uz pleca kaula galviņas nomaiņas (PKGN) objektiem, nepieciešams, lai risinātu virkni reversīvās inženierijas (RI) problēmu. Šajā darbā cilvēka pleca kaula galviņas divdimensiju novērtējums tika veikts ar datortomogrāfijas palīdzību (RI) ietvaros, un pēc tam objekta divdimensiju attēlojums tika pārveidots trīsdimensiju. Pārveidojums bija sekmīgs, parādot pleca kaula galviņas izmēru un ģeometrijas atšķirības starp 2D un 3D novērtējumiem. Autori izanalizēja un eksperimentāli apstiprināja statistisko informāciju pēc dotā veida anatomiskiem objektiem. Saspiešanas sasprindzinājumi, kuri ietekmē trīsdimensiju virsmas attēlojuma ģeometriju, tika analizēti ar gala-elementu simulācijas metodi, lietojot programmu Solid

  13. Selection of colors and patterns for geologic maps of the U.S. Geological Survey

    USGS Publications Warehouse

    ,

    2005-01-01

    U.S. Geological Survey (USGS) color and pattern standards and conventions for geologic maps have evolved since the USGS published its first set of standards in 1881. Since that time, USGS personnel have continuously updated and revised the standards in response to the need to show increasingly complex geologic map data and in response to changing technology. The color and pattern standards and conventions contained in this book enable geologists, cartographers, and editors to produce geologic maps that have consistent geologic-age color schemes and patterns. Such consistency enables geologists and other users of geologic maps to obtain a wealth of geologic information at a glance and to produce maps that can easily be used and compared to other published maps that follow the color and pattern standards and conventions.

  14. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface

    NASA Astrophysics Data System (ADS)

    Negri, S.; Leucci, G.; Mazzone, F.

    2008-09-01

    Muro Leccese (Lecce) contains one the most important Messapian archaeological sites in southern Italy. The archaeological interest of the site arises from the discovery of the remains of Messapian walls, tombs, roads, etc. (4th-2nd centuries BC) in the neighbourhood. The archaeological remains were found at about 0.3 m depth. At present the site belongs to the municipality, which intends to build a new sewer network through it. The risk of destroying potentially interesting ancient archaeological structures during the works prompted an archaeological survey of the area. The relatively large dimensions of the area (almost 10,000 m 2), together with time and cost constraints, made it necessary to use geophysical investigations as a faster means to ascertain the presence of archaeological items. Since the most important targets were expected to be located at a soil depth of about 0.3 m, a ground-penetrating radar (GPR) survey was carried out in an area located near the archaeological excavations. Unfortunately the geological complexity did not allow an easy interpretation of the GPR data. Therefore a 3D electrical resistivity tomography (ERT) scan was conducted in order to resolve these interpretation problems. A three-way comparison of the results of the dense ERT measurements parallel to the x axis, the results of the measurements parallel to the y axis and the combined results was performed. Subsequently the synthetic model approach was used to provide a better characterization of the resistivity anomalies visible on the ERT field data. The 3D inversion results clearly illustrate the capability to resolve in view of quality 3D structures of archaeological interest. According to the presented data the inversion models along one direction ( x or y) seems to be adequate in reconstructing the subsurface structures. Naturally field data produce good quality reconstructions of the archaeological features only if the x-line and y-line measurements are considered together

  15. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  16. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  17. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  18. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  19. Massive sulfide exploration models of the Iberian Pyrite Belt Neves Corvo mine region, based in a 3D geological, geophysical and geochemical ProMine study

    NASA Astrophysics Data System (ADS)

    Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Mário Castelo-Branco, José; Granado, Isabel; Carvalho, João; João Baptista, Maria; Represas, Patrícia; Pereira, Zélia; Oliveira, Tomás; Araujo, Vitor

    2013-04-01

    superficial directional derivatives to obtain the various directions of the late-Variscan faults, the main overthrusts and lithological structures. iv) - Detailed palynological sediment dating; v) - A seismic survey was conducted in the vicinities of the Neves Corvo mine totalling 82 km of profiles with target depth of over 10 km. A 3D regional model has been constructed for the selected IPB area using GoCAD, integrating the most critical information of the follow geological units: the lower unit BAFG Mértola Formation, the VSC, the Neves Corvo ores and the PQG. It incorporated surface regional geological maps, 168 drill-hole geological logs throughout the area, structural and tectonic data, former seismic sections, where available, and a digital terrain model. Chemical data from 42 selected drill-holes in order to outline in 3D the Cu distribution in the area. The results have already indicated new important guidelines for VHMS exploration and new regional correlations with the Neves Corvo mining area. The 3D modelling study was essential to the detail understanding of the complex IPB geological structures observed in the south of Portugal.

  20. Testing geoscience data visualization systems for geological mapping and training

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed

  1. Hot deformation characterization of duplex low-density steel through 3D processing map development

    SciTech Connect

    Mohamadizadeh, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Mehtonen, S.; Porter, D.

    2015-09-15

    The high temperature deformation behavior of duplex low-density Fe–18Mn–8Al–0.8C steel was investigated at temperatures in the range of 600–1000 °C. The primary constitutive analysis indicated that the Zener–Hollomon parameter, which represents the coupled effects of temperature and strain rate, significantly varies with the amount of deformation. Accordingly, the 3D processing maps were developed considering the effect of strain and were used to determine the safe and unsafe deformation conditions in association with the microstructural evolution. The deformation at efficiency domain I (900–1100 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}) was found to be safe at different strains due to the occurrence of dynamic recrystallization in austenite. The safe efficiency domain II (700–900 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1}), which appeared at logarithmic strain of 0.4, was characterized by deformation induced ferrite formation. Scanning electron microscopy revealed that the microband formation and crack initiation at ferrite\\austenite interphases were the main causes of deformation instability at 600–800 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}. The degree of instability was found to decrease by increasing the strain due to the uniformity of microbanded structure obtained at higher strains. The shear band formation at 900–1100 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1} was verified by electron backscattered diffraction. The local dynamic recrystallization of austenite and the deformation induced ferrite formation were observed within shear-banded regions as the results of flow localization. - Graphical abstract: Display Omitted - Highlights: • The 3D processing map is developed for duplex low-density Fe–Mn–Al–C steel. • The efficiency domains shrink, expand or appear with increasing strain. • The occurrence of DRX and DIFF increases the power efficiency. • Crack initiation

  2. Geologic Mapping of the Meridiani Region, Mars

    NASA Technical Reports Server (NTRS)

    Hynek, B. M.

    2008-01-01

    The light toned bedrock that has been observed at the Mars Exploration Rover Opportunity landing site is an upper layer in a sequence >600 m thick in places. These outcrops contain mineral and textural signatures that require interaction of, and possibly formation from, water. Many distinct layers are visible in the remote sensing data (e.g. Figure 1) and no work has ever characterized the full set of these materials that cover an area >3 105 km2 spanning 20 of longitude. Thus, whatever water-related process( es?) altered, and possibly formed, the rocks at the Opportunity landing site extended over a vast region of Mars. Yet many questions remain to be answered, such as: (1) in what capacity did water form and alter the deposits?, (2) what are the temporal and spatial relations with other major events known from ancient Mars?, and (3) would this type of environment have been conducive to the development of life? To address these questions we are completing a detailed geologic, stratigraphic, and thermophysical properties study of this widespread terrain. Specifically, we are drafting a 1:2M-scale geological map covering the full extent of these water-related deposits. In tandem with the mapping, Hynek and Phillips [1] have conducted a preliminary stratigraphic analysis of the stack of materials. After mapping is complete, we will study the thermophysical properties of the varied layers to derive possible compositional information of the materials. These tasks serve several purposes including gaining an understanding of the complex nature of these materials, their potential source region(s), and their timing of emplacement. All of these efforts are necessary to place the observations by the Opportunity Rover in a broader context and prepare for potential future landed missions to the region. Understanding the large-scale paleohydrology of Mars is central to NASA s goals and vital for determining if life ever arose on the planet.

  3. A drill hole query algorithm for extracting lithostratigraphic contacts in support of 3D geologic modelling in crystalline basement

    NASA Astrophysics Data System (ADS)

    Schetselaar, Ernst M.; Lemieux, David

    2012-07-01

    The identification and extraction of lithostratigraphic contacts in crystalline basement for constraining 3D geologic models is commonly hampered by the sparseness of diagnostic lithostratigraphic features and the limited availability of geophysical well log data. This paper presents a query algorithm that, instead of using geophysical well log measurements, extracts lithostratigraphic contacts by exploiting diagnostic patterns of lithology-encoded intervals, recurrent in adjacent drill holes. The query algorithm allows defining gaps in the pattern to search across unconformable, intrusive and tectonic contacts and allows combining multiple search patterns in a single query to account for lateral lithofacies variations. The performance of the query algorithm has been tested in the Precambrian Flin Flon greenstone belt (Canada) by evaluating the agreement between queried and logged lithostratigraphic contacts in 52 lithostratigraphic reference drill holes. Results show that the automated extraction of the unconformable and partly tectonized contact between metavolcanic rocks and its metasedimentary cover was relatively unambiguous and matched all the contacts previously established by visual inspection of drill core. The 100% match was nevertheless paired with 23% false positives due to mafic and felsic sills emplaced in sandstone and conglomerate, which overlap in composition and thickness with extrusive volcanic rocks. The automated extraction of the contact between a mine horizon, defined by laterally complex volcanic and volcaniclastic lithofacies variations and overlying basalt flows, matched the visually logged contacts for 83% with 27% false positives. The query algorithm supplements geological interpretation when patterns in drilled lithostratigraphic successions, suspected to be diagnostic for lithostratigraphic contacts, need to be extracted from large drill hole datasets in a systematic and time-efficient manner. The application of the query algorithm is

  4. A Method for Creating a Three Dimensional Model from Published Geologic Maps and Cross Sections

    USGS Publications Warehouse

    Walsh, Gregory J.

    2009-01-01

    This brief report presents a relatively inexpensive and rapid method for creating a 3D model of geology from published quadrangle-scale maps and cross sections using Google Earth and Google SketchUp software. An example from the Green Mountains of Vermont, USA, is used to illustrate the step by step methods used to create such a model. A second example is provided from the Jebel Saghro region of the Anti-Atlas Mountains of Morocco. The report was published to help enhance the public?s ability to use and visualize geologic map data.

  5. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  6. Geologic map of the Stillwater Complex, Montana: a digital database

    USGS Publications Warehouse

    Page, Norman J.; Nokleberg, Warren J.; digital database by Miller, Robert J.

    2002-01-01

    This report provides a digital version of the Geologic map of the Stillwater Complex, Montana by Page and Nokleberg (1974). Paper copies of the four geologic map sheets from the original report were scanned and initially attributed by Optronics Specialty Co., Inc. (Northridge, CA) and remitted to the U.S. Geological Survey for further attribution and publication of the geospatial digital files. The resulting digital geologic dataset can be queried in a geographic information system (GIS) in many ways to produce a variety of geological maps.

  7. 3D thermo-mechanical model of the orogeny in Pamir constrained by geological and geophysical observations

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.; Tympel, J.; Ratschbacher, L.

    2015-12-01

    The Pamir-Hindu Kush orogenic belt is the result of the indentation of the western corner of the India plate into Eurasia. It has accommodated the highest strain over the shortest meridional distance of the India-Eurasia collision zone. Recent high-resolution seismic tomographic and receiver function studies confirm the presence of a south-dipping continental lithosphere, which has been traced to the depth of more than 200-300 km beneath the northern Pamir (Pamir slab). Balanced cross-section document crustal shortening associated with the corresponding frontal thrust system of a few tens of km, which is much less than the expected (>200-300 km) for intra-continental subduction zone, based on the seismically imaged length of the Pamir slab. Another unique feature of Pamir is the presence of large gneiss domes with the exhumation reaching a depth of 30-40 km.We employ the finite-element thermomechanical modelling technique SLIM3D to simulate the evolution of the Pamir orogeny during the last 25 Myr. The technique is using advanced non-linear elasto-visco-plastic rheology with parameters based on laboratory experiments. Our 3D model extends 1100 km N-S, 800 km E-W, and 300 km deep, and replicates indentation of the western half of India promontory into Eurasia. The moving modelling-window technique allows focusing at the most extensively deforming domains, and a 3D model setup and boundary conditions allow lateral material flow to the west, i.e. perpendicular to the direction of tectonic shortening.The model replicates major features of the lithospheric structure and geological history. For instance, we demonstrate that large part of the roll back of the Pamir slab may be caused by the delamination of the mantle lithosphere together with the lower crust, rather than classical intra-continental subduction involving thrust-imbrication of the uppermost crust. The resulting shortening at the Pamir frontal thrust system appears to be lower than 50 km in accord with

  8. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  9. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    USGS Publications Warehouse

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  10. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  11. Stress field modelling from digital geological map data

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  12. Novice to Expert Cognition During Geologic Bedrock Mapping

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the

  13. Geologic Mapping of the Mars Science Laboratory Landing Ellipse

    NASA Astrophysics Data System (ADS)

    Calef, F. J.; Dietrich, W. E.; Edgar, L.; Farmer, J.; Fraeman, A.; Grotzinger, J.; Palucis, M. C.; Parker, T.; Rice, M.; Rowland, S.; Stack, K. M.; Sumner, D.; Williams, J.

    2016-06-01

    The MSL project "crowd sourced" a geologic mapping effort of the nominal landing ellipse in preparation for tactical and strategic mission operations. This map was used as a strategic guide for identifying science locales during the nominal mission.

  14. Morphological and Spectral Analysis for the Daedalia Planum Geological Mapping

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Carli, C.; Massironi, M.; Sgavetti, M.

    2010-03-01

    Our study has been focused on the Daedalia Planum geological mapping. THEMIS, MOC, HiRISE images were analyzed to perform a stratigraphic and morphological analysis. OMEGA data revealed spectral differences that permitted to improve our mapping.

  15. Geologic Map of the Cane Quadrangle, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Wellmeyer, Jessica L.

    2001-01-01

    This digital map database is compiled from unpublished data and new mapping by the authors, represents the general distribution of surficial and bedrock geology in the mapped area. Together with the accompanying pamphlet, it provides current information on the geologic structure and stratigraphy of the area. The database delineate map units that are identified by age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution of the database to 1:24,000 or smaller.

  16. 3D modelling of soil texture: mapping and incertitude estimation in centre-France

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Martin, Manuel P.; Saby, Nicolas P. A.; Richer de Forges, Anne C.; Nehlig, Pierre; Martelet, Guillaume; Arrouays, Dominique

    2014-05-01

    Soil texture is an important component of all soil physical-chemical processes. The spatial variability of soil texture plays a crucial role in the evaluation and modelling of all distributed processes. The object of this study is to determine the spatial variation of soil granulometric fractions (i.e., clay, silt, sand) in the region "Centre" of France in relation to the main controlling factors, and to create extended maps of these properties following GlobalSoilMap specifications. For this purpose we used 2487 soil profiles of the French soil database (IGCS - Inventory Management and Soil Conservation) and continuum depth values of the properties within the soil profiles have been calculated with a quadratic splines methodology optimising the spline parameters in each soil profile. We used environmental covariates to predict soil properties within the region at depth intervals 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm. Concerning environmental covariates, we used SRTM and ASTER DEM with 90m and 30m resolution, respectively, to generate terrain parameters and topographic indexes. Other covariates we used are Gamma Ray maps, Corine land cover, available geological and soil maps of the region at scales 1M, 250k and 50k. Soil texture is modeled with the application of the compositional data analysis theory namely, alr-transform (Aitchison, 1986) which considers in statistical calculation the complementary dependence between the different granulometric classes (i.e. 100% constraint). The prediction models of the alr-transformed variables have been developed with the use of boosting regression trees (BRT), then, using a LMM - Linear Mixed Model - that separates a fixed effect from a random effect related to the continuous spatially correlated variation of the property. In this case, the LMM is applied to the two co-regionalized properties (clay and sand alr-transforms). Model uncertainty mapping represents a practical way to describe efficiency and limits of

  17. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  18. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  19. Controls on hydrothermal fluid flow within the Rotokawa geothermal field, New Zealand: insights from 3D geological models

    NASA Astrophysics Data System (ADS)

    Bardsley, C.; Sewell, S.; Cumming, W. B.; Minnick, M.; Rowland, J. V.; O'Brien, J.; Price, L.

    2012-12-01

    Identifying permeable zones is essential for economically viable exploration and development of conventional geothermal reservoirs with naturally high permeability. Except very close to boreholes, the resolution of geological and geophysical tools is at a much larger scale than the centimetre aperture of most geothermal fluid pathways important to production. A case study from the >250°C Rotokawa Geothermal Field, currently producing 175 MWe within the Taupo Volcanic Zone in New Zealand, illustrates how a 3D visualization of a subset of available data that are conceptually relevant at the scales of interest has enhanced the understanding of fluid flow within this system. Geoscience data sets including subsurface formation geometry and permeable zones in wells; the natural state temperature pattern deduced from wells and MT resistivity; microearthquakes (MEQ) induced by injection, and surface geology have been integrated with engineering data including production pressure responses and injection rates to constrain the location and general hydraulic properties of one of the most influential faults in the field. Stratigraphic offsets of >500 m, recorded in core and cuttings from wells drilled on either side of the field, confirm the presence of this fault, initially suspected based on a surface lineation of eight young (<22 ka) hydrothermal eruption craters. The 3D visualization of the MEQ occurrence pattern in space and time helps constrain the mechanism of the MEQs themselves and, importantly, the confinement of most of the MEQs to the eastern side of the fault closest to the injection wells. Hosted within the Mesozoic meta-sedimentary basement formation, this has provided an important conceptual constraint that explains the lack of injection fluid on the western side of this fault. Further to this, if this fault is acting as a barrier at the Mesozoic meta-sedimentary level today, this could imply a switch in the behaviour of this structure as it is inferred, based

  20. Geologic map of the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Graybeal, Frederick T.; Moyer, Lorre A.; Vikre, Peter; Dunlap, Pamela; Wallis, John C.

    2015-01-01

    Several spatial databases provide data for the geologic map of the Patagonia Mountains in Arizona. The data can be viewed and queried in ArcGIS 10, a geographic information system; a geologic map is also available in PDF format. All products are available online only.

  1. 3D Simulation of terrestrial morphological analogues of hermean surface to evaluate SIMBIO-SYS STereo Camera rendering capacity for geological purpose

    NASA Astrophysics Data System (ADS)

    Massironi, M.; Giacomini, L.; Cremonese, G.; Forlani, G.; Capria, M. T.; Pasquare, G.; da Deppo, V.; Naletto, G.; Flamini, E.

    BepiColombo is the next 5th ESA's cornerstone. It has been selected in the fall 2000 and it is planned for a launch in 2013. It will reach Mercury after a 6 years trip and will perform 1 year observation with two S/C (Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter). The SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem) instrument is a system integrating a STereoscopic imaging Channel (STC), a High spatial Resolution Imaging Channel (HRIC) and a Visual and Infrared Hyper-spectral Imager channel (VIHI). SIMBIO-SYS has been selected by ESA in the payload of the Mercury Planetary Orbiter (MPO) of the BepiColombo mission. The main scientific objective is the global mapping of the entire surface of Mercury in 3D and colors with a maximum spatial resolution of 50 m per pixel. It will allow to generate the Digital Terrain Model of the entire surface improving the interpretation of morphological features at different scales and topographic relationships. In order to evaluate the effectiveness of the STC 3D rendering for geological purpose the xy pixel ground size and the z error has been estimated at apoherm and periherm. These data were used for 3D simulation on Earth geological feautures likely representative of the hermean surface and small enough to be near the detection limit of the STC. In particular we have analyzed the Tenoumer (Mauritania) and Roter Kamm (Namibia) craters with dimension similar to the Hun Kal crater on Mercury, defining its 20° meridian . In addition a small lava volcano from the volcanic complex of Michoacan-Guanajuato 1 (Messico), an endogenic dome of the Meseta de Somuncara volcanic district (Argentina) and the long basaltic lava flows related the M. Payun volcano (Argentina) were considered. One of the main objective of the study of the hermean surface is the volcanic-vs-ejecta origin of the inter-crater and smooth plains and the detection of these volcanic features will be of paramount

  2. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  3. Surficial geologic map of the Germantown quadrangle, Shelby County, Tennessee

    USGS Publications Warehouse

    Arsdale, Roy Van

    2004-01-01

    The depiction of geology on this map is designed to aid in urban planning and analysis of potential damage in the event of strong earthquake motion. The geologic map by itself does not analyze potential earthquake damage, but is designed to be used by seismologists who perform such analyses. The nature of geologic materials to a degree determines the severity of damage to infrastructure sustained during a strong earthquake.

  4. Geological map of Washington: southwest quadrant (digital edition)

    USGS Publications Warehouse

    Walsh, Timothy J.; Korosec, Michael A.; Phillips, William M.; Logan, Robert L.; Schasse, Henry W.; Digital database by Meagher, Karen L.; Haugerud, Ralph A.

    1999-01-01

    This report comprises digital spatial data that constitute a partial transcription of the 1:250,000-scale Geologic map of Washington - southwest quadrant (Walsh and others, 1987); digital base material, symbolsets, and ARC Macro Language (AML) procedures to create a geologic map on a shaded-relief base from the digital spatial data; and Postscript and RTL plotfiles for such a geologic map. The digital transcription is incomplete: offshore folds and faults, the southern limit of the continental ice sheet in the Puget Lowland, the published base map (Washington Division of Geology and Earth Resources map TM-1), geologic unit correlation diagrams, and most of the explanatory material that accompanies Walsh and others (1987) are not present here.

  5. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  6. Spatial Digital Database for the Geologic Map of Oregon

    USGS Publications Warehouse

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  7. Advances in animal ecology from 3D-LiDAR ecosystem mapping.

    PubMed

    Davies, Andrew B; Asner, Gregory P

    2014-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Here, we review insights gained through the application of LiDAR to animal ecology studies, revealing the fundamental importance of structure for animals. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential compared with traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. To develop a better understanding of animal dynamics, future studies will benefit from considering 3D habitat effects in a wider variety of ecosystems and with more taxa.

  8. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  9. Advances in animal ecology from 3D-LiDAR ecosystem mapping.

    PubMed

    Davies, Andrew B; Asner, Gregory P

    2014-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Here, we review insights gained through the application of LiDAR to animal ecology studies, revealing the fundamental importance of structure for animals. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential compared with traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. To develop a better understanding of animal dynamics, future studies will benefit from considering 3D habitat effects in a wider variety of ecosystems and with more taxa. PMID:25457158

  10. Digital geologic map of Lawton quadrangle, southwestern Oklahoma

    USGS Publications Warehouse

    Cederstrand, Joel R.

    1996-01-01

    This data set consists of digital data and accompanying documentation for the surficial geology of the 1:250,000-scale Lawton quadrangle, Oklahoma. The original data are from the Geologic Map, sheet 1 of 4, included in the Oklahoma Geological Survey publication, 'Reconnaissance of the water resources of the Lawton quadrangle, southwestern Oklahoma', Hydrologic Atlas 6, Havens, 1977. The geology was compiled by R.O. Fay, in 1967-68 and J.S. Havens, in 1973.

  11. a Review of Cooling Road Maps for 3d Chip Packages

    NASA Astrophysics Data System (ADS)

    Agonafer, Dereje

    The microelectronics industry has thrived through dimensional scaling and corresponding reduction in cost and increase in performance. It has been reported that the average selling price of a transistor has reduced from a few dollars in the early 50's to a billionth of a dollar in the early 2000. It has, however, become more difficult to sustain reduction in cost by scaling. Also, while new technology nodes results in reduced gate delay, it also effects an increase in the interconnect delay. One approach to delaying new technology node and improving performance is through reduction in interconnect delay through packaging. In particular, 3-D Through-Silicon-Via (3D TSV) technology is emerging as a powerful technology to reduce package footprint, decrease interconnection power, higher frequencies, and provide efficient integration of heterogeneous devices. TSVs provide high speed signal propagation due to reduced interconnect lengths as compared to wirebonding and SOC (system-on-chip). However, with many advantages of 3D ICs over conventional 2D counterpart, there are some inherent thermal-mechanical-electrical challenges that need to be addressed before 3D ICs could become mainstream. This chapter talks about a few of the 3D TSV IC challenges from the thermal, mechanical and the performance standpoint of view. It also discusses a novel technique for high powered 3D IC cooling to sub-ambient temperatures using thermo-electric cooler (TEC).

  12. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  13. PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

    PubMed Central

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-01-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  14. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  15. Reconnaissance geologic map of Kodiak Island and adjacent islands, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2013-01-01

    Kodiak Island and its adjacent islands, located on the west side of the Gulf of Alaska, contain one of the largest areas of exposure of the flysch and melange of the Chugach terrane of southern Alaska. However, in the past 25 years, only detailed mapping covering small areas in the archipelago has been done. This map and its associated digital files (Wilson and others, 2005) present the best available mapping compiled in an integrated fashion. The map and associated digital files represent part of a systematic effort to release geologic map data for the United States in a uniform manner. The geologic data have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The map data are presented for use at a nominal scale of 1:500,000, although individual datasets (see Wilson and others, 2005) may contain data suitable for use at larger scales.

  16. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    SciTech Connect

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  17. Systematic, map-scale, comparative structural geology

    SciTech Connect

    Groshong, R.H. Jr.

    1985-01-01

    Interpretation by analogy is the basis of comparative structural geology. A systematic approach to analog selection aids in efficiency and in understanding. The basic interpretive unit for analog selection is the structural family: a map-scale assemblage of genetically related structural forms produced by deformation with approximately constant boundary conditions. A family is specified by the dominant component of its displacement field and by structural levels involved. The differential vertical displacement category includes intrusive and impact structures. The three important basement types are isotropic crystalline, quasisedimentary and metamorphosing. A family is either thin skinned or involves cover plus one of the three basement types. These parameters are arranged into a matrix to produce 20 pigeon holes. Some structures do not fall exactly into one pigeon hole. Other structures link two families; for example, gravity glide links thin-skinned extension and contraction. This system is analogous to end-member rock classifications. Not every example is an end member, but the concept of end members greatly speeds up comparative analysis and clarifies the choice of analogies. Future research will lead to better definition of the key characteristics of certain families, the relationships between families, and the possible existence of additional families.

  18. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir.

    SciTech Connect

    Allison, M.L.

    1997-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial- deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) evaluation of the Ivie Creek case-study area and (2) technology transfer. The Ivie Creek case-study evaluation work during the quarter focused on the two parasequence sets, the Kf-1 and Kf-2, in the lower Ferron Sandstone. This work included: (1) clinoform characterization, (2) parasequence characterization from elevation and isopach maps, and (3) three-dimensional facies modeling. Scaled photomosaic panels from the Ivie Creek amphitheater (south-facing outcrop belt) and Quitchupah Canyon (Fig. 1) provide a deterministic framework for two apparent-dip cross sections. These panels along with other photomosaic coverage and data from five drill holes, ten stratigraphic sections, and 22 permeability transacts (Fig. 1), acquired during two field seasons, provided the necessary information for this geologic evaluation and creation of the models to be used

  19. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    NASA Astrophysics Data System (ADS)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  20. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  1. Recent Geologic Mapping Results for the Polar Regions of Mars

    NASA Technical Reports Server (NTRS)

    tanaka, K. L.; Kolb, E. J.

    2008-01-01

    The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.

  2. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California

    USGS Publications Warehouse

    Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.

    2007-01-01

    Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.

  3. Geologic Maps as the Foundation of Mineral-Hazards Maps in California

    NASA Astrophysics Data System (ADS)

    Higgins, C. T.; Churchill, R. K.; Downey, C. I.; Clinkenbeard, J. P.; Fonseca, M. C.

    2010-12-01

    that show potential for mineral hazards. Depending on the type of mineral hazard investigated, qualitative and/or quantitative methods are used in this process. The final information is given to CGS clients in various formats that range from traditional paper maps to attributed digital layers, which can be viewed on background digital imagery in 2D or 3D with image viewers or GIS software. This variety of formats assures that users with different levels of computer experience or available computer resources can access the information. Besides the applications presented here, mineral-hazards mapping can also be used in many other settings and situations as a tool to evaluate potential effects on human health and the environment. Examples include fighting forest fires, harvesting of timber, post-fire debris flows during storms, disposal or import of earth materials for non-highway construction projects, and rural areas used for recreation (hiking, motorcycling, etc.). In the future, the CGS expects to investigate and possibly employ more-sophisticated digital algorithms to rate and display the potential for specific mineral hazards on its maps. The geologist’s knowledge and experience will still be needed, however, to review these digital results to decide if they are reasonable.

  4. Mobile 3d Mapping with a Low-Cost Uav System

    NASA Astrophysics Data System (ADS)

    Neitzel, F.; Klonowski, J.

    2011-09-01

    In this contribution it is shown how an UAV system can be built at low costs. The components of the system, the equipment as well as the control software are presented. Furthermore an implemented programme for photogrammetric flight planning and its execution are described. The main focus of this contribution is on the generation of 3D point clouds from digital imagery. For this web services and free software solutions are presented which automatically generate 3D point clouds from arbitrary image configurations. Possibilities of georeferencing are described whereas the achieved accuracy has been determined. The presented workflow is finally used for the acquisition of 3D geodata. On the example of a landfill survey it is shown that marketable products can be derived using a low-cost UAV.

  5. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  6. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner.

  7. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. PMID:22776549

  8. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    USGS Publications Warehouse

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  9. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  10. Geologic map of the Christian quadrangle, Alaska

    USGS Publications Warehouse

    Brosge, W.P.; Reiser, H.N.

    2000-01-01

    Most of the Christian quadrangle is in the Porcupine Plateau; the northwestern part is in the southern Brooks Range, and the southern quarter is in the Yukon Flats. Outcrops of bedrock are poor or lacking, except in the Brooks Range. Although large valley glaciers have moved through the Porcupine Plateau, along the East Fork Chandalar and Vanticlese Creek, most of the upland areas in the Porcupine Plateau have not been eroded by ice. Consequently the rocks are deeply weathered and many outcrops in the low hills east of the East Fork are only soil and rubble. The southern quarter of the quadrangle in the Yukon Flats is covered with unconsolidated glacial and alluvial deposits. The Christian quadrangle is at the east end of the southern Brooks Range schist belt. Here three geologic terranes that originate well south of the Brooks Range intersect the subterranes of the southern Brooks Range along northward-directed thrust faults and northeast-striking strike slip faults. The displaced terranes from the south have been mapped by Jones and others (1987), as the schist of the Ruby terrane, the mafic rocks and phyllite of the Tozitna terrane, and the graywacke of the Venetie terrane. The typical rocks of the southern Brooks Range Arctic Alaska terrane at this intersection are the carbonate and clastic rocks of the Hammond subterrane, and the schist of the Coldfoot subterrane. The Coldfoot schist ends at a probable strike-slip fault about 10 miles west of the Christian quadrangle. At that place the mafic rocks and phyllites of the Angayucham terrane that form the south flank of most of the Brooks Range veer sharply northeastward across the Coldfoot subterrane schist and terminate it. A small fragment of the Endicott Mountains subterrane of the Arctic Alaska terrane also lies within the Christian quadrangle, but the main body of this subterrane lies north of the quadrangle.

  11. Thermal Performance Mapping of Direct Liquid Cooled 3d Chip Stacks

    NASA Astrophysics Data System (ADS)

    Geisler, Karl J. L.; Bar-Cohen, Avram

    Chip stacks are a crucial building block in advanced 3D microsystem architectures and can accommodate shorter interconnect distances between devices, leading to reduced power dissipation and improved electrical performance. Although enhanced conduction can serve to transfer the dissipated heat to the top and sides of the package and/or down to the underlying PCB, effective thermal management of stacked chips remains a most difficult challenge. Immersion cooling techniques, which provide convective and/or ebullient heat transfer, along with buoyant fluid flow, in the narrow gaps separating adjacent chips, are a most promising alternative to conduction cooling of threedimensional chip stacks. Application of the available theories, correlations, and experimental data are shown to reveal that passive immersion cooling--relying on natural convection and/or pool boiling--could provide the requisite thermal management capability for 3D chip stacks anticipated for use in much of the portable equipment category. Alternatively, pumped flow of dielectric liquids through the microgaps in 3D stacks, providing single phase and/or flow boiling heat absorption, could meet many of the most extreme thermal management requirements for high-performance 3D microsystems.

  12. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  13. Toward digital geologic map standards: a progress report

    USGS Publications Warehouse

    Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.

    1992-01-01

    Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial

  14. A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Carranza, Emmanuel John M.; Wu, Chonglong; van der Meer, Freek D.; Liu, Gang

    2011-10-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.

  15. Measuring distances and reddenings for a billion stars: Toward a 3D dust map from Pan-STARRS 1

    SciTech Connect

    Green, Gregory Maurice; Finkbeiner, Douglas P.; Schlafly, Edward F.; Rix, Hans-Walter; Jurić, Mario; Burgett, Will; Chambers, Kenneth C.; Flewelling, Heather; Kudritzki, Rolf Peter; Magnier, Eugene; Tonry, John; Wainscoat, Richard; Waters, Christopher; Draper, Peter W.; Metcalfe, Nigel; Martin, Nicolas

    2014-03-10

    We present a method to infer reddenings and distances to stars based only on their broad-band photometry, and show how this method can be used to produce a three-dimensional (3D) dust map of the Galaxy. Our method samples from the full probability density function of distance, reddening, and stellar type for individual stars, as well as the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1) 3π survey, we demonstrate that our reddening estimates are unbiased and accurate to ∼0.13 mag in E(B – V) for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be constrained to within ∼20%-60%, although this range can vary, depending on the reddening of the star, the precise stellar type, and its position on the sky. A later paper will present a 3D map of dust over the three quarters of the sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic science in the plane. The method we present is not limited to the passbands of the PS1 survey but may be extended to incorporate photometry from other surveys, such as the Two Micron All Sky Survey, the Sloan Digital Sky Survey (where available), and in the future, LSST and Gaia.

  16. Geologic map of Saint Lawrence Island, Alaska

    USGS Publications Warehouse

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    north to near Boxer Bay on the south. Headlands having rugged cliffs or narrow, boulder-strewn beaches characterize the southwest coastline. The geologic map of Saint Lawrence Island was prepared from published and unpublished field investigations carried out between 1966 and 1971 by W.W. Patton, Jr., Bela Csejtey, Jr., T.P. Miller, J.T. Dutro, Jr., J.M. Hoare, and W.H. Condon (Patton and Csejtey, 1971, 1980) and data from Ormiston and Fehlmann (1969). Fossils collected during these investigations are reported in the Alaska Paleontological Database (www.alaskafossil.org), and mineral resource information is summarized in the online Alaska Resource Data File (Hudson, 1998).

  17. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  18. Environmental aspects of engineering geological mapping in the United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  19. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  20. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  1. An efficient algorithm for mapping imaging data to 3D unstructured grids in computational biomechanics.

    PubMed

    Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066

  2. Geologic map of the Winchester quadrangle, Frederick County, Virginia

    USGS Publications Warehouse

    Orndorff, Randall C.; Weary, David J.; Parker, Ronald A.

    2003-01-01

    The Winchester 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.

  3. Progress report of new state geologic maps for Washington state

    SciTech Connect

    Joseph, N.; Stoffel, K.; Phillips, W.

    1987-08-01

    Geologic maps of Washington were previously published in 1936 and 1961 by predecessors to the Division of Geology and Earth Resources (DGER), Department of Natural Resources. These maps were printed at a scale of 1:500,000 and depicted the entire state on a single map sheet. The new state map will be at a scale of 1:250,000 and will be published as four quadrants with boundaries at 47/sup 0/15'N latitude and 120/sup 0/30'W longitude. Compilation and original mapping for the four quadrants are being conducted at a scale of 1:100,000, using recently released US Geological Survey matric 1:100,000 sheets as base maps. the 1:100,000-scale maps are reduced and simplified to produce final, 1:250,000-scale quadrant maps. The 1:100,000-scale geologic maps will be available to the public as DGER open-file reports. The southwest-quadrant geologic map is the first of the series to be published, and is supported by 32 new K-Ar age determinations and approximately 200 geochemical analyses. Preliminary 1:100,000 compilation maps of the northeast quadrant are complete. The 16 maps include new mapping or interpretations in the following areas: (1) Okanogan and Kettle domes, (2) Cambrian miogeoclinal and Ordovician eugeoclinal metasediments and metavolcanics of the Kootenay Arc, (3) southern segment of the Ross Lake fault zone, (4) Eocene volcanics in the Okanogan Range, (5) Eocene plutonic rocks near Republic, and (6) Quaternary sediments north of Spokane. K-Ar age determinations, geochemical analyses, and conodont biostratigraphy are being used to refine the maps. Publication of the northeast quadrant is planned for late 1988.

  4. System Considerations and Challendes in 3d Mapping and Modeling Using Low-Cost Uav Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2015-08-01

    In the last few years, low-cost UAV systems have been acknowledged as an affordable technology for geospatial data acquisition that can meet the needs of a variety of traditional and non-traditional mapping applications. In spite of its proven potential, UAV-based mapping is still lacking in terms of what is needed for it to become an acceptable mapping tool. In other words, a well-designed system architecture that considers payload restrictions as well as the specifications of the utilized direct geo-referencing component and the imaging systems in light of the required mapping accuracy and intended application is still required. Moreover, efficient data processing workflows, which are capable of delivering the mapping products with the specified quality while considering the synergistic characteristics of the sensors onboard, the wide range of potential users who might lack deep knowledge in mapping activities, and time constraints of emerging applications, are still needed to be adopted. Therefore, the introduced challenges by having low-cost imaging and georeferencing sensors onboard UAVs with limited payload capability, the necessity of efficient data processing techniques for delivering required products for intended applications, and the diversity of potential users with insufficient mapping-related expertise needs to be fully investigated and addressed by UAV-based mapping research efforts. This paper addresses these challenges and reviews system considerations, adaptive processing techniques, and quality assurance/quality control procedures for achievement of accurate mapping products from these systems.

  5. 3D perfusion mapping in the intact mouse heart after myocardial infarction using myocardial contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Yang, Zequan; French, Brent A.; Hossack, John A.

    2005-04-01

    An intact mouse model of surgically-induced myocardial infarction (MI) caused by permanent occlusion of the Left Anterior Descending (LAD) coronary artery was studied. Normal mice with no occlusion were also studied as controls. For each mouse, contrast enhanced ultrasound images of the heart were acquired in parallel cross-sections perpendicular to the sternum at millimeter increments. For accurate 3D reconstruction, ECG gating and a tri-axial adjustable micromanipulator were used for temporal and spatial registration. Ultrasound images at steady-state of blood refilling were color-coded in each slice to show relative perfusion. Myocardial perfusion defects and necrosis were also examined postmortem by staining with Phthalo blue and TTC red dyes. Good correlation (R>0.93) in perfused area size was observed between in vivo measurements and histological staining. A 3D multi-slice model and a 3D rendering of perfusion distribution were created and showed a promising match with postmortem results, lending further credence to its use as a more comprehensive and more reliable tool for in vivo assessment of myocardial perfusion than 2D tomographic analysis.

  6. A Geologic Map of the Caloris Basin, Mercury

    NASA Astrophysics Data System (ADS)

    Buczkowski, D. L.; Goosmann, E.; Denevi, B. W.; Ernst, C. M.; Fasset, C. I.; Byrne, P. K.

    2016-06-01

    We present a geologic map of the Caloris basin, which will serve to synthesize the results of previous studies into a contextual framework for quickly viewing the thematic research that has been performed on this interesting region.

  7. Geologic Mapping of Isabella Quadrangle (V50), Venus

    NASA Astrophysics Data System (ADS)

    Bleamaster, L. F., III

    2006-03-01

    Geologic Mapping of the Isabella Quadrangle (V50) provides tests of wrinkle ridge and shield formation mechanisms and temporal relations, impact crater-volcanic construct interactions, and structural reactivation.

  8. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  9. Lunar and Planetary Science XXXV: Mars All Over: Geologic Mapping

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles presented in this session include: 1) 'Geology of Noachian Martian Highlands Surrounding the Gusev Crater'; 2) 'The History of Deposition and Nature of Material in Hellas Basin, Mars'; 3) 'Geologic Mapping of the Medusae Fossae Formation on Mars'; 4) 'Geology of the Aram Chaos from MGS-Mars Odyssey Missions and Mars Express HRSC Data'; 5) 'Toward a Comprehensive Stratigraphic Column of Mars'; 6 'The Olympus Mons Aureole Deposits: Constraints on Emplacement Scenarios Based on Remotely Sensed Data'.

  10. Restoration of geological surface-UNFOLD method-a validation of complex structural mapping interpretation in the Andean Thrust Belt

    SciTech Connect

    Guillier, B. ); Oller, J.; Mendez, E.; Leconte, J.C.; Letouzey, J.; Specht, M.; Gratier, J.P.

    1993-02-01

    One of the most important problems in petroleum structural geology is dependable interpretation of structural maps obtained by seismic and sub-surface data. One method for validating the geometry of geological structures is the balancing cross-section technique which allows verification of cross-section geometry by a return to its initial horizontal state. However, this can not be used for of 3D halokinesis, shale tectonics, structures formed by polyphased noncoaxial tectonic events, or strike-slip and wrench faulting. An alternative approach is to test the restoration of folded and faulted surfaces to verify 3D structures by balancing geological surfaces represented by a structural map. This method tests the geometry of studied horizon and faults and is based upon the fact that, initially, actual folded/faulted structures were continuous at deposition. The balancing surface program, UNFOLD, restores the actual geological surface to its initial state. Misfits along faults implied poor structural map drawings or strong internal deformation of the geological level. By trial and error method, we returned to the initial data interpretation modifications. This method has been applied to 2D and 3D seismic structural interpretation in different structural styles, environments, rift zones, salt basins, wrench faulting, thrust belt,etc. Some applications to oil field structures in the Andean Thrust Belt have been done to check and validate the complex structural mapping interpretation.

  11. Global geologic mapping of Mars: The western equatorial region

    USGS Publications Warehouse

    Scott, D.H.

    1985-01-01

    Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.

  12. Geologic Map of Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; Himmelberg, Glen R.; Zumsteg, Cathy L.; Layer, Paul W.; Friedman, Richard M.; Roeske, Sarah M.; Snee, Lawrence W.

    2015-01-01

    This map updates the geology of Baranof Island based on fieldwork, petrographic analyses, paleontologic ages, and isotopic ages. These new data provide constraints on depositional and metamorphic ages of lithostratigraphic rock units and the timing of structures that separate them. Kinematic analyses and thermobarometric calculations provide insights on the regional tectonic processes that affected the rocks on Baranof Island. The rocks on Baranof Island are components of a Paleozoic to Early Tertiary oceanic volcanic arc complex, including sedimentary and volcanic rocks that were deposited on and adjacent to the arc complex, deformed, and accreted. The arc complex consists of greenschist to amphibolite facies Paleozoic metavolcanic and metasedimentary rocks overlain by lower-grade Triassic metasedimentary and metavolcanic rocks and intruded by Jurassic calc-alkaline plutons. The Paleozoic rocks correlate well in age and lithology with rocks of the Sicker and Buttle Lake Groups of the Wrangellia terrane on Vancouver Island and differ from rocks of the Skolai Group that constitute basement to type-Wrangellia in the Wrangell Mountains. The Jurassic intrusive rocks are correlative with plutons that intrude the Wrangellia terrane on Vancouver Island but are lacking in the Wrangell Mountains. The rocks accreted beneath the arc complex are referred to as the Baranof Accretionary Complex in this report and are correlated with the Chugach Accretionary Complex of southern and southeastern Alaska and with the Pacific Rim Complex on Vancouver Island. Stratigraphic correlations between upper- and lower-plate rocks on Baranof Island and western Chichagof Island with rocks on Haida Gwaii and Vancouver Island, in addition to correlative ages of intrusive rocks and restorations of the Fairweather-Queen Charlotte, Chatham Strait, and Peril Strait Faults that define the Baranof-Chichagof block, suggest Baranof Island was near Vancouver Island at the time of initiation of arc

  13. Geologic Map and GIS Data for the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  14. Geologic Map and GIS Data for the Wabuska Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross‐section.

  15. Comparative Analysis of 3D Expression Patterns of Transcription Factor Genes and Digit Fate Maps in the Developing Chick Wing

    PubMed Central

    Delgado, Irene; Bain, Andrew; Planzer, Thorsten; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-01-01

    Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage. PMID:21526123

  16. Geological interpretation and analysis of surface based, spatially referenced planetary imagery data using PRoGIS 2.0 and Pro3D.

    NASA Astrophysics Data System (ADS)

    Barnes, R.; Gupta, S.; Giordano, M.; Morley, J. G.; Muller, J. P.; Tao, Y.; Sprinks, J.; Traxler, C.; Hesina, G.; Ortner, T.; Sander, K.; Nauschnegg, B.; Paar, G.; Willner, K.; Pajdla, T.

    2015-10-01

    We apply the capabilities of the geospatial environment PRoGIS 2.0 and the real time rendering viewer PRo3D to geological analysis of NASA's Mars Exploration Rover-B (MER-B Opportunity rover) and Mars Science Laboratory (MSL Curiosity rover) datasets. Short baseline and serendipitous long baseline stereo Pancam rover imagery are used to create 3D point clouds which can be combined with super-resolution images derived from Mars Reconnaissance Orbiter HiRISE orbital data, andsuper-resolution outcrop images derived from MER Pancam, as well as hand-lens scale images for geology and outcrop characterization at all scales. Data within the PRoViDE database are presented and accessed through the PRoGIS interface. Simple geological measurement tools are implemented within the PRoGIS and PRo3D web software to accurately measure the dip and strike of bedding in outcrops, create detailed stratigraphic logs for correlation between the areas investigated, and to develop realistic 3D models for the characterization of planetary surface processes. Annotation tools are being developed to aid discussion and dissemination of the observations within the planetary science community.

  17. 3D seismic geomorphology and geologic controls on gas hydrate accumulation mechanism in the Miyazaki-oki forearc basin, Japan

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Kobayashi, T.; Fujii, T.

    2015-12-01

    The stratigraphy of the Miyazaki-oki forearc basin along the Southwest Japan Arc comprises the early Miocene to early Pleistocene Miyazaki Group and the Hyuganada Group. These groups comprise sediments (up to 5000 m) deposited in deep marine to shallow marine environments. Based on characteristics of well data outside seismic exploration area and stratigraphy of land areas, the Miyazaki Group was divided into four seismic units and the Hyuganada Group was divided into two seismic units. In this area, bottom-simulating reflectors (BSRs) have been widely observed and considered as representing lower boundaries of methane-hydrate-bearing deposits. However, the gas hydrate accumulation mechanism for this area is not yet well understood. We show the relation between sandy sediment distribution identified from the 3D seismic geomorphological analysis and methane hydrate occurrence to identify the accumulation mechanism. A submarine fan system was subdivided into four seismic facies: Submarine canyon complexes; Leveed channel complexes; Submarine fan complexes; Mass transport complexes (MTD). Depositional systems of target layers are characterized by a transition from submarine fan deposits (Miyazaki Group) to channel-levee deposits and MTD (Hyuganada Group). This transition of depositional environments is strongly influenced by global tectonics since early Miocene in the Southwest Japan Arc. A part of channel-fill located around structural wing and middle fan deposits above the BSR is inferred as sediments intercalated with sandy layers. We consider that these deposits contain methane hydrate because the sandy sediment distribution approximately coincides with a high-velocity zone as an indicator of gas hydrate. The comparison of the areal extent of the seismic facies and the mapped structural configuration, suggest that the gas hydrate accumulation represent combination structural-stratigraphic trap.

  18. 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: New insights into aquifer-geometry and interconnections for a better assessment of groundwater resources

    NASA Astrophysics Data System (ADS)

    Hassen, Imen; Gibson, Helen; Hamzaoui-Azaza, Fadoua; Negro, François; Rachid, Khanfir; Bouhlila, Rachida

    2016-08-01

    The challenge of this study was to create a 3D geological and structural model of the Kasserine Aquifer System (KAS) in central Tunisia and its natural extension into north-east Algeria. This was achieved using an implicit 3D method, which honors prior geological data for both formation boundaries and faults. A current model is presented which provides defendable predictions for the spatial distribution of geology and water resources in aquifers throughout the model-domain. This work has allowed validation of regional scale geology and fault networks in the KAS, and has facilitated the first-ever estimations of groundwater resources in this region by a 3D method. The model enables a preliminary assessment of the hydraulic significance of the major faults by evaluating their influence and role on groundwater flow within and between four compartments of the multi-layered, KAS hydrogeological system. Thus a representative hydrogeological model of the study area is constructed. The possible dual nature of faults in the KAS is discussed in the context that some faults appear to be acting both as barriers to horizontal groundwater flow, and simultaneously as conduits for vertical flow. Also discussed is the possibility that two flow directions occur within the KAS, at a small syncline area of near Feriana. In summary, this work evaluates the influence of aquifer connectivity and the role of faults and geology in groundwater flow within the KAS aquifer system. The current KAS geological model can now be used to guide groundwater managers on the best placement for drilling to test and further refine the understanding of the groundwater system, including the faults connectivity. As more geological data become available, the current model can be easily edited and re-computed to provide an updated model ready for the next stage of investigation by numerical flow modeling.

  19. Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.

    2002-01-01

    The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and

  20. Semantics-informed cartography: the case of Piemonte Geological Map

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  1. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design.

    PubMed

    Imai, Takashi; Oda, Koji; Kovalenko, Andriy; Hirata, Fumio; Kidera, Akinori

    2009-09-01

    In line with the recent development of fragment-based drug design, a new computational method for mapping of small ligand molecules on protein surfaces is proposed. The method uses three-dimensional (3D) spatial distribution functions of the atomic sites of the ligand calculated using the molecular theory of solvation, known as the 3D reference interaction site model (3D-RISM) theory, to identify the most probable binding modes of ligand molecules. The 3D-RISM-based method is applied to the binding of several small organic molecules to thermolysin, in order to show its efficiency and accuracy in detecting binding sites. The results demonstrate that our method can reproduce the major binding modes found by X-ray crystallographic studies with sufficient precision. Moreover, the method can successfully identify some binding modes associated with a known inhibitor, which could not be detected by X-ray analysis. The dependence of ligand-binding modes on the ligand concentration, which essentially cannot be treated with other existing computational methods, is also investigated. The results indicate that some binding modes are readily affected by the ligand concentration, whereas others are not significantly altered. In the former case, it is the subtle balance in the binding affinity between the ligand and water that determines the dominant ligand-binding mode.

  2. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio

    2016-02-01

    The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment

  3. Geologic map of the Clifton Quadrangle, Mesa County, Colorado

    USGS Publications Warehouse

    Carrara, P.E.

    2001-01-01

    1:24,000-scale geologic mapping in the Clifton 7.5' quadrangle, in support of the USGS Colorado River/I-70 Corridor Cooperative Geologic Mapping Project, provides interpretations of the Quaternary stratigraphy and geologic hazards in this area of the Grand Valley. The Clifton 1:24,000 quadrangle is in Mesa County in western Colorado. Because the map area is dominated by various surficial deposits, the map depicts 16 different Quaternary units. Five prominent river terraces are present in the quadrangle containing gravels deposited by the Colorado River. The map area contains a large landslide deposit on the southern slopes of Mount Garfield. The landslide developed in the Mancos Shale and contains large blocks of the overlying Mesaverde Group. In addition, the landslide is a source of debris flows that have closed I-70 in the past. The major bedrock unit in the quadrangle is the Mancos Shale of Upper Cretaceous age. The map is accompanied by text containing unit descriptions, and sections on geologic hazards (including landslides, piping, gullying, expansive soils, and flooding), and economic geology (including sand and gravel). A table indicates what map units are susceptible to a given hazard. Approximately 20 references are cited at the end of the report.

  4. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  5. Identifying Components in 3D Density Maps of Protein Nanomachines by Multi-scale Segmentation.

    PubMed

    Pintilie, Grigore; Zhang, Junjie; Chiu, Wah; Gossard, David

    2009-04-01

    Segmentation of density maps obtained using cryo-electron microscopy (cryo-EM) is a challenging task, and is typically accomplished by time-intensive interactive methods. The goal of segmentation is to identify the regions inside the density map that correspond to individual components. We present a multi-scale segmentation method for accomplishing this task that requires very little user interaction. The method uses the concept of scale space, which is created by convolution of the input density map with a Gaussian filter. The latter process smoothes the density map. The standard deviation of the Gaussian filter is varied, with smaller values corresponding to finer scales and larger values to coarser scales. Each of the maps at different scales is segmented using the watershed method, which is very efficient, completely automatic, and does not require the specification of seed points. Some detail is lost in the smoothing process. A sharpening process reintroduces detail into the segmentation at the coarsest scale by using the segmentations at the finer scales. We apply the method to simulated density maps, where the exact segmentation (or ground truth) is known, and rigorously evaluate the accuracy of the resulting segmentations.

  6. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  7. Geologic Map of the Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Gardner, J. N.; Reneau, S. L.; Kelley, S. A.; Kempter, K. A.; Lawrence, J. R.

    2011-12-01

    Valles caldera is famous as the type locality of large resurgent calderas (Smith and Bailey, 1968), the location of a classic 260-300 °C liquid-dominated geothermal system (Goff and Gardner, 1994), and the site of a long-lived late Pleistocene lake (Fawcett et al., 2011). We have published a detailed color geologic map of the Valles caldera and surrounding areas at 1:50,000 scale obtainable from New Mexico Bureau of Geology and Mineral Resources (geoinfo.nmt.edu/publications/maps/geologic/gm/79/). The new Valles map has been compiled from all or parts of nine 1:24,000 geologic maps completed between 2004 and 2008 (Bland, Cerro del Grant, Jarosa, Jemez Springs, Polvadera Peak, Redondo Peak, Seven Springs, Valle San Antonio, and Valle Toledo). Our map provides more detailed geology on the resurgent dome, caldera collapse breccias, post-caldera lava and tuff eruptions, intracaldera sedimentary and lacustrine deposits, and precaldera volcanic and sedimentary rocks than previous maps and incorporates recent stratigraphic revisions to the geology of the Jemez Mountains volcanic field. Three cross sections supported by surface geology, geophysical data and deep borehole logs (≤4500 m) show an updated view of the caldera interior, depict a modern interpretation of caldera collapse and resurgence, and provide caldera-wide subsurface isotherms (≤500 °C). A 30 page booklet included with the map contains extensive rock descriptions for 162 stratigraphic units and figures showing physiographic features, structural relations between Valles (1.25 Ma) and the earlier, comparably sized Toledo caldera (1.62 Ma), correlation charts of map units, and the distribution of pre- and post-caldera hydrothermal alteration styles, including recently documented zeolite-type alteration. Finally, the booklet includes a generalized model showing our interpretation of intracaldera structure and subjacent magma chambers, and relations of Valles to earlier Quaternary-Precambrian units.

  8. Geologic Map of the State of Hawai`i

    USGS Publications Warehouse

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of

  9. Large-scale 3D mapping of the intergalactic medium using the Lyman α forest

    NASA Astrophysics Data System (ADS)

    Ozbek, Melih; Croft, Rupert A. C.; Khandai, Nishikanta

    2016-03-01

    Maps of the large-scale structure of the Universe at redshifts 2-4 can be made with the Lyman α forest which are complementary to low-redshift galaxy surveys. We apply the Wiener interpolation method of Caucci et al. to construct three-dimensional maps from sets of Lyman α forest spectra taken from cosmological hydrodynamic simulations. We mimic some current and future quasar redshift surveys [Baryon Oscillation Spectroscopic Survey (BOSS), extended BOSS (eBOSS) and Mid-Scale Dark Energy Spectroscopic Instrument (MS-DESI)] by choosing similar sightline densities. We use these appropriate subsets of the Lyman α absorption sightlines to reconstruct the full three-dimensional Lyman α flux field and perform comparisons between the true and the reconstructed fields. We study global statistical properties of the intergalactic medium (IGM) maps with autocorrelation and cross-correlation analysis, slice plots, local peaks and point-by-point scatter. We find that both the density field and the statistical properties of the IGM are recovered well enough that the resulting IGM maps can be meaningfully considered to represent large-scale maps of the Universe in agreement with Caucci et al., on larger scales and for sparser sightlines than had been tested previously. Quantitatively, for sightline parameters comparable to current and near future surveys the correlation coefficient between true and reconstructed fields is r > 0.9 on scales >30 h-1 Mpc. The properties of the maps are relatively insensitive to the precise form of the covariance matrix used. The final BOSS quasar Lyman α forest sample will allow maps to be made with a resolution of ˜30 h-1 Mpc over a volume of ˜15 h-3 Gpc3 between redshifts 1.9 and 2.3.

  10. Geologic map of the Mount Adams Quadrangle, Washington

    SciTech Connect

    Korosec, M.A.

    1987-01-01

    This report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

  11. Geologic map of the Hood River Quadrangle, Washington and Oregon

    SciTech Connect

    Korosec, M.A.

    1987-01-01

    The report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

  12. Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping

    NASA Astrophysics Data System (ADS)

    Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable

  13. Intrusive Rock Database for the Digital Geologic Map of Utah

    USGS Publications Warehouse

    Nutt, C.J.; Ludington, Steve

    2003-01-01

    Digital geologic maps offer the promise of rapid and powerful answers to geologic questions using Geographic Information System software (GIS). Using modern GIS and database methods, a specialized derivative map can be easily prepared. An important limitation can be shortcomings in the information provided in the database associated with the digital map, a database which is often based on the legend of the original map. The purpose of this report is to show how the compilation of additional information can, when prepared as a database that can be used with the digital map, be used to create some types of derivative maps that are not possible with the original digital map and database. This Open-file Report consists of computer files with information about intrusive rocks in Utah that can be linked to the Digital Geologic Map of Utah (Hintze et al., 2000), an explanation of how to link the databases and map, and a list of references for the databases. The digital map, which represents the 1:500,000-scale Geologic Map of Utah (Hintze, 1980), can be obtained from the Utah Geological Survey (Map 179DM). Each polygon in the map has a unique identification number. We selected the polygons identified on the geologic map as intrusive rock, and constructed a database (UT_PLUT.xls) that classifies the polygons into plutonic map units (see tables). These plutonic map units are the key information that is used to relate the compiled information to the polygons on the map. The map includes a few polygons that were coded as intrusive on the state map but are largely volcanic rock; in these cases we note the volcanic rock names (rhyolite and latite) as used in the original sources Some polygons identified on the digital state map as intrusive rock were misidentified; these polygons are noted in a separate table of the database, along with some information about their true character. Fields may be empty because of lack of information from references used or difficulty in finding

  14. OneGeology: Making the World’s Geological Map Data Accessible Online

    NASA Astrophysics Data System (ADS)

    Broome, H.; Jackson, I.; Robida, F.; Thorleifson, H.

    2009-12-01

    OneGeology (http://onegeology.org) is a successful international initiative of the geological surveys of the world and the flagship project of the ‘International Year of Planet Earth’. Its aim is to provide dynamic web access to geological map data covering the world, creating a focus for accessing geological information for everyone. Thanks to the enthusiasm and support of participating nations the initiative has progressed rapidly and geological surveys and the many users of their data are excited about this ground-breaking project. Currently 10 international geoscience organizations have endorsed the initiative and more than 109 countries have agreed to participate. OneGeology works with whatever digital format is available in each country. The target scale is 1:1 million, but the project is pragmatic and accepts a range of scales and the best available data. The initiative recognizes that different nations have differing abilities to participate and transfer of know-how to those who need it is a key aspect of the approach. A key contributor to the success of OneGeology has been its utilization of the latest new web technology and an emerging data exchange standard for geological map data called GeoSciML. GeoSciML (GeoScience Markup Language) is a schema written in GML (Geography Markup Language) for geological data. GeoSciML has the ability to represent both the geography (geometries e.g. polygons, lines and points) and geological attribution in a clear and structured format. OneGeology was launched March 2007 at the inaugural workshop in Brighton England. At that workshop the 43 participating nations developed a declaration of a common objective and principles called the “Brighton Accord” (http://onegeology.org/what_is/accord.html) . Work was initiated immediately and the resulting OneGeology Portal was launched at the International Geological Congress in Oslo in August 2008 by Simon Winchester, author of “The Map that Changed the World”. Since the

  15. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  16. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    USGS Publications Warehouse

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  17. A 3D dust map from Pan-STARRS 1 photometry

    NASA Astrophysics Data System (ADS)

    Green, Gregory M.

    We have constructed a three-dimensional map of dust in the Milky Way, tracing reddening on ˜ 7' scales out to a distance of several kiloparsecs. We trace reddening using stars embedded in the dust, by simultaneously inferring stellar distance, stellar type, and the reddening along the line of sight. We use 5-band grizy Pan-STARRS 1 photometry of 800 million stars, augmented by 3-band 2MASS JHKs photometry when available. The full map is available at http://argonaut.skymaps.info. An online version of this talk is available at http://http://greg.ory.gr/present/ewass2015.

  18. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGES

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D.; Fraser, James S.

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  19. Volcanism on Io: Results from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2010-01-01

    We have completed a new 1:15,000,000 global geologic map of Jupiter's volcanic moon, Io, based on a set of 1 km/pixel combined Galileo- Voyager mosaics produced by the U.S. Geological Survey. The map was produced over the last three years using ArcGIS(TM) software, and has undergone peer-review. Here we report some of the key results from our global mapping efforts, and how these results relate to questions regarding the volcano-tectonic evolution of Io.

  20. Mars Global Geologic Mapping: About Half Way Done

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2009-01-01

    We are in the third year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map.

  1. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  2. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  3. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease.

    PubMed

    Gyöngyösi, Mariann; Dib, Nabil

    2011-07-01

    The three-dimensional NOGA(®) (Biologics Delivery Systems, a Johnson & Johnson company, Irwindale, CA, USA) electromechanical mapping system simultaneously registers the electrical and mechanical activities of the left ventricle, enabling online assessment of myocardial viability. The system distinguishes between viable, nonviable, stunned, and hibernating myocardium and can assess wall motion. The evaluation of the electrophysiological state of the tissue by NOGA(®) mapping has been validated by comparing the electroanatomical voltage and local linear shortening maps obtained with this technique with several noninvasive diagnostic tests. Bipolar signal analysis and determination of the existence and degree of transmural infarctions are also possible with NOGA(®). Immediately after percutaneous coronary intervention, an increased electromechanical discordance between voltage and local linear shortening maps indicates procedure-induced stunning that is caused by repetitive ischemia or microvascular compromise. Catheter-based direct intramyocardial injection of cells or gene constructs by NOGA(®) reduces the likelihood of systemic toxicity of the injected substance, resulting in minimal washout, limited exposure of nontarget organs, and precise localization to ischemic and peri-ischemic myocardial regions in patients with chronic myocardial ischemia. In addition, direct intramyocardial injection enables the treatment of chronic myocardial infarction by provoking a chemotactic signal at the injection-injury site that contributes to cell engraftment. By measuring the electrical activation pattern in delayed-motion areas, NOGA(®) might also be useful to predict response to cardiac resynchronization therapy. PMID:21587214

  4. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  5. 3-D Mind Maps: Placing Young Children in the Centre of Their Own Learning

    ERIC Educational Resources Information Center

    Howitt, Christine

    2009-01-01

    Three-dimensional mind maps are a highly effective tool for providing engaging, kinaesthetic and sensory experiences for young children, with real objects used to promote the sharing of knowledge and the creation of connections. The use of real objects allows children the opportunity to connect with those objects at a personal level, thus placing…

  6. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  7. Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania

    USGS Publications Warehouse

    ,

    1953-01-01

    This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.

  8. Geologic Map of the Big Spring Quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, David J.; McDowell, Robert C.

    2006-01-01

    The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  9. Geologic map of the Winona Quadrangle, Shannon County, Missouri

    USGS Publications Warehouse

    Orndorff, R.C.; Harrison, R.W.

    2001-01-01

    The bedrock exposed in the Winona Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  10. Real-time process monitoring and temperature mapping of a 3D polymer printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Love, Lonnie J.; Rowe, John C.

    2013-05-01

    An extended-range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation of the parts as they are being fabricated. The IR camera was also used to map the temperature within the build volume of the oven. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of build location within the oven. The observation of the temperature variation of a part during construction provides insight into how the deposition process itself creates temperature distributions, which can lead to failure.

  11. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  12. Publications of the Western Geologic Mapping Team 1997-1998

    USGS Publications Warehouse

    Stone, Paul; Powell, C.L.

    1999-01-01

    The Western Geologic Mapping Team (WGMT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth-science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WGMT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WGMT released in calendar years 1997 and 1998. Most of the publications listed were authored or coauthored by WGMT staff. However, the list also includes some publications authored by formal non-USGS cooperators with the WGMT, as well as some authored by USGS staff outside the WGMT in cooperation with WGMT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Most of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information. For these, the bibliographic citation refers specifically to an explanatory pamphlet containing information about the content and accessibility of the database, not to the actual map or related information comprising the database itself.

  13. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  14. Radio triangulation - mapping the 3D position of the solar radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina

    2016-04-01

    Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.

  15. Evaluating the presentation and usability of 2D and 3D maps generated by unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gregory, Jason; Baran, David; Evans, A. W.

    2013-05-01

    Currently fielded small unmanned ground vehicles (SUGVs) are operated via teleoperation. This method of operation requires a high level of operator involvement within, or near within, line of sight of the robot. As advances are made in autonomy algorithms, capabilities such as automated mapping can be developed to allow SUGVs to be used to provide situational awareness with an increased standoff distance while simultaneously reducing operator involvement. In order to realize these goals, it is paramount the data produced by the robot is not only accurate, but also presented in an intuitive manner to the robot operator. The focus of this paper is how to effectively present map data produced by a SUGV in order to drive the design of a future user interface. The effectiveness of several 2D and 3D mapping capabilities was evaluated by presenting a collection of pre-recorded data sets of a SUGV mapping a building in an urban environment to a user panel of Soldiers. The data sets were presented to each Soldier in several different formats to evaluate multiple factors, including update frequency and presentation style. Once all of the data sets were presented, a survey was administered. The questions in the survey were designed to gauge the overall usefulness of the mapping algorithm presentations as an information generating tool. This paper presents the development of this test protocol along with the results of the survey.

  16. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  17. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm

    PubMed Central

    Pandurangan, Arun Prasad; Vasishtan, Daven; Alber, Frank; Topf, Maya

    2015-01-01

    Summary We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. PMID:26655474

  18. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  19. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    NASA Astrophysics Data System (ADS)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  20. Geologic Map of the Yukon-Koyukuk Basin, Alaska

    USGS Publications Warehouse

    Patton, William W.; Wilson, Frederic H.; Labay, Keith A.; Shew, Nora

    2009-01-01

    This map and accompanying digital files represent part of a systematic effort to release geologic data for the United States in a uniform manner. All the geologic data in this series will be published as parts of the U.S. Geological Survey Data Series. The geologic data in this series have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The data are presented for use at a nominal scale of 1:500,000, although individual datasets may contain data suitable for use at larger scales. The metadata associated with each release will provide more detailed information on sources and appropriate scales for use. Associated attribute databases accompany the spatial database of the geology and are uniformly structured for ease in developing regional- and national-scale maps. The 1:500,000-scale geologic map of the Yukon-Koyukuk Basin, Alaska, covers more than 200,000 square kilometers of western Alaska or nearly 15 percent of the total land area of the state. It stretches from the Brooks Range on the north to the Kuskokwim River and lower reaches of the Yukon River on the south and from Kotzebue Sound, Seward Peninsula, and Norton Sound on the west to the Yukon-Tanana Uplands and Tanana-Kuskokwim Lowlands on the east. It includes not only the northern and central part of the basin, but also the lands that border the basin. The area is characterized by isolated clusters of hills and low mountain ranges separated by broad alluviated interior and coastal lowlands. Most of the lowlands, except those bordering Kotzebue Sound and Norton Sound, support a heavy vegetation cover. Exposures of bedrock are generally limited to rubble-strewn ridgetops and to cutbanks along the rivers. The map of the Yukon-Koyukuk Basin was prepared largely from geologic field data collected between 1953 and 1988 by the U.S. Geological Survey and published as 1:250,000-scale geologic quadrangle maps. Additional data for parts of the

  1. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    NASA Astrophysics Data System (ADS)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  2. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    USGS Publications Warehouse

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  3. Fusion of terrestrial LiDAR and tomographic mapping data for 3D karst landform investigation

    NASA Astrophysics Data System (ADS)

    Höfle, B.; Forbriger, M.; Siart, C.; Nowaczinski, E.

    2012-04-01

    Highly detailed topographic information has gained in importance for studying Earth surface landforms and processes. LiDAR has evolved into the state-of-the-art technology for 3D data acquisition on various scales. This multi-sensor system can be operated on several platforms such as airborne LS (ALS), mobile LS (MLS) from moving vehicles or stationary on ground (terrestrial LS, TLS). In karst research the integral investigation of surface and subsurface components of solution depressions (e.g. sediment-filled dolines) is required to gather and quantify the linked geomorphic processes such as sediment flux and limestone dissolution. To acquire the depth of the different subsurface layers, a combination of seismic refraction tomography (SRT) and electrical resistivity tomography (ERT) is increasingly applied. This multi-method approach allows modeling the extension of different subsurface media (i.e. colluvial fill, epikarst zone and underlying basal bedrock). Subsequent fusion of the complementary techniques - LiDAR surface and tomographic subsurface data - first-time enables 3D prospection and visualization as well as quantification of geomorphometric parameters (e.g. depth, volume, slope and aspect). This study introduces a novel GIS-based method for semi-automated fusion of TLS and geophysical data. The study area is located in the Dikti Mountains of East Crete and covers two adjacent dolines. The TLS data was acquired with a Riegl VZ-400 scanner from 12 scan positions located mainly at the doline divide. The scan positions were co-registered using the iterative closest point (ICP) algorithm of RiSCAN PRO. For the digital elevation rasters a resolution of 0.5 m was defined. The digital surface model (DSM) of the study was derived by moving plane interpolation of all laser points (including objects) using the OPALS software. The digital terrain model (DTM) was generated by iteratively "eroding" objects in the DSM by minimum filter, which additionally accounts for

  4. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  5. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  6. Geological maps and models: are we certain how uncertain they are?

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; Waters, Colin; McEvoy, Fiona

    2014-05-01

    Geological maps and latterly 3D models provide the spatial framework for geology at diverse scales or resolutions. As demands continue to rise for sustainable use of the subsurface, use of these maps and models is informing decisions on management of natural resources, hazards and environmental change. Inaccuracies and uncertainties in geological maps and models can impact substantially on the perception, assessment and management of opportunities and the associated risks . Lithostratigraphical classification schemes predominate, and are used in most geological mapping and modelling. The definition of unit boundaries, as 2D lines or 3D surfaces is the prime objective. The intervening area or volume is rarely described other than by its bulk attributes, those relating to the whole unit. Where sufficient data exist on the spatial and/or statistical distribution of properties it can be gridded or voxelated with integrity. Here we only discuss the uncertainty involved in defining the boundary conditions. The primary uncertainty of any geological map or model is the accuracy of the geological boundaries, i.e. tops, bases, limits, fault intersections etc. Traditionally these have been depicted on BGS maps using three line styles that reflect the uncertainty of the boundary, e.g. observed, inferred, conjectural. Most geological maps tend to neglect the subsurface expression (subcrops etc). Models could also be built with subsurface geological boundaries (as digital node strings) tagged with levels of uncertainty; initial experience suggests three levels may again be practicable. Once tagged these values could be used to autogenerate uncertainty plots. Whilst maps are predominantly explicit and based upon evidence and the conceptual the understanding of the geologist, models of this type are less common and tend to be restricted to certain software methodologies. Many modelling packages are implicit, being driven by simple statistical interpolation or complex algorithms

  7. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  8. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  9. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  10. Clumped Isotope Thermometry of Geologic Methane (13CH3D) using Tunable Laser Mid-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ono, S.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2013-12-01

    Methane is both an alternative energy source as well as a significant greenhouse gas, and holds the potential for rapid release to the atmosphere, possibly triggering abrupt climate change in the past and in the future. The majority of methane on the Earth is biogenic, originating from microbial methanogenesis, or thermogenic sourced from previously formed biogenic organic materials. Methane can be also produced abiogenically during serpentinization and even mantle-sourced methane has been implicated. Carbon (13C/12C) and hydrogen (D/H) isotope ratios of methane and associated short chain hydrocarbons provide critical information about the abiogenic/biogenic origin of methane but data can be inconclusive. We have developed and tested a Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) Instrument to be used for precise measurements of the abundance of doubly isotope-substituted methane (13CH3D). The TILDAS instrument measures direct absorption in the mid-infrared (~ 8 μm) region using continuous wave quantum cascade laser combined with a 76 m pathlength astigmatic absorption cell. Initial test result indicates the precision for 13CH4, 12CH3D and 13CH3D for 0.2 ‰ or better for comparison between two reference gases. Accuracy of the methods for δ13C and δD is evaluated by comparing measurements by conventional isotope ratio mass spectrometry. Calibration of clumped isotope scale (δ13CH3D) is underway using methane produced at various temperatures. Following an isotope exchange reaction (13CH4 + 12CH3D ↔ 13CH3D + 12CH4), precise measurements of 13CH3D abundance is expected to provide new and critical information about the temperature at which methane was formed (or thermally equilibrated). Biogenic origin becomes highly unlikely, for example, if the estimated temperature is higher than 120°C, i.e., current high-temperature limit of microbial methanogenesis. Although significant questions remain regarding isotope exchange kinetics, and clumped

  11. Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Vanneschi, Claudio; Salvini, Riccardo; Massa, Giovanni; Riccucci, Silvia; Borsani, Angelo

    2014-08-01

    The three-dimensional laser scanning technique has recently become common in diverse working environments. Even in geology, where further development is needed, this technique is increasingly useful in tackling various problems such as stability investigations or geological and geotechnical monitoring. Three-dimensional laser scanning supplies detailed and complete geometrical information in short working times, as a result of the acquisition of a large number of data-points that accurately model the detected surfaces. Moreover, it is possible to combine these data with high quality photographic images so as to provide important information for geological applications, as follows. A working approach, that combines terrestrial laser scanning and traditional geological surveys, is presented. A three-dimensional model, that includes information about the geological structure in an underground quarry in the Apuan Alps, is realized. This procedure is adaptable to other geological contexts, and because of its operating speed and accuracy it is invaluable for optimal excavation, in which a proper planning of quarrying activity is vital for safety and commercial reasons.

  12. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  13. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  14. Spatial digital database for the geologic map of Nevada

    USGS Publications Warehouse

    Stewart, John Harris; Carlson, John E.; digital database by Raines, Gary L.; Connors, Katherine A.; Moyer, Lorre A.; Miller, Robert J.

    2003-01-01

    This report publishes a geologic digital spatial database (NVGEO) for the geologic map of Nevada by Stewart and Carlson (1978a) which was originally printed on a single sheet of paper at a scale of 1:500,000 (and later reprinted on two sheets in 1991). The spatial digital database (GIS) provided in this report supersedes earlier digital editions by Turner and Bawiec (1991) and Raines and others (1996).

  15. A 3D map of the islet routes throughout the healthy human pancreas

    PubMed Central

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  16. 3D mapping of stellar populations in galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2015-08-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600A to 10300 A for a representative sample of 10,000 nearby galaxies. MaNGA will allow the internal kinematics and spatially-resolved properties of stellar populations and gas inside galaxies to be studied as a function of local environment and halo mass for the very first time. I will present results from our analysis of the first year MaNGA data. The main focus is on the 3-dimensional distribution of stellar population properties in galaxies - formation age, element abundance, IMF slope - studying how these vary spatially in galaxies as a function of galaxy environment and dark matter halo mass.

  17. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  18. 3D Vegetation Mapping Using UAVSAR, LVIS, and LIDAR Data Acquisition Methods

    NASA Technical Reports Server (NTRS)

    Calderon, Denice

    2011-01-01

    The overarching objective of this ongoing project is to assess the role of vegetation within climate change. Forests capture carbon, a green house gas, from the atmosphere. Thus, any change, whether, natural (e.g. growth, fire, death) or due to anthropogenic activity (e.g. logging, burning, urbanization) may have a significant impact on the Earth's carbon cycle. Through the use of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and NASA's Laser Vegetation Imaging Sensor (LVIS), which are airborne Light Detection and Ranging (LIDAR) remote sensing technologies, we gather data to estimate the amount of carbon contained in forests and how the content changes over time. UAVSAR and LVIS sensors were sent all over the world with the objective of mapping out terrain to gather tree canopy height and biomass data; This data is in turn used to correlate vegetation with the global carbon cycle around the world.

  19. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  20. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  1. Geologic map of the Lada Terra quadrangle (V-56), Venus

    USGS Publications Warehouse

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  2. Stardust Under a Microscope - 3D maps of Wild 2/81P Cometary Samples in Aerogel

    NASA Astrophysics Data System (ADS)

    White, Amanda J.; Ebel, Denton

    2016-01-01

    The NASA Stardust mission to comet Wild 2 returned to Earth in 2006 with cometary and interstellar material captured in aerogel. Cometary particles impacted an aerogel collector at a relative velocity of 6.1 km/s, creating three-dimensional (3D) impact tracks of melted and crushed aerogel, void space, and fragmented cometary material. Each track represents the history of a unique hypervelocity capture event. The nature of each impact, including the original state of the impactor, is recorded in track morphology and material distribution. Using a combination of 3D morphological data, chemical data, and microphysical models, it is possible to reconstruct track formation events and a model of the original impactor.The focus of this work is to fully characterize whole tracks both morphologically and chemically using solely non-destructive methods. To achieve this, we combine high-resolution laser scanning confocal microscope (LSCM) 3D imaging with synchrotron X-ray fluorescence (SXRF) chemical mapping. We are also beginning to incorporate Raman spectroscopy to perform mineral phase analysis of fine track wall material. Using a Zeiss LSM 710 LSCM located in the American Museum of Natural History, we have imaged the morphology of over a dozen, whole Stardust tracks at high resolution (<80 nm/pixel in XY). We obtain the distribution of fine material along the track walls both quickly and without disturbing the sample. Complementary chemical data is acquired using the GSECARS X-ray microbe on beamline 13-IDE at the Advance Photon Source (APS) of Argonne National Laboratory. X-ray fluorescence maps of each track were collected with 100ms/pixel dwell time at a resolution of 1 or 2 micron/pixel. Many tracks were tilted and mapped a second time for stereo measurements.A thorough understanding of how cometary material and aerogel is distributed along tracks is required to understand the events which occurred after impact and to back-calculate properties of the original impactor

  3. Geologic map and guide of the island of Oahu, Hawaii