Science.gov

Sample records for 3d graphene assemblies

  1. Self-Assembled 3D Graphene Monolith from Solution.

    PubMed

    Lv, Wei; Zhang, Chen; Li, Zhengjie; Yang, Quan-Hong

    2015-02-19

    Three-dimensional (3D) graphene-assembled monoliths (GAs), especially ones prepared by self-assembly in the liquid phase, represent promising forms to realize the practical applications of graphene due to their high surface utilization and operability. However, the understanding of the assembly process and structure control of 3D GAs, as a new class of carbon materials, is quite inadequate. In this Perspective, we give a demonstration of the assembly process and discuss the key factors involved in the structure control of 3D GAs to pave the way for their future applications. It is shown that the assembly process starts with the phase separation, which is responsible for the formation of the 3D networked structure and liquid phase as the spacers avoid the parallel overlap of graphene layers and help form an interlinked pore system. Well-tailored graphene sheets and selected assembly media must be a precondition for a well-controlled assembly process and microstructure of a 3D GA. The potential applications in energy storage featuring high rate and high volumetric energy density demonstrate advantages of 3D GAs in real applications. PMID:26262482

  2. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene

    PubMed Central

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R.; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2014-01-01

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  3. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene.

    PubMed

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2014-10-22

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  4. Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes

    PubMed Central

    Lee, Kwang Hoon; Lee, Young-Woo; Lee, Seung Woo; Ha, Jeong Sook; Lee, Sang-Soo; Son, Jeong Gon

    2015-01-01

    A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO4) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO4–graphene nanocomposite has a much higher capacitance of 527.9 F g−1 at a current density of 0.5 A g−1, compared with ~247 F g−1 of simple 3D VOPO4, with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO4–graphene nanosheets. This VOPO4–graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO4–graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg−1. PMID:26333591

  5. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    PubMed

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines. PMID:25712163

  6. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode.

    PubMed

    Cai, Weiwei; Liu, Wenzong; Han, Jinglong; Wang, Aijie

    2016-06-15

    In comparison to precious metal catalyst especially Platinum (Pt), nickel foam (NF) owned cheap cost and unique three-dimensional (3D) structure, however, it was scarcely applied as cathode material in microbial electrolysis cell (MEC) as the intrinsic laggard electrochemical activity for hydrogen recovery. In this study, a self-assembly 3D nickel foam-graphene (NF-G) cathode was fabricated by facile hydrothermal approach for hydrogen evolution in MECs. Electrochemical analysis (linear scan voltammetry and electrochemical impedance spectroscopy) revealed the improved electrochemical activity and effective mass diffusion after coating with graphene. NF-G as cathode in MEC showed a significant enhancement in hydrogen production rate compared with nickel foam at a variety of biases. Noticeably, NF-G showed a comparable averaged hydrogen production rate (1.31 ± 0.07 mL H2 mL(-1) reactor d(-1)) to Platinum/carbon (Pt/C) (1.32 ± 0.07 mL H2 mL(-1) reactor d(-1)) at 0.8 V. Profitable energy recovery could be achieved by NF-G cathode at higher applied voltage, which performed the best hydrogen yield of 3.27 ± 0.16 mol H2 mol(-1) acetate at 0.8 V and highest energy efficiency of 185.92 ± 6.48% at 0.6 V. PMID:26807526

  7. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  8. Highly compressible 3D periodic graphene aerogel microlattices.

    PubMed

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  9. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  10. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  11. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  12. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  13. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  14. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGESBeta

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  15. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage.

    PubMed

    Ding, Yuan-Li; Wu, Chao; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-12-01

    Alloy anodes have shown great potential for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene-protected 3D Sb-based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic-assembling and subsequent confinement replacement strategy. As binder-free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g(-1) at 100 mA g(-1) and 295 mAh g(-1) at 1000 mA g(-1), and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g(-1). As for sodium storage properties, the reversible capacities of 517 mAh g(-1) at 50 mA g(-1) and 315 mAh g(-1) at 1000 mA g(-1), the capacity retention of 305 mAh g(-1) after 100 cycles at 300 mA g(-1) are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high-stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder-free anodes for LIBs and SIBs. PMID:26456169

  16. Design of Stable and Powerful Nanobiocatalysts, Based on Enzyme Laccase Immobilized on Self-Assembled 3D Graphene/Polymer Composite Hydrogels.

    PubMed

    Ormategui, Nerea; Veloso, Antonio; Leal, Gracia Patricia; Rodriguez-Couto, Susana; Tomovska, Radmila

    2015-07-01

    Graphene-based materials appear as a suitable answer to the demand for novel nanostructured materials for effective nanobiocatalytic systems design. In this work, a design of stable and efficient nanobiocatalysts made of enzyme laccase immobilized on composite hydrogels [reduced graphene oxide (rGO)/polymer] is presented. The composite hydrogel supports were synthesized by self-assembly of graphene oxide nanoplatelets in the frame of a polymer latex matrix, where the polymer nanoparticles were adsorbed onto the GO surface, creating hybrid nanoplatelets. These hybrids self-assembled when ascorbic acid was added as a GO reducing agent and formed three-dimensional porous structures, greatly swollen with water, e.g., the composite hydrogels. The hydrogels were used as a support for covalent immobilization of the laccase. The performance of the nanobiocatalysts was tested in the oxidative degradation of the recalcitrant synthetic dye Remazol Brilliant Blue R in aqueous solutions. The biocatalysts showed strong dye discoloration ability and high stability as they preserved their catalytic action in four successive batches of dye degradation. The presented biocatalysts offer possibilities for overcoming the main disadvantages of the enzyme catalysts (fragile nature, high cost, and high loading of the enzyme), which would lead to a step forward toward their industrial application. PMID:26075472

  17. DNA Assembly in 3D Printed Fluidics.

    PubMed

    Patrick, William G; Nielsen, Alec A K; Keating, Steven J; Levy, Taylor J; Wang, Che-Wei; Rivera, Jaime J; Mondragón-Palomino, Octavio; Carr, Peter A; Voigt, Christopher A; Oxman, Neri; Kong, David S

    2015-01-01

    The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  18. 3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries.

    PubMed

    Shi, Jia-Le; Tang, Cheng; Peng, Hong-Jie; Zhu, Lin; Cheng, Xin-Bing; Huang, Jia-Qi; Zhu, Wancheng; Zhang, Qiang

    2015-10-21

    A nanostructured carbon with high specific surface area (SSA), tunable pore structure, superior electrical conductivity, mechanically robust framework, and high chemical stability is an important requirement for electrochemical energy storage. Porous graphene fabricated by chemical activation and liquid etching has a high surface area but very limited volume of electrochemically accessible mesopores. Herein, an effective strategy of in situ formation of hierarchically mesoporous oxide templates with small pores induced by Kirkendall diffusion and large pores attributed to evaporation of deliberately introduced volatile metal is proposed for chemical vapor deposition assembly of porous graphene frameworks (PGFs). The PGFs inherit the hierarchical mesoporous structure of the templates. A high SSA of 1448 m(2) g(-1), 91.6% of which is contributed by mesopores, and a mesopore volume of 2.40 cm(3) g(-1) are attained for PGFs serving as reservoirs of ions or active materials in electrochemical energy storage applications. When the PGFs are applied in lithium-sulfur batteries, a very high sulfur utilization of 71% and a very low fading rate of ≈0.04% per cycle after the second cycle are achieved at a current rate of 1.0 C. This work provides a general strategy for the rational construction of mesoporous structures induced by a volatile metal, with a view toward the design of hierarchical nanomaterials for advanced energy storage. PMID:26265205

  19. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers.

    PubMed

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke

    2016-07-11

    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction. PMID:27167720

  20. DNA Assembly in 3D Printed Fluidics

    PubMed Central

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  1. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.

    PubMed

    Shi, Qiurong; Cha, Younghwan; Song, Yang; Lee, Jung-In; Zhu, Chengzhou; Li, Xiaoyu; Song, Min-Kyu; Du, Dan; Lin, Yuehe

    2016-08-25

    Porous 3D graphene-based hybrid materials (3D GBHMs) are currently attractive nanomaterials employed in the field of energy. Heteroatom-doped 3D graphene and metal, metal oxide, and polymer-decorated 3D graphene with modified electronic and atomic structures provide promising performance as electrode materials in energy storage and conversion. Numerous synthesis methods such as self-assembly, templating, electrochemical deposition, and supercritical CO2, pave the way to mass production of 3D GBHMs in the commercialization of energy devices. This review summarizes recent advances in the fabrication of 3D GBHMs with well-defined architectures such as finely controlled pore sizes, heteroatom doping types and levels. Moreover, current progress toward applications in fuel cells, supercapacitors and batteries employing 3D GBHMs is also highlighted, along with the detailed mechanisms of the enhanced electrochemical performance. Furthermore, current critical issues, challenges and future prospects with respect to applications of 3D GBHMs in practical devices are discussed at the end of this review. PMID:27531643

  2. Robust Electrografting on Self-Organized 3D Graphene Electrodes.

    PubMed

    Fortgang, Philippe; Tite, Teddy; Barnier, Vincent; Zehani, Nedjla; Maddi, Chiranjeevi; Lagarde, Florence; Loir, Anne-Sophie; Jaffrezic-Renault, Nicole; Donnet, Christophe; Garrelie, Florence; Chaix, Carole

    2016-01-20

    Improving graphene-based electrode fabrication processes and developing robust methods for its functionalization are two key research routes to develop new high-performance electrodes for electrochemical applications. Here, a self-organized three-dimensional (3D) graphene electrode processed by pulsed laser deposition with thermal annealing is reported. This substrate shows great performance in electron transfer kinetics regarding ferrocene redox probes in solution. A robust electrografting strategy for covalently attaching a redox probe onto these graphene electrodes is also reported. The modification protocol consists of a combination of diazonium salt electrografting and click chemistry. An alkyne-terminated phenyl ring is first electrografted onto the self-organized 3D graphene electrode by in situ electrochemical reduction of 4-ethynylphenyl diazonium. Then the ethynylphenyl-modified surface efficiently reacts with the redox probe bearing a terminal azide moiety (2-azidoethyl ferrocene) by means of Cu(I)-catalyzed alkyne-azide cycloaddition. Our modification strategy applied to 3D graphene electrodes was analyzed by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy (XPS). For XPS chemical surface analysis, special attention was paid to the distribution and chemical state of iron and nitrogen in order to highlight the functionalization of the graphene-based substrate by electrochemically grafting a ferrocene derivative. Dense grafting was observed, offering 4.9 × 10(-10) mol cm(-2) surface coverage and showing a stable signal over 22 days. The electrografting was performed in the form of multilayers, which offers higher ferrocene loading than a dense monolayer on a flat surface. This work opens highly promising perspectives for the development of self-organized 3D graphene electrodes with various sensing functionalities. PMID:26710829

  3. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  4. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Chen, Wei

    2015-04-01

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  5. A Phytic Acid Induced Super-Amphiphilic Multifunctional 3D Graphene-Based Foam.

    PubMed

    Song, Xinhong; Chen, Yiying; Rong, Mingcong; Xie, Zhaoxiong; Zhao, Tingting; Wang, Yiru; Chen, Xi; Wolfbeis, Otto S

    2016-03-14

    Surfaces with super-amphiphilicity have attracted tremendous interest for fundamental and applied research owing to their special affinity to both oil and water. It is generally believed that 3D graphenes are monoliths with strongly hydrophobic surfaces. Herein, we demonstrate the preparation of a 3D super-amphiphilic (that is, highly hydrophilic and oleophilic) graphene-based assembly in a single-step using phytic acid acting as both a gelator and as a dopant. The product shows both hydrophilic and oleophilic intelligence, and this overcomes the drawbacks of presently known hydrophobic 3D graphene assemblies. It can absorb water and oils alike. The utility of the new material was demonstrated by designing a heterogeneous catalytic system through incorporation of a zeolite into its amphiphilic 3D scaffold. The resulting bulk network was shown to enable efficient epoxidation of alkenes without prior addition of a co-solvent or stirring. This catalyst also can be recovered and re-used, thereby providing a clean catalytic process with simplified work-up. PMID:26890034

  6. Development of a 3D graphene electrode dielectrophoretic device.

    PubMed

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  7. Development of a 3D Graphene Electrode Dielectrophoretic Device

    PubMed Central

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R.

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  8. Synthesis of ultralow density 3D graphene-CNT foams using a two-step method.

    PubMed

    Vinod, Soumya; Tiwary, Chandra Sekhar; Machado, Leonardo D; Ozden, Sehmus; Vajtai, Robert; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Here, we report a highly scalable two-step method to produce graphene foams with ordered carbon nanotube reinforcements. In our approach, we first used solution assembly methods to obtain graphene oxide foam. Next, we employed chemical vapor deposition to simultaneously grow carbon nanotubes and thermally reduce the 3D graphene oxide scaffold. The resulting structure presented increased stiffness, good mechanical stability and oil absorption properties. Molecular dynamics simulations were carried out to further elucidate failure mechanisms and to understand the enhancement of the mechanical properties. The simulations showed that mechanical failure is directly associated with bending of vertical reinforcements, and that, for similar length and contact area, much more stress is required to bend the corresponding reinforcements of carbon nanotubes, thus explaining the experimentally observed enhanced mechanical properties. PMID:27546001

  9. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  10. 3D vision assisted flexible robotic assembly of machine components

    NASA Astrophysics Data System (ADS)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  11. Towards lysozyme nanotube and 3D hybrid self-assembly

    NASA Astrophysics Data System (ADS)

    Lara, Cecile; Handschin, Stephan; Mezzenga, Raffaele

    2013-07-01

    We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces. The crystal-based organic-inorganic hybrids further assemble into 3D ``sandwiched'' structures.We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces. The crystal-based organic-inorganic hybrids further assemble into 3D ``sandwiched'' structures. Electronic supplementary information (ESI) available: Materials and methods, further images and FTIR data. See DOI: 10.1039/c3nr02194g

  12. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.

    PubMed

    Xu, Xiang; Li, Hui; Zhang, Qiangqiang; Hu, Han; Zhao, Zongbin; Li, Jihao; Li, Jingye; Qiao, Yu; Gogotsi, Yury

    2015-04-28

    Three-dimensional (3D) graphene aerogels (GA) show promise for applications in supercapacitors, electrode materials, gas sensors, and oil absorption due to their high porosity, mechanical strength, and electrical conductivity. However, the control, actuation, and response properties of graphene aerogels have not been well studied. In this paper, we synthesized 3D graphene aerogels decorated with Fe3O4 nanoparticles (Fe3O4/GA) by self-assembly of graphene with simultaneous decoration by Fe3O4 nanoparticles using a modified hydrothermal reduction process. The aerogels exhibit up to 52% reversible magnetic field-induced strain and strain-dependent electrical resistance that can be used to monitor the degree of compression/stretching of the material. The density of Fe3O4/GA is only about 5.8 mg cm(-3), making it an ultralight magnetic elastomer with potential applications in self-sensing soft actuators, microsensors, microswitches, and environmental remediation. PMID:25792130

  13. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  14. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage.

    PubMed

    Ren, Long; Hui, K N; Hui, K S; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  15. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    PubMed Central

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  16. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    NASA Astrophysics Data System (ADS)

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-09-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.

  17. Colloid-guided assembly of oriented 3D neuronal networks

    PubMed Central

    Pautot, Sophie; Wyart, Claire; Isacoff, Ehud Y

    2009-01-01

    A central challenge in neuroscience is to understand the formation and function of three-dimensional (3D) neuronal networks. In vitro studies have been mainly limited to measurements of small numbers of neurons connected in two dimensions. Here we demonstrate the use of colloids as moveable supports for neuronal growth, maturation, transfection and manipulation, where the colloids serve as guides for the assembly of controlled 3D, millimeter-sized neuronal networks. Process growth can be guided into layered connectivity with a density similar to what is found in vivo. The colloidal superstructures are optically transparent, enabling remote stimulation and recording of neuronal activity using layer-specific expression of light-activated channels and indicator dyes. The modular approach toward in vitro circuit construction provides a stepping stone for applications ranging from basic neuroscience to neuron-based screening of targeted drugs. PMID:18641658

  18. Dynactin 3D structure: implications for assembly and dynein binding.

    PubMed

    Imai, Hiroshi; Narita, Akihiro; Maéda, Yuichiro; Schroer, Trina A

    2014-09-23

    The multisubunit protein complex, dynactin, is an essential component of the cytoplasmic dynein motor. High-resolution structural work on dynactin and the dynein/dynactin supercomplex has been limited to small subunits and recombinant fragments that do not report fully on either ≈1MDa assembly. In the present study, we used negative-stain electron microscopy and image analysis based on random conical tilt reconstruction to obtain a three-dimensional (3D) structure of native vertebrate dynactin. The 35-nm-long dynactin molecule has a V-shaped shoulder at one end and a flattened tip at the other end, both offset relative to the long axis of the actin-related protein (Arp) backbone. The shoulder projects dramatically away from the Arp filament core in a way that cannot be appreciated in two-dimensional images, which has implications for the mechanism of dynein binding. The 3D structure allows the helical parameters of the entire Arp filament core, which includes the actin capping protein, CP, to be determined for the first time. This structure exhibits near identity to F-actin and can be well fitted into the dynactin envelope. Molecular fitting of modeled CP-Arp polymers into the envelope shows that the filament contains between 7 and 9 Arp protomers and is capped at both ends. In the 7 Arp model, which agrees best with measured Arp stoichiometry and other structural information, actin capping protein (CP) is not present at the distal tip of the structure, unlike what is seen in the other models. The 3D structure suggests a mechanism for dynactin assembly and length specification. PMID:25046383

  19. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  20. 3D assembly of silica encapsulated semiconductor nanocrystals.

    PubMed

    Rengers, Christin; Voitekhovich, Sergei V; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-08-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures. PMID:26154738

  1. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. PMID:27214752

  2. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  3. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  4. 3D assembly of silica encapsulated semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Rengers, Christin; Voitekhovich, Sergei V.; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-07-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures.Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica

  5. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications. PMID:26105548

  6. Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Xu, Yuanyuan; Zhang, Chao; Sun, Zhencui; Chen, Chuansong; Li, Xiuhua; Jiang, Shouzhen; Man, Baoyuan

    2014-08-01

    Direct deposition of graphene layers on the flexible glass fiber surface to form the three-dimensional (3D) core-shell structures is offered using a two-heating reactor chemical vapor deposition system. The two-heating reactor is utilized to offer sufficient, well-proportioned floating C atoms and provide a facile way for low-temperature deposition. Graphene layers, which are controlled by changing the growth time, can be grown on the surface of wire-type glass fiber with the diameter from 30 nm to 120 um. The core-shell graphene/glass fiber deposition mechanism is proposed, suggesting that the 3D graphene films can be deposited on any proper wire-type substrates. These results open a facile way for direct and high-efficiency deposition of the transfer-free graphene layers on the low-temperature dielectric wire-type substrates.

  7. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.

    PubMed

    Xu, Yuxi; Shi, Gaoquan; Duan, Xiangfeng

    2015-06-16

    Graphene and its derivatives are versatile building blocks for bottom-up assembly of advanced functional materials. In particular, with exceptionally large specific surface area, excellent electrical conductivity, and superior chemical/electrochemical stability, graphene represents the ideal material for various electrochemical energy storage devices including supercapacitors. However, due to the strong π-π interaction between graphene sheets, the graphene flakes tend to restack to form graphite-like powders when they are processed into practical electrode materials, which can greatly reduce the specific surface area and lead to inefficient utilization of the graphene layers for electrochemical energy storage. The self-assembly of two-dimensional graphene sheets into three-dimensional (3D) framework structures can largely retain the unique properties of individual graphene sheets and has recently garnered intense interest for fundamental investigations and potential applications in diverse technologies. In this Account, we review the recent advances in preparing 3D graphene macrostructures and exploring them as a unique platform for supercapacitor applications. We first describe the synthetic strategies, in which reduction of a graphene oxide dispersion above a certain critical concentration can induce the reduced graphene oxide sheets to cross-link with each other via partial π-π stacking interactions to form a 3D interconnected porous macrostructure. Multiple reduction strategies, including hydrothermal/solvothermal reduction, chemical reduction, and electrochemical reduction, have been developed for the preparation of 3D graphene macrostructures. The versatile synthetic strategies allow for easy incorporation of heteroatoms, carbon nanomaterials, functional polymers, and inorganic nanostructures into the macrostructures to yield diverse composites with tailored structures and properties. We then summarize the applications of the 3D graphene macrostructures

  8. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-01-01

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797

  9. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-01-01

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797

  10. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors.

    PubMed

    Yun, Yong Ju; Hong, Won G; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-06-21

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. PMID:24839129

  11. A 3D insight on the catalytic nanostructuration of few-layer graphene

    PubMed Central

    Melinte, G.; Florea, I.; Moldovan, S.; Janowska, I.; Baaziz, W.; Arenal, R.; Wisnet, A.; Scheu, C.; Begin-Colin, S.; Begin, D.; Pham-Huu, C.; Ersen, O.

    2014-01-01

    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting. PMID:24916201

  12. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection.

    PubMed

    Dong, Xiao-Chen; Xu, Hang; Wang, Xue-Wan; Huang, Yin-Xi; Chan-Park, Mary B; Zhang, Hua; Wang, Lian-Hui; Huang, Wei; Chen, Peng

    2012-04-24

    Using a simple hydrothermal procedure, cobalt oxide (Co(3)O(4)) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co(3)O(4) composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of ∼1100 F g(-1) at a current density of 10 A g(-1) with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM(-1) cm(-2) and a remarkable lower detection limit of <25 nM (S/N = 8.5). PMID:22435881

  13. Formation of 3D graphene foams on soft templated metal monoliths.

    PubMed

    Tynan, Michael K; Johnson, David W; Dobson, Ben P; Coleman, Karl S

    2016-07-21

    Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy. PMID:27341076

  14. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-01

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices. PMID:26833897

  15. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Chen, Guoying; Hedhili, Mohamed Nejib; Zhang, Hongnan; Wang, Peng

    2012-10-01

    In this study, three-dimensional (3D) graphene assemblies are prepared from graphene oxide (GO) by a facile in situ reduction-assembly method, using a novel, low-cost, and environment-friendly reducing medium which is a combination of oxalic acid (OA) and sodium iodide (NaI). It is demonstrated that the combination of a reducing acid, OA, and NaI is indispensable for effective reduction of GO in the current study and this unique combination (1) allows for tunable control over the volume of the thus-prepared graphene assemblies and (2) enables 3D graphene assemblies to be prepared from the GO suspension with a wide range of concentrations (0.1 to 4.5 mg mL-1). To the best of our knowledge, the GO concentration of 0.1 mg mL-1 is the lowest GO concentration ever reported for preparation of 3D graphene assemblies. The thus-prepared 3D graphene assemblies exhibit low density, highly porous structures, and electrically conducting properties. As a proof of concept, we show that by infiltrating a responsive polymer of polydimethylsiloxane (PDMS) into the as-resulted 3D conducting network of graphene, a conducting composite is obtained, which can be used as a sensing device for differentiating organic solvents with different polarity.In this study, three-dimensional (3D) graphene assemblies are prepared from graphene oxide (GO) by a facile in situ reduction-assembly method, using a novel, low-cost, and environment-friendly reducing medium which is a combination of oxalic acid (OA) and sodium iodide (NaI). It is demonstrated that the combination of a reducing acid, OA, and NaI is indispensable for effective reduction of GO in the current study and this unique combination (1) allows for tunable control over the volume of the thus-prepared graphene assemblies and (2) enables 3D graphene assemblies to be prepared from the GO suspension with a wide range of concentrations (0.1 to 4.5 mg mL-1). To the best of our knowledge, the GO concentration of 0.1 mg mL-1 is the lowest GO

  16. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors

    NASA Astrophysics Data System (ADS)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-01

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  17. 3-D perpendicular assembly of SWNTs for CMOS interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hoon; Yilmaz, Cihan; Somu, Sivasubramanian; Busnaina, Ahmed

    2013-11-01

    Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future very large scale integration (VLSI) interconnects. However, direct incorporation of CNTs into a complimentary metal oxide semiconductor (CMOS) architecture by the conventional chemical vapor deposition (CVD) growth method is problematic because it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance was 270 kΩs.

  18. Bottom-up assembly of hydrophobic nanocrystals and graphene nanosheets into mesoporous nanocomposites.

    PubMed

    Huang, Jijiang; Liu, Wenxian; Wang, Li; Sun, Xiaoming; Huo, Fengwei; Liu, Junfeng

    2014-04-22

    A general strategy for constructing graphene-based nanocomposites is achieved by emulsion-based bottom-up self-assembly of hydrophobic nanocrystals (NCs) to positively charged colloidal spheres, followed by the electrostatic assembly of NC colloidal spheres with negatively charged graphene oxide in an acidulous aqueous solution. With a simple heat treatment, 3D mesoporous NC spheres/graphene composites are obtained. TiO2/graphene composites typically exhibit a better rate capability and cycle performance than do the corresponding isolated TiO2 spheres. PMID:24684553

  19. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Xie, Xingyi; Hu, Kaiwen; Fang, Dongdong; Shang, Lihong; Tran, Simon D.; Cerruti, Marta

    2015-04-01

    Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we report a facile and universal method that can be used to synthesize such structures based on colloidal chemistry. We start from aqueous suspensions of both graphene oxide nanosheets and citrate-stabilized hydroxyapatite (HA) NPs. Hydrothermal treatment of the mixtures of both suspensions reduces graphene oxide to graphene, and entraps colloidal HA NPs into the 3D graphene network thanks to a self-assembled graphite-like shell formed around it. Dialysis through this shell causes uniform NP deposition onto the graphene walls. The resulting graphene-HA gels are highly porous, strong, electrically conductive and biocompatible, making them promising scaffolds for bone tissue engineering. This method can be applied to produce a variety of free-standing 3D graphene-based nanocomposites with unprecedented homogeneity.Graphene-nanoparticle (NP) composites have shown potential in applications ranging from batteries to, more recently, tissue engineering. Graphene and NPs should be integrated into uniform free-standing structures for best results. However, to date, this has been achieved only in few examples; in most cases, graphene/NP powders lacking three-dimensional (3D) structure were produced. Here we report a facile and universal method that can be used to synthesize such structures based on colloidal chemistry. We start from aqueous suspensions of both graphene oxide nanosheets and citrate-stabilized hydroxyapatite (HA) NPs. Hydrothermal treatment of the mixtures of both suspensions reduces graphene oxide to graphene, and entraps colloidal HA NPs into the 3D graphene network thanks to

  20. Formation of 3D graphene foams on soft templated metal monoliths

    NASA Astrophysics Data System (ADS)

    Tynan, Michael K.; Johnson, David W.; Dobson, Ben P.; Coleman, Karl S.

    2016-07-01

    Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy.Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy. Electronic supplementary information (ESI) available: Raman, EDX, PXRD, TGA, electrical conductivity data and SEM. See DOI: 10.1039/c6nr02455f

  1. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong

    2015-06-01

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by

  2. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Hong, Won G.; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-05-01

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas.An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00332b

  3. One-step reconstruction of assembled 3D holographic scenes

    NASA Astrophysics Data System (ADS)

    Velez Zea, Alejandro; Barrera-Ramírez, John Fredy; Torroba, Roberto

    2015-12-01

    We present a new experimental approach for reconstructing in one step 3D scenes otherwise not feasible in a single snapshot from standard off-axis digital hologram architecture, due to a lack of illuminating resources or a limited setup size. Consequently, whenever a scene could not be wholly illuminated or the size of the scene surpasses the available setup disposition, this protocol can be implemented to solve these issues. We need neither to alter the original setup in every step nor to cover the whole scene by the illuminating source, thus saving resources. With this technique we multiplex the processed holograms of actual diffuse objects composing a scene using a two-beam off-axis holographic setup in a Fresnel approach. By registering individually the holograms of several objects and applying a spatial filtering technique, the filtered Fresnel holograms can then be added to produce a compound hologram. The simultaneous reconstruction of all objects is performed in one step using the same recovering procedure employed for single holograms. Using this technique, we were able to reconstruct, for the first time to our knowledge, a scene by multiplexing off-axis holograms of the 3D objects without cross talk. This technique is important for quantitative visualization of optically packaged multiple images and is useful for a wide range of applications. We present experimental results to support the method.

  4. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode.

    PubMed

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, JunYong

    2015-06-28

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq(-1) at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size. PMID:26018299

  5. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.

    PubMed

    Dinda, S; Suresh, V; Thoniyot, P; Balčytis, A; Juodkazis, S; Krishnamoorthy, S

    2015-12-23

    We demonstrate the fabrication of plasmonic sensors that comprise gold nanopillar arrays exhibiting high surface areas, and narrow gaps, through self-assembly of amphiphilic diblock copolymer micelles on silicon substrates. Silicon nanopillars with high integrity over arbitrary large areas are obtained using copolymer micelles as lithographic templates. The gaps between metal features are controlled by varying the thickness of the evaporated gold. The resulting gold metal nanopillar arrays exhibit an engineered surface topography, together with uniform and controlled separations down to sub-10 nm suitable for highly sensitive detection of molecular analytes by Surface Enhanced Raman Spectroscopy (SERS). The significance of the approach is demonstrated through the control exercised at each step, including template preparation and pattern-transfer steps. The approach is a promising means to address trade-offs between resolutions, throughput, and performance in the fabrication of nanoplasmonic assemblies for sensing applications. PMID:26523480

  6. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  7. Automatic design of 3-d fixtures and assembly pallets

    SciTech Connect

    Brost, R.C.; Peters, R.R.

    1995-12-31

    This paper presents an implemented algorithm that automatically designs fixtures and assembly pallets to hold three-dimensional parts. The designed fixtures rigidly constrain and locate the part, obey task constraints, are robust to part shape variations, are easy to load, and are economical to produce. The algorithm is guaranteed to find the global optimum solution that satisfies these and other pragmatic conditions. We present the results of the algorithm applied to several practical manufacturing problems. For these complex problems the algorithm typically returns initial high-quality fixture designs in less than two minutes, and identifies th global optimum design in just over an hour.

  8. Designing self-assembling 3D structures of microcapsules

    NASA Astrophysics Data System (ADS)

    Li, Like; Shum, Henry; Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    Self-assembly of complex, three-dimensional structures is commonly achieved by biological cells but difficult to realize in synthetic systems with micron-scale or larger components. Some previous modeling studies have considered only the planar self-assembly of microcapsules on a substrate. In this work, nanoparticles released from the capsules bind to the substrate and to the shells of nearby capsules. The non-uniform nanoparticle deposition on a capsule's surface leads to adhesion gradients, which drive the capsules to effectively ``climb'' on top of one another and self-organize in the vertical direction. We determine conditions that favor this structural organization. In particular, we study how the vertical structuring depends on the background fluid flow, the topography of the microcapsules and the underlying surface, the capsule-capsule interaction and that between the capsules and the substrate. The findings can provide design rules for the autonomous creation of novel nanocomposites, where the layers are formed from nanoparticle-containing and nanoparticle-decorated microcapsules.

  9. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array.

    PubMed

    Li, Yiwei; Chen, Pu; Wang, Yachao; Yan, Shuangqian; Feng, Xiaojun; Du, Wei; Koehler, Stephan A; Demirci, Utkan; Liu, Bi-Feng

    2016-05-01

    Heterogeneous 3D cell microenvironment arrays are rapidly assembled by combining surface-wettability-guided assembly and microdroplet-array-based operations. This approach enables precise control over individual shapes, sizes, chemical concentrations, cell density, and 3D spatial distribution of multiple components. This technique provides a cost-effective solution to meet the increasing demand of stem cell research, tissue engineering, and drug screening. PMID:26991071

  10. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  11. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.

    PubMed

    Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui

    2016-03-16

    A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. PMID:26788692

  12. Directed Nanoscale Assembly of Graphene Based Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Ouk

    Graphene based materials, including fullerene, carbon nanotubes and graphene, are two-dimensional polymeric materials consisting of sp2 hybrid carbons. Those carbon materials have attracted enormous research attention for their outstanding material properties along with molecular scale dimension. The optimized utilization of those materials in various application fields inevitably requires the subtle controllability of their structures and properties. In this presentation, our research achievements associated to directed nanoscale assembly of B- or N-doped graphene based materials will be introduced. Graphene based materials can be efficiently processed into various three-dimensional structures via self-assembly principles. Those carbon assembled structures with extremely large surface and high electro-conductivity are potentially useful for energy and environmental applications. Aqueous dispersion of graphene oxide shows liquid crystalline phase, whose spontaneous molecular ordering is useful for display or fiber spinning. Along with the structure control by directed nanoscale assembly, substitutional doping of graphene based materials with B- or N- can be attained via various chemical treatment methods. The resultant chemically modified carbon materials with tunable workfunction, charge carrier density and enhanced surface activity could be employed for various nanomaterials and nanodevices for improved functionalities and performances.

  13. Automatic design of 3-D fixtures and assembly pallets

    SciTech Connect

    Brost, R.C.; Peters, R.R.

    1998-12-01

    This paper presents an implemented algorithm that automatically designs fixtures and assembly pallets to hold three-dimensional parts. All fixtures generated by the algorithm employ round side locators, a side clamp, and cylindrical supports; depending on the value of an input-control flag, the fixture may also include swing-arm top clamps. Using these modular elements, the algorithm designs fixtures that rigidly constrain and locate a part, obey task constraints, are robust to part-shape variations, are easy to load, and are economical to produce. For the class of fixtures that are considered, the algorithm is guaranteed to find the global optimum design that satisfies these and other pragmatic conditions. The authors present the results of the algorithm applied to several practical manufacturing problems. For these complex problems, the algorithm typically returns initial high-quality fixture designs in less than a minute, and identifies the global optimum design in just over an hour. The algorithm is also capable of solving difficult design problems where a single fixture is desired that can hold either of two parts.

  14. Automatic design of 3-d fixtures and assembly pallets

    SciTech Connect

    Brost, R.C.; Peters, R.R.

    1997-01-01

    This paper presents an implemented algorithm that automatically designs fixtures and assembly pallets to hold three-dimensional parts. All fixtures generated by the algorithm employ round side locators, a side clamp, and cylindrical supports; depending on the value of an input control flag, the fixture may also include swing-arm top clamps. Using these modular elements, the algorithm designs fixtures that rigidly constrain and locate the part, obey task constraints, are robust to part shape variations, are easy to load, and are economical to produce. For the class of fixtures that are considered, the algorithm is guaranteed to find the global optimum design that satisfies these and other pragmatic conditions. The authors present the results of the algorithm applied to several practical manufacturing problems. For these complex problems the algorithm typically returns initial high-quality fixture designs in less than a minute, and identifies the global optimum design in just over an hour. The algorithm is also capable of solving difficult design problems where a single fixture is desired that can hold either of two parts.

  15. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm-3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g-1 at a specific current of 200 mA g-1. Even at the high specific current of 1000 mA g-1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g-1, about twice as much as that of SGF (297.6 mAh g-1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc.

  16. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode.

    PubMed

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm(-3)), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g(-1) at a specific current of 200 mA g(-1). Even at the high specific current of 1000 mA g(-1) after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g(-1), about twice as much as that of SGF (297.6 mAh g(-1)) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  17. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    PubMed Central

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm−3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g−1 at a specific current of 200 mA g−1. Even at the high specific current of 1000 mA g−1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g−1, about twice as much as that of SGF (297.6 mAh g−1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  18. Conceptual, self-assembling graphene nanocontainers

    NASA Astrophysics Data System (ADS)

    Boothroyd, Simon; Anwar, Jamshed

    2015-07-01

    We show that graphene nano-sheets, when appropriately functionalised, can form self-assembling nanocontainers which may be opened or closed using a chemical trigger such as pH or polarity of solvent. Conceptual design rules are presented for different container structures, whose ability to form and encapsulate guest molecules is verified by molecular dynamics simulations. The structural simplicity of the graphene nanocontainers offers considerable scope for scaling the capacity, modulating the nature of the internal environment, and defining the trigger for encapsulation or release of the guest molecule(s). This design study will serve to provide additional impetus to developing synthetic approaches for selective functionalisation of graphene.

  19. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Yanguo; Cheng, Zhiying; Sun, Hongyu; Arandiyan, Hamidreza; Li, Jinpeng; Ahmad, Mashkoor

    2015-01-01

    Co3O4 mesoporous nanosheets/three-dimensional graphene networks (Co3O4 MNSs/3DGNs) nanohybrids have been successfully synthesized and investigated as anode materials for sodium ion batteries (SIBs). Microstructure characterizations have been performed to confirm the 3DGNs and Co3O4 MNSs nanostructures. It has been found that the present Co3O4 MNSs/3DGNs nanohybrids exhibit better SIB performance with enhanced reversible capacity, good cycle performance and rate capability as compared to Co3O4 MNSs and Co3O4 nanoparticles. The improved electrochemical performance is considered due to the mesoporous nature of the products, the addition of 3DGNs, 3D assembled hierarchical architecture and decrease in volume expansion during cycling. Thus, SIB is considered as a low cost alternative to LIBs for large-scale electric storage applications.

  20. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection.

    PubMed

    Ma, Ye; Zhao, Minggang; Cai, Bin; Wang, Wei; Ye, Zhizhen; Huang, Jingyun

    2014-09-15

    When the in vitro research works of biosensing begin to mimic in vivo conditions, some certain three-dimensional (3D) structures of biosensors are needed to accommodate biomolecules, bacteria or even cells to resemble the in vivo 3D environment. To meet this end, a novel method of synthesizing CuO nanoflowers on the 3D graphene foam (GF) was first demonstrated. The 3DGF/CuO nanoflowers composite was used as a monolithic free-standing 3D biosensor for electrochemical detection of ascorbic acid (AA). The 3D conductive structure of the GF is favorable for current collection, mass transport and loading bioactive chemicals. And CuO nanoflowers further increase the active surface area and catalyze the redox of AA. Thus, all these features endows 3DGF/CuO composite with outstanding biosensing properties such as an ultrahigh sensitivity of 2.06 mA mM(-1) cm(-2) to AA at 3 s response time. PMID:24755255

  1. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  2. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.

    PubMed

    Michna, Sarah; Wu, Willie; Lewis, Jennifer A

    2005-10-01

    Hydroxyapatite (HA) scaffolds with a 3-D periodic architecture and multiscale porosity have been fabricated by direct-write assembly. Concentrated HA inks with tailored viscoelastic properties were developed to enable the construction of complex 3-D architectures comprised of self-supporting cylindrical rods in a layer-by-layer patterning sequence. By controlling their lattice constant and sintering conditions, 3-D periodic HA scaffolds were produced with a bimodal pore size distribution. Mercury intrusion porosimetry (MIP) was used to determine the characteristic pore size and volume associated with the interconnected pore channels between HA rods and the finer pores within the partially sintered HA rods. PMID:15878368

  3. Competing Interactions in DNA Assembly on Graphene

    PubMed Central

    Akca, Saliha; Foroughi, Ashkan; Frochtzwajg, Daniel; Postma, Henk W. Ch.

    2011-01-01

    We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossover in pattern formation. We argue that the observed assembly behavior is caused by a crossover in the competition between base-base pi stacking and base-graphene pi stacking and we infer a critical crossover energy of eV. The experiments therefore provide a projective measurement of the base-base interaction strength. PMID:21532757

  4. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures

    NASA Astrophysics Data System (ADS)

    Chen, Wufeng; Yan, Lifeng

    2011-08-01

    Three-dimensional (3D) architectures of graphene are of interest in applications in electronics, catalysis devices, and sensors. However, it is still a challenge to fabricate macroscopic all-graphene 3D architectures under mild conditions. Here, a simple method for the preparation of 3D architectures of graphene is developed via the in situ self-assembly of graphene prepared by mild chemical reduction at 95 °C under atmospheric pressure without stirring. No chemical or physical cross-linkers or high pressures are required. The reducing agents include NaHSO3, Na2S, Vitamin C, HI, and hydroquinone. Both graphene hydrogels and aerogels can be prepared by this method, and the shapes of the 3D architectures can be controlled by changing the type of reactor. The 3D architectures of graphene have low densities, high mechanical properties, thermal stability, high electrical conductivity, and high specific capacitance, which make them candidates for potential applications in supercapacitors, hydrogen storage and as supports for catalysts.

  5. 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei

    2015-07-01

    Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity

  6. Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices.

    PubMed

    Li, Weikun; Wang, Ke; Zhang, Peng; He, Jie; Xu, Shaoyi; Liao, Yonggui; Zhu, Jintao; Xie, Xiaolin; Nie, Zhihong

    2016-01-27

    This article describes a novel supramolecular assembly-mediated strategy for the organization of Au nanoparticles (NPs) with different shapes (e.g., spheres, rods, and cubes) into large-area, free-standing 2D and 3D superlattices. This robust approach involves two major steps: (i) the organization of polymer-tethered NPs within the assemblies of supramolecular comblike block copolymers (CBCPs), and (ii) the disassembly of the assembled CBCP structures to produce free-standing NP superlattices. It is demonstrated that the crystal structures and lattice constants of the superlattices can be readily tailored by varying the molecular weight of tethered polymers, the volume fraction of NPs, and the matrix of CBCPs. This template-free approach may open a new avenue for the assembly of NPs into 2D and 3D structures with a wide range of potential applications. PMID:26649814

  7. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Shuang; Li, Wanfei; Zhang, Su; Li, Hongfei; Zheng, Zhaozhao; Li, Fujin; Shi, Liyi; Lin, Hongzhen; Zhang, Yuegang

    2016-07-01

    Lithium/sulfur (Li/S) battery is a promising next-generation energy storage system owing to its high theoretical energy density. However, for practical use there remains some key problems to be solved, such as low active material utilization and rapid capacity fading, especially at high areal sulfur loadings. Here, we report a facile one-pot method to prepare porous three-dimensional nitrogen, sulfur-codoped graphene through hydrothermal reduction of graphene oxide with multi-ion mixture modulation. We show solid evidence that the results of multi-ion mixture modulation can not only improve the surface affinity of the nanocarbons to polysulfides, but also alter their assembling manner and render the resultant 3D network a more favorable pore morphology for accommodating and confining sulfur. It also had an excellent rate performance and cycling stability, showing an initial capacity of 1304 mA h g-1 at 0.05C, 613 mA h g-1 at 5C and maintaining a reversible capacity of 462 mA h g-1 after 1500 cycles at 2C with capacity fading as low as 0.028% per cycle. Moreover, a high areal capacity of 5.1 mA h cm-2 at 0.2C is achieved at an areal sulfur loading of 6.3 mg cm-2, which are the best values reported so far for dual-doped sulfur cathodes.

  8. A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Marasso, S. L.; Rivolo, P.; Giardi, R.; Mombello, D.; Gigot, A.; Serrapede, M.; Benetto, S.; Enrico, A.; Cocuzza, M.; Tresso, E.; Pirri, C. F.

    2016-06-01

    In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g‑1 for the nanocomposite and of 14 mF cm‑2 for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.

  9. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  10. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Bing; Wang, Lidong; Wang, Yang; Yuan, Yinan; Miao, Qinghua; Yang, Ziyue; Fei, Weidong

    2016-03-01

    In this study, a new, effective strategy is reported for the fabrication of composites using manganese oxide (MnO2) grown in situ on three-dimensional (3D) graphene by the reverse microemulsion (water-in-oil) method. A uniform coating of nanoscale MnO2 layers can be observed on the internal surface of 3D graphene, which could benefit rapid ionic and electronic transport. The electrochemical performance of the MnO2/3D graphene composites is optimized by the control of the composite structure and mass loading of MnO2. The MnO2/3D graphene composite thus prepared exhibits a significantly high specific capacitance of 659.7 F g-1 at 0.3 A g-1 and an excellent retention life of 106% after 1000 cycles. The facile synthesis and excellent electrochemical performance of the MnO2/3D graphene composites indicate that the developed method demonstrates potential applications for the fabrication of novel electrode materials for use in energy storage devices.

  11. Supramolecular Assembly of DNA on Graphene Nanoribbons

    PubMed Central

    Reuven, Darkeyah G.; Shashikala, H. B. Mihiri; Mandal, Sanjay; Williams, Myron N. V.; Chaudhary, Jaideep; Wang, Xiao-Qian

    2013-01-01

    Graphene’s adhesive and charge delocalization properties offer the opportunity for the direct study of biological molecule in the nanoscale regime. The inherent charge on DNA base pairs and the associated phosphate backbone can be probed by non-covalent interactions with graphene, which is a useful platform for the creation of anisotropic nanopatterned biological assemblies. Here, we report the graphene nanoribbon (GNR) supported anisotropic supramolecular self-assembly of single stranded adenine (A), cytosine (C), guanine (G), thymine (T), AT, and GC 20mer oligonucleotides, as well as the unique ordering of double stranded plasmid (circular) and Herring sperm (linear) DNA. The GNRs serve as a double sided adhesive platform for attachment to the SiO2 substrate, as well as DNA oligomers and polymers. The self-assembly is attributed to donor-acceptor interactions between DNA and graphene. These findings demonstrate that the DNA-GNR assembly yields a prospective route to novel bio-relevant nanostructures. PMID:24032074

  12. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites.

    PubMed

    Jang, Hee Dong; Kim, Sun Kyung; Chang, Hankwon; Choi, Jeong-Woo

    2015-01-15

    Highly sensitive and label-free detection of the prostate specific antigen (PSA) remains a challenge in the diagnosis of prostate cancer. Here, a novel three-dimensional (3D) electrochemical immunosensor capable of sensitive and label-free detection of PSA is reported. This unique immunosensor is equipped with a highly conductive graphene (GR)-based gold (Au) composite modified electrode. The GR-based Au composite is prepared using aerosol spray pyrolysis and the morphology of the composite is the shape of a crumpled GR ball decorated with Au nanoparticles. Unlike the previous research, this novel 3D immunosensor functions very well over a broad linear range of 0-10 ng/mL with a low detection limit of 0.59 ng/mL; furthermore, it exhibits a significantly increased electron transfer and high sensitivity toward PSA. The highest rate of current change with respect to the PSA concentration is 5 μA/(ng/mL). Satisfactory selectivity, reproducibility, and stability of the 3D immunosensor are also exhibited. PMID:25150936

  13. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    PubMed

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles. PMID:27417708

  14. Polyribosomes Are Molecular 3D Nanoprinters That Orchestrate the Assembly of Vault Particles

    PubMed Central

    2014-01-01

    Ribosomes are molecular machines that function in polyribosome complexes to translate genetic information, guide the synthesis of polypeptides, and modulate the folding of nascent proteins. Here, we report a surprising function for polyribosomes as a result of a systematic examination of the assembly of a large ribonucleoprotein complex, the vault particle. Structural and functional evidence points to a model of vault assembly whereby the polyribosome acts like a 3D nanoprinter to direct the ordered translation and assembly of the multi-subunit vault homopolymer, a process which we refer to as polyribosome templating. Structure-based mutagenesis and cell-free in vitro expression studies further demonstrated the critical importance of the polyribosome in vault assembly. Polyribosome templating prevents chaos by ensuring efficiency and order in the production of large homopolymeric protein structures in the crowded cellular environment and might explain the origin of many polyribosome-associated molecular assemblies inside the cell. PMID:25354757

  15. Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates

    PubMed Central

    Hu, Chuangang; Zhai, Xiangquan; Liu, Lili; Zhao, Yang; Jiang, Lan; Qu, Liangti

    2013-01-01

    Chemical reduction of graphene oxide (GO) is the main route to produce the mass graphene-based materials with tailored surface chemistry and functions. However, the toxic reducing circumstances, multiple steps, and even incomplete removal of the oxygen-containing groups were involved, and the produced graphenes existed usually as the assembly-absent precipitates. Herein, a substrate-assisted reduction and assembly of GO (SARA-GO) method was developed for spontaneous formation of 3D graphene network on arbitrary conductive substrates including active and inert metals, semiconducting Si, nonmetallic carbon, and even indium-tin oxide glass without any additional reducing agents. The SARA-GO process offers a facile, efficient approach for constructing unique graphene assemblies such as microtubes, multi-channel networks, micropatterns, and allows the fabrication of high-performance binder-free rechargeable lithium-ion batteries. The versatile SARD-GO method significantly improves the processablity of graphenes, which could thus benefit many important applications in sensors and energy-related devices. PMID:23799368

  16. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes.

    PubMed

    Jiang, Yi; Wang, Wei-Ning; Liu, Di; Nie, Yao; Li, Wenlu; Wu, Jiewei; Zhang, Fuzhong; Biswas, Pratim; Fortner, John D

    2015-06-01

    In this work, we describe multifunctional, crumpled graphene oxide (CGO) porous nanocomposites that are assembled as advanced, reactive water treatment membranes. Crumpled 3D graphene oxide based materials fundamentally differ from 2D flat graphene oxide analogues in that they are highly aggregation and compression-resistant (i.e., π-π stacking resistant) and allow for the incorporation (wrapping) of other, multifunctional particles inside the 3D, composite structure. Here, assemblies of nanoscale, monomeric CGO with encapsulated (as a quasi core-shell structure) TiO2 (GOTI) and Ag (GOAg) nanoparticles, not only allow high water flux via vertically tortuous nanochannels (achieving water flux of 246 ± 11 L/(m(2)·h·bar) with 5.4 μm thick assembly, 7.4 g/m(2)), outperforming comparable commercial ultrafiltration membranes, but also demonstrate excellent separation efficiencies for model organic and biological foulants. Further, multifunctionality is demonstrated through the in situ photocatalytic degradation of methyl orange (MO), as a model organic, under fast flow conditions (tres < 0.1 s); while superior antimicrobial properties, evaluated with GOAg, are observed for both biofilm (contact) and suspended growth scenarios (>3 log effective removal, Escherichia coli). This is the first demonstration of 3D, crumpled graphene oxide based nanocomposite structures applied specifically as (re)active membrane assemblies and highlights the material's platform potential for a truly tailored approach for next generation water treatment and separation technologies. PMID:25942505

  17. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowu; Wu, Ying; Yang, Zhenzhong; Pan, Fusen; Zhong, Xiongwu; Wang, Jiaqing; Gu, Lin; Yu, Yan

    2015-10-01

    Nitrogen-doped 3D graphene frameworks (N-3D GFs) were synthesized by a facile two-step method: Polystyrene (PS) encapsulated in graphene oxide (GO) composites (denoted as PS@GO) are first synthesized, followed by a post-thermal annealing in ammonia step to get N-doped 3D GFs. The resulting N-3D GFs inherit the advantages of graphene, which possesses high electrical conductivity and high specific surface area. Furthermore, the well-defined 3D interconnected structure can facilitate the access of the electrolyte to the electrode surface, thus shortening the diffusion length of both Li+/e-, keeping the overall electrode highly conductive and active in lithium storage. Simultaneously, the in-situ formation of pyridinic N and pyrrolic N in 3D GFs provide high electronic conductivity and structure stability for lithium storage. The designed N-3D GFs electrode delivers a high specific capacity of 1094 mAhg-1 after 100 cycles at 200 mAg-1 and superior rate capability (691 mAhg-1 after 500 cycles at 1000 mAg-1) when used as anode for LIBs. We believe that such an inherently inexpensive, scalable, facile method can significantly increase the feasibility of building high performance energy storage system.

  18. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples. PMID:26433071

  19. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  20. High-coverage stable structures of 3d transition metal intercalated bilayer graphene.

    PubMed

    Liao, Ji-Hai; Zhao, Yu-Jun; Tang, Jia-Jun; Yang, Xiao-Bao; Xu, Hu

    2016-06-01

    Alkali-metal intercalated graphite and graphene have been intensively studied for decades, where alkali-metal atoms are found to form ordered structures at the hollow sites of hexagonal carbon rings. Using first-principles calculations, we have predicted various stable structures of high-coverage 3d transition metal (TM) intercalated bilayer graphene (BLG) stabilized by the strain. Specifically, with reference to the bulk metal, Sc and Ti can form stable TM-intercalated BLG without strain, while the stabilization of Fe, Co, and Ni intercalated BLG requires the biaxial strain of over 7%. Under the biaxial strain ranging from 0% to 10%, there are four ordered sandwich structures for Sc with the coverage of 0.25, 0.571, 0.684, and 0.75, in which the Sc atoms are all distributed homogenously instead of locating at the hollow sites. According to the phase diagram, a homogenous configuration of C8Ti3C8 with the coverage of 0.75 and another inhomogeneous structure with the coverage of 0.692 were found. The electronic and magnetic properties as a function of strain were also analyzed to indicate that the strain was important for the stabilities of the high-coverage TM-intercalated BLG. PMID:27167998

  1. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

    PubMed

    Das, Suprem R; Nian, Qiong; Cargill, Allison A; Hondred, John A; Ding, Shaowei; Saei, Mojib; Cheng, Gary J; Claussen, Jonathan C

    2016-09-21

    Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices. PMID:27510913

  2. Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays.

    PubMed

    Li, Penghui; Li, Yong; Zhou, Zhang-Kai; Tang, Siying; Yu, Xue-Feng; Xiao, Shu; Wu, Zhongzhen; Xiao, Quanlan; Zhao, Yuetao; Wang, Huaiyu; Chu, Paul K

    2016-04-01

    Millimeter-scale 3D superlattice arrays composed of dense, regular, and vertically aligned gold nanorods are fabricated by evaporative self-assembly. The regular organization of the gold nanorods into a macroscopic superlattice enables the production of a plasmonic substrate with excellent sensitivity and reproducibility, as well as reliability in surface-enhanced Raman scattering. The work bridges the gap between nanoscale materials and macroscopic applications. PMID:26823278

  3. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    PubMed Central

    Wang, Xianfeng; Chen, Yi Charlie

    2015-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers. PMID:25621167

  4. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  5. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities.

    PubMed

    Cheng, Delin; Hou, Jie; Hao, Lijing; Cao, Xiaodong; Gao, Huichang; Fu, Xiaoling; Wang, Yingjun

    2016-08-01

    Native cells live in a three-dimensional (3D) extracellular matrix (ECM) capable of regulating cell activities through various physical and chemical factors. Designed topographies have been well proven to trigger significant difference in cell behaviours. However, present topographies are almost all constructed on two-dimensional (2D) substrates like discs and films, which are far from features like 3D and porosity required in application like bone repair. Here we bottom-up assembled poly(lactic-co-glycolic acid)/calcium carbonate (PLGA/CC) microspheres with superficial porous topography intactly into a 3D porous scaffold. Because the scaffold was obtained through a mild technique, the bioactivity of released BMP-2 was well retained. Mouse bone marrow mesenchymal stem cells (mMSCs) were cultured on produced scaffolds having different 3D topographies. It turned out that osteogenic differentiation of mMSCs did respond to the 3D topographies, while proliferation didn't. Gene expression of αv and β1 integrins revealed that adhesion was supposed to be the underlying mechanism for osteogenic response. The study provides insight into enhancing function of practical scaffolds by elaborate topography design. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1056-1063, 2016. PMID:26013977

  6. Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications.

    PubMed

    Parveen, Nazish; Cho, Moo Hwan

    2016-01-01

    Three-dimensional (3D) nanostructures have attracted considerable attention because of their high surface areas and unique properties which gives outstanding performance in catalysis and energy storage applications. This paper proposes the growth mechanism of 3D flower-like β-Ni(OH)2 constructed through a two dimensional sheet framework using a one-step oleylamine-assisted solvothermal approach, where oleylamine acts as the surfactant, co-solvent, stabilizer, and reducing agent. A detailed examination of the product morphology after various reaction times suggested that the self-assembly of flower occurs through a mechanism involving nucleation, Ostwald ripening, and recrystallization. The associated characterization revealed it to be pure β-Ni(OH)2 without any sign of contamination. The effect of the morphology (sheet to 3D flower-like β-Ni(OH)2) on the electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge-discharge tests. The results showed that 3D flower-like β-Ni(OH)2 exhibited better specific capacitance of ~1567 F g(-1) at a current density of 1 A g(-1) and retained ~25% capacitance at a high current density of 10 A g(-1) compared to the other reference materials. The superior electrochemical properties of the 3D flower-like β-Ni(OH)2 originate from their large specific surface area and unique structure. PMID:27251067

  7. Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications

    PubMed Central

    Parveen, Nazish; Cho, Moo Hwan

    2016-01-01

    Three-dimensional (3D) nanostructures have attracted considerable attention because of their high surface areas and unique properties which gives outstanding performance in catalysis and energy storage applications. This paper proposes the growth mechanism of 3D flower-like β-Ni(OH)2 constructed through a two dimensional sheet framework using a one-step oleylamine-assisted solvothermal approach, where oleylamine acts as the surfactant, co-solvent, stabilizer, and reducing agent. A detailed examination of the product morphology after various reaction times suggested that the self-assembly of flower occurs through a mechanism involving nucleation, Ostwald ripening, and recrystallization. The associated characterization revealed it to be pure β-Ni(OH)2 without any sign of contamination. The effect of the morphology (sheet to 3D flower-like β-Ni(OH)2) on the electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge-discharge tests. The results showed that 3D flower-like β-Ni(OH)2 exhibited better specific capacitance of ~1567 F g−1 at a current density of 1 A g−1 and retained ~25% capacitance at a high current density of 10 A g−1 compared to the other reference materials. The superior electrochemical properties of the 3D flower-like β-Ni(OH)2 originate from their large specific surface area and unique structure. PMID:27251067

  8. Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Parveen, Nazish; Cho, Moo Hwan

    2016-06-01

    Three-dimensional (3D) nanostructures have attracted considerable attention because of their high surface areas and unique properties which gives outstanding performance in catalysis and energy storage applications. This paper proposes the growth mechanism of 3D flower-like β-Ni(OH)2 constructed through a two dimensional sheet framework using a one-step oleylamine-assisted solvothermal approach, where oleylamine acts as the surfactant, co-solvent, stabilizer, and reducing agent. A detailed examination of the product morphology after various reaction times suggested that the self-assembly of flower occurs through a mechanism involving nucleation, Ostwald ripening, and recrystallization. The associated characterization revealed it to be pure β-Ni(OH)2 without any sign of contamination. The effect of the morphology (sheet to 3D flower-like β-Ni(OH)2) on the electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge-discharge tests. The results showed that 3D flower-like β-Ni(OH)2 exhibited better specific capacitance of ~1567 F g‑1 at a current density of 1 A g‑1 and retained ~25% capacitance at a high current density of 10 A g‑1 compared to the other reference materials. The superior electrochemical properties of the 3D flower-like β-Ni(OH)2 originate from their large specific surface area and unique structure.

  9. Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.

    PubMed

    Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A

    2015-05-26

    Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks. PMID:25910177

  10. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  11. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration.

    PubMed

    Santo, Vítor E; Popa, Elena G; Mano, João F; Gomes, Manuela E; Reis, Rui L

    2015-06-01

    The role of Platelet Lysates (PLs) as a source of growth factors (GFs) and as main element of three-dimensional (3D) hydrogels has been previously described. However, the resulting hydrogels usually suffer from high degree of contraction, limiting their usefulness. This work describes the development of a stable biomimetic 3D hydrogel structure based on PLs, through the spontaneous assembling of a high concentration of chitosan-chondroitin sulfate nanoparticles (CH/CS NPs) with PLs loaded by adsorption. The interactions between the NPs and the lysates resemble the ones observed in the extracellular matrix (ECM) native environment between glycosaminoglycans and ECM proteins. In vitro release studies were carried out focusing on the quantification of PDGF-BB and TGF-β1 GFs. Human adipose derived stem cells (hASCs) were entrapped in these 3D hydrogels and cultured in vitro under chondrogenic stimulus, in order to assess their potential use for cartilage regeneration. Histological, immunohistological and gene expression analysis demonstrated that the PL-assembled constructs entrapping hASCs exhibited results similar to the positive control (hASCS cultured in pellets), concerning the levels of collagen II expression and immunolocalization of collagen type I and II and aggrecan. Moreover, the deposition of new cartilage ECM was detected by alcian blue and safranin-O positive stainings. This work demonstrates the potential of PLs to act simultaneously as a source/carrier of GFs and as a 3D structure of support, through the application of a "bottom-up" approach involving the assembly of NPs, resulting in an enriched construct for cartilage regeneration applications. PMID:25795623

  12. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  13. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.

    PubMed

    Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  14. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    PubMed Central

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  15. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  16. Bacteria Repellent Properties of Trichlorosilane Self-Assembled Graphene

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Kim, Dae Hwan; Kim, Hyunsook; Lee, Sang-Seob; Ju, Sanghyun

    2013-12-01

    The bacteria repellent property and thermal stability of pristine graphene and graphene chemically modified with a trichlorosilane (HDF-S) self-assembled monolayer (SAM) were investigated. The contact angles of HDF-S self-assembled graphene (105.8±0.5°) improved by ˜30% compared with those of pristine graphene (79.4±0.9°). In a bacterial atmosphere, while the bacteria were able to migrate to the pristine graphene surface, they were not able to migrate to the surface of the HDF-S self-assembled graphene. Moreover, the HDF-S SAM on graphene showed stable hydrophobic properties from -40 to 500 °C.

  17. Self-assembly of ABC triblock copolymers under 3D soft confinement: a Monte Carlo study.

    PubMed

    Yan, Nan; Zhu, Yutian; Jiang, Wei

    2016-01-21

    Under three-dimensional (3D) soft confinement, block copolymers can self-assemble into unique nanostructures that cannot be fabricated in an un-confined space. Linear ABC triblock copolymers containing three chemically distinct polymer blocks possess relatively complex chain architecture, which can be a promising candidate for the 3D confined self-assembly. In the current study, the Monte Carlo technique was applied in a lattice model to study the self-assembly of ABC triblock copolymers under 3D soft confinement, which corresponds to the self-assembly of block copolymers confined in emulsion droplets. We demonstrated how to create various nanostructures by tuning the symmetry of ABC triblock copolymers, the incompatibilities between different block types, and solvent properties. Besides common pupa-like and bud-like nanostructures, our simulations predicted various unique self-assembled nanostructures, including a striped-pattern nanoparticle with intertwined A-cages and C-cages, a pyramid-like nanoparticle with four Janus B-C lamellae adhered onto its four surfaces, an ellipsoidal nanoparticle with a dumbbell-like A-core and two Janus B-C lamellae and a Janus B-C ring surrounding the A-core, a spherical nanoparticle with a A-core and a helical Janus B-C stripe around the A-core, a cubic nanoparticle with a cube-shape A-core and six Janus B-C lamellae adhered onto the surfaces of the A-cube, and a spherical nanoparticle with helical A, B and C structures, from the 3D confined self-assembly of ABC triblock copolymers. Moreover, the formation mechanisms of some typical nanostructures were also examined by the variations of the contact numbers with time and a series of snapshots at different Monte Carlo times. It is found that ABC triblock copolymers usually aggregate into a loose aggregate at first, and then the microphase separation between A, B and C blocks occurs, resulting in the formation of various nanostructures. PMID:26571300

  18. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants.

    PubMed

    Fan, Yingying; Ma, Weiguang; Han, Dongxue; Gan, Shiyu; Dong, Xiandui; Niu, Li

    2015-07-01

    3D AgX/graphene aerogel (GA) composites (X = Br, Cl) are synthesized. Not only is the photocatalytic performance increased in comparison with pristine AgX, but also the photocatalytic cycling process is facilitated just using tweezers Thus, the comprehensive performance of the AgX/GA composites provides robust support for future industrial applications of the photocatalyst. PMID:25994835

  19. Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Zai, Jiantao; Liu, Yuanyuan; He, Xiaobo; Xiang, Shijie; Ma, Zifeng; Qian, Xuefeng

    2016-09-01

    LDHs in atomic thickness (mono-/bi-layers) usually exhibit novel physicochemical properties, especially in surface-dependent energy storage and catalysis areas. However, the thickness of the commonly reported 2D LDHs is in nanoscale and the bottom-up synthesis of atomically thin LDHs is rarely reported. Herein, high-quality atomically thin layered NiFe-LDHs assembled 3D microspheres were synthesized via a rational designed reaction system, where the formation of atomically thin building blocks was controlled by the synergetic effects of released carbonate anions and butanol. Furthermore, the complexant and solvents played important effects on the process of coprecipitation and the assembling of LDHs. Due to the nature of atomically thin LDHs nanosheets and unique 3D hierarchical structures, the obtained microspheres exhibited excellent electrocatalytic oxygen evolution reaction (OER) activity in alkaline medium with an onset overpotential (0.435 V, which is lower than that of common LDHs) and good durability. The as-prepared 3D NiFe-LDHs microspheres were also firstly used as supercapacitor materials and displayed a high specific capacitance of 1061 F g-1 at the current density of 1 A g-1.

  20. Assembly and Integration of Nanowires and Graphene for Nanoelectronics and Nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Nam, Sungwoo

    Flexible bottom-up assembly and integration of nanoscale materials with tunable composition and structure could make possible the development and advancement of novel fabrication strategies and unconventional integrated electronics/sensors not previously achievable with top-down approaches. We demonstrate contact-printing assembly and integration of semiconducting nanowires for three-dimensional (3D), multilayer nanowire (NW) electronics and large-scale complementary SiNW biosensor arrays, and monolithic integration of graphene-graphite for flexible bioprobes and integrated graphene electronics. First, we achieved the assembly of highly-ordered NW arrays by contact-printing with well-controlled shear process between growth and target substrates. We show the capability of uniform and patterned automated contact-printing from single chip to a 4-inch wafer scale. We also demonstrate the power of our assembly approach with the creation of 3D NW electronics and large-scale, complementary SiNW biosensor arrays. We show, first, multilayer assembly of semiconducting NWs for 3D, multi-functional electronics, which includes (1) 10 layers of Ge/Si NW field-effect transistor (FET) arrays, (2) two-layer, multi-functional circuits assembled onto flexible plastic substrates and (3) vertically-interconnected complementary metal-oxide-semiconductor (CMOS) circuits based on heterogeneous n-InAs and p-Ge/Si NW FETs with a record high ring oscillation frequency of ca. 110 MHz. Furthermore, we present the assembly and integration of large-scale, complementary SiNW biosensor arrays capable of simultaneous, multi-channel detections with femtomolar sensitivity of prostate-specific antigen (PSA). Second, we report monolithic integration of graphene-graphite to realize flexible, electrically-active nanoprobes, and a single-step synthesis of monolithic graphene-graphite structure to realize the integration of a whole circuit. We demonstrate that monolithically-integrated graphene

  1. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.

    PubMed

    Seo, Sujin; Zhou, Xiangfei; Liu, Gang Logan

    2016-07-01

    Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP-nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin-streptavidin binding detection. The limit of detection of the NP-nanoLCA is at least ten times smaller when detecting biotin-streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost-effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon-based sensors. PMID:27206214

  2. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    PubMed Central

    Liebmann, Thomas; Rydholm, Susanna; Akpe, Victor; Brismar, Hjalmar

    2007-01-01

    Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology. PMID:18070345

  3. A homochiral 3D covalent framework assembled from vertical chiral layers with achiral bridging ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xinlong; Qin, Chao; Wang, Enbo; Xu, Lin

    2005-02-01

    A novel metal-organic coordination polymer, [Cd(HPT) 2(4,4'-bpy)] n (PT=phthalate), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the tetragonal system, space group I4 122, a=8.294(5), b=8.294(5), c=33.7535(17) Å, V=2321.8(18) Å 3, Z=4 and R=0.0207. The structure of the compound exhibiting a homochiral 3D covalent framework based on achiral bridging ligands has been constructed by an alternating assembly of vertical chiral layers consisting of homochiral helices.

  4. 3D Assembly of All-Inorganic Colloidal Nanocrystals into Gels and Aerogels.

    PubMed

    Sayevich, Vladimir; Cai, Bin; Benad, Albrecht; Haubold, Danny; Sonntag, Luisa; Gaponik, Nikolai; Lesnyak, Vladimir; Eychmüller, Alexander

    2016-05-17

    We report an efficient approach to assemble a variety of electrostatically stabilized all-inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all-inorganic non-ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I(-) ions and bridged with Cd(2+) ions had a large surface area of 146 m(2)  g(-1) . PMID:27100131

  5. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  6. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

    PubMed

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-09-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  7. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  8. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.

    PubMed

    Cao, Jie; Zhang, Xinxing; Wu, Xiaodong; Wang, Shuman; Lu, Canhui

    2016-04-20

    In this study, we report a green assembled approach to prepare natural rubber (NR) composites with 3D interconnected graphene-based conductive networks. Taking advantage of the water-dispersity and amphiphilicity of cellulose nanocrystals (CNC), well suspended graphene@CNC aqueous colloids could be prepared by the CNC-mediated reduction of graphene oxide. When homogenized with NR latex under ultrasonication and subsequently co-coagulation, the graphene@CNC nanohybrids selectively located in the interstitial space between the NR latex microspheres and constructed an ordered 3D conductive structure. This unique 3D conductive network endowed the NR composites with remarkably enhanced electric conductivity (the percolation threshold is twofold lower than that of the conventional NR/graphene composites), mechanical properties and more importantly resistivity response to organic liquids. Our strategy offered a novel, simple and eco-friendly route for the fabrication of liquid sensors capable of sensing and discriminating various solvent leakage in chemical industry as well as environmental monitoring. PMID:26876831

  9. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as ``spacers'' for high-performance application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou

    2014-12-01

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets

  10. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC).

    PubMed

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-01-01

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc. PMID:27622567

  11. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as "spacers" for high-performance application in supercapacitors.

    PubMed

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F; Lei, Xiaomin; Han, Heyou

    2015-01-14

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as "spacers". In the synthesis, the introduction of dual "spacers" effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single "spacer" designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg(-1) with an energy density of about 7.0 W h kg(-1) at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. PMID:25427664

  12. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation.

    PubMed

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C

    2015-07-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells. PMID:26058677

  13. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  14. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.

    PubMed

    Simon, Joshua L; Michna, Sarah; Lewis, Jennifer A; Rekow, E Dianne; Thompson, Van P; Smay, James E; Yampolsky, Andrew; Parsons, J Russell; Ricci, John L

    2007-12-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 microm in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 microm(2) in quadrant 1, 250 x 500 microm(2) in quadrants 2 and 4, and 500 x 500 microm(2) in quadrant 3. In the second group, HA rods (400 microm in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 microm(2) in quadrant 1, 500 x 750 microm(2) in quadrants 2 and 4, and 750 x 750 microm(2) in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 degrees C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures. PMID:17559109

  15. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.

    PubMed

    Zhang, Jianwei; Shi, Gang; Jiang, Cai; Ju, Su; Jiang, Dazhi

    2015-12-01

    Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full-carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high-power electronics and stretchable/foldable devices as high-performance lateral heat spreader materials. This full-carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area. PMID:26476622

  16. MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution.

    PubMed

    Zhao, Yufei; Xie, Xiuqiang; Zhang, Jinqiang; Liu, Hao; Ahn, Hyo-Jun; Sun, Kening; Wang, Guoxiu

    2015-11-01

    The development of efficient catalysts for electrochemical hydrogen evolution is essential for energy conversion technologies. Molybdenum disulfide (MoS2 ) has emerged as a promising electrocatalyst for hydrogen evolution reaction, and its performance greatly depends on its exposed edge sites and conductivity. Layered MoS2 nanosheets supported on a 3D graphene aerogel network (GA-MoS2 ) exhibit significant catalytic activity in hydrogen evolution. The GA-MoS2 composite displays a unique 3D architecture with large active surface areas, leading to high catalytic performance with low overpotential, high current density, and good stability. PMID:26338014

  17. Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells.

    PubMed

    Qiu, Huajun; Dong, Xiaochen; Sana, Barindra; Peng, Tao; Paramelle, David; Chen, Peng; Lim, Sierin

    2013-02-01

    The monolithic three-dimensional (3D) graphene network is used as the support for Pt nanoparticles (NPs) to fabricate an advanced 3D graphene-based electrocatalyst. Distinct from previous strategies, the monodispersed Pt NPs with ultrafine particle size (∼3 nm) are synthesized using ferritin protein nanocages as the template and subsequently self-assembled on the 3D graphene by leveraging on the hydrophobic interaction between the ferritin and the graphene. Following the self-assembly, the ferritins are removed, resulting in a stable Pt NP/3D graphene composite. The composite exhibits much enhanced electrocatalytic activity for methanol oxidation as compared with both Pt NP/chemically reduced graphene oxide (Pt/r-GO) and state-of-the-art Pt/C catalyst. The observed electrocatalytic activity also shows marked improvement over Pt/3D graphene prepared by pulse electrodeposition of Pt. This study demonstrates that protein nanocage templating and assembly are promising strategies for the fabrication of functional composites in catalysis and fuel cell applications. PMID:23331257

  18. A Block Copolymer Self-Assembly Approach for 3D Nanoconfined Dopants in Semiconductors

    NASA Astrophysics Data System (ADS)

    Popere, Bhooshan; Russ, Boris; Chang, William; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    2015-03-01

    Continuous shrinking of electronic circuits presents a new challenge to demonstrate reliable, uniform nanoscale doping. Directed self-assembly (DSA) of block copolymers (BCP) has proved critical in meeting the technology nodes by enabling excellent pitch control for lithography. Yet, controlling the 3D dopant distribution remains a fundamental design challenge. To this end, we have utilized BCP self-assembly in a novel approach to confine dopants to nanoscopic domains within a semiconductor. The periodic nature of these domains affords precise control over the dosage and spatial positions of dopant atoms. Dopant incorporation within the block copolymer domains via hydrogen bonding eliminates the need for tailored synthesis, making the approach highly modular. Rapid thermal annealing of the self-assembled films effectively drives the dopants into the underlying substrate, thus confining them to within 10-20 nm in all dimensions. Additionally, the size, pitch, dopant dosage and the junction depth can be independently varied for a wide range of dopants. Compositional and electronic measurements indicate that the domains are indeed discrete and nanoconfined. Our approach, thereby, enables a facile method for controlled nanoscopic doping in semiconductors.

  19. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    PubMed Central

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-01-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD. PMID:23912638

  20. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-08-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD.

  1. Self-assembly of graphene on carbon nanotube surfaces.

    PubMed

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-01-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD. PMID:23912638

  2. SnS2 nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance

    NASA Astrophysics Data System (ADS)

    Tang, Hongli; Qi, Xiang; Han, Weijia; Ren, Long; Liu, Yundan; Wang, Xingyan; Zhong, Jianxin

    2015-11-01

    Three-dimensional (3D) interconnected graphene network embedded with uniformly distributed tin disulfide (SnS2) nanoplates was prepared by a facile two-step method. The microstructures and morphologies of the SnS2/graphene nanocomposite (SSG) are experimentally confirmed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using the as-prepared SSG as an anode material for lithium batteries, its electrochemical performances were investigated by cyclic voltammograms (CV), charge/discharge tests, galvanostatic cycling performance and AC impedance spectroscopy. The results demonstrate that the as-prepared SSG exhibits excellent cycling performance with a capacity of 1060 mAh g-1 retained after 200 charge/discharge cycles at a current density of 100 mA g-1, also a superior rate capability of 670 mAh g-1 even at such a high current density of 2000 mA g-1. This favorable performance can be attributed to the unique 3D interconnected architecture with great electro-conductivity and its intimate contact with SnS2. Our results indicate a potential application of this novel 3D SnS2/graphene nanocomposite in lithium-ion battery.

  3. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    PubMed

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-01

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers. PMID:25325677

  4. Micro-Mold Design Controls the 3D Morphological Evolution of Self-Assembling Multicellular Microtissues

    PubMed Central

    Svoronos, Alexander A.; Tejavibulya, Nalin; Schell, Jacquelyn Y.; Shenoy, Vivek B.

    2014-01-01

    When seeded into nonadhesive micro-molds, cells self-assemble three-dimensional (3D) multicellular microtissues via the action of cytoskeletal-mediated contraction and cell–cell adhesion. The size and shape of the tissue is a function of the cell type and the size, shape, and obstacles of the micro-mold. In this article, we used human fibroblasts to investigate some of the elements of mold design and how they can be used to guide the morphological changes that occur as a 3D tissue self-organizes. In a loop-ended dogbone mold with two nonadhesive posts, fibroblasts formed a self-constrained tissue whose tension induced morphological changes that ultimately caused the tissue to thin and rupture. Increasing the width of the dogbone's connecting rod increased the stability, whereas increasing its length decreased the stability. Mapping the rupture points showed that the balance of cell volume between the toroid and connecting rod regions of the dogbone tissue controlled the point of rupture. When cells were treated with transforming growth factor-β1, dogbones ruptured sooner due to increased cell contraction. In mold designs to form tissues with more complex shapes such as three interconnected toroids or a honeycomb, obstacle design controlled tension and tissue morphology. When the vertical posts were changed to cones, they became tension modulators that dictated when and where tension was released in a large self-organizing tissue. By understanding how elements of mold design control morphology, we can produce better models to study organogenesis, examine 3D cell mechanics, and fabricate building parts for tissue engineering. PMID:24147855

  5. Micro-mold design controls the 3D morphological evolution of self-assembling multicellular microtissues.

    PubMed

    Svoronos, Alexander A; Tejavibulya, Nalin; Schell, Jacquelyn Y; Shenoy, Vivek B; Morgan, Jeffrey R

    2014-04-01

    When seeded into nonadhesive micro-molds, cells self-assemble three-dimensional (3D) multicellular microtissues via the action of cytoskeletal-mediated contraction and cell-cell adhesion. The size and shape of the tissue is a function of the cell type and the size, shape, and obstacles of the micro-mold. In this article, we used human fibroblasts to investigate some of the elements of mold design and how they can be used to guide the morphological changes that occur as a 3D tissue self-organizes. In a loop-ended dogbone mold with two nonadhesive posts, fibroblasts formed a self-constrained tissue whose tension induced morphological changes that ultimately caused the tissue to thin and rupture. Increasing the width of the dogbone's connecting rod increased the stability, whereas increasing its length decreased the stability. Mapping the rupture points showed that the balance of cell volume between the toroid and connecting rod regions of the dogbone tissue controlled the point of rupture. When cells were treated with transforming growth factor-β1, dogbones ruptured sooner due to increased cell contraction. In mold designs to form tissues with more complex shapes such as three interconnected toroids or a honeycomb, obstacle design controlled tension and tissue morphology. When the vertical posts were changed to cones, they became tension modulators that dictated when and where tension was released in a large self-organizing tissue. By understanding how elements of mold design control morphology, we can produce better models to study organogenesis, examine 3D cell mechanics, and fabricate building parts for tissue engineering. PMID:24147855

  6. Effect of fiber diameter on the assembly of functional 3D cardiac patches

    NASA Astrophysics Data System (ADS)

    Fleischer, Sharon; Miller, Jacob; Hurowitz, Haley; Shapira, Assaf; Dvir, Tal

    2015-07-01

    The cardiac ECM has a unique 3D structure responsible for tissue morphogenesis and strong contractions. It is divided into three fiber groups with specific roles and distinct dimensions; nanoscale endomysial fibers, perimysial fibers with a diameter of 1 μm, and epimysial fibers, which have a diameter of several micrometers. We report here on our work, where distinct 3D fibrous scaffolds, each of them recapitulating the dimension scales of a single fiber population in the heart matrix, were fabricated. We have assessed the mechanical properties of these scaffolds and the contribution of each fiber population to cardiomyocyte morphogenesis, tissue assembly and function. Our results show that the nanoscale fiber scaffolds were more elastic than the microscale scaffolds, however, cardiomyocytes cultured on microscale fiber scaffolds exhibited enhanced spreading and elongation, both on the single cell and on the engineered tissue levels. In addition, lower fibroblast proliferation rates were observed on these microscale topographies. Based on the collected data we have fabricated composite scaffolds containing micro and nanoscale fibers, promoting superior tissue morphogenesis without compromising tissue contraction. Cardiac tissues, engineered within these composite scaffolds exhibited superior function, including lower excitation threshold and stronger contraction forces than tissue engineered within the single-population fiber scaffolds.

  7. Self-Assembled 3D Ordered Macroporous Structures for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Juan, Wen-Tau; Chung, Kuo-Yuan; Mishra, Narayan; Lin, Keng-Hui

    2008-03-01

    A simple, inexpensive and fast microfluidic method to fabricate three-dimensional ordered macroporous gel is demonstrated using alginate as the scaffold material. The microfluidic device consists of two concentric micropipettes where one is nested inside the other. Nitrogen gas and aqueous alginate solution with Pluronic F127 are pumped through the inner and the outer channel respectively. Under appropriate conditions, bubbles of a uniform size are generated within the device at few thousand Hz. We show the control over bubble size by the gas pressure and quantitatively predict the size dependence from the geometry of fluidic device. Monodisperse bubbles are collected and self-assemble into crystal structures as wet foam. The alginate solution between bubbles is crosslinked by divalent calcium ions and turns into 3D ordered macroporous gel where the pores are highly interconnected. The pore size can be directly controlled by the bubble size which ranges from few tens microns to few millimeters. This technique promises a versatile and robust way to make 3D ordered tissue engineering scaffolds.

  8. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    PubMed

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-01

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer. PMID:27269362

  9. Hierarchical graphene nanocones over 3D platform of carbon fabrics: A route towards fully foldable graphene based electron source

    NASA Astrophysics Data System (ADS)

    Maiti, Uday N.; Maiti, Soumen; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2011-10-01

    A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.41 V μm-1 and a threshold field down to 0.81 V μm-1. Electric field modification around the special woven like geometry of the underlying base fabric substrate serves as the booster to the nanostructured graphene related field amplification at the electron emission site. Superb robustness in the emission stability can be attributed to suppressed joule heating on behalf of higher inborn accessible surface area of graphene nanocone as well as excellent electrical and thermal conductivity of both the graphene and carbon fabrics. Superior flexibility of this high-performance graphene based emitter ensures their potential use in completely foldable and wearable field emission devices.A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.41 V μm-1 and a threshold field down to 0.81 V μm-1. Electric field modification around the special woven like geometry of the underlying base fabric substrate serves as the booster to the nanostructured graphene related field amplification at the electron emission site. Superb robustness in the emission stability can be attributed to suppressed joule heating on

  10. Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Palanisamy, Kowsalya; Kim, Yunok; Kim, Hansu; Kim, Ji Man; Yoon, Won-Sub

    2015-02-01

    Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3-5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (∼1300 mAh g-1 after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g-1 at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of self-assembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.

  11. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  12. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

    SciTech Connect

    Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

    2013-02-15

    A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

  13. Interfacial Assembly of Graphene Oxide Sheets

    NASA Astrophysics Data System (ADS)

    Cote, Laura J.

    Scientific interest in graphene oxide (GO) sheets, the product of chemical oxidation and exfoliation of graphite powder, has resurged in recent years because GO is considered a promising precursor for the bulk production of graphene-based sheets for a variety of applications. In addition, GO can be viewed as an unconventional type of soft material as it is characterized by two abruptly different length scales. Its thickness is of typical molecular dimensions, measured to be about 1 nm by atomic force microscopy, but its lateral dimensions are that of common colloidal particles, ranging from nanometers to tens of microns. This high anisotropy leads to interesting fundamental colloidal interactions between the soft sheets which have practical implications in the solution processing and assembly of the material. This research therefore aims to use a variety of techniques to control these inter-sheet interactions to gain an understanding of the processing-structure relationships which ultimately determine the overall properties of the bulk GO assembly. GO is identified as a two-dimensional amphiphile with a unique edge-to-center arrangement of hydrophilic and hydrophobic groups, which has led to the demonstration of its pH- and size-dependent surface activity. The water surface is then utilized, as in the Langmuir-Blodgett technique, as an ideal substrate to tile up the GO sheets and study the interactions between them. Sheet-sheet interaction morphologies were successfully altered between wrinkled and overlapped states by pH tuning of sheet charge density, and the resulting structure-property relationships are explored. In addition, a novel flash-reduction and assembly process is described in which a simple photographic camera flash can rapidly and cleanly turn an insulating, well-stacked GO paper to a more open and fluffy conducting film. Lastly, the use of these research results as educational outreach platforms is highlighted. A variety of outlets, such as You

  14. Self-Assembly Fabrication of Graphene-Based Materials with Optical-Electronic Transient Optical and Electrochemical Properties

    NASA Astrophysics Data System (ADS)

    Zhu, Jiayi; He, Junhui

    2012-01-01

    Directed self-assembly of nano or microsized materials as building blocks is a very exciting research topic to construct large-scale but still uniform 2D or 3D architectures. Graphene shows great potential as an advanced building block for fabricating varied graphene-based functional films or architectures together with other metal, metal oxide and semiconductor nanomaterials. In our work, we demonstrated an approach to fabrication of flexible, transparent conductive thin films via layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxides (RGOs). The graphene thin films showed remarkable optical-electronic properties. Inspired by this, we further fabricated transparent conductive hybrid thin film via LbL assembly of oppositely charged RGO nanosheets and Pt nanoparticles. The graphene-Pt hybrid thin film showed transient optical property as well as appropriate conductive and wetting properties. Moreover, we demonstrated graphene wrapped-MnO2 (GW-MnO2) nanocomposites by self-assembly of honeycomb MnO2 nanospheres and graphene sheets via an electrostatic co-precipitation method. The hybrid materials had a good electrochemical performance.

  15. Molecular Self-Assembly in a Poorly Screened Environment: F4TCNQ on Graphene/BN

    PubMed Central

    2015-01-01

    We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy. PMID:26482218

  16. Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

    PubMed

    Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M

    2016-02-10

    Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process. PMID:26789079

  17. A 3D tunable and multi-frequency graphene plasmonic cloak.

    PubMed

    Farhat, Mohamed; Rockstuhl, Carsten; Bağcı, Hakan

    2013-05-20

    We demonstrate the possibility of cloaking three-dimensional objects at multi-frequencies in the far-infrared part of the spectrum. The proposed cloaking mechanism exploits graphene layers wrapped around the object to be concealed. Graphene layers are doped via a variable external voltage difference permitting continuous tuning of the cloaking frequencies. Particularly, two configurations are investigated: (i) Only one graphene layer is used to suppress the scattering from a dielectric sphere. (ii) Several of these layers biased at different gate voltages are used to achieve a multi-frequency cloak. These frequencies can be set independently. The proposed cloak's functionality is verified by near- and far-field computations. By considering geometry and material parameters that are realizable by practical experiments, we contribute to the development of graphene based plasmonic applications that may find use in disruptive photonic technologies. PMID:23736478

  18. Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities.

    PubMed

    Kumar, Rajesh; Oh, Jung-Hwan; Kim, Hyun-Jun; Jung, Jung-Hwan; Jung, Chan-Ho; Hong, Won G; Kim, Hae-Jin; Park, Jeong-Young; Oh, Il-Kwon

    2015-07-28

    Atomic-scale defects on carbon nanostructures have been considered as detrimental factors and critical problems to be eliminated in order to fully utilize their intrinsic material properties such as ultrahigh mechanical stiffness and electrical conductivity. However, defects that can be intentionally controlled through chemical and physical treatments are reasonably expected to bring benefits in various practical engineering applications such as desalination thin membranes, photochemical catalysts, and energy storage materials. Herein, we report a defect-engineered self-assembly procedure to produce a three-dimensionally nanohole-structured and palladium-embedded porous graphene hetero-nanostructure having ultrahigh hydrogen storage and CO oxidation multifunctionalities. Under multistep microwave reactions, agglomerated palladium nanoparticles having diameters of ∼10 nm produce physical nanoholes in the basal-plane structure of graphene sheets, while much smaller palladium nanoparticles are readily impregnated inside graphene layers and bonded on graphene surfaces. The present results show that the defect-engineered hetero-nanostructure has a ∼5.4 wt % hydrogen storage capacity under 7.5 MPa and CO oxidation catalytic activity at 190 °C. The defect-laden graphene can be highly functionalized for multipurpose applications such as molecule absorption, electrochemical energy storage, and catalytic activity, resulting in a pathway to nanoengineering based on underlying atomic scale and physical defects. PMID:26061778

  19. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode.

    PubMed

    Zhou, Xiaosi; Yin, Ya-Xia; Cao, An-Min; Wan, Li-Jun; Guo, Yu-Guo

    2012-05-01

    The utilization of silicon particles as anode materials for lithium-ion batteries is hindered by their low intrinsic electric conductivity and large volume changes during cycling. Here we report a novel Si nanoparticle-carbon nanoparticle/graphene composite, in which the addition of carbon nanoparticles can effectively alleviate the aggregation of Si nanoparticles by separating them from each other, and help graphene sheets build efficient 3D conducting networks for Si nanoparticles. Such Si-C/G composite shows much improved electrochemical properties in terms of specific capacity and cycling performance (ca. 1521 mA h g(-1) at 0.2 C after 200 cycles), as well as a favorable high-rate capability. PMID:22563769

  20. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  1. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform.

    PubMed

    Gallego-Perez, Daniel; Higuita-Castro, Natalia; Sharma, Sadhana; Reen, Rashmeet K; Palmer, Andre F; Gooch, Keith J; Lee, L James; Lannutti, John J; Hansford, Derek J

    2010-03-21

    Guided assembly of microscale tissue subunits (i.e. 3D cell clusters/aggregates) has found applications in cell therapy/tissue engineering, cell and developmental biology, and drug discovery. As cluster size and geometry are known to influence cellular responses, the ability to spatially control cluster formation in a high throughput manner could be advantageous for many biomedical applications. In this work, a micro- and nanofabricated platform was developed for this purpose, consisting of a soft-lithographically fabricated array of through-thickness microwells structurally bonded to a sheet of electrospun fibers. The microwells and fibers were manufactured from several polymers of biomedical interest. Human hepatocytes were used as model cells to demonstrate the ability of the platform to allow controlled cluster formation. In addition, the ability of the device to support studies on semi-controlled heterotypic interactions was demonstrated by co-culturing hepatocytes and fibroblasts. Preliminary experiments with other cells of interest (pancreatic cells, embryonic stem cells, and cardiomyocytes) were also conducted. Our platform possesses several advantages over previously developed microwell arrays: a more in vivo-like topographical stimulation of cells; better nutrient/waste exchange through the underlying nanofiber mat; and easy integration into standard two-chamber cell culture well systems. PMID:20221567

  2. Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction.

    PubMed

    Akhter, Taslima; Islam, Md Monirul; Faisal, Shaikh Nayeem; Haque, Enamul; Minett, Andrew I; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2016-01-27

    A novel flexible three-dimensional (3D) architecture of nitrogen and sulfur codoped graphene has been successfully synthesized via thermal treatment of a liquid crystalline graphene oxide-doping agent composition, followed by a soft self-assembly approach. The high temperature process turns the layer-by-layer assembly into a high surface area macro- and nanoporous free-standing material with different atomic configurations of graphene. The interconnected 3D network exhibits excellent charge capacitive performance of 305 F g(-1) (at 100 mV s(-1)), an unprecedented volumetric capacitance of 188 F cm(-3) (at 1 A g(-1)), and outstanding energy density of 28.44 Wh kg(-1) as well as cycle life of 10 000 cycles as a free-standing electrode for an aqueous electrolyte, symmetric supercapacitor device. Moreover, the resulting nitrogen/sulfur doped graphene architecture shows good electrocatalytic performance, long durability, and high selectivity when they are used as metal-free catalyst for the oxygen reduction reaction. This study demonstrates an efficient approach for the development of multifunctional as well as flexible 3D architectures for a series of heteroatom-doped graphene frameworks for modern energy storage as well as energy source applications. PMID:26725830

  3. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  4. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  5. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  6. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010

  7. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  8. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  9. 3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media.

    PubMed

    Zha, Zeqi; Xu, Lirong; Wang, Zhikui; Li, Xiaoguang; Pan, Qinmin; Hu, Pingan; Lei, Shengbin

    2015-08-19

    To harness the electroactivity of anthraquinone as an electrode material, a great recent effort have been invested to composite anthraquinone with carbon materials to improve the conductivity. Here we report on a noncovalent way to modify three-dimensional graphene with anthraquinone moieties through on-surface synthesis of two-dimensional covalent organic frameworks. We incorporate 2,6-diamino-anthraquinone moieties into COF through Schiff-base reaction with benzene-1,3,5-tricarbaldehyde. The synthesized COF -graphene composite exhibits large specific capacitance of 31.7 mF/cm(2). Long-term galvanostatic charge/discharge cycling experiments revealed a decrease of capacitance, which was attributed to the loss of COF materials and electrostatic repulsion accumulated during charge-discharge circles which result in the poor electrical conductivity between 2D COF layers. PMID:26203782

  10. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes.

    PubMed

    Mural, Prasanna Kumar S; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-14

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. PMID:27020773

  11. A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries

    SciTech Connect

    Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

    2012-04-28

    A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

  12. 3D Epitaxy of Graphene nanostructures in the Matrix of Ag, Al and Cu

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Wuttig, Manfred; Lemieux, Melburne; Hu, Liangbing; Iftekhar, Jaim; Rashkeev, Sergey; Kukla, Maija; Rabin, Oded; Mansour, Azzam

    2015-03-01

    Graphene nanostructures in the form ribbons were embedded in the lattice of metals such as Ag, Cu, and Al in concentrations up to 36.4 at.%, 21.8 at% and 10.5 at.%, respectively. These materials are called covetics. Raman scattering from Ag and Al covetics indicate variations in the intensity of peaks at ~ 1,300 cm-1 and 1,600 cm-1 with position on the sample. These peaks are associated with the D (defects) and G (graphite E2g mode) peaks of graphitic carbon with sp2 bonding and reveal various degrees of imperfections in the graphene layers. First principles calculations of the dynamic matrix of Ag and Al covetics show bonding between C and the metal. EELS mapping of the C-K edge and high resolution lattice images show that the graphene-like regions form ribbons with epitaxial orientation with the metal lattice of Ag and Al. The temperature dependences of the resistivites of Ag and Cu covetics are similar to those of the pure metals with only slight increase in resistivity. Films of Cu covetic deposited by e-beam evaporation and PLD show higher transmittance and resistance to oxidation than pure metal films of the same thickness indicating that copper covetic films can be used for transparent electrodes. Funded by DARPA/ARL Grant No. W911NF-13-1-0058, and ONR Award No N000141410042.

  13. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

    PubMed

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    2015-12-22

    Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. PMID:26479496

  14. Graphene Symmetry Amplified by Designed Peptide Self-Assembly.

    PubMed

    Mustata, Gina-Mirela; Kim, Yong Ho; Zhang, Jian; DeGrado, William F; Grigoryan, Gevorg; Wanunu, Meni

    2016-06-01

    We present a strategy for designed self-assembly of peptides into two-dimensional monolayer crystals on the surface of graphene and graphite. As predicted by computation, designed peptides assemble on the surface of graphene to form very long, parallel, in-register β-sheets, which we call β-tapes. Peptides extend perpendicularly to the long axis of each β-tape, defining its width, with hydrogen bonds running along the axis. Tapes align on the surface to create highly regular microdomains containing 4-nm pitch striations. Moreover, in agreement with calculations, the atomic structure of the underlying graphene dictates the arrangement of the β-tapes, as they orient along one of six directions defined by graphene's sixfold symmetry. A cationic-assembled peptide surface is shown here to strongly adhere to DNA, preferentially orienting the double helix along β-tape axes. This orientational preference is well anticipated from calculations, given the underlying peptide layer structure. These studies illustrate how designed peptides can amplify the Ångstrom-level atomic symmetry of a surface onto the micrometer scale, further imparting long-range directional order onto the next level of assembly. The remarkably stable nature of these assemblies under various environmental conditions suggests applications in enzymelike catalysis, biological interfaces for cellular recognition, and two-dimensional platforms for studying DNA-peptide interactions. PMID:27276268

  15. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  16. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    PubMed

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  17. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    PubMed Central

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-01-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594

  18. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.

    PubMed

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki

    2016-01-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594

  19. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-06-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.

  20. Self assembly of inorganic nanocrystals in 3D supra crystals: Intrinsic properties

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2009-06-01

    Here we describe how arrangements of nanocrystals can self-organize in 3D arrays called supra crystals. The 3D arrays can fall into the familiar categories of face centered cubic (fcc), hexagonal compact packing (hcp) crystals, and body centered (bcc) crystals. Intrinsic collective properties of these 3D arrangements are different from the properties of individual nanoparticles and from particles in bulk. We demonstrate by two various processes and with two types of nanocrystals (silver and cobalt) that when nanocrystals are self ordered in 3D superlattices, they exhibit a coherent breathing mode vibration of the supra crystal, analogous to a breathing mode vibration of atoms in a nanocrystal. Comparison between the approaches to saturation of the magnetic curve for supra crystals and disordered aggregates produced from the same batch of nanocrystals is similar to that observed with films or nanoparticles either highly crystallized or amorphous.

  1. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Halab Shaeli Iessa, K.; Zhang, Yan; Zhang, Guoan; Xiao, Fei; Wang, Shuai

    2016-01-01

    We report the development of three-dimensional (3D) porous sponge-like ionic liquid (IL)-graphene hybrid material by integrating IL molecules and graphene nanosheets via self-assembly process. The as-obtained IL-graphene architecture possesses high surface area, efficient electron transport network and fast charge transfer kinetics owing to its highly porous structure, and unique hydrophilic properties derived from the IL anion on its surface, which endows it with high desire for supercapacitor application. Redox-active polyaniline (PANI) nanorods are further decorated on IL-graphene scaffold by electropolymerization. When utilized as freestanding 3D electrode for supercapacitor, the resultant PANI modified IL-graphene (PANI-IL-graphene) electrode exhibits a specific capacitance up to 662 F g-1 at the current density of 1.0 A g-1, with a high capacitance retention of 73.7% as current densities increase from 1.0 to 20 A g-1, and the capacitance degradation is less than 7.0% after 5000 charge-discharge cycles at 10 A g-1.

  2. LDRD final report: Automated planning and programming of assembly of fully 3D mechanisms

    SciTech Connect

    Kaufman, S.G.; Wilson, R.H.; Jones, R.E.; Calton, T.L.; Ames, A.L.

    1996-11-01

    This report describes the results of assembly planning research under the LDRD. The assembly planning problem is that of finding a sequence of assembly operations, starting from individual parts, that will result in complete assembly of a device specified as a CAD model. The automated assembly programming problem is that of automatically producing a robot program that will carry out a given assembly sequence. Given solutions to both of these problems, it is possible to automatically program a robot to assemble a mechanical device given as a CAD data file. This report describes the current state of our solutions to both of these problems, and a software system called Archimedes 2 we have constructed to automate these solutions. Because Archimedes 2 can input CAD data in several standard formats, we have been able to test it on a number of industrial assembly models more complex than any before attempted by automated assembly planning systems, some having over 100 parts. A complete path from a CAD model to an automatically generated robot program for assembling the device represented by the CAD model has also been demonstrated.

  3. Non-Enzymatic Glucose Sensor Based on 3D Graphene Oxide Hydrogel Crosslinked by Various Diamines.

    PubMed

    Hoa, Le Thuy; Hur, Seung Hyun

    2015-11-01

    The non-enzymatic glucose sensor was fabricated by well-controlled and chemically crosslinked graphene oxide hydrogels (GOHs). By using various diamines such as ethylenediamine (EDA), p-phenylene diamine (pPDA) and o-phenylene diamine (oPDA) that have different amine to amine distance, we can control the structures of GOHs such as surface area and pore volume. The pPDA-GOH fabricated by pPDA exhibited the largest surface area and pore volume due to its longest amine to amine distance, which resulted in highest sensitivity in glucose and other monosaccharide sensing such as fructose (C6H12O6), galactose (C6H12O6) and sucrose (C12H22O11). It also showed fast and wide range glucose sensing ability in the amperometric test, and an excellent selectivity toward other interference species such as an Ascorbic acid. PMID:26726578

  4. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.

    PubMed

    Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-06-01

    Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. PMID:26954082

  5. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.

    PubMed

    He, Xiao-Heng; Wang, Wei; Liu, Ying-Mei; Jiang, Ming-Yue; Wu, Fang; Deng, Ke; Liu, Zhuang; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2015-08-12

    A simple and flexible approach is developed for controllable fabrication of spider-silk-like microfibers with tunable magnetic spindle-knots from biocompatible calcium alginate for controlled 3D assembly and water collection. Liquid jet templates with volatile oil drops containing magnetic Fe3O4 nanoparticles are generated from microfluidics for fabricating spider-silk-like microfibers. The structure of jet templates can be precisely adjusted by simply changing the flow rates to tailor the structures of the resultant spider-silk-like microfibers. The microfibers can be well manipulated by external magnetic fields for controllably moving, and patterning and assembling into different 2D and 3D structures. Moreover, the dehydrated spider-silk-like microfibers, with magnetic spindle-knots for collecting water drops, can be controllably assembled into spider-web-like structures for excellent water collection. These spider-silk-like microfibers are promising as functional building blocks for engineering complex 3D scaffolds for water collection, cell culture, and tissue engineering. PMID:26192108

  6. 3D Hierarchical Pt-Nitrogen-Doped-Graphene-Carbonized Commercially Available Sponge as a Superior Electrocatalyst for Low-Temperature Fuel Cells.

    PubMed

    Zhao, Lei; Sui, Xu-Lei; Li, Jia-Long; Zhang, Jing-Jia; Zhang, Li-Mei; Wang, Zhen-Bo

    2016-06-29

    Three-dimensional hierarchical nitrogen-doped graphene (3D-NG) frameworks were successfully fabricated through a feasible solution dip-coating method with commercially available sponges as the initial backbone. A spongy template can help hinder the graphene plates restacking in the period of the annealing process. The Pt/3D-NG catalyst was synthesized employing a polyol reduction process. The resultant Pt/3D-NG exhibits 2.3 times higher activity for methanol electro-oxidation along with the improvement in stability as compared with Pt/G owing to their favorable features including large specific surface area, high pore volume, high N doping level, and the homogeneous dispersion of Pt nanoparticles. Besides, Pt/3D-NG also presents high oxygen reduction reaction (ORR) performance in acid media when compared with Pt/3D-G and Pt/G. This work raises a valid solution for the fabrication of 3D functional freestanding graphene-based composites for a variety of applications in fuel cell catalysis, energy storage, and conversion. PMID:27266527

  7. 3-D perpendicular assembly of single walled carbon nanotubes for complimentary metal oxide semiconductor interconnects.

    PubMed

    Kim, Tae-Hoon; Yilmaz, Cihan; Somu, Sivasubramanian; Busnaina, Ahmed

    2014-05-01

    Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future Very Large Scale Integration (VLSI) interconnects. However, direct incorporation of CNTs into Complimentary Metal Oxide Semiconductor (CMOS) architecture by conventional chemical vapor deposition (CVD) growth method is problematic since it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias and perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance is found to be 270 komega s. PMID:24734611

  8. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  9. Effect of polymer brushes on the Self Assembly of 3D Poly(Styrene-Methylmethacrylate) thin films

    NASA Astrophysics Data System (ADS)

    Lwoya, Baraka; Albert, Julie

    2015-03-01

    It would be instrumental to understand the self-assembly capabilities of polymers especially given their industrial capabilities of templating and membrane application .The ability of block copolymers to self assemble into different morphologies is determined by several factor including type of polymer blocks, volume fraction, substrate preference to a polymer and chain architecture . In this paper Poly(Styrene-Methylmethacrylate) (PS-PMMA) was chosen was chosen to further understand the effect polymer brushes on the substrate had on the self assembly of 3D structured PS-PMMA spin coated thin films (30-150 nm). The polymer brushes were grown using surface initiated atomic transfer radical polymerization (SI-ATRP) with the optimal chain length being confirmed by gel permeation chromatography. By using ellipsometer and contact angle measurement the uniformity of the polymer brushes are characterized, while the morphology of the spin coated thin films after thermal annealing would be characterized using atomic force microscopy (AFM).

  10. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components

    NASA Astrophysics Data System (ADS)

    Gerling, Thomas; Wagenbauer, Klaus F.; Neuner, Andrea M.; Dietz, Hendrik

    2015-03-01

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components’ interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.

  11. Tunable 3D and 2D polystyrene nanoparticle assemblies using surface wettability, low volume fraction and surfactant effects

    NASA Astrophysics Data System (ADS)

    Pillai, S.; Hemmersam, A. G.; Mukhopadhyay, R.; Meyer, R. L.; Moghimi, S. M.; Besenbacher, F.; Kingshott, P.

    2009-01-01

    Polymer-based nanopatterning on metal surfaces is of increasing importance to a number of applications, including biosensors, bioelectronic devices and medical implants. Here we show that polycrystalline gold surfaces can be functionalized with monocomponent nanoparticle (NP) assemblies by a simple drop deposition method. Ordered 3D hexagonal close-packed structures consisting of 350 nm polystyrene (PS) NPs on hydrophobically modified gold surfaces from solutions of very low volume fraction (phiv = 0.0006) were obtained as a result of capillary force induced self-assembly, whilst 2D self-assembly of PS NPs was generated over large area on hydrophilic gold and TiO2 surfaces by spin coating. Furthermore, we show that when Triton X-100 is added to the PS NP suspending medium longer range ordering is obtained. Our observations may initiate interesting applications in the areas of nanoengineering of metal-based sensors and as a means to design new nanostructures for biocompatible implant surfaces.

  12. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

    PubMed

    Gerling, Thomas; Wagenbauer, Klaus F; Neuner, Andrea M; Dietz, Hendrik

    2015-03-27

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. PMID:25814577

  13. 3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs

    SciTech Connect

    Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.

    2007-07-01

    The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)

  14. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-01

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(l-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system. PMID:26844684

  15. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes

    SciTech Connect

    Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.

    2011-05-10

    We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts to dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.

  16. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.

    PubMed

    Berger, S D; McGruer, N E; Adams, G G

    2015-04-17

    One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly. PMID:25804394

  17. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis

    NASA Astrophysics Data System (ADS)

    Berger, S. D.; McGruer, N. E.; Adams, G. G.

    2015-04-01

    One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly.

  18. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks.

    PubMed

    Komathi, S; Muthuchamy, N; Lee, K-P; Gopalan, A-I

    2016-10-15

    Herein, we fabricated a novel electrochemical-photoelectrochemical (PEC) dual-mode cholesterol biosensor based on graphene (G) sheets interconnected-graphene embedded titanium nanowires (TiO2(G)-NWs) 3D nanostacks (designated as G/Ti(G) 3DNS) by exploiting the beneficial characteristics of G and TiO2-NWs to achieve good selectivity and high sensitivity for cholesterol detection. The G/Ti(G) 3DNS was fabricated by the reaction between functionalized G and TiO2(G)-NWs. Cholesterol oxidase (ChOx) was subsequently immobilized in to G/Ti(G) 3DNS using chitosan (CS) as the binder and the dual mode G/Ti(G) 3DNS/CS/ChOx biosensor was fabricated. The electro-optical properties of the G/Ti(G) 3DNS/CS/ChOx bioelectrode were characterized by cyclic voltammetry and UV-vis diffuse reflection spectroscopy. The cyclic voltammetry of immobilized ChOx showed a pair of well-defined redox peaks indicating direct electron transfer (DET) of ChOx. The amperometric reduction peak current (at -0.05V) linearly increased with increase in cholesterol concentration. The G/Ti(G) 3DNS/CS/ChOx bioelectrode was selective to cholesterol with a remarkable sensitivity (3.82μA/cm(2)mM) and a lower detection limit (6μM). Also, G/Ti(G) 3DNS/CS/ChOx functioned as photoelectrode and exhibited selective detection of cholesterol under a low bias voltage and light irradiation. Kinetic parameters, reproducibility, repeatability, storage stability and effect of temperature and pH were evaluated. We envisage that G/Ti(G) 3DNS with its prospective characteristics, would be a promising material for wide range of biosensing applications. PMID:26611566

  19. 3D optical metamaterials formed by holographic assembly and directed solidification of eutectics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Braun, Paul V.

    2015-09-01

    Nanoscale integration of materials in three dimensions is critical for the realization of a number of highly functional optical metamaterials. Starting with structures enabled via eutectic solidification and holographic lithography, our team is applying unique template-based and post-synthetic materials transformations in conjunction with powerful computational design tools to develop the scientific underpinnings of, and to produce, 3D metamaterials derived from directionally solidified eutectics. Our approach involves close interactions among computational design, photonic theory, eutectic materials development, template fabrication, materials chemistry, and optical characterization.

  20. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  1. Switchable friction enabled by nanoscale self-assembly on graphene.

    PubMed

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; Maksymovych, Petro; Wang, Jun; Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2016-01-01

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4-6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. Our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates. PMID:26902595

  2. Switchable friction enabled by nanoscale self-assembly on graphene

    NASA Astrophysics Data System (ADS)

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; Maksymovych, Petro; Wang, Jun; Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2016-02-01

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4-6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. Our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.

  3. Switchable friction enabled by nanoscale self-assembly on graphene

    PubMed Central

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; Maksymovych, Petro; Wang, Jun; Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2016-01-01

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. Our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates. PMID:26902595

  4. Switchable friction enabled by nanoscale self-assembly on graphene

    DOE PAGESBeta

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; Maksymovych, Petro; Wang, Jun; Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu; Watanabe, Kenji; Taniguchi, Takashi; et al

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less

  5. Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hu, Pei; Hou, Dongfang; Wen, Yanwei; Shan, Bin; Chen, Chaoji; Huang, Yunhui; Hu, Xianluo

    2015-01-01

    Novel three-dimensional (3D) hierarchical Nb3O7(OH) nanostructures with a sheaf-like nanoarchitecture were fabricated for the first time by a hydrothermal process. Interestingly, the nanosheafs are composed of nanorods with an average diameter of about 25 nm. The as-prepared 3D hierarchical nanostructures possess a high surface area of 77 m2 g-1 with pore diameters of ca. 4.2-12.5 nm. A possible growth mechanism based on the combined Ostwald ripening and self-assembly process was proposed. It is found that both the valence-band top and the conduction-band bottom consist of O 2p and Nb 4d orbitals. Importantly, the 3D hierarchical Nb3O7(OH) nanostructures exhibit enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under UV-visible light, which is attributed to the unusual hierarchical structure, high surface area, and hybridization of energy bands.Novel three-dimensional (3D) hierarchical Nb3O7(OH) nanostructures with a sheaf-like nanoarchitecture were fabricated for the first time by a hydrothermal process. Interestingly, the nanosheafs are composed of nanorods with an average diameter of about 25 nm. The as-prepared 3D hierarchical nanostructures possess a high surface area of 77 m2 g-1 with pore diameters of ca. 4.2-12.5 nm. A possible growth mechanism based on the combined Ostwald ripening and self-assembly process was proposed. It is found that both the valence-band top and the conduction-band bottom consist of O 2p and Nb 4d orbitals. Importantly, the 3D hierarchical Nb3O7(OH) nanostructures exhibit enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under UV-visible light, which is attributed to the unusual hierarchical structure, high surface area, and hybridization of energy bands. Electronic supplementary information (ESI) available: XRD patterns, XPS spectra, and SEM images. See DOI: 10.1039/c4nr06580h

  6. Novel Erythrocyte-like Graphene Microspheres with High Quality and Mass Production Capability via Electrospray Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Tian, Yayang; Wu, Guan; Tian, Xike; Tao, Xiaoming; Chen, Wei

    2013-11-01

    We report for the first time a novel erythrocyte-like graphene microsphere (ELGMs) which can be produced with high quality and mass production capability via electrospray assisted self-assembly. Through simple electrospray treatment of GO suspension into coagulation bath followed by chemical reduction, large quantity of ELGMs with uniform morphology and size can be obtained with production rate of around 2.4 mg/h. Compared with other 3D structures, the ELGMs have a very interesting structural characteristic of perfect exterior doughnut shape and interior porous network. Accordingly, the as-prepared porous ELGMs exhibit excellent capability for fast and recyclable removal of oil and toxic organic solvents from water, reaching up to 216 times of its weight in absorption efficiency, which is tens of times higher than that of conventional sorbent materials. It is strongly believed that the novel hierarchical graphene structures and synergy among different techniques will lead to more future advances in graphene applications.

  7. Tunable 3D extended self-assembled gold metamaterials with enhanced light transmission.

    PubMed

    Salvatore, Stefano; Demetriadou, Angela; Vignolini, Silvia; Oh, Sang Soon; Wuestner, Sebastian; Yufa, Nataliya A; Stefik, Morgan; Wiesner, Ulrich; Baumberg, Jeremy J; Hess, Ortwin; Steiner, Ullrich

    2013-05-21

    The optical properties of metamaterials made by block copolymer self-assembly are tuned by structural and environmental variations. The plasma frequency red-shifts with increasing lattice constant and blue-shifts as the network filling fraction increases. Infiltration with dielectric liquids leads also to a red-shift of the plasma edge. A 300 nm-thick slab of gyroid-structured gold has a remarkable transmission of 20%. PMID:23553887

  8. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-01

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed. PMID:25468341

  9. The directed cooperative assembly of proteorhodopsin into 2D and 3D polarized arrays

    PubMed Central

    Liang, Hongjun; Whited, Gregg; Nguyen, Chi; Stucky, Galen D.

    2007-01-01

    Proteorhodopsin is the membrane protein used by marine bacterioplankton as a light-driven proton pump. Here, we describe a rapid cooperative assembly process directed by universal electrostatic interactions that spontaneously organizes proteorhodopsin molecules into ordered arrays with well defined orientation and packing density. We demonstrate the charge density-matching mechanism that selectively controls the assembly process. The interactions among different components in the system are tuned by varying their charge densities to yield different organized transmembrane protein arrays: (i) a bacteriorhodopsin purple membrane-like structure where proteorhodopsin molecules are cooperatively arranged with charged lipids into a 2D hexagonal lattice; (ii) selected liquid-crystalline states in which crystalline lamellae made up of the coassembled proteorhodopsin and charged lipid molecules are coupled three-dimensionally with polarized proteorhodopsin orientation persisting through the macroscopic scale. Understanding this rapid electrostatically driven assembly process sheds light on organizing membrane proteins in general, which is a prerequisite for membrane protein structural and mechanistic studies as well as in vitro applications. PMID:17488827

  10. Reliability of self-assembled 3D microstructures: snap-through modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Millet, Olivier; Buchaillot, Lionel; Quevy, Emmanuel; Collard, Dominique

    2001-04-01

    This work considers the reliability of an elementary 3D structure, and particularly the response of a homogeneous, clamped-clamped polysilicon microfabricated beam, buckling under the compressive force produced by Scratch-Drive Actuators (SDA). First, using Galerkin's method, the governing partial differential equation reduced to a modified Duffing equation and was solved by the harmonic balance method. Besides the solution of simple harmonic motion (SHM) and superharmonic motion (SPHM) were found numerically using a Newton iteration method. Then, the study of continuity -- of these solutions -- allowed to analyze the stability boundaries. Finally, Runge-Kutta numerical integration method was used to investigate the snap-through problem. Intermittent, as well as continuous, snap-through behavior was obtained. The theoretical results agreed well with the experiments.

  11. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  12. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    SciTech Connect

    Tian, Zhengshan; Xu, Chunxiang Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-24

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, π-π stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  13. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  14. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products.

    PubMed

    Xiao, Ting; Tang, Yiwen; Jia, Zhiyong; Li, Dawei; Hu, Xiaoyan; Li, Bihui; Luo, Lijuan

    2009-11-25

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni2+-Fe3+ layered double hydroxides (LDHs). Flower-like Ni2+-Fe3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 degrees C in nitrogen gas, porous NiO/NiFe2O4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni2+-Fe3+ LDHs as well as porous NiO/NiFe2O4 nanosheets. PMID:19858561

  15. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. PMID:25920010

  16. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Hongxia; Gao, Yuan; Liu, Xin; Wang, Xungai; Lin, Tong

    2012-08-01

    Bonded fibrous matrices have shown great potential in tissue engineering because of their unique 3D structures and pore characteristics. For some applications, bacterial infections must be taken into account, and antibacterial function is highly desired. In this study, an antibacterial polymer, polyhexamethylene biguanide (PHMB), was applied onto the fiber surface of a bonded poly(ε-caprolactone) (PCL) fibrous matrix with the objective to achieve both strong antibacterial effect and good cell compatibility. The coatings were prepared by using an electrostatic layer-by-layer (LbL) assembly technique, which allowed the control of PHMB loading and coating uniformity on the fiber surface. The PHMB coating provided antibacterial activities, but had no toxicity on mammalian cells. This bonded PCL fibrous matrix with electrostatically self-assembled PHMB may provide a new antiinfective tissue scaffold for various biomedical applications. PMID:22581705

  17. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  18. Click-assembled, oxygen sensing nanoconjugates for depth-resolved, near-infrared imaging in a 3D cancer model

    PubMed Central

    Nichols, Alexander J.; Roussakis, Emmanuel; Klein, Oliver J.

    2014-01-01

    Hypoxia is an important factor that contributes to the development of drug-resistant cancer, yet few non-perturbative tools exist for studying oxygen in tissue. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration into poorly perfused or avascular tumor regions remains problematic. Here we report a Click-Assembled Oxygen Sensing (CAOS) nanoconjugate and demonstrate its properties in an in vitro 3D spheroid cancer model. Our synthesis relies on sequential click-based ligation of poly(amidoamine)-like subunits for rapid assembly. Using near-infrared confocal phosphorescence microscopy, we demonstrate the ability of CAOS nanoconjugates to penetrate hundreds of microns into spheroids within hours and show their sensitivity to oxygen changes throughout the nodule. This proof-of-concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth-resolved imaging in tissue and tissue models. PMID:24590700

  19. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Moradi, Mina; Aghazadeh Mohandesi, Jamshid

    2015-11-01

    The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS) in carbon nanotube (CNT)-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new crack nucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with crack nucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

  20. Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity.

    PubMed

    Hu, Pei; Hou, Dongfang; Wen, Yanwei; Shan, Bin; Chen, Chaoji; Huang, Yunhui; Hu, Xianluo

    2015-02-01

    Novel three-dimensional (3D) hierarchical Nb3O7(OH) nanostructures with a sheaf-like nanoarchitecture were fabricated for the first time by a hydrothermal process. Interestingly, the nanosheafs are composed of nanorods with an average diameter of about 25 nm. The as-prepared 3D hierarchical nanostructures possess a high surface area of 77 m(2) g(-1) with pore diameters of ca. 4.2-12.5 nm. A possible growth mechanism based on the combined Ostwald ripening and self-assembly process was proposed. It is found that both the valence-band top and the conduction-band bottom consist of O 2p and Nb 4d orbitals. Importantly, the 3D hierarchical Nb3O7(OH) nanostructures exhibit enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under UV-visible light, which is attributed to the unusual hierarchical structure, high surface area, and hybridization of energy bands. PMID:25536277

  1. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  2. Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2016-06-01

    The genetic information is stored in the eukaryotic nucleus in the form of chromatin. This is a macromolecular entity that includes genomic DNA and histone proteins that form nucleosomes, plus a large variety of chromatin-associated non-histone proteins. Chromatin is structurally and functionally organised at various levels. One reveals the linear topography of DNA, histones and their post-translational modifications and non-histone proteins along each chromosome. This level provides regulatory information about the association of genomic elements with particular signatures that have been used to define chromatin states. Importantly, these chromatin states correlate with structural and functional genomic features. Another regulatory layer is established at the level of the 3D organisation of chromatin within the nucleus, which has been revealed clearly as non-random. Instead, a variety of intra- and inter-chromosomal genomic domains with specific epigenetic and functional properties has been identified. In this review, we discuss how the recent advances in genomic approaches have contributed to our understanding of these two levels of genome architecture. We have emphasised our analysis with the aim of integrating information available for yeast, Arabidopsis, Drosophila, and mammalian cells. We consider that this comparative study helps define common and unique features in each system, providing a basis to better understand the complexity of genome organisation. PMID:26330112

  3. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Tan, Yingling; Wang, Jingyang; Xu, Weichao; Yuan, Ye; Cai, Wenshan; Zhu, Shining; Zhu, Jia

    2016-06-01

    Plasmonics has generated tremendous excitement because of its unique capability to focus light into subwavelength volumes, beneficial for various applications such as light harvesting, photodetection, sensing, catalysis and so on. Here we demonstrate a plasmon-enhanced solar desalination device, fabricated by the self–assembly of aluminium nanoparticles into a three-dimensional porous membrane. The formed porous plasmonic absorber can float naturally on water surface, efficiently absorb a broad solar spectrum (>96%) and focus the absorbed energy at the surface of the water to enable efficient (∼90%) and effective desalination (a decrease of four orders of magnitude). The durability of the devices has also been examined, indicating a stable performance over 25 cycles under various illumination conditions. The combination of the significant desalination effect, the abundance and low cost of the materials, and the scalable production processes suggest that this type of plasmon-enhanced solar desalination device could provide a portable desalination solution.

  4. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  5. Studies on formation mechanism of 3D Cu2O nanospheres through self-assembly of 0D nanodots

    NASA Astrophysics Data System (ADS)

    Zhang, Lun; Yu, Bing; Ying, Pengzhan; Wu, Ling; Chen, Shanliang; Wang, Jieru; Gu, Xiuquan; Zhou, Rui; Ni, Zhonghai

    2015-08-01

    Cu2O crystals with different morphologies (solid and porous) and sizes (from 25 to 282 nm) were synthesized controllably through a facile solvothermal route. The growth mechanism was investigated by SEM and TEM with varying the concentration of poly (vinylpyrrolidone) (PVP, K30), CH3COO- (Ac-) and NO3- acid ions in the precursor solution. The self-assembly of three types of Cu2O nano-structures was observed through a general route of zero-dimensional (0D) → 2D → 3D. When Cu(Ac)2ṡH2O was used as the copper sources, 0D Cu2O nanodots with size of 2-7 nm were firstly assembled to 2D quasi-spherical and bookmark-like structures via Oriented attachment (OA), and then converted into 3D hierarchical Cu2O nanoclusters (a few tens of nm) and porous sub-microspheres with an average size of 282 nm, respectively. While Cu(NO3)2ṡ3H2O was used instead of Cu(Ac)2ṡH2O, the similar assembly process occurred leading to the formation of Cu2O porous nanospheres of 40-140 nm which exhibit better adsorption ability toward methyl orange compared with activated carbon. In addition, we also investigated the dependence of Cu2O crystals on the concentration of acid ions (Ac- and NO3-). Compared with Ac-, the size and morphology of the obtained products were less dependent on the concentration of NO3- acid ions. This study might provide a new insight into the growth mechanism of Cu2O based micro- or nanostructures.

  6. Self-assembly of 3D prestressed tensegrity structures from DNA

    PubMed Central

    Liedl, Tim; Högberg, Björn; Tytell, Jessica; Ingber, Donald E.; Shih, William M.

    2010-01-01

    Tensegrity or tensional integrity is a property of a structure that relies on a balance between components that are either in pure compression or in pure tension for its stability [1,2]. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture [3,4]. Here we report nanoscale, prestressed, three-dimensional tensegrity structures in which rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables. Our DNA tensegrity structures can self-assemble against forces up to 14 pN, which is twice the stall force of powerful molecular motors such as kinesin or myosin [5,6]. The forces generated by this molecular prestressing mechanism can be employed to bend the DNA bundles or to actuate the entire structure through enzymatic cleavage at specific sites. In addition to being building blocks for nanostructures, tensile structural elements made of single-stranded DNA could be used to study molecular forces, cellular mechanotransduction, and other fundamental biological processes. PMID:20562873

  7. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.

    PubMed

    Wang, Jie; Cao, Yunpeng; Li, Qiang; Liu, Lei; Dong, Mingdong

    2015-06-26

    Protein misfolding and abnormal assembly could lead to aggregates such as oligomer, proto-fibril, mature fibril, and senior amyloid plaques, which are associated with the pathogenesis of many amyloid diseases. These irreversible amyloid aggregates typically form in vivo and researchers have been endeavoring to find new modulators to invert the aggregation propensity in vitro, which could increase understanding in the mechanism of the aggregation of amyloid protein and pave the way to potential clinical treatment. Graphene oxide (GO) was shown to be a good modulator, which could strongly control the amyloidosis of Aβ (33-42). In particular, quartz crystal microbalance (QCM), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) measurements revealed the size-dependent manner of GO on modulating the assembly of amyloid peptides, which could be a possible way to regulate the self-assembled nanostructure of amyloid peptide in a predictable manner. PMID:26031933

  8. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm

    PubMed Central

    Pandurangan, Arun Prasad; Vasishtan, Daven; Alber, Frank; Topf, Maya

    2015-01-01

    Summary We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. PMID:26655474

  9. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.

    PubMed

    Joshi, Ravi K; Schneider, Jörg J

    2012-08-01

    This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and

  10. Mesoscale assembly of chemically modified graphene into complex cellular networks

    NASA Astrophysics Data System (ADS)

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; Do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-07-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm-3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities.

  11. Mesoscale assembly of chemically modified graphene into complex cellular networks

    PubMed Central

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-01-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766

  12. Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices.

    PubMed

    Islam, Md Monirul; Aboutalebi, Seyed Hamed; Cardillo, Dean; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2015-07-22

    The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young's modulus in excess of 26.1 GPa, tensile strength of around 252 MPa, and toughness of 7.3 MJ m(-3)), and exhibited high native electrical conductivity (38700 S m(-1)) and unrivalled volumetric capacitance values (761 F cm(-3)) with excellent cyclability and rate performance. PMID:27162972

  13. Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices

    PubMed Central

    2015-01-01

    The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young’s modulus in excess of 26.1 GPa, tensile strength of around 252 MPa, and toughness of 7.3 MJ m–3), and exhibited high native electrical conductivity (38700 S m–1) and unrivalled volumetric capacitance values (761 F cm–3) with excellent cyclability and rate performance. PMID:27162972

  14. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex.

    PubMed

    Chatelain, Lucile; Walsh, James P S; Pécaut, Jacques; Tuna, Floriana; Mazzanti, Marinella

    2014-12-01

    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M(II)  complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {MnOUOMn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K-the highest reported for a mono-uranium system-arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K. PMID:25284018

  15. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces

    NASA Astrophysics Data System (ADS)

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-01

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes.We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol

  16. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug. PMID:24610743

  17. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries.

    PubMed

    Wang, Jia-Zhao; Zhong, Chao; Wexler, David; Idris, Nurul Hayati; Wang, Zhao-Xiang; Chen, Li-Quan; Liu, Hua-Kun

    2011-01-10

    Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe(3)O(4)-graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh  g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe(3)O(4)-graphene is clearly established by comparison of the results with those from bare Fe(3)O(4). The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe(3)O(4). PMID:21207587

  18. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Gaikwad, Sachin S.; George, Leena; Devi, R. Nandini; Kurungot, Sreekumar

    2014-10-01

    Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at a practical current density of 20 mA cm-2 in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of ~570 and ~370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm-2 was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm-2, which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h-1 g-1 of oxygen, which is constant in the second cycle as well.Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N

  19. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode. PMID:27266894

  20. Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.

    PubMed

    Flory, Justin D; Johnson, Trey; Simmons, Chad R; Lin, Su; Ghirlanda, Giovanna; Fromme, Petra

    2014-01-01

    PNA is hybrid molecule ideally suited for bridging the functional landscape of polypeptides with the structural diversity that can be engineered with DNA nanostructures. However, PNA can be more challenging to work with in aqueous solvents due to its hydrophobic nature. A solution phase method using strain promoted, copper free click chemistry was developed to conjugate the fluorescent dye Cy5 to 2 bifunctional PNA strands as a first step toward building cyclic PNA-polypeptides that can be arranged within 3D DNA nanoscaffolds. A 3D DNA nanocage was designed with binding sites for the 2 fluorescently labeled PNA strands in close proximity to mimic protein active sites. Denaturing polyacrylamide gel electrophoresis (PAGE) is introduced as an efficient method for purifying charged, dye-labeled PNA conjugates from large excesses of unreacted dye and unreacted, neutral PNA. Elution from the gel in water was monitored by fluorescence and found to be more efficient for the more soluble PNA strand. Native PAGE shows that both PNA strands hybridize to their intended binding sites within the DNA nanocage. Förster resonance energy transfer (FRET) with a Cy3 labeled DNA nanocage was used to determine the dissociation temperature of one PNA-Cy5 conjugate to be near 50°C. Steady-state and time resolved fluorescence was used to investigate the dye orientation and interactions within the various complexes. Bifunctional, thermostable PNA molecules are intriguing candidates for controlling the assembly and orientation of peptides within small DNA nanocages for mimicking protein catalytic sites. PMID:25760314

  1. Manipulation of graphene work function using a self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Tak; Bong, Jihye; Cha, Janghwan; Lim, Taekyung; Son, Junyoung; Park, Sung Ha; Hwang, Jungseek; Hong, Suklyun; Ju, Sanghyun

    2014-08-01

    We report an effective and reliable method to increase the work function of graphene to as high as 5.50 eV by applying a self-assembled monolayer on its surface. The work function of pristine graphene (4.56 eV) was increased by approximately +0.94 eV following trichlorosilane (HDF-S) self-assembly. This increase in the work function was confirmed by ab initio calculations. HDF-S self-assembled graphene exhibited no significant changes in structural, optical, or electrical characteristics compared with pristine graphene. In addition, we verified that the modified work function of HDF-S self-assembled graphene was not affected by the underlying substrates.

  2. Highly efficient electrocatalytic hydrogen production by MoS(x) grown on graphene-protected 3D Ni foams.

    PubMed

    Chang, Yung-Huang; Lin, Cheng-Te; Chen, Tzu-Yin; Hsu, Chang-Lung; Lee, Yi-Hsien; Zhang, Wenjing; Wei, Kung-Hwa; Li, Lain-Jong

    2013-02-01

    A three-dimensional Ni foam deposited with graphene layers on surfaces is used as a conducting solid support to load MoS(x) catalysts for electrocatalytic hydrogen evolution. The graphene sheets grown on Ni foams provide robust protection and efficiently increase the stability in acid. The superior performance of hydrogen evolution is attributed to the relatively high catalyst loading weight as well as its relatively low resistance. PMID:23060076

  3. Morphology-Tuned Synthesis of NiCo2 O4 -Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries.

    PubMed

    Zhang, Chunfei; Yu, Jong-Sung

    2016-03-18

    Nanostructured NiCo2 O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2 O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2 O4 demonstrates high reversible discharge capacity (1459 mAh g(-1) at 200 mA g(-1) ) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2 O4 . Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2 O4 -coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2 O4 /3D-GNF hybrid a potential material for commercial applications. PMID:26918287

  4. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors.

    PubMed

    Ma, Fangwei; Ma, Di; Wu, Guang; Geng, Weidan; Shao, Jinqiu; Song, Shijiao; Wan, Jiafeng; Qiu, Jieshan

    2016-05-10

    A smart and sustainable strategy based on charge-induced self-assembly and nanocrystal-assisted catalytic graphitization is explored for the efficient construction of 3D nanostructure hierarchical porous graphitic carbons from the pectin biopolymer. The electrostatic interaction between the negatively charged pectin chains and magnesium ions plays a crucial role in the formation of 3D architectures. The 3D HPGCs possess a three-dimensional carbon framework with a hierarchical porous structure, flake-like graphitic carbon walls and high surface area (1320 m(2) g(-1)). The 3D HPGCs show an outstanding specific capacitance of 274 F g(-1) and excellent rate capability with a high capacitance retention of 85% at a high current density of 50 A g(-1) for supercapacitor electrodes. This strategy provided a novel approach to effectively construct 3D porous carbon nanostructures from biopolymers. PMID:27115341

  5. Organic molecules deposited on graphene: A computational investigation of self-assembly and electronic structure

    SciTech Connect

    Oliveira, I. S. S. de; Miwa, R. H.

    2015-01-28

    We use ab initio simulations to investigate the adsorption and the self-assembly processes of tetracyanoquinodimethane (TCNQ), tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), and tetrasodium 1,3,6,8-pyrenetetrasulfonic acid (TPA) on the graphene surface. We find that there are no chemical bonds at the molecule–graphene interface, even at the presence of grain boundaries on the graphene surface. The molecules bond to graphene through van der Waals interactions. In addition to the molecule–graphene interaction, we performed a detailed study of the role played by the (lateral) molecule–molecule interaction in the formation of the, experimentally verified, self-assembled layers of TCNQ and TPA on graphene. Regarding the electronic properties, we calculate the electronic charge transfer from the graphene sheet to the TCNQ and F4-TCNQ molecules, leading to a p-doping of graphene. Meanwhile, such charge transfer is reduced by an order of magnitude for TPA molecules on graphene. In this case, it is not expected a significant doping process upon the formation of self-assembled layer of TPA molecules on the graphene sheet.

  6. Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu.

    PubMed

    Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum

    2015-08-14

    Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied. PMID:26172584

  7. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. • The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup −1} at the current density of 1 A g{sup −1}. The specific capacitance can remain 1274.7 F g{sup −1} at the current density of 15 A g{sup −1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be

  8. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring

    NASA Astrophysics Data System (ADS)

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-01

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its

  9. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.

    PubMed

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-01

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes. PMID:27198918

  10. Structural, electronic and magnetic properties of 3d transition metals embedded graphene-like carbon nitride sheet: A DFT + U study

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Chi, Runze; Li, Chong; Jia, Yu

    2016-03-01

    Using first-principles calculations, we have investigated the structural, electronic and magnetic properties of 3d transition-metals (TMs) embedded two dimensional graphene-like carbon nitride sheet (TMs@g-CN). Our results show that TMs embed in the cavity of g-CN sheet regularly and keep intact of the planar structure, though there is Jahn-Teller distortion inevitably. Additionally, the nonmagnetic and semiconducting sheet can be significantly modulated to be magnetic and metallic behaviors induced by the resonant impurity states between TMs 3d and g-CN 2p orbitals. Moreover, we also explore the magnetic coupling of TMs@g-CN and find that it varies dramatically with the change of the distance between TMs, i.e., from ferromagnetic (FM) to antiferromagnetic (AFM) transition. Finally, the underlying physical mechanism of the above findings is discussed.

  11. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, −111%, −51%, and +58%, respectively.

  12. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    NASA Astrophysics Data System (ADS)

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-01

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with -OH and -COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(RDark - RUV-Vis)/RDark and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, -111%, -51%, and +58%, respectively.

  13. Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-05-01

    Surface conductive engineering on Li2S is critical for construction of advanced cathodes of lithium-sulfur batteries. Herein, we construct a high-performance Li2S-based composite cathode with the help of three-dimensional reduced graphene oxide (3D-rGO) network and outer carbon coating. Typically, the Li2S@C particles are uniformly embedded into 3D-rGO to form a binder-free 3D-rGO-Li2S@C cathode by the combination of a liquid solution-evaporation coating and PVP (Polyvinyl Pyrrolidone) carbonization. The 3D-rGO-Li2S@C cathode exhibits a high initial discharge capacity of 856 mAh g-1 at 0.1C, superior cycling stability with a capacity of 388.4 mAh g-1 after 200 cycles at 1C, corresponding to a low capacity fading rate. It is demonstrated that the outer conductive coating is effective and necessary for electrochemical enhancement of Li2S cathodes by improving electrical conductivity and prohibiting polysulfide from shuttling during cycling.

  14. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.

    PubMed

    Duan, Shasha; Yang, Ke; Wang, Zhihui; Chen, Mengting; Zhang, Ling; Zhang, Hongbo; Li, Chunzhong

    2016-01-27

    The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher electrical conductivity and superior retention capability under deformations, which was illustrated by using a finite element method. The specially designed split-level OPCG is capable of sustaining both large strain and repeated deformations showing huge potential in the application of next-generation stretchable electronics. PMID:26713456

  15. Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.

    PubMed

    Yan, Liang; Yin, Yuli; Lv, Piaopiao; Zhang, Zhaohui; Wang, Jing; Long, Fang

    2016-04-20

    A novel three-dimensional (3D) magnetic chlorogenic acid (CGA) imprinted polymer (MMIP) was prepared with novel carbon hybrid nanocomposite as the carrier, chlorogenic acid as the template molecule, and methacrylic acid as the functional monomer. The 3D MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, and UV spectrometry in detail. The results showed that the imprinted layer was attached successfully on the surface of a 3D magnetic carbon hybrid nanocomposite. The adsorption performance of the 3D MMIPs was investigated, and the results showed that the 3D MMIPs exhibited high adsorption capacity and fast adsorption rate toward CGA with a maximum adsorption capacity of 10.88 mg g(-1). The extraction conditions involving washing solvent, the pH of eluent solvent, elution volume, and desorption time were also investigated in detail. Combined with high-performance liquid chromatography, the 3D MMIPs have been applied to successfully extract CGA from Eucommia leaf extract samples. PMID:27049929

  16. Self-limiting multiplexed assembly of lipid membranes on large-area graphene sensor arrays.

    PubMed

    Hirtz, Michael; Oikonomou, Antonios; Clark, Nick; Kim, Yong-Jin; Fuchs, Harald; Vijayaraghavan, Aravind

    2016-08-18

    Phospholipid membranes of different functionalities were simultaneously assembled on arrays of graphene surfaces in a parallel manner using multi-pen lipid dip-pen nano-lithography. The graphene patch facilitates and restricts the spreading of lipids within itself, obviating the need to scan the writing probes and reducing writing time. Binding studies establish that the lipids retain the functionality. PMID:27494423

  17. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    PubMed

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images. PMID:26306866

  18. Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage

    SciTech Connect

    Wang, Donghai; Kou, Rong; Choi, Daiwon; Yang, Zhenguo; Nie, Zimin; Li, Juan; Saraf, Laxmikant V.; Hu, Dehong; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Pope, Michael A.; Aksay, Ilhan A.

    2010-02-25

    Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale and multiphase building blocks have been explored with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct metal oxide-graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene/graphene stacks. Alternatively, the graphene material can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can be also used to fabricate free standing, flexible metal oxide-graphene nanocomposite films and electrodes. We investigate the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2-graphene nanocomposite films can achieve near theoretical specific energy density without a significant charge/discharge degradation.

  19. Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals from Water.

    PubMed

    Nellore, Bhanu Priya Viraka; Kanchanapally, Rajashekhar; Pedraza, Francisco; Sinha, Sudarson Sekhar; Pramanik, Avijit; Hamme, Ashton T; Arslan, Zikri; Sardar, Dhiraj; Ray, Paresh Chandra

    2015-09-01

    More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water. Reported results demonstrate that versatile membrane has the capability to capture and completely disinfect pathogenic pathogenic E. coli O157:H7 bacteria from water. Experimentally observed disinfection data indicate that the PGLa attached membrane can dramatically enhance the possibility of destroying pathogenic E. coli bacteria via synergistic mechanism. Reported results show that glutathione attached CNT-bridged 3D graphene oxide membrane can be used to remove As(III), As(V), and Pb(II) from water sample at 10 ppm level. Our data demonstrated that PGLa and glutathione attached membrane has the capability for high efficient removal of E. coli O157:H7 bacteria, As(III), As(V), and Pb(II) simultaneously from Mississippi River water. PMID:26273843

  20. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lian Ying; Zhao, Zhi Liang; Yuan, Weiyong; Li, Chang Ming

    2016-01-01

    Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells.Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr08512h

  1. Side-selective self-assembly of graphene and FLG on piezoelectric PVDF from suspension

    NASA Astrophysics Data System (ADS)

    Nordlund, Michael; Bhandary, Sumanta; Sanyal, Biplab; Almqvist, Nils; Löfqvist, Torbjörn; Grennberg, Helena

    2016-02-01

    The deposition of few-layer graphene by self-assembly from suspension onto a piezoelectric polymer substrate is presented. The graphene self-assembles with negligible overlap between flakes, and with high selectivity for one of the faces of the substrate, an observation which is discussed and rationalized. A computational study on a model system further confirms the theory and supports the experimental results. The highest obtained degree of surface coverage was estimated to 77%.

  2. Facile synthesis of Fe3O4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Ruofang; Tian, Xike; Yang, Chao; Zhou, Zhaoxin

    2016-04-01

    In order to develop efficient and environment benign sorbents for water purification, the macroscopic multifunctional magnetite-reduced graphene oxides aerogels (M-RGOs) with strong interconnected networks were prepared via a one pot solvothermal method of graphene oxide sheets adsorbing iron ions and in situ simultaneous deposition of Fe3O4 nanoparticles in ethylene glycol or triethylene glycol solvents. Such M-RGOs exhibited excellent sorption capacity to different contaminants, including oils, organic solvents, arsenite ions, as well as dyes. In addition, it was demonstrated that the M-RGOs could be used as column packing materials to manufacture column for water purification by filtration. The method proposed was proved to be versatile to induce synergistic assembly of RGO sheets with other functional metal oxides nanoparticles and as a kind of broad-spectrum sorbents for removing different types of contaminants in water purification, simultaneously.

  3. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  4. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.

    PubMed

    Park, Je Seob; Cho, Sung Min; Kim, Woo-Jae; Park, Juhyun; Yoo, Pil J

    2011-02-01

    In this study, we present a facile means of fabricating graphene thin films via layer-by-layer (LbL) assembly of charged graphene nanosheets (GS) based on electrostatic interactions. To this end, graphite oxide (GO) obtained from graphite powder using Hummers method is chemically reduced to carboxylic acid-functionalized GS and amine-functionalized GS to perform an alternate LbL deposition between oppositely charged GSs. Specifically, for successful preparation of positively charged GS, GOs are treated with an intermediate acyl-chlorination reaction by thionyl chloride and a subsequent amidation reaction in pyridine, whereby a stable GO dispersibility can be maintained within the polar reaction solvent. As a result, without the aid of additional hybridization with charged nanomaterials or polyelectrolytes, the oppositely charged graphene nanosheets can be electrostatically assembled to form graphene thin films in an aqueous environment, while obtaining controllability over film thickness and transparency. Finally, the electrical property of the assembled graphene thin films can be enhanced through a thermal treatment process. Notably, the introduction of chloride functions during the acyl-chlorination reaction provides the p-doping effect for the assembled graphene thin films, yielding a sheet resistance of 1.4 kΩ/sq with a light transmittance of 80% after thermal treatment. Since the proposed method allows for large-scale production as well as elaborate manipulation of the physical properties of the graphene thin films, it can be potentially utilized in various applications, such as transparent electrodes, flexible displays and highly sensitive biosensors. PMID:21207942

  5. Magnetic assembly of transparent and conducting graphene-based functional composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  6. 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Yin, Min; Sun, Jing; Ding, Guqiao; Lu, Linfeng; Chang, Paichun; Chen, Xiaoyuan; Li, Dongdong

    2016-03-01

    Micropatterned TiO2 nanorods (TiO2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO2 films are obtained through the sol-gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm-2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices.

  7. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  8. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  9. Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu

    NASA Astrophysics Data System (ADS)

    Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum

    2015-07-01

    Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly

  10. Increasing 3D Supramolecular Order by Decreasing Molecular Order. A Comparative Study of Helical Assemblies of Dendronized Nonchlorinated and Tetrachlorinated Perylene Bisimides.

    PubMed

    Partridge, Benjamin E; Leowanawat, Pawaret; Aqad, Emad; Imam, Mohammad R; Sun, Hao-Jan; Peterca, Mihai; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2015-04-22

    A nonplanar, twisted, and flexible tetrachlorinated perylene bisimide (Cl4PBI) was functionalized with two AB3 minidendrons containing hydrogenated or semifluorinated dodecyl groups. The hydrogenated dendron was attached to the imide groups of Cl4PBI via m = 0, 1, and 2 methylenic units, whereas the dendron containing semifluorinated groups was attached via m = 3 or a di(ethylene oxide) linker (m = 2EO). The supramolecular structures of these compounds, determined by a combination of differential scanning calorimetry, X-ray diffraction, and solid-state NMR, were compared with those of nonchlorinated planar and rigid PBI reported previously, which demonstrated the thermodynamically controlled formation of 2D periodic arrays at high temperatures and 3D arrays at low temperatures. The molecularly less ordered Cl4PBI containing hydrogenated dendrons self-organize into exclusively 3D crystalline periodic arrays under thermodynamic control for m = 0 and 2, while the more highly molecularly ordered PBI produced less stable and ordered 3D crystals and also 2D assemblies. This induction of a higher degree of 3D order in supramolecular assemblies of the less well-ordered molecular building blocks was unanticipated. The semifluorinated dendronized Cl4PBI with m = 3 formed a 2D columnar hexagonal array under kinetic control, whereas the compound with m = 2EO formed an unusual 2D honeycomb-like hexagonal phase under thermodynamic control. These Cl4PBI compounds provide a new route to stable crystalline assemblies via thermodynamic control at lower temperatures than previously obtained with PBI, thus generating 3D order in an accessible range of temperature of interest for structural analysis and for technological applications. PMID:25830346

  11. Novel Erythrocyte-like Graphene Microspheres with High Quality and Mass Production Capability via Electrospray Assisted Self-Assembly

    PubMed Central

    Tian, Yayang; Wu, Guan; Tian, Xike; Tao, Xiaoming; Chen, Wei

    2013-01-01

    We report for the first time a novel erythrocyte-like graphene microsphere (ELGMs) which can be produced with high quality and mass production capability via electrospray assisted self-assembly. Through simple electrospray treatment of GO suspension into coagulation bath followed by chemical reduction, large quantity of ELGMs with uniform morphology and size can be obtained with production rate of around 2.4 mg/h. Compared with other 3D structures, the ELGMs have a very interesting structural characteristic of perfect exterior doughnut shape and interior porous network. Accordingly, the as-prepared porous ELGMs exhibit excellent capability for fast and recyclable removal of oil and toxic organic solvents from water, reaching up to 216 times of its weight in absorption efficiency, which is tens of times higher than that of conventional sorbent materials. It is strongly believed that the novel hierarchical graphene structures and synergy among different techniques will lead to more future advances in graphene applications. PMID:24270315

  12. Novel erythrocyte-like graphene microspheres with high quality and mass production capability via electrospray assisted self-assembly.

    PubMed

    Tian, Yayang; Wu, Guan; Tian, Xike; Tao, Xiaoming; Chen, Wei

    2013-01-01

    We report for the first time a novel erythrocyte-like graphene microsphere (ELGMs) which can be produced with high quality and mass production capability via electrospray assisted self-assembly. Through simple electrospray treatment of GO suspension into coagulation bath followed by chemical reduction, large quantity of ELGMs with uniform morphology and size can be obtained with production rate of around 2.4 mg/h. Compared with other 3D structures, the ELGMs have a very interesting structural characteristic of perfect exterior doughnut shape and interior porous network. Accordingly, the as-prepared porous ELGMs exhibit excellent capability for fast and recyclable removal of oil and toxic organic solvents from water, reaching up to 216 times of its weight in absorption efficiency, which is tens of times higher than that of conventional sorbent materials. It is strongly believed that the novel hierarchical graphene structures and synergy among different techniques will lead to more future advances in graphene applications. PMID:24270315

  13. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.

    PubMed

    Wen, Zhong Quan; Li, Min; Li, Fei; Zhu, Shi Jin; Liu, Xiao Ying; Zhang, Yu Xin; Kumeria, Tushar; Losic, Dusan; Gao, Yang; Zhang, Wei; He, Shi Xuan

    2016-01-21

    3-Dimensional (3D) composites based on a unique combination of MnO2-nanostructures, graphene oxide nanosheets and porous Diatomaceous Earth (DE) microparticles (GO-DE@MnO2) were synthesized and explored for application in high-performance supercapacitors. To explore the influence of the structural properties of MnO2 nanostructures on supercapacitor performances, several MnO2 structures with nanosheet and nanowire morphologies were synthesized and characterized. The prepared GO-DE@MnO2 composites with MnO2 nanosheets due to their higher conductivity and higher surface area showed a larger specific capacitance of 152.5 F g(-1) and a relatively better cycle stability (83.3% capacitance retention after 2000 cycles at a scan rate of 2 A g(-1)), indicating great potential for application in supercapacitors. PMID:26645931

  14. 3D-architectured nickel-cobalt-manganese layered double hydroxide/reduced graphene oxide composite for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, J. P.; Liu, F.; Zhang, X. B.

    2015-11-01

    Pure flower-like NiCoMn layered double hydroxide (LDH) and 3D-architectured NiCoMn LDH/reduced graphene oxide (rGO) composite are fabricated by a solution method. The NiCoMn hydroxide nanoflakes are tightly deposited on the surface of rGO. Electrochemical measurements prove that rGO can greatly improve its capacitive performances, compared with the pure counterpart. A high-specific capacitance of 912 F g-1, high-rate capability and long cycle life are achieved for the composite. A NiCoMn LDH/rGO//activated carbon hybrid capacitor is also fabricated. It possesses a high-specific capacitance of 206 F g-1 and an energy density of 92.8 W h kg-1 in 1.8 V.

  15. Self-Assembly and Relaxation Behavior of Graphene Containing Acrylic Triblock Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Zabet, Mahla; Hashemnejad, Seyedmeysam; Kundu, Santanu

    2015-03-01

    Investigation of gel mechanical properties as a function of their structure is a significant research interest. This study presents the effect of graphene (or few-layer graphene) on the self-assembly and the relaxation behavior of a thermoreversible gel consists of a physically cross-linked poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] triblock copolymer in 2-ethyl-1-hexanol, a midblock selective solvent. Graphene was obtained by sonicating exfoliated graphite in 2-ethyl-1-hexanol at various concentrations. Filtration technique and spectrophotometry were utilized to measure the graphene concentration in the dispersions. The dispersed graphene was then incorporated in a series of gels and the effect of graphene on mechanical properties, including the relaxation behavior were studied. Small angle X-ray scattering (SAXS) was used to investigate the microstructure of these gels at room temperature. SAXS data were analyzed to estimate the number of end blocks per junction zone, the average spacing between the junctions, and the change of these properties as a function of graphene concentration. The results indicate that the presence of graphene affects the self-assembly process.

  16. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  17. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  18. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries.

    PubMed

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-21

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g(-1) in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g(-1) at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g(-1) at 8 C for 30 cycles, which is among the best reported rate capabilities. PMID:27029963

  19. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique.

    PubMed

    Sher, Praveen; Oliveira, Sara M; Borges, João; Mano, João F

    2015-01-01

    In this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than non-liquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing. PMID:25562702

  20. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    PubMed

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface. PMID:26986821

  1. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. PMID:27619087

  2. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-01

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 101 to 107 cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers.

  3. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells.

    PubMed

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-21

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 10(1) to 10(7) cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers. PMID:26391313

  4. Self-assembled calixarene aligned patterning of noble metal nanoparticles on graphene.

    PubMed

    Chen, Xianjue; Vimalanathan, Kasturi; Zang, Wenzhe; Slattery, Ashley D; Boulos, Ramiz A; Gibson, Christopher T; Raston, Colin L

    2014-05-01

    Patterns of noble metal nanoparticles (NMNPs) of ruthenium and platinum are formed on p-phosphonic acid calix[8]arene stabilised graphene in water. This involves hydrogen gas induced reduction of metal ions absorbed on the stabilised graphene, with TEM revealing the patterns being comprised of domains of parallel arrays of NMNPs ∼7 nm apart. The domains are orientated in three directions on each graphene sheet at an angle of ∼60° or ∼120° with respect to each other. AFM of self-assembled p-phosphonic acid calix[8]arene on the surface of a highly ordered pyrolytic graphite (HOPG) revealed a similar pattern, implying that the orientation of the assembly of p-phosphonic acid calix[8]arene is governed by the hexagonal motif of graphite/graphene. PMID:24658459

  5. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  6. Self-Assembly of Graphene Nanoblisters Sealed to a Bare Metal Surface.

    PubMed

    Larciprete, Rosanna; Colonna, Stefano; Ronci, Fabio; Flammini, Roberto; Lacovig, Paolo; Apostol, Nicoleta; Politano, Antonio; Feulner, Peter; Menzel, Dietrich; Lizzit, Silvano

    2016-03-01

    The possibility to intercalate noble gas atoms below epitaxial graphene monolayers coupled with the instability at high temperature of graphene on the surface of certain metals has been exploited to produce Ar-filled graphene nanosized blisters evenly distributed on the bare Ni(111) surface. We have followed in real time the self-assembling of the nanoblisters during the thermal annealing of the Gr/Ni(111) interface loaded with Ar and characterized their morphology and structure at the atomic scale. The nanoblisters contain Ar aggregates compressed at high pressure arranged below the graphene monolayer skin that is decoupled from the Ni substrate and sealed only at the periphery through stable C-Ni bonds. Their in-plane truncated triangular shapes are driven by the crystallographic directions of the Ni surface. The nonuniform strain revealed along the blister profile is explained by the inhomogeneous expansion of the flexible graphene lattice that adjusts to envelop the Ar atom stacks. PMID:26829243

  7. From trigonal bipyramidal to platonic solids: self-assembly and self-sorting study of terpyridine-based 3D architectures.

    PubMed

    Wang, Ming; Wang, Chao; Hao, Xin-Qi; Li, Xiaohong; Vaughn, Tyler J; Zhang, Yan-Yan; Yu, Yihua; Li, Zhong-Yu; Song, Mao-Ping; Yang, Hai-Bo; Li, Xiaopeng

    2014-07-23

    Using a series of tritopic 2,2':6',2″-terpyridine (tpy) ligands constructed on adamantane, three discrete 3D metallo-supramolecular architectures were assembled, i.e., trigonal bipyramidal, tetrahedron, and cube. The self-assembly used tritopic ligands as corner directing units and metal ions as glue units at the edge. The angles of the linkers between adamantane and tpy head play a critical role in guiding the assembled structures, which have the general formula of M3nL2n, where M denotes metal ion and L denotes ligand. All complexes were fully characterized by (1)H, (13)C NMR, diffusion-ordered NMR spectroscopy, ESI-MS, and traveling-wave ion mobility-mass spectrometry. The binary mixtures of LA and LC or LB and LC underwent a self-sorting process that led to the self-assembly of discrete 3D structures. The self-sorting behavior is solely based on the angles precoded within the arm of tritopic ligands. Moreover, kinetic study of preassembled cube and tetrahedron demonstrated a slow ligand exchange process toward a statistical mixture of hetero tetrahedrons with LA and LB. PMID:24978202

  8. Step-edge self-assembly during graphene nucleation on a nickel surface: QM/MD simulations.

    PubMed

    Wang, Ying; Page, Alister J; Li, Hai-Bei; Qian, Hu-Jun; Jiao, Meng-Gai; Wu, Zhi-Jian; Morokuma, Keiji; Irle, Stephan

    2014-01-01

    Quantum chemical molecular dynamics simulations of graphene nucleation on the Ni(111) surface show that graphene creates its own step-edge as it forms. This "step-edge self-assembly" is driven by the formation of thermodynamically favorable Ni-C σ-bonds at the graphene edge. This dynamic aspect of the Ni(111) catalyst is in contrast to the commonly accepted view that graphene nucleates on a pre-existing, static catalyst step-edge. Simulations also show that, simply by manipulating the subsurface carbon density, preferential formation of single-layer graphene instead of multi-layer graphene can be achieved on nickel catalysts. PMID:24202187

  9. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  10. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection.

    PubMed

    Zhan, Beibei; Liu, Changbing; Chen, Huaping; Shi, Huaxia; Wang, Lianhui; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-07-01

    Three-dimensional graphene foam (3DGF) is a superior sensing material because of its high conductivity, large specific surface area and wide electrochemical potential windows. In this work, hexagonal Ni(OH)2 nanosheets are deposited on the surface of chemical vapor deposition-grown 3DGF through a facial hydrothermal process without any auxiliary reagents. The morphology and structure of the composite are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, and X-ray diffraction (XRD). Based on the Ni(OH)2/3DGF composite, a free-standing electrochemical electrode is fabricated. Being employed as a nonenzymatic glucose detection electrochemical electrode, it exhibits a high sensitivity (∼2.65 mA mM(-1) cm(-2)), low detection limit (0.34 μM) and excellent selectivity with a linear response from 1 μM to 1.17 mM. The excellent sensing properties of the Ni(OH)2/3DGF electrode may be attributed to the synergistic effect of the high electrocatalytic activity of Ni(OH)2 nanosheets and the high conductivity and large surface area of 3DGF. PMID:24879425

  11. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Tianhong

    2011-02-01

    The flexible cancer sensor based on layer-by-layer self-assembled graphene reported in this letter demonstrates features including ultrahigh sensitivity and low cost due to graphene material properties in nature, self-assembly technique, and polyethylene terephthalate substrate. According to the conductance change of self-assembled graphene, the label free and labeled graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 4 fg/ml (0.11 fM) and 0.4 pg/ml (11 fM), respectively, which are three orders of magnitude lower than carbon nanotube sensors under the same conditions of design, manufacture, and measurement.

  12. Molecular self-assembly on graphene on SiO2 and h-BN substrates.

    PubMed

    Järvinen, Päivi; Hämäläinen, Sampsa K; Banerjee, Kaustuv; Häkkinen, Pasi; Ijäs, Mari; Harju, Ari; Liljeroth, Peter

    2013-07-10

    One of the suggested ways of controlling the electronic properties of graphene is to establish a periodic potential modulation on it, which could be achieved by self-assembly of ordered molecular lattices. We have studied the self-assembly of cobalt phthalocyanines (CoPc) on chemical vapor deposition (CVD) grown graphene transferred onto silicon dioxide (SiO2) and hexagonal boron nitride (h-BN) substrates. Our scanning tunneling microscopy (STM) experiments show that, on both substrates, CoPc forms a square lattice. However, on SiO2, the domain size is limited by the corrugation of graphene, whereas on h-BN, single domain extends over entire terraces of the underlying h-BN. Additionally, scanning tunneling spectroscopy (STS) measurements suggest that CoPc molecules are doped by the substrate and that the level of doping varies from molecule to molecule. This variation is larger on graphene on SiO2 than on h-BN. These results suggest that graphene on h-BN is an ideal substrate for the study of molecular self-assembly toward controlling the electronic properties of graphene by engineered potential landscapes. PMID:23786613

  13. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    SciTech Connect

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)

  14. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  15. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  16. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-06-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  17. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control.

    PubMed

    Bizarro, Jonathan; Charron, Christophe; Boulon, Séverine; Westman, Belinda; Pradet-Balade, Bérengère; Vandermoere, Franck; Chagot, Marie-Eve; Hallais, Marie; Ahmad, Yasmeen; Leonhardt, Heinrich; Lamond, Angus; Manival, Xavier; Branlant, Christiane; Charpentier, Bruno; Verheggen, Céline; Bertrand, Edouard

    2014-11-24

    In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs. PMID:25404746

  18. 3D V₆O₁₃ nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries.

    PubMed

    Ding, Yuan-Li; Wen, Yuren; Wu, Chao; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-02-11

    Three-dimensional (3D) hierarchical nanostructures have been demonstrated as one of the most ideal electrode materials in energy storage systems owing to the synergistic combination of the advantages of both nanostructures and microstructures. In this work, 3D V6O13 nanotextiles built from interconnected 1D nanogrooves with diameter of 20-50 nm were fabricated via a facile solution-redox-based self-assembly route at room temperature, and the mesh size in the textile structure can be controllably tuned by adjusting the precursor concentration. It is suggested that the formation of 3D fabric structure built from nanogrooves is attributed to the rolling and self-assembly processes of produced V6O13 nanosheet intermediates. When evaluated as cathodes for lithium ion batteries (LIBs), the products delivered reversible capacities of 326 mAh g(-1) at 20 mA g(-1) and 134 mAh g(-1) at 500 mA g(-1), and a capacity retention of above 80% after 100 cycles at 500 mA g(-1). Importantly, the resulting textiles exhibit a specific energy as high as 780 Wh kg(-1), 44-56% higher than those of conventional cathodes, that is, LiMn2O4, LiCoO2, and LiFePO4. Furthermore, the 3D architectures retain good structural integrity upon cycling. Such findings reveal a great potential of V6O13 nanotextiles as high-energy cathode materials for LIBs. PMID:25629936

  19. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. PMID:26479262

  20. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI

  1. Ordered Self-assembled Alkane Monolayer on Graphite and Graphene Surface

    NASA Astrophysics Data System (ADS)

    Su, Yudan; Han, Huiling; Wang, Feng; Cai, Qun; Tian, Chuanshan; Shen, Y. R.

    2015-03-01

    The 2D self-assembly of long chain alkane molecule on graphite and graphene had been studied with phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) and scanning tunneling microscopy (STM). The spectrum of Imχs(2) (ωIR) which directly characterizes the surface resonances, shows 10-cm-1 red-shift of the symmetric-stretch frequency of the CH2 groups pointing towards graphite (or graphene) surface indicating Van der Waals interaction in between. The Gibbs adsorption energy of polyethylene (PE, n ~ 140) on graphite from chloroform solution was determined to be -42kJ/mol per molecule or -0.6 kJ/mol per CH2 unit. This large adsorption energy drives the long alkane chain to form an ordered self-assembled monolayer on graphite (or graphene). The sum frequency spectra suggest the orientation of carbon skeleton plane of alkane is predominately perpendicular to the graphite/graphene surface. Our STM result also provides clear evidence for the proposed molecular adsorption model. These results explain the large amount residual of long chain alkane on polystyrene (PS) or poly(methyl methacrylate) (PMMA) transferred graphene, and facilitate a better way to fabricate cleaner large-size graphene.

  2. Step-by-step assembly of 4d-4f-3d complex based on heptamolybdate anion

    SciTech Connect

    Wu, Shuting; Deng, Binbin; Jiang, Xiuling; Li, Ronghua; Guo, Jiangbin; Lai, Fulong; Huang, Xihe; Huang, Changcang

    2012-12-15

    Four new complexes, (NH{sub 4}){sub 11.9}[Ln{sub 4.7}(MoO{sub 4})(H{sub 2}O){sub 23}(Mo{sub 7}O{sub 24}){sub 4}]{center_dot}xH{sub 2}O (Ln=Pr, x=34 (1); Ln=Nd, x=19 (2)), [NH{sub 4}]{sub 28}[Ce{sub 8}(MoO{sub 4}){sub 2}(H{sub 2}O){sub 31}(Mo{sub 7}O{sub 24}){sub 8}]{center_dot}74H{sub 2}O (3), and (NH{sub 4}){sub 26}[CoPr{sub 8}(MoO{sub 4}){sub 2}(H{sub 2}O){sub 33}(Mo{sub 7}O{sub 24}){sub 8}]{center_dot}54H{sub 2}O (4) have been synthesized and characterized by single-crystal and powder X-ray diffraction, CHN elemental analyses TGA analyses, IR and UV-Vis spectroscopy. Complex 1-3 are 0D compounds constructed by the connection between Ln{sup III} ions and [Mo{sub 7}O{sub 24}]{sup 6-} unit. In complex 4, the existence of Co{sup II} connects the polyanion clusters into 1D chain. The introduction of 3d metal (cobalt cation) and 4f metal (Ln=Pr{sup III}, Nd{sup III}, Ce{sup III}) encourages the coordination capability for [Mo{sub 7}O{sub 24}]{sup 6-} unit, which shows interesting coordination modes. The [Mo{sub 7}O{sub 24}]{sup 6-} unit in 1-4 shows three new coordination modes, connecting up to four metal cations. Complexes 1-4 show antiferromagnetic behavior via variable temperature magnetic study. The photoluminescence spectrum indicates the photoluminescence property for 4. - Graphical abstract: Heptamolybdate anion shows extraordinary coordination geometry in the presence of both lanthanide cation (Pr{sup III}) and transitional metal cation (Co{sup II}), which give rise to a new 4d-4f-3d complex. Black-Small-Square Highlights: Black-Right-Pointing-Pointer A new 4d-4f-3d complex that containing 1D chain was obtained and discussed. Black-Right-Pointing-Pointer New coordination geometry with higher coordination number of heptamolybdate. Black-Right-Pointing-Pointer Series of heptamolybdate contained complexes were synthesized and characterized. Black-Right-Pointing-Pointer Complexes mentioned above show antiferromagnetic behavior.

  3. Self-assembly of a unique 3d/4f heterometallic square prismatic box-like coordination cage.

    PubMed

    Li, Li; Zhang, Yingjie; Avdeev, Maxim; Lindoy, Leonard F; Harman, David G; Zheng, Rongkun; Cheng, Zhenxiang; Aldrich-Wright, Janice R; Li, Feng

    2016-06-21

    We present the synthesis and characterization of a unique, slightly distorted square prismatic, box-like coordination cage of type [Cu6Dy8L8(MeOH)8(H2O)6](NO3)12·χsolvent obtained via the supramolecular assembly between a non-centrosymmetric Dy(iii) metalloligand and Cu(ii) nitrate. Magnetic susceptibility measurements indicate that the complex behaves as a single-molecule magnet. PMID:27227419

  4. Synthesis of N-substituted pyrido[4,3-d]pyrimidines for the large-scale production of self-assembled rosettes and nanotubes.

    PubMed

    Durmus, Asuman; Gunbas, Gorkem; Farmer, Steven C; Olmstead, Marilyn M; Mascal, Mark; Legese, Belete; Cho, Jae-Young; Beingessner, Rachel L; Yamazaki, Takeshi; Fenniri, Hicham

    2013-11-15

    N-substituted pyrido[4,3-d]pyrimidines are heterocycles which exhibit the asymmetric hydrogen bonding codes of both guanine and cytosine at 60° angles to each other, such that the molecules self-organize unambiguously into a cyclic hexamer, assembled via 18 intermolecular hydrogen bonds. The synthesis is straightforward and can be concluded in six steps from the commercially available malononitrile dimer. X-ray crystallographic analysis of the supermacrocyclic structure shows an undulating disk with a ca. 10.5 Å cavity, the centers of which do not overlap sufficiently to describe a channel in the solid state. However, AFM, SEM, and TEM imaging in solution reveals the formation of 1D nanostructures in agreement with their self-assembly into rosette supermacrocycles, which then stack linearly to form rosette nanotubes. PMID:24131036

  5. Creating periodic local strain in monolayer graphene with nanopillars patterned by self-assembled block copolymer

    SciTech Connect

    Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Gui, Gui; Ma, Alice L.; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Liu, Chi-Chun; Nealey, Paul F. E-mail: mazq@engr.wisc.edu

    2015-10-05

    A simple and viable method was developed to produce biaxial strain in monolayer graphene on an array of SiO{sub 2} nanopillars. The array of SiO{sub 2} nanopillars (1 cm{sup 2} in area, 80 nm in height, and 40 nm in pitch) was fabricated by employing self-assembled block copolymer through simple dry etching and deposition processes. According to high resolution micro-Raman spectroscopy and atomic force microscopy analyses, 0.9% of maximum biaxial tensile strain and 0.17% of averaged biaxial tensile strain in graphene were created. This technique provides a simple and viable method to form biaxial tensile strain in graphene and offers a practical platform for future studies in graphene strain engineering.

  6. Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer

    SciTech Connect

    Woo Kim, Nak; Youn Kim, Joo; Lee, Chul; Choi, E. J.; Jin Kim, Sang; Hee Hong, Byung

    2014-01-27

    We study the effect of self-assembled monolayer (SAM) organic molecule substrate on large scale single layer graphene using infrared transmission measurement on Graphene/SAM/SiO{sub 2}/Si composite samples. From the Drude weight of the chemically inert CH{sub 3}-SAM, the electron-donating NH{sub 2}-SAM, and the SAM-less graphene, we determine the carrier density doped into graphene by the three sources—the SiO{sub 2} substrate, the gas-adsorption, and the functional group of the SAM's—separately. The SAM-treatment leads to the low carrier density N ∼ 4 × 10{sup 11} cm{sup −2} by blocking the dominant SiO{sub 2}- driven doping. The carrier scattering increases by the SAM-treatment rather than decreases. However, the transport mobility is nevertheless improved due to the reduced carrier doping.

  7. Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer

    NASA Astrophysics Data System (ADS)

    Woo Kim, Nak; Youn Kim, Joo; Lee, Chul; Jin Kim, Sang; Hee Hong, Byung; Choi, E. J.

    2014-01-01

    We study the effect of self-assembled monolayer (SAM) organic molecule substrate on large scale single layer graphene using infrared transmission measurement on Graphene/SAM/SiO2/Si composite samples. From the Drude weight of the chemically inert CH3-SAM, the electron-donating NH2-SAM, and the SAM-less graphene, we determine the carrier density doped into graphene by the three sources—the SiO2 substrate, the gas-adsorption, and the functional group of the SAM's—separately. The SAM-treatment leads to the low carrier density N ˜ 4 × 1011 cm-2 by blocking the dominant SiO2- driven doping. The carrier scattering increases by the SAM-treatment rather than decreases. However, the transport mobility is nevertheless improved due to the reduced carrier doping.

  8. Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion

    SciTech Connect

    Wang, Donghai; Choi, Daiwon; Li, Juan; Yang, Zhenguo; Nie, Zimin; Kou, Rong; Hu, Dehong; Wang, Chong M.; Saraf, Laxmikant V.; Zhang, Jiguang; Aksay, Ilhan A.; Liu, Jun

    2009-04-01

    We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in-situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in presence of a percolated graphene network embedded into the metal oxide electrodes.

  9. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene.

    PubMed

    Wang, Qing Hua; Hersam, Mark C

    2009-06-01

    Graphene, a two-dimensional sheet of carbon atoms, is a promising material for next-generation technology because of its advantageous electronic properties, such as extremely high carrier mobilities. However, chemical functionalization schemes are needed to integrate graphene with the diverse range of materials required for device applications. In this paper, we report self-assembled monolayers of the molecular semiconductor perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) formed on epitaxial graphene grown on the SiC(0001) surface. The molecules possess long-range order with a herringbone arrangement, as shown by ultra-high vacuum scanning tunnelling microscopy at room temperature. The molecular ordering is unperturbed by defects in the epitaxial graphene or atomic steps in the underlying SiC surface. Scanning tunnelling spectra of the PTCDA monolayer show distinct features that are not observed on pristine graphene. The demonstration of robust, uniform organic functionalization of epitaxial graphene presents opportunities for graphene-based molecular electronics and sensors. PMID:21378849

  10. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers

    PubMed Central

    Cong, Huai-Ping; Ren, Xiao-Chen; Wang, Ping; Yu, Shu-Hong

    2012-01-01

    Graphene is now the most attractive carbon-based material. Integration of 2D graphene sheets into macroscopic architectures such as fibers illuminates the direction to translate the excellent properties of individual graphene into advanced hierarchical ensembles for promising applications in new graphene-based nanodevices. However, the lack of effective, low-cost and convenient assembly strategy has blocked its further development. Herein, we demonstrate that neat and macroscopic graphene fibers with high mechanical strength and electrical conductivity can be fluidly spun from the common graphene oxide (GO) suspensions in large scale followed with chemical reduction. The curliness-fold formation mechanism of GO fiber has been proposed. This wet-spinning technique presented here facilitates the multifunctionalization of macroscopic graphene-based fibers with various organic or inorganic components by an easy-handle in situ or post-synthesis approach, which builds the solid foundation to access a new family of advanced composite materials for the next practical applications. PMID:22937222

  11. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate.

    PubMed

    Annett, James; Cross, Graham L W

    2016-07-14

    Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing the thermal activation of considerable out-of-plane motion. So far thermal activity has been shown to produce local wrinkles in a free graphene sheet that help in theoretically understanding its stability, for example, and give rise to unexpected long-range bending stiffness. Here we show that thermal activation can have a more marked effect on the behaviour of two-dimensional solids, leading to spontaneous and self-driven sliding, tearing and peeling from a substrate on scales approaching the macroscopic. We demonstrate that scalable nanoimprint-style contact techniques can nucleate and direct the parallel self-assembly of graphene ribbons of controlled shape in ambient conditions. We interpret our observations through a simple fracture-mechanics model that shows how thermodynamic forces drive the formation of the graphene-graphene interface in lieu of substrate contact with sufficient strength to peel and tear multilayer graphene sheets. Our results show how weak physical surface forces can be harnessed and focused by simple folded configurations of graphene to tear the strongest covalent bond. This effect may hold promise for the patterning and mechanical actuating of devices based on two-dimensional materials. PMID:27411633

  12. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.

    PubMed

    Wang, Bo; Li, Songmei; Wu, Xiaoyu; Liu, Jianhua; Tian, Wenming

    2016-01-14

    Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Such as-grown NiMoO4 NWA/3DGF composites are then evaluated as monolithic electrodes for lithium-ion batteries (LIBs) without the need of binders or metal-based current collectors. Benefitting from the unique three-dimensional arrayed architecture and characteristics with a high specific surface area and more active sites which facilitate fast electron and ionic transport within the electrode, the NiMoO4 NWA/GF composites deliver a high reversible specific capacity of 1088.02 mA h g(-1) at a current density of 200 mA g(-1) and 867.86 mA h g(-1) after 150 cycles (79.77% retention of the second cycle), and excellent rate capability. With the advantages of excellent electrochemical performance and a facile synthesis method, the NiMoO4 nanowire arrays supported on 3DGF exhibit great potential as anode materials for LIBs. PMID:26648554

  13. Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanwen; Zhang, Yu; Sun, Wenping; Tan, Hui Teng; Franklin, Joseph B.; Guo, Yuanyuan; Fan, Haosen; Ulaganathan, Mani; Wu, Xing-Long; Luo, Zhong-Zhen; Madhavi, Srinivasan; Yan, Qingyu

    2016-03-01

    Two-dimensional (2D) graphene oxide/polypyrrole (GO/PPy) hybrid materials derived from in-situ polymerization are used as precursors for constructing functionalized three-dimensional (3D) porous nitrogen-doped carbon nanosheet frameworks (FT-PNCNFs) through a one-step activation strategy. In the formation process of FT-PNCNFs, PPY is directly converted into hierarchical porous nitrogen-doped carbon layers, while GO is simultaneously reduced to become electrically conductive. The complementary functions of individual components endow the FT-PNCNFs with excellent properties for both supercapacitors (SCs) and sodium ion batteries (SIBs) applications. When tested in symmetrical SC, the FT-PNCNFs demonstrate superior energy storage behaviour. At an extremely high scan rate of 3000 mV s-1, the cyclic voltammetry (CV) curve retains an inspiring quasi-rectangle shape in KOH solution. Meanwhile, high capacitances (∼247 F g-1 at 10 mV s-1; ∼146 F g-1 at 3000 mV s-1) and good cycling stability (∼95% retention after 8000 cycles) are achieved. In addition, an attractive SIB anode performance could be achieved. The FT-PNCNFs electrode delivers a reversible capacity of 187 mAh g-1 during 160th cycle at 100 mA g-1. Its reversible capacity retains 144 mAh g-1 after extending the number of cycles to 500 at 500 mA g-1.

  14. The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene

    PubMed Central

    Jiang, Yanqiu; Yang, Ling; Guo, Zongxia; Lei, Shengbin

    2015-01-01

    The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple. PMID:26634648

  15. The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Yanqiu; Yang, Ling; Guo, Zongxia; Lei, Shengbin

    2015-12-01

    The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple.

  16. Self-Assembled 3D Foam-Like NiCo2O4 as Efficient Catalyst for Lithium Oxygen Batteries.

    PubMed

    Liu, Lili; Wang, Jun; Hou, Yuyang; Chen, Jun; Liu, Hua-Kun; Wang, Jiazhao; Wu, Yuping

    2016-02-01

    A self-assembled 3D foam-like NiCo2O4 catalyst has been synthesized via a simple and environmental friendly approach, wherein starch acts as the template to form the unique 3D architecture. Interestingly, when employed as a cathode for lithium oxygen batteries, it demonstrates superior bifunctional electrocatalytic activities toward both the oxygen reduction reaction and the oxygen evolution reaction, with a relatively high round-trip efficiency of 70% and high discharge capacity of 10 137 mAh g(-1) at a current density of 200 mA g(-1), which is much higher than those in previously reported results. Meanwhile, rotating disk electrode measurements in both aqueous and nonaqueous electrolyte are also employed to confirm the electrocatalytic activity for the first time. This excellent performance is attributed to the synergistic benefits of the unique 3D foam-like structure and the intrinsically high catalytic activity of NiCo2O4 . PMID:26670821

  17. Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate.

    PubMed

    Jia, Peng; Cao, Bing; Wang, Jianqiang; Qu, Jin; Liu, Yuxuan; Pan, Kai

    2015-08-21

    We report a facile method to synthesise flexible 3D surface-enhanced Raman scattering (SERS) substrates, using poly-m-phenylenediamine/polyacrylonitrile (PmPD/PAN) nanofiber mats as templates to self-assemble citrate-stabilized Ag nanocrystals (AgNCs), such as Ag nanoparticles (AgNPs), Ag nanotriangles (AgNTs) or Ag nanodisks (AgNDs). The SERS performances of AgNC@2D and AgNC@3D substrates were compared using 4-MBA as the probe molecule. The effect of the extinction wavelength as well as the density and morphology of the AgNCs on the SERS enhancement effect was explored. The results suggest that the 3D AgNT@PmPD/PAN nanofiber mat exhibits the highest SERS sensitivity and the lowest relative standard deviation (RSD) value. The detection limit of 4-MBA is as low as 10(-8) M, making the nanofiber mat a promising candidate for the SERS detection of chemical molecules. In addition, this study provides a simple route for the fabrication of SERS substrates with different types of noble metals and materials with strong SERS enhancement performance. PMID:26153569

  18. PVP Assisted Shape-Controlled Synthesis of Self-Assembled 1D ZnO and 3D CuO Nanostructures

    NASA Astrophysics Data System (ADS)

    Haque, Fozia Z.; Parra, Mohammad Ramzan; Siddiqui, Hafsa; Singh, Neha; Singh, Nitu; Pandey, Padmini; Mishra, K. M.

    2016-03-01

    Self-assembled one-dimensional (1D) zinc oxide (ZnO) rods and three-dimensional (3D) cupric oxide (CuO) cubes like nanostructures with a mean crystallite size of approximately 33 and 32 nm were synthesized through chemical route in the presence of polyvinylpyrrolidone (PVP) under mild synthesis conditions. The technique used for the synthesis of nanoparticles seems to be an efficient, inexpensive and easy method. X-Ray diffraction patterns confirmed well crystallinity and phase purity of the as prepared samples, followed by the compositional investigation using Fourier Transform Infrared (FT-IR) spectroscopy. The formation of ZnO nanorods and CuO nanocubes like structures were through Scanning Electron Microscopy (SEM) images. The mechanism and the formation factors of the self-assembly were discussed in detail. It was clearly observed from results that the concentration of precursors and PVP were important factors in the synthesis of self-assembly ZnO and CuO nanostructures. These self-assembly nanostructures maybe used as novel materials in various potential applications.

  19. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent

    NASA Astrophysics Data System (ADS)

    Cai, Peng; Feng, Xiyun; Fei, Jinbo; Li, Guangle; Li, Jiao; Huang, Jianguo; Li, Junbai

    2015-06-01

    A new type of biohybrid photo-electrochemical cell was fabricated by layer-by-layer assembly of photosystem II and reduced graphene oxide. We demonstrate that the photocurrent in the direct electron transfer is enhanced about two fold with improved stability. The assembly strategy without any cross-linker or additional electron mediators makes the cell fabrication and operation much simpler as compared to previous approaches. This work may open new routes for the construction of solar energy conversion systems based on photoactive proteins and graphene materials.A new type of biohybrid photo-electrochemical cell was fabricated by layer-by-layer assembly of photosystem II and reduced graphene oxide. We demonstrate that the photocurrent in the direct electron transfer is enhanced about two fold with improved stability. The assembly strategy without any cross-linker or additional electron mediators makes the cell fabrication and operation much simpler as compared to previous approaches. This work may open new routes for the construction of solar energy conversion systems based on photoactive proteins and graphene materials. Electronic supplementary information (ESI) available: Detailed experimental procedures, XRD patterns, UV-vis spectra, XPS spectra, SDS-PAGE patterns, AFM images and SEM images. See DOI: 10.1039/c5nr02322j

  20. Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis

    SciTech Connect

    Cui, Yongkui; Wang, Fengping Iqbal, M. Zubair; Wang, Ziya; Li, Yan; Tu, Jianhai

    2015-10-15

    Highlights: • Novel 3D SnO flowers self-assembled by 2D nano-leaves were synthesized by hydrothermal method. • The SnO nano-leaf is of single crystalline nature. • The band gap of 2.59 eV of as-prepared products was obtained. • The as-synthesized material will be a promising photocatalytic material. - Abstract: In this report, the novel 3D SnO flower-like hierarchical architectures self-assembled by 2D SnO nano-leaves are successfully synthesized via template-free hydrothermal approach under facile conditions. The high-resolution transmission electron microscopy results demonstrate that the 2D nano-leaves structure is of single crystalline nature. The band gap 2.59 eV for prepared product is obtained from UV–vis diffuse reflectance spectrum. The photocatalysis of the as prepared SnO for degrading methyl orange (MO) has been studied. A good photocatalytic activity is obtained and the mechanism is discussed in detail. Results indicate that the SnO nanostructures are the potential candidates for photocatalyst applications.

  1. Self-Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes

    PubMed Central

    Cunha, Eunice; Proença, Maria Fernanda; Costa, Florinda; Fernandes, António J; Ferro, Marta A C; Lopes, Paulo E; González-Debs, Mariam; Melle-Franco, Manuel; Deepak, Francis Leonard; Paiva, Maria C

    2015-01-01

    Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine-functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few-layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X-ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine-tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers. PMID:25969808

  2. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    PubMed Central

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces. PMID:27528258

  3. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S; Ma, Zhenqiang; Nealey, Paul F

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces. PMID:27528258

  4. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres.

    PubMed

    Tang, Changyu; Long, Gucheng; Hu, Xin; Wong, Ka-wai; Lau, Woon-ming; Fan, Meikun; Mei, Jun; Xu, Tao; Wang, Bin; Hui, David

    2014-07-21

    A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO-stabilized CNTs for the formation of an intriguing 3D hierarchical multi-scale structure. During this process, GO is reduced to conductive reduced-graphene oxide (RGO). The resultant RGO sheets act as "nano-walls" to prevent CNTs from randomly diffusing into the polymer bulk during thermal pressing of RGO-CNT/microspheres, which results in the formation of a 3D foam-like network of RGO-CNTs with high quality. The resultant composite with such a structure gives an ultra-low percolation threshold (0.03 vol% RGO-CNTs) and a reasonably high conductivity (153 S m(-1) at 4 vol% RGO-CNTs), which could satisfy various applications requiring both transparency and electrical conduction characteristics (e.g. transparent antistatic coatings, capacitive touch-screens, and transparent electronic devices). PMID:24791273

  5. Magnetic assembly of transparent and conducting graphene-based functional composites.

    PubMed

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F; Libanori, Rafael; Studart, André R; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  6. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.

    PubMed

    Turchanin, Andrey; Weber, Dirk; Büenfeld, Matthias; Kisielowski, Christian; Fistul, Mikhail V; Efetov, Konstantin B; Weimann, Thomas; Stosch, Rainer; Mayer, Joachim; Gölzhäuser, Armin

    2011-05-24

    Graphene-based materials have been suggested for applications ranging from nanoelectronics to nanobiotechnology. However, the realization of graphene-based technologies will require large quantities of free-standing two-dimensional (2D) carbon materials with tunable physical and chemical properties. Bottom-up approaches via molecular self-assembly have great potential to fulfill this demand. Here, we report on the fabrication and characterization of graphene made by electron-radiation induced cross-linking of aromatic self-assembled monolayers (SAMs) and their subsequent annealing. In this process, the SAM is converted into a nanocrystalline graphene sheet with well-defined thickness and arbitrary dimensions. Electric transport data demonstrate that this transformation is accompanied by an insulator to metal transition that can be utilized to control electrical properties such as conductivity, electron mobility, and ambipolar electric field effect of the fabricated graphene sheets. The suggested route opens broad prospects toward the engineering of free-standing 2D carbon materials with tunable properties on various solid substrates and on holey substrates as suspended membranes. PMID:21491948

  7. Magnetic assembly of transparent and conducting graphene-based functional composites

    PubMed Central

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  8. Topological properties of artificial graphene assembled by atom manipulation

    NASA Astrophysics Data System (ADS)

    Ko, Wonhee; Mar, Warren; Gomes, Kenjiro K.; Manoharan, Hari C.

    2011-03-01

    Graphene exhibits special electronic properties stemming from its two-dimensional (2D) structure and embedded relativistic Dirac cones. However, many proposed topologically ordered ground states remain elusive in conventional measurements due to the difficulty in arranging the necessary quantum textures into natural graphene. By exploiting atomic manipulation with a custom-built ultrastable scanning tunneling microscope, we have constructed graphene-like structures by arranging molecules to create a honeycomb lattice of electrons drawn from normal 2D surface states. Spectroscopy reveals a spectacular transformation of nonrelativistic massive 2D electrons into massless Dirac fermions carrying a chiral pseudospin symmetry. We demonstrate the tailoring of this new class of graphene to reveal signature topological properties: an energy gap and emergent mass created by breaking the pseudospin symmetry or changing the hopping term non-uniformly with a Kekulé bond distortion; gauge fields generated by applying atomically engineered strains; and the condensation of electrons into quantum Hall-like states and topologically confined phases. Supported by the DOE, Office of Basic Energy Sciences, Division of Material Science and Engineering under contract DE-AC02-76SF00515.

  9. Biophysical properties of dermal building-blocks affects extra cellular matrix assembly in 3D endogenous macrotissue.

    PubMed

    Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A

    2016-03-01

    The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering. PMID:26824879

  10. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators.

    PubMed

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Qian, Rong; Jiang, Pingkai

    2013-10-18

    We present a novel strategy for the fabrication of ordered and flexible polymer-based graphene foams by self-assembly of graphene sheets on a 3D polymer skeleton. The obtained graphene foams show excellent mechanical, electrical, and hydrophobic properties, thus holding great potential as elastic conductors and oil-water separators. PMID:23913816

  11. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate

    NASA Astrophysics Data System (ADS)

    Annett, James; Cross, Graham L. W.

    2016-07-01

    Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing the thermal activation of considerable out-of-plane motion. So far thermal activity has been shown to produce local wrinkles in a free graphene sheet that help in theoretically understanding its stability, for example, and give rise to unexpected long-range bending stiffness. Here we show that thermal activation can have a more marked effect on the behaviour of two-dimensional solids, leading to spontaneous and self-driven sliding, tearing and peeling from a substrate on scales approaching the macroscopic. We demonstrate that scalable nanoimprint-style contact techniques can nucleate and direct the parallel self-assembly of graphene ribbons of controlled shape in ambient conditions. We interpret our observations through a simple fracture-mechanics model that shows how thermodynamic forces drive the formation of the graphene–graphene interface in lieu of substrate contact with sufficient strength to peel and tear multilayer graphene sheets. Our results show how weak physical surface forces can be harnessed and focused by simple folded configurations of graphene to tear the strongest covalent bond. This effect may hold promise for the patterning and mechanical actuating of devices based on two-dimensional materials.

  12. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties

    PubMed Central

    Höller, Roland P. M.; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas

    2016-01-01

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies. PMID:26982386

  13. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    PubMed

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies. PMID:26982386

  14. Enhanced sheet conductivity of Langmuir-Blodgett assembled graphene thin films by chemical doping

    NASA Astrophysics Data System (ADS)

    Matković, Aleksandar; Milošević, Ivana; Milićević, Marijana; Tomašević-Ilić, Tijana; Pešić, Jelena; Musić, Milenko; Spasenović, Marko; Jovanović, Djordje; Vasić, Borislav; Deeks, Christopher; Panajotović, Radmila; Belić, Milivoj R.; Gajić, Radoš

    2016-03-01

    We demonstrate a facile fabrication technique for highly conductive and transparent thin graphene films. Sheet conductivity of Langmuir-Blodgett assembled multi-layer graphene films is enhanced through doping with nitric acid, leading to a fivefold improvement while retaining the same transparency as un-doped films. Sheet resistivity of such chemically improved films reaches 10 {{k}}{{Ω }}/\\square , with optical transmittance 78% in the visible. When the films are encapsulated, the enhanced sheet conductivity effect is stable in time. In addition, stacking of multiple layers, as well as the dependence of the sheet resistivity upon axial strain have been investigated.

  15. Synthesis and photoluminescence of novel 3D flower-like CaMoO4 architectures hierarchically self-assembled with tetragonal bipyramid nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Li, Ling; Noh, Hyeon Mi; Park, Sung Heum; Jeong, Jung Hyun; Yang, Hyun Kyoung; Jang, Kiwan; Shin, Dong Soo

    2015-05-01

    Novel three-dimensional (3D) hierarchical flowerlike CaMoO4 microarchitectures self-assembled with octahedral nanocrystals (tetragonal bipyramid) (OF-CaMoO4) have been synthesized via β-Cyclodextrin-assisted precipitation-hydrothermal process. The OF-CaMoO4 microflowers have a diameter of about 2-4 μm, and are composed of octahedral nanocrystals of about 200-500 nm that connect to each other by surface-to-surface attachments. β-Cyclodextrin plays a crucial role in achieving the good dispersibility and octahedral nanocrystals of the final product. The OF-CaMoO4 superstructures display an enhanced photoluminescence. Our work provides an easy and novel synthetic route for the controllable construction of inorganic phosphors with hierarchical architectures.

  16. A Step-by-Step Assembly of a 3D Coordination Polymer in the Solid-State by Desolvation and [2+2] Cycloaddition Reactions.

    PubMed

    Medishetty, Raghavender; Tandiana, Rika; Wu, Jien; Bai, Zhaozhi; Du, Yonghua; Vittal, Jagadese J

    2015-08-17

    Two solid-state structural transformations that occur in a stepwise and a controlled manner are described. A combination of desolvation and cycloaddition reactions has been employed to synthesise a 3D coordination polymer (CP) from 1D CP [Cd(bdc)(4-spy)2 (H2 O)]⋅2 H2 O⋅2 DMF (bdc=1,4-benzenedicarboxylate, 4-spy=4-styrylpyridine) presumably via a 2D layered structure, [Cd2 (bdc)2 (4-spy)4 ]. In the absence of single crystals to follow the course of the photocycloaddition reaction, thermogravimetry, XAFS and NOESY NMR experiments were used to propose the formation of layered and pillared layered structures. Further, the present strategy enables us to synthesise new multidimensional architectures that are otherwise inaccessible by the self-assembly process. PMID:26150356

  17. Self-assembled hierarchical 3D - NiO microspheres with ultra-thin porous nanoflakes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Thorat, Gaurav M.; Mun, Junyoung; Seo, Jeong Gil

    2016-01-01

    Transition metal oxides have attracted great attention as an anode material for next generation lithium ion batteries. Here we report the preparation of self-assembled hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes by simple and cost effective urea assisted chemical co-precipitation method followed by annealing at different temperature. It is noteworthy that the annealing temperature has an impact on the formation of different morphologies and resultantly on the electrochemical performance. This hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes shows enhanced electrochemical performance with a large reversible capacity, superior cyclic performance, high rate capability, and improved ionic conductivity as an anode material for lithium ion batteries. A high reversible capacity up to 795 mA h g-1 after 150 cycles at a rate of 0.5 C, and a capacity higher than 460.2 mA h g-1 at a rate as high as 10 C were obtained for optimized NiO sample. In particular, enhancement of the electrochemical performance was attributed to the high specific surface area, good electric contact among the particles, and easier lithium ion diffusion.

  18. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.

    PubMed

    Serohijos, Adrian W R; Hegedus, Tamás; Aleksandrov, Andrei A; He, Lihua; Cui, Liying; Dokholyan, Nikolay V; Riordan, John R

    2008-03-01

    Deletion of phenylalanine-508 (Phe-508) from the N-terminal nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) transporter family, disrupts both its folding and function and causes most cystic fibrosis. Most mutant nascent chains do not pass quality control in the ER, and those that do remain thermally unstable, only partially functional, and are rapidly endocytosed and degraded. Although the lack of the Phe-508 peptide backbone diminishes the NBD1 folding yield, the absence of the aromatic side chain is primarily responsible for defective CFTR assembly and channel gating. However, the site of interdomain contact by the side chain is unknown as is the high-resolution 3D structure of the complete protein. Here we present a 3D structure of CFTR, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2). This crucial cytoplasmic membrane interface, which is dynamically involved in regulation of channel gating, explains the known sensitivity of CFTR assembly to many disease-associated mutations in CL4 as well as NBD1 and provides a sharply focused target for small molecules to treat CF. In addition to identifying a key intramolecular site to be repaired therapeutically, our findings advance understanding of CFTR structure and function and provide a platform for focused biochemical studies of other features of this unique ABC ion channel. PMID:18305154

  19. Phenylalanine-508 mediates a cytoplasmic–membrane domain contact in the CFTR 3D structure crucial to assembly and channel function

    PubMed Central

    Serohijos, Adrian W. R.; Hegedűs, Tamás; Aleksandrov, Andrei A.; He, Lihua; Cui, Liying; Dokholyan, Nikolay V.; Riordan, John R.

    2008-01-01

    Deletion of phenylalanine-508 (Phe-508) from the N-terminal nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) transporter family, disrupts both its folding and function and causes most cystic fibrosis. Most mutant nascent chains do not pass quality control in the ER, and those that do remain thermally unstable, only partially functional, and are rapidly endocytosed and degraded. Although the lack of the Phe-508 peptide backbone diminishes the NBD1 folding yield, the absence of the aromatic side chain is primarily responsible for defective CFTR assembly and channel gating. However, the site of interdomain contact by the side chain is unknown as is the high-resolution 3D structure of the complete protein. Here we present a 3D structure of CFTR, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2). This crucial cytoplasmic membrane interface, which is dynamically involved in regulation of channel gating, explains the known sensitivity of CFTR assembly to many disease-associated mutations in CL4 as well as NBD1 and provides a sharply focused target for small molecules to treat CF. In addition to identifying a key intramolecular site to be repaired therapeutically, our findings advance understanding of CFTR structure and function and provide a platform for focused biochemical studies of other features of this unique ABC ion channel. PMID:18305154

  20. A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

    PubMed Central

    Du, Ping; Bléger, David; Charra, Fabrice; Bouchiat, Vincent; Kreher, David; Mathevet, Fabrice

    2015-01-01

    Summary Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp2)-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications. PMID:25821703

  1. Nanosheet Graphene Composite Carbon Aerogels from Resorcinol-Formaldehyde via an Adsorption-Assembly Polymerization Method .

    PubMed

    Qiu, Jielong; Zhang, Shuting; Mai, Jiawen; Wu, Fangjun; Liu, Wei

    2015-12-01

    An adsorption-assembly sol-gel polymerization between graphene oxide (GO) sheets and resorcinol-formaldehyde aqueous solution was investigated as a method to form graphene composite carbon aerogels (GCAs) with cross-linked nanosheet structure and a surface area as high as 489 m2/g. By adjusting the amount of GO and the catalyst of hexamethylenetetramine (HMTA) in the precursor mixture, aerogels with little drying shrinkage under ambient pressure condition could be obtained. Benefiting from the attendance of graphene oxide, the obtained GCAs showed a regular nanosheets structure with countless nano-size particles on the sheet surface, which is quite different from the conventional carbon aerogels. The electrochemical performance of the GCAs were evaluated, they displayed small internal resistance and outstanding electrochemical specific capacitance (131 F/g), as well as a stable cycle performance (no capacitance loss after 5000 cycles). PMID:26682394

  2. Self-assembled foam-like graphene networks formed through nucleate boiling

    PubMed Central

    Ahn, Ho Seon; Jang, Ji-Wook; Seol, Minsu; Kim, Ji Min; Yun, Dong-Jin; Park, Chibeom; Kim, Hyungdae; Youn, Duck Hyun; Kim, Jae Young; Park, Gunyeop; Park, Su Cheong; Kim, Jin Man; Yu, Dong In; Yong, Kijung; Kim, Moo Hwan; Lee, Jae Sung

    2013-01-01

    Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400°C) SFG film were 11.8 S·cm–1 and 91.2 Ω□−1, respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (~10 S·cm–1). The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs). PMID:23466511

  3. Self-assembly of photo-reduced graphene-titania films.

    SciTech Connect

    Lambert, Timothy N.; Chavez, Carlos A.; Bell, Nelson Simmons; Washburn, Cody M.; Brumbach, Michael Todd; Wheeler, David Roger; McKenzie, Bonnie Beth

    2010-07-01

    In an aim to develop photo-responsive composites, the UV photo-reduction of aqueous titanium oxide nanoparticle-graphene oxide (TiO{sub 2}-GO) dispersions (Lambert et al. J Phys. Chem. 2010 113 (46), 19812-19823) was undertaken. Photo-reduction led to the formation of a black precipitate as well as a soluble portion, comprised of titanium oxide nanoparticle-reduced graphene oxide (TiO{sub 2}-RGO). When allowed to slowly evaporate, self assembled titanium oxide nanoparticle-graphene oxide (SA-TiO{sub 2}-RGO) films formed at the air-liquid interface of the solution. The thickness of SARGO-TiO{sub 2} films range from {approx}30-100 nm when deposited on substrates, and appear to be comprised of a mosaic assembly of graphene nanosheets and TiO{sub 2}, as observed by scanning electron microscopy. Raman spectroscopy and X-ray photoelectron spectroscopy indicate that the graphene oxide is only partially reduced in the SA-TiO{sub 2}-RGO material. These films were also deposited onto inter-digitated electrodes and their photo-responsive behavior was examined. UV-exposure lead to a {approx} 200 kOhm decrease in resistance across the device, resulting in a cathodically biased film. The cathodic bias of the films was utilized for the subsequent reduction of Ag(NO{sub 3}) into silver (Ag) nanoparticles, forming a ternary Ag-(SA-RGO-TiO{sub 2}) composite. Various aspects of the self assembled films, their photoconductive properties as well as potential applications will be presented.

  4. Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene.

    PubMed

    O'Mahony, S; O'Dwyer, C; Nijhuis, C A; Greer, J C; Quinn, A J; Thompson, D

    2013-06-18

    Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed here, and we show that the SAM architecture can be tailored for use in emerging applications (e.g., electrically stimulated nerve fiber growth via the targeted binding of specific cell surface peptide sequences on the functionalized graphene scaffold). The simulations quantify the changes in film physisorption on graphene and the alkyl chain packing efficiency as the film surface is made more polar by changing the terminal groups from methyl (-CH3) to amine (-NH2) to hydroxyl (-OH). The mode of molecule packing dictates the orientation and spacing between terminal groups on the surface of the SAM, which determines the way in which successive layers build up on the surface, whether via the formation of bilayers of the molecule or the immobilization of other (macro)molecules (e.g., proteins) on the SAM. The simulations show the formation of ordered, stable assemblies of monolayers and bilayers of decylamine-based molecules on graphene. These films can serve as protein adsorption platforms, with a hydrophobin protein showing strong and selective adsorption by binding via its hydrophobic patch to methyl-terminated films and binding to amine-terminated films using its more hydrophilic surface regions. Design rules obtained from modeling the atomic-scale structure of the films and interfaces may provide input into experiments for the rational design of assemblies in which the electronic, physicochemical, and mechanical properties of the substrate, film, and protein layer can be tuned to provide the desired functionality. PMID:23301836

  5. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument. PMID:25422829

  6. Click-assembled, oxygen-sensing nanoconjugates for depth-resolved, near-infrared imaging in a 3D cancer model.

    PubMed

    Nichols, Alexander J; Roussakis, Emmanuel; Klein, Oliver J; Evans, Conor L

    2014-04-01

    Hypoxia is an important contributing factor to the development of drug-resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click-assembled oxygen-sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click-based ligation of poly(amidoamine)-like subunits for rapid assembly. Near-infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof-of-concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth-resolved imaging in tissue and tissue models. PMID:24590700

  7. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.

    PubMed

    Chen, Yanan; Egan, Garth C; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  8. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films

    PubMed Central

    Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  9. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.

    PubMed

    Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo

    2016-07-26

    We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite. PMID:27299370

  10. Electrostatic self-assembly of graphene oxide wrapped sulfur particles for lithium–sulfur batteries

    SciTech Connect

    Wu, Haiwei; Huang, Ying Zong, Meng; Ding, Xiao; Ding, Juan; Sun, Xu

    2015-04-15

    Highlights: • Researched graphene oxide wrapped sulfur particles for lithium–sulfur batteries. • New approach for core–shell GO/S composites by electrostatic self-assembly method. • Both core–shell structure and the GO support help to retard the diffusion of polysulfides during the electrochemical cycling process of GO/S cathode. - Abstract: A novel graphene oxide (GO)/sulfur (S) composite is developed by electrostatic self-assembly method. Remarkably, the core–shell structure of the composite and the GO support helps to retard the diffusion of polysulfides during the electrochemical cycling process. The GO/sulfur cathode presents enhanced cycling ability. Specific discharge capacities up to 494.7 mAh g{sup −1} over 200 cycles at 0.1 C is achieved with enhanced columbic efficiency around 95%, representing a good cathode material for lithium–sulfur batteries.

  11. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    PubMed

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces. PMID:26871736

  12. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors.

    PubMed

    Choi, Bong Gill; Park, Hoseok; Park, Tae Jung; Yang, Min Ho; Kim, Joon Sung; Jang, Sung-Yeon; Heo, Nam Su; Lee, Sang Yup; Kong, Jing; Hong, Won Hi

    2010-05-25

    We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through self-assembly, while the hydrophilic sulfonate groups enabled highly stable dispersibility ( approximately 0.5 mg/mL) and long-term stability (2 months) for graphene. The geometrically interlocked morphology of RGON produced a high degree of mechanical integrity in the hybrid films, while the interpenetrating network constructed favorable conduction pathways for charge transport. Importantly, the synergistic electrochemical characteristics of RGON were attributed to high conductivity (1176 S/m), facilitated electron transfer (ET), and low interfacial resistance. Consequently, RGON films obtained the excellent figure of merit as electrochemical biosensing platforms for organophosphate (OP) detection, that is, a sensitivity of 10.7 nA/microM, detection limit of 1.37 x 10(-7) M, and response time of <3 s. In addition, the reliability of RGON biosensors was confirmed by a fatigue test of 100 bending cycles. The strategy described here provides insight into the fabrication of graphene and hybrid nanomaterials from a material perspective, as well as the design of biosensor platforms for practical device applications. PMID:20377244

  13. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  14. Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites

    PubMed Central

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming

    2014-01-01

    Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

  15. Using multiple hydrogen bonding cross-linkers to access reversibly responsive three dimensional graphene oxide architecture

    NASA Astrophysics Data System (ADS)

    Han, Junkai; Shen, Yongtao; Feng, Wei

    2016-07-01

    Three-dimensional (3D) graphene materials have attracted a lot of attention for efficiently utilizing inherent properties of graphene sheets. However, 3D graphene materials reported in the previous literature are constructed through covalent or weak non-covalent interactions, causing permanent structure/property changes. In this paper, a novel 3D graphene material of dynamic interactions between lamellas with 2-ureido-4[1H]-pyrimidinone as a supra-molecular motif has been synthesized. This 3D graphene material shows enhanced sheet interactions while the cross-linking takes place. With proper solvent stimulation, the integrated 3D graphene material can disassemble as isolated sheets. The driving force for the 3D structure assembly or disassembly is considered to be the forming or breaking of the multiple hydrogen bonding pairs. Furthermore, the 3D material is used as an intelligent dye adsorber to adsorb methylene blue and release it. The controllable and reversible characteristic of this 3D graphene material may open an avenue to the synthesis and application of novel intelligent materials.Three-dimensional (3D) graphene materials have attracted a lot of attention for efficiently utilizing inherent properties of graphene sheets. However, 3D graphene materials reported in the previous literature are constructed through covalent or weak non-covalent interactions, causing permanent structure/property changes. In this paper, a novel 3D graphene material of dynamic interactions between lamellas with 2-ureido-4[1H]-pyrimidinone as a supra-molecular motif has been synthesized. This 3D graphene material shows enhanced sheet interactions while the cross-linking takes place. With proper solvent stimulation, the integrated 3D graphene material can disassemble as isolated sheets. The driving force for the 3D structure assembly or disassembly is considered to be the forming or breaking of the multiple hydrogen bonding pairs. Furthermore, the 3D material is used as an

  16. Self-assembled 3D heterometallic Cu(II)/Fe(II) coordination polymers with octahedral net skeletons: structural features, molecular magnetism, thermal and oxidation catalytic properties.

    PubMed

    Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L

    2010-12-01

    The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively. PMID:21028781

  17. Hydrothermal self-assembly and supercapacitive behaviors of Co(II) ion-modified graphene aerogels in H{sub 2}SO{sub 4} electrolyte

    SciTech Connect

    Bao, Qi; Hui, K.N.; Hui, K.S.; Wang, Yi; Hong, Xiaoting

    2014-08-15

    Highlights: • 3D Co(II) ions modified graphene aerogels were prepared by one-step hydrothermal process. • The aerogel electrodes showed hybrid supercapacitor behaviors. • The aerogel electrodes exhibited high rate capability and long-term cycling stability. - Abstract: Reduced graphene oxide (r-GO) aerogels decorated with divalent cobalt ions were synthesized via a one-pot hydrothermal self-assembly route. The interaction of Co(II) ions with 3D r-GO aerogels was investigated by spectroscopic techniques, including Raman, attenuated total reflectance infrared, and X-ray photoelectron spectroscopies. The excellent electrochemical properties of the aerogels were confirmed by cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy in an acid electrolyte (1 M H{sub 2}SO{sub 4}). The Co(II) ion-modified r-GO aerogels can be used as high-performance hybrid supercapacitor materials with a specific capacitance of 387.2 F g{sup –1} at 1 A g{sup –1} current density and a good cycling stability without capacity decay over 1000 cycles. The mechanical integrity enhancement of the hybrid r-GO aerogel framework and the improvement in its unique capacitive performance are attributed to the efficient interconnection produced by electro-active Co(II) ions.

  18. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.

    PubMed

    Zhou, Min; Li, Xianglong; Wang, Bin; Zhang, Yunbo; Ning, Jing; Xiao, Zhichang; Zhang, Xinghao; Chang, Yanhong; Zhi, Linjie

    2015-09-01

    We propose a novel material/electrode design formula and develop an engineered self-supporting electrode configuration, namely, silicon nanoparticle impregnated assemblies of templated carbon-bridged oriented graphene. We have demonstrated their use as binder-free lithium-ion battery anodes with exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g(-1) at 2 A g(-1) with respect to the total electrode weight), high volumetric capacity (1807 mAh cm(-3) that is more than three times that of graphite anodes), remarkable rate capability (900 mAh g(-1) at 8 A g(-1)), excellent cyclic stability (0.025% decay per cycle over 200 cycles), and competing areal capacity (as high as 4 and 6 mAh cm(-2) at 15 and 3 mA cm(-2), respectively). Such combined level of performance is attributed to the templated carbon bridged oriented graphene assemblies involved. This engineered graphene bulk assemblies not only create a robust bicontinuous network for rapid transport of both electrons and lithium ions throughout the electrode even at high material mass loading but also allow achieving a substantially high material tap density (1.3 g cm(-3)). Coupled with a simple and flexible fabrication protocol as well as practically scalable raw materials (e.g., silicon nanoparticles and graphene oxide), the material/electrode design developed would propagate new and viable battery material/electrode design principles and opportunities for energy storage systems with high-energy and high-power characteristics. PMID:26308100

  19. Promoting 3-D Aggregation of FACS Purified Thymic Epithelial Cells with EAK 16-II/EAKIIH6 Self-assembling Hydrogel.

    PubMed

    Tajima, Asako; Liu, Wen; Pradhan, Isha; Bertera, Suzanne; Lakomy, Robert A; Rudert, William A; Trucco, Massimo; Meng, Wilson S; Fan, Yong

    2016-01-01

    Thymus involution, associated with aging or pathological insults, results in diminished output of mature T-cells. Restoring the function of a failing thymus is crucial to maintain effective T cell-mediated acquired immune response against invading pathogens. However, thymus regeneration and revitalization proved to be challenging, largely due to the difficulties of reproducing the unique 3D microenvironment of the thymic stroma that is critical for the survival and function of thymic epithelial cells (TECs). We developed a novel hydrogel system to promote the formation of TEC aggregates, based on the self-assembling property of the amphiphilic EAK16-II oligopeptides and its histidinylated analogue EAKIIH6. TECs were enriched from isolated thymic cells with density-gradient, sorted with fluorescence-activated cell sorting (FACS), and labeled with anti-epithelial cell adhesion molecule (EpCAM) antibodies that were anchored, together with anti-His IgGs, on the protein A/G adaptor complexes. Formation of cell aggregates was promoted by incubating TECs with EAKIIH6 and EAK16-II oligopeptides, and then by increasing the ionic concentration of the medium to initiate gelation. TEC aggregates embedded in EAK hydrogel can effectively promote the development of functional T cells in vivo when transplanted into the athymic nude mice. PMID:27404995

  20. Spin relaxation in graphene with self-assembled cobalt porphyrin molecules

    NASA Astrophysics Data System (ADS)

    Omar, S.; Gurram, M.; Vera-Marun, I. J.; Zhang, X.; Huisman, E. H.; Kaverzin, A.; Feringa, B. L.; van Wees, B. J.

    2015-09-01

    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time τs even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.

  1. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Nandy, Krishanu

    were found to play a key role in yielding tough papers with high failure stress. Finally, efforts to investigate the microstructural mechanisms that govern the mechanical properties of graphene oxide papers by 3D printing of a tensile tester are detailed. It is intended to release the design of the tensile tester to the community in an effort to reduce cost and improve availability of lab equipment.

  2. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.

    PubMed

    Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu

    2015-09-01

    Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. PMID:26079600

  3. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing.

    PubMed

    Liu, Sen; Tian, Jingqi; Wang, Lei; Luo, Yonglan; Lu, Wenbo; Sun, Xuping

    2011-07-15

    Graphene platelet-glucose oxidase (GP-GOD) nanostructures have been prepared through self-assembly of GOD and chitosan (CS) functionalized GPs by electrostatic attraction in aqueous solution. The stable aqueous dispersion of GPs was prepared by chemical reduction of graphene oxide with the use of CS as a reducing and stabilizing agent. UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the resulting GPs and GP-GOD nanostructures. Furthermore, a glucose biosensor was constructed by deposition of the resultant GP-GOD on the surface of glassy carbon electrode. It was found that the resulting biosensor exhibits good response to glucose. The linear detection range is estimated to be from 2 to 22 mM (r=0.9987), and the detection limit is estimated to be 20 μM at a signal-to-noise ratio of 3. PMID:21652199

  4. High-yield dielectrophoretic assembly of two-dimensional graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Lütolf, Fabian; Schneider, Julian; Schirmer, Niklas C.; Schwamb, Timo; Poulikakos, Dimos

    2009-02-01

    Graphene handling is still dominated by serial mechanical exfoliation, which may well facilitate measurements in a laboratory environment but does not allow reliable larger-scale integration. Herein we demonstrate the controlled, high-yield (>90%), site-selective deposition of ultrathin few-layer (three to ten) graphene oxide by dielectrophoresis between prefabricated electrodes. Individual layers are found near the edges. Initially insulating, thermal reduction at 450 °C thins out the two-dimensional few-atom thick films and dramatically reduces electrical resistances down to 40 kΩ. Conductivities between 15 and 36 S/cm are obtained. The introduced method permits the nonintrusive, parallel, large-scale assembly of soluble two-dimensional nanostructures and sheets.

  5. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

    PubMed

    Wang, Bin; Huang, Ming; Tao, Li; Lee, Sun Hwa; Jang, A-Rang; Li, Bao-Wen; Shin, Hyeon Suk; Akinwande, Deji; Ruoff, Rodney S

    2016-01-26

    We explored a support-free method for transferring large area graphene films grown by chemical vapor deposition to various fluoric self-assembled monolayer (F-SAM) modified substrates including SiO2/Si wafers, polyethylene terephthalate films, and glass. This method yields clean, ultrasmooth, and high-quality graphene films for promising applications such as transparent, conductive, and flexible films due to the absence of residues and limited structural defects such as cracks. The F-SAM introduced in the transfer process can also lead to graphene transistors with enhanced field-effect mobility (up to 10,663 cm(2)/Vs) and resistance modulation (up to 12×) on a standard silicon dioxide dielectric. Clean graphene patterns can be realized by transfer of graphene onto only the F-SAM modified surfaces. PMID:26701198

  6. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres

    NASA Astrophysics Data System (ADS)

    Tang, Changyu; Long, Gucheng; Hu, Xin; Wong, Ka-Wai; Lau, Woon-Ming; Fan, Meikun; Mei, Jun; Xu, Tao; Wang, Bin; Hui, David

    2014-06-01

    A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO-stabilized CNTs for the formation of an intriguing 3D hierarchical multi-scale structure. During this process, GO is reduced to conductive reduced-graphene oxide (RGO). The resultant RGO sheets act as ``nano-walls'' to prevent CNTs from randomly diffusing into the polymer bulk during thermal pressing of RGO-CNT/microspheres, which results in the formation of a 3D foam-like network of RGO-CNTs with high quality. The resultant composite with such a structure gives an ultra-low percolation threshold (0.03 vol% RGO-CNTs) and a reasonably high conductivity (153 S m-1 at 4 vol% RGO-CNTs), which could satisfy various applications requiring both transparency and electrical conduction characteristics (e.g. transparent antistatic coatings, capacitive touch-screens, and transparent electronic devices).A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO

  7. Perchlorination of Coronene Enhances its Propensity for Self-Assembly on Graphene.

    PubMed

    Conti, Simone; Del Rosso, Maria G; Ciesielski, Artur; Weippert, Jürgen; Böttcher, Artur; Shin, Yuyoung; Melinte, Georgian; Ersen, Ovidiu; Casiraghi, Cinzia; Feng, Xinliang; Müllen, Klaus; Kappes, Manfred M; Samorì, Paolo; Cecchini, Marco

    2016-02-01

    Providing a quantitative understanding of the thermodynamics involved in molecular adsorption and self-assembly at a nanostructured carbon material is of fundamental importance and finds outstanding applications in the graphene era. Here, we study the effect of edge perchlorination of coronene, which is a prototypical polyaromatic hydrocarbon, on the binding affinity for the basal planes of graphite. First, by comparing the desorption barrier of hydrogenated versus perchlorinated coronene measured by temperature-programmed desorption, we quantify the enhancement of the strength of physisorption at the single-molecule level though chlorine substitution. Then, by a thermodynamic analysis of the corresponding monolayers based on force-field calculations and statistical mechanics, we show that perchlorination decreases the free energy of self-assembly, not only enthalpically (by enhancing the strength of surface binding), but also entropically (by decreasing the surface concentration). The functional advantage of a chemically modulated 2D self-assembly is demonstrated in the context of the molecule-assisted liquid-phase exfoliation of graphite into graphene. PMID:26663716

  8. A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts.

    PubMed

    Liu, Ruili; Jin, Yeqing; Xu, Peimin; Xing, Xia; Yang, Yuxing; Wu, Dongqing

    2016-02-15

    As a novel electrocatalyst for oxygen reduction reaction (ORR), nitrogen-doped graphene aerogel supported cobalt nanoparticles (Co-NGA) is archived by a hybrid-assembly of graphene oxide (GO), o-phthalonitrile and cobalt acetate and the following thermal treatment. The hybrid-assembly process successfully combines the ionic assembly of GO sheets and Co ions with the coordination between o-phthalonitrile and Co ions, which can be converted to nitrogen doped carbon and Co nanoparticles in the pyrolysis process under nitrogen flow. Remarkable features of Co-NGA including the macroporous graphene scaffolds, high surface area, and N/Co-doping effect can lead to a high catalytic efficiency for ORR. As the results, the composites pyrolyzed at 600°C (Co-NGA600) shows excellent electrocatalytic activities and kinetics for ORR in basic media, which are comparable with those of Pt/C catalyst, together with superior durability. PMID:26609926

  9. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure.

    PubMed

    Banchelli, Martina; Tiribilli, Bruno; Pini, Roberto; Dei, Luigi; Matteini, Paolo; Caminati, Gabriella

    2016-01-01

    Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir-Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir-Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis. PMID:26925348

  10. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

    PubMed Central

    Banchelli, Martina; Tiribilli, Bruno; Pini, Roberto; Dei, Luigi

    2016-01-01

    Summary Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis. PMID:26925348

  11. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.

    PubMed

    Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2013-12-10

    An active cell scaffold based on a graphene-polymer hydrogel has been successfully fabricated. The macroporous hydrogel can efficiently capture cells not only through the bioadhesive ligand RGD but also through on-demand release of cells with an NIR light stimulus. The latter process shows better dynamic control over cells than traditional passive-hydrogel-based cell depots. PMID:24123218

  12. Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

    PubMed

    Gong, Feng; Wang, Hong; Wang, Zhong-Sheng

    2011-10-21

    Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable photovoltaic performance. This finding provides a new route to fabrication of cheap and efficient counter electrodes for flow-line production of DSSCs. PMID:21909512

  13. Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Li, Xing; Zhu, Shoujun; Xu, Bin; Ma, Ke; Zhang, Junhu; Yang, Bai; Tian, Wenjing

    2013-08-01

    On the basis of cytochrome c-induced self-assembled graphene quantum dots, we demonstrate a novel fluorescent biosensor for trypsin with remarkable fluorescence enhancement, as well as high selectivity and sensitivity.On the basis of cytochrome c-induced self-assembled graphene quantum dots, we demonstrate a novel fluorescent biosensor for trypsin with remarkable fluorescence enhancement, as well as high selectivity and sensitivity. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00006k

  14. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M.; Keten, Sinan

    2016-03-01

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale Lsc governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length Lpc is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale LTc corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale

  15. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    PubMed

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. PMID:27524075

  16. From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation.

    PubMed

    Jia, Zhaojun; Shi, Yuying; Xiong, Pan; Zhou, Wenhao; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2016-07-13

    Bringing multifunctional graphene out of solution through facile self-assembly to form 2D surface nanostructures, with control over the lateral size and surface properties, would be an intriguing accomplishment, especially in biomedical fields where biointerfaces with functional diversity are in high demand. Guided by this goal, in this work, we built such graphene-based self-assemblies on orthopedic titanium, attempting to selectively regulate bacterial activities and osteoblastic functions, which are both crucial in bone regeneration. Briefly, large-area graphene oxide (GO) sheets and functionalized reduced GO (rGO) micro-/nanosheets were self-assembled spontaneously and controllably onto solid Ti, through an evaporation-assisted electrostatic assembly process and a mussel-inspired one-pot assembly process, respectively. The resultant layers were characterized in terms of topological structure, chemical composition, hydrophilicity, and protein adsorption properties. The antibacterial efficacies of the assemblies were examined by challenging them with pathogenic Staphylococcus aureus (S. aureus) bacteria that produce biofilms, whereby around 50% antiadhesion effects and considerable antibiofilm activities were observed for both layer types but through dissimilar modes of action. Their cytocompatibility and osteogenic potential were also investigated. Interfaced with MC3T3-E1 cells, the functionalized rGO sheets evoked better cell adhesion and growth than GO sheets, whereas the latter elicited higher osteodifferentiation activity throughout a 28-day in vitro culture. In this work, we showed that it is technically possible to construct graphene interface layers of varying lateral dimensions and surface properties and confirmed the concept of using the obtained assemblies to address the two major challenges facing orthopedic clinics. In addition, we determined fundamental implications for understanding the surface-biology relationship of graphene biomaterials, in

  17. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Mattevi, Cecilia; Kim, Hyun Jun; Mittal, Anudha; Mkhoyan, K. Andre; Riman, Richard E.; Chhowalla, Manish

    2013-11-01

    Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 +/- 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the

  18. Blown-Bubble Assembly and in Situ Fabrication of Sausage-like Graphene Nanotubes Containing Copper Nanoblocks.

    PubMed

    Wu, Shiting; Yang, Long; Zou, Mingchu; Yang, Yanbing; Du, Mingde; Xu, Wenjing; Yang, Liusi; Fang, Ying; Cao, Anyuan

    2016-08-10

    We use a blown-bubble method to assemble Cu nanowires and in situ fabricate graphene-based one-dimensional heterostructures, including versatile sausage-like configurations consisting of multilayer graphene nanotubes (GNTs) filled by single or periodically arranged Cu nanoblocks (CuNBs). This is done by first assembling Cu nanowires among a polymer-based blown-bubble film (BBF) and then growing graphene onto the nanowire substrate using the polymer matrix as a solid carbon source by chemical-vapor deposition. The formation of sausage-like GNT@CuNB nanostructures is due to the partial melting and breaking of embedded Cu nanowires during graphene growth, which is uniquely related to our BBF process. We show that the GNT skin significantly slows the oxidation process of CuNBs compared with that of bare Cu nanowires, and the presence of stuffed CuNBs also reduces the linear resistance along the GNTs. The large-scale assembled graphene-based heterostructures achieved by our BBF method may have potential applications in heterojunction electronic devices and high-stability transparent conductive electrodes. PMID:27414282

  19. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas. PMID:26641709

  20. Using multiple hydrogen bonding cross-linkers to access reversibly responsive three dimensional graphene oxide architecture.

    PubMed

    Han, Junkai; Shen, Yongtao; Feng, Wei

    2016-08-01

    Three-dimensional (3D) graphene materials have attracted a lot of attention for efficiently utilizing inherent properties of graphene sheets. However, 3D graphene materials reported in the previous literature are constructed through covalent or weak non-covalent interactions, causing permanent structure/property changes. In this paper, a novel 3D graphene material of dynamic interactions between lamellas with 2-ureido-4[1H]-pyrimidinone as a supra-molecular motif has been synthesized. This 3D graphene material shows enhanced sheet interactions while the cross-linking takes place. With proper solvent stimulation, the integrated 3D graphene material can disassemble as isolated sheets. The driving force for the 3D structure assembly or disassembly is considered to be the forming or breaking of the multiple hydrogen bonding pairs. Furthermore, the 3D material is used as an intelligent dye adsorber to adsorb methylene blue and release it. The controllable and reversible characteristic of this 3D graphene material may open an avenue to the synthesis and application of novel intelligent materials. PMID:27378190

  1. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-10-14

    The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

  2. Self-assembly synthesis of precious-metal-free 3D ZnO nano/micro spheres with excellent photocatalytic hydrogen production from solar water splitting

    NASA Astrophysics Data System (ADS)

    Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song

    2015-10-01

    A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.

  3. Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces

    NASA Astrophysics Data System (ADS)

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A.; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V.; Palma, Carlos-Andres

    2016-02-01

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm-2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

  4. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.

    PubMed

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M; Keten, Sinan

    2016-03-17

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters. PMID:26935048

  5. Tailoring graphene oxide assemblies by pinning on the contact line of a dissolving microdroplet.

    PubMed

    Yang, Haijun; Song, Yuting; Downton, Matthew T; Wang, Songtao; Xu, Jianxin; Hou, Zhengchi; Zhang, Xuehua

    2015-11-21

    The controlled dissolution of microdroplets on a supporting substrate is an effective approach that can be used to tune the assembled microstructure of basic units suspended within the droplet. In this work, we studied the self-assembly of two-dimensional graphene oxide (GO) nanosheets driven by the dissolution of a microdroplet situated at the interface between a solid substrate and the surrounding liquid phase. We found that although uniform microstructures form at the liquid-liquid interface of the droplets, the contact between the droplet and the substrate can give rise to a variety of different morphologies near the base of the droplet. In particular, pinning effects at the boundary of the dissolving droplet on the substrate lead to non-spherical GO assemblies. The results in this work demonstrate the possibility that tailored three-dimensional architectures of nanosheets assembled in a dissolving droplet may be achieved through control of the wetting properties of the droplet on the supporting substrate. PMID:26364811

  6. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases.

    PubMed

    Rui, Longfei; Liu, Jiaojiao; Li, Jingliang; Weng, Yuyan; Dou, Yujiang; Yuan, Bing; Yang, Kai; Ma, Yuqiang

    2015-05-01

    The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes. PMID:25724816

  7. Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces.

    PubMed

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V; Palma, Carlos-Andres

    2016-01-01

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm(-2) irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 10(2) μm(2), an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution. PMID:26911248

  8. Unified system for 3D holographic displacement and velocity measurements in fluid and solid mechanics: design and construction of the recording camera and interrogation assembly

    NASA Astrophysics Data System (ADS)

    Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    This paper introduces a new approach to 3D displacement and velocity measurements that unifies the disciplines of holographic interferometry and holographic particle image velocimetry (HPIV). Equally applicable to fluid and solid mechanics, the overall system enables quantitative displacement measurements between two holographically recorded events from either particle or surface scattering sites, working with both pulsed and continuous-wave laser systems. The resulting measurements exhibit an accuracy corresponding to interferometric system, but with a dynamic range found with PIV systems. Most importantly, this paper introduces the novel use of an optical fiber to specify the measurement points, remove optical aberrations of windows, and eliminate directional ambiguity. An optical fiber is used to probe the recorded holographic image space at each 3D measurement point in order to extract the 3D displacement vectors. This fiber system also employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex optical correlation rather than 2D real digital correlation. It is therefore a simple matter to directly obtain 3D displacement and velocity measurements at precisely known 3D locations in the object space. By correlating both the amplitude and phase information in the holographic image, this system can measure spatial distributions of displacements even when the presence of severe aberrations preclude the detection of sharp images.

  9. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  10. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  11. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    PubMed Central

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-01-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations. PMID:27020705

  12. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    NASA Astrophysics Data System (ADS)

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-03-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.

  13. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  14. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g‑1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  15. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    PubMed Central

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  16. Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls

    PubMed Central

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Pan, Xinglong; Zhang, Jianqiang; Xing, Wei; Wu, Tiantian; Liu, Zilong

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation. PMID:27243752

  17. Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls

    NASA Astrophysics Data System (ADS)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Pan, Xinglong; Zhang, Jianqiang; Xing, Wei; Wu, Tiantian; Liu, Zilong

    2016-05-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation.

  18. Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls.

    PubMed

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Pan, Xinglong; Zhang, Jianqiang; Xing, Wei; Wu, Tiantian; Liu, Zilong

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation. PMID:27243752

  19. Self-assembly of C4H-type hydrogenated graphene.

    PubMed

    Liu, Zilong; Xue, Qingzhong; Xing, Wei; Du, Yonggang; Han, Zhide

    2013-11-21

    We demonstrate by molecular dynamic (MD) simulations that patterned partially hydrogenated graphene (C4H) can self-assemble at room temperature. The main driving force of the self-assembly of C4H is due to the one-sided distribution of hydrogen and the corresponding asymmetric orientation of sp(3) bonding, there exists strong electrostatic repulsion between the relatively close H atoms. The simulations show that C4H can self-assemble into various carbon nanoscroll (CNS) structures, this is mainly controlled by its geometry (size and aspect ratio). And the carbon nanotube (CNT) is a good candidate to activate and guide C4H to form CNS, whose core size can be controlled. Meanwhile, a novel CNT/C4H core/shell composite nanostructure is also formed. The theoretical results shed important light on a feasible approach to fabricate high-quality CNS and other novel nanostructures including core/shell structures, which hold great potential applications in optics, optoelectronic devices, hydrogen storage, sensors, and energy storage in supercapacitors or batteries. PMID:24064528

  20. Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers.

    PubMed

    Alaboson, Justice M P; Wang, Qing Hua; Emery, Jonathan D; Lipson, Albert L; Bedzyk, Michael J; Elam, Jeffrey W; Pellin, Michael J; Hersam, Mark C

    2011-06-28

    The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO(2) and Al(2)O(3) on epitaxial graphene on SiC(0001). The PTCDA is deposited via sublimation in ultrahigh vacuum and shown to be highly ordered with low defect density by molecular-resolution scanning tunneling microscopy. Whereas identical ALD conditions lead to incomplete and rough dielectric deposition on bare graphene, the chemical functionality provided by the PTCDA seeding layer yields highly uniform and conformal films. The morphology and chemistry of the dielectric films are characterized by atomic force microscopy, ellipsometry, cross-sectional scanning electron microscopy, and X-ray photoelectron spectroscopy, while high-resolution X-ray reflectivity measurements indicate that the underlying graphene remains intact following ALD. Using the PTCDA seeding layer, metal-oxide-graphene capacitors fabricated with a 3 nm Al(2)O(3) and 10 nm HfO(2) dielectric stack show high capacitance values of ∼700 nF/cm(2) and low leakage currents of ∼5 × 10(-9) A/cm(2) at 1 V applied bias. These results demonstrate the viability of sublimated organic self-assembled monolayers as seeding layers for high-k dielectric films in graphene-based nanoelectronics. PMID:21553842

  1. CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing.

    PubMed

    Zhang, Xiaohui; Liao, Qingliang; Liu, Shuo; Xu, Wei; Liu, Yichong; Zhang, Yue

    2015-02-01

    We utilized CuNiO nanoparticles modified graphene sheets (CuNiO-graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO-graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9-16 mM) and high sensitivity (225.75 μA mM(-1) cm(-2) and 32.44 μA mM(-1) cm(-2), respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense. PMID:25597801

  2. Self-assembled 3D-hierarchical structure Cu2ZnSnS4 photocathodes by tuning anion ratios in precursor solution

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Luo, Wenjun; Guan, Zhongjie; Shao, Hansen; Fu, Gao; Zhou, Yong; Zou, Zhigang

    2016-03-01

    Cu2ZnSnS4 (CZTS) is one of the most promising light capture materials for solar cells or solar fuels. Construction of 3D hierarchical structure is very important for efficient optoelectronic devices. It is challenging to directly fabricate 3D hierarchical structure CZTS film by a facile solution method. Herein, we present a one-step sol-gel method for fabrication of CZTS thin films with 3D hierarchical structures. For the first time, it is found that the morphologies of thin films can be adjusted between dense, porous and 3D hierarchical structures by tuning anion ratios of Cl-/Ac- in precursor solution. Further analysis suggests the formation of intermediate phases of SnO2 nanoparticles and SnS2 nanosheets by tuning ratios of Cl-/Ac- in precursor solution, which has important effects on the formation of different nanostructures of CZTS. This study can deepen understanding of anion’ effect on morphologies of samples using a solution method and forms a reference to prepare novel nanostructures of other materials.

  3. Controlling the assembly of graphene oxide by an electrolyte-assisted approach.

    PubMed

    Song, Yuting; Yang, Haijun; Wang, Yufei; Chen, Shimou; Li, Dan; Zhang, Suojiang; Zhang, Xuehua

    2013-07-21

    In this work, we studied the effects of salts on the self-assembly of two-dimensional graphene oxide (GO) driven by the dissolution of a sub-microliter droplet. Two kinds of structures were obtained. One was a GO snowball with small salt crystals inserted between sheets, which formed with a low initial concentration of insoluble salt in the GO dispersion. The other was a hybrid nanostructure containing NaCl or KCl crystals on a GO snowball, which formed with a high initial salt concentration in the suspension. In addition, we report the novel nanodent-decorated GO snowballs formed by templating the spontaneously formed microdroplets through ouzo effects. Such highly crumpled snowball structures may find applications in super-capacitors or catalyst supports. PMID:23744059

  4. Large area orientation films based on graphene oxide self-assembly and low-temperature thermal reduction

    NASA Astrophysics Data System (ADS)

    Niu, Yongan; Zhao, Jiupeng; Zhang, Xin; Wang, Xianjie; Wu, Jie; Li, Yang; Li, Yao

    2012-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) have many outstanding physical and mechanical properties. Uniform and thickness controllable RGO films with large area were prepared by evaporation-induced self-assembly at a liquid/air interface on glass substrates in combination with low temperature thermal reduction at 200 °C. This process has the advantage of good compatibility with flexible and non-flexible substrates. The films are of centimeter scale and their thickness can be controlled. The structural evolution was characterized. The obtained thermal RGO films exhibit excellent optical properties, a high elastic modulus of 76.18 GPa, and a hardness of 6.89 GPa.

  5. Self-assembly of Fe{sub 2}O{sub 3}/reduced graphene oxide hydrogel for high Li-storage

    SciTech Connect

    Zhou, Weiwei Ding, Chunyan; Jia, Xingtao; Tian, Ye; Guan, Qiaotian; Wen, Guangwu

    2015-02-15

    Highlights: • A new composite hydrogel consisted of Fe{sub 2}O{sub 3} nanotubes and graphene has been prepared via hydrothermal method. • In this composite hydrogel, RGO sheets self-assemble into an interconnected macroporous framework and Fe{sub 2}O{sub 3} nanotubes encapsulate into RGO layers. • The resulting composite hydrogel exhibits high specific capacity (850 mAh/g at 200 mA/g), good rate capability and cycling stability. - Abstract: A novel three-dimensional (3D) Fe{sub 2}O{sub 3}/reduced graphene oxide (RGO) hydrogel (FGH) is prepared by a facile hydrothermal strategy. In this composite hydrogel, RGO sheets self-assemble into an interconnected macroporous framework and Fe{sub 2}O{sub 3} nanotubes encapsulate into RGO layers. The FGH delivers high rate capacities of 850, 780, 550, and 400 mAh/g at current densities of 200, 400, 600, and 800 mA/g, respectively. The specific capacity can still maintain at ∼600 mAh/g after 70 cycles, which greatly outperforms that of pure Fe{sub 2}O{sub 3} nanotubes (∼60 mAh/g after 70 cycles). The improved electrochemical performance is ascribed to the unique macroscopic structure which is beneficial for enlarging the active surface area, shortening the electron/ion pathway, accommodating the volume change of Fe{sub 2}O{sub 3} nanotubes, and preventing the aggregation of both Fe{sub 2}O{sub 3} nanoparticles and RGO sheets.

  6. Free standing SnS2 nanosheets on 3D graphene foam: an outstanding hybrid nanostructure anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Zhi Xiang; Wang, Ye; Wong, Jen It; Yang, Hui Ying

    2015-06-01

    Two-dimensional (2D) materials are attracting increased research interest due to their unique physical properties and potential for application in various electronic devices. Herein, the combination of 2D materials consisting of vertical aligned tin sulfide (SnS2) nanosheets and three-dimensional graphene (3DG) are designed as a superior functional anode material for energy storage devices using the merits of the two materials. The SnS2/3DG hybrid nanostructure was synthesized via a single-step solvothermal method and further used as a binder-free anode in lithium ion batteries (LIBs). The binder-free SnS2/3DG electrode shows excellent electrochemical performance including superior specific capacity, enhanced rate capability and outstanding cycling stability compared to pure SnS2 and 3DG. SnS2/3DG hybrid nanocomposite electrodes are able to deliver high reversible capacities of 771.2 mAh g-1 and 433.3 mAh g-1 at the current densities of 200 and 1000 mA g-1, respectively. The excellent electrochemical performance of SnS2/3DG nanocomposite is attributed to the synergistic effect between SnS2 and 3DG. These results demonstrate SnS2/3DG nanocomposites as a highly promising anode material for future generation LIBs.

  7. The Collaboratory for MS3D: A New Cyberinfrastructure for the Structural Elucidation of Biological Macromolecules and their Assemblies Using Mass Spectrometry-based Approaches

    PubMed Central

    Yu, Eizadora T.; Hawkins, Arie; Kuntz, Irwin D.; Rahn, Larry A.; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M.; Yang, Christine L.; Pancerella, Carmen M.; Fabris, Daniele

    2009-01-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research lab or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of which is to not only provide a common data sharing and archiving system but also to assist in the building of new collaborations and to spur the development of new tools and technologies. PMID:18817429

  8. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  9. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction.

    PubMed

    Guo, Shaojun; Sun, Shouheng

    2012-02-01

    Seven-nanometer FePt nanoparticles (NPs) were synthesized and assembled on graphene (G) by a solution-phase self-assembly method. These G/FePt NPs were a more active and durable catalyst for oxygen reduction reaction (ORR) in 0.1 M HClO(4) than the same NPs or commercial Pt NPs deposited on conventional carbon support. The G/FePt NPs annealed at 100 °C for 1 h under Ar + 5% H(2) exhibited specific ORR activities of 1.6 mA/cm(2) at 0.512 V and 0.616 mA/cm(2) at 0.557 V (vs Ag/AgCl). As a comparison, the commercial Pt NPs (2-3 nm) had specific activities of 0.271 and 0.07 mA/cm(2) at the same potentials. The G/FePt NPs were also much more stable in the ORR condition and showed nearly no activity change after 10 000 potential sweeps. The work demonstrates that G is indeed a promising support to improve NP activity and durability for practical catalytic applications. PMID:22279956

  10. Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-assembly in solution.

    PubMed

    Zhu, Guoxing; Liu, Yuanjun; Xu, Zheng; Jiang, Tian; Zhang, Chi; Li, Xun; Qi, Gang

    2010-08-01

    A facile and robust route for the pre-synthesized Fe(3)O(4) nanoparticles (NPs) exclusively assembled on both sides of reduced graphene oxide (RGO) sheets with tunable density forming two-dimensional NPs composite membranes is developed in solution. The assembly is driven by electrostatic attraction, and the nanocomposite sheets display considerable mechanical robustness, such as it can sustain supersonic and solvothermal treatments without NPs falling off, also, can freely float in solution and curl into a tube. The obtained two-dimensional composite grain membranes exhibit superparamagnetic behavior at room temperature but responds astutely to an external magnetic field. In addition, these magnetic composite membranes show an enhanced absorption capability for microwaves. The grain sheets are attractive for biomedical, sensors, environmental applications and electric-magnetic devices benefited from large surfaces, high magnetization moment, and superparamagnetic properties. The effective integration of oxide nanocrystals on RGO sheets provides a new way to design semiconductor-carbon nanocomposites for nanodevices or catalytic applications. PMID:20572256

  11. Polymer-graphene oxide quadlayer thin-film assemblies with improved gas barrier.

    PubMed

    Tzeng, Ping; Stevens, Bart; Devlaming, Ian; Grunlan, Jaime C

    2015-06-01

    Layer-by-layer assembly was used to create quadlayers (QLs) of chitosan (CH), poly(acrylic acid) (PAA), CH, and graphene oxide (GO). Electron microscopy confirmed GO coverage over the film and a highly ordered nanobrick wall structure. By varying pH deviation between CH and PAA, a thick and interdiffused polymer matrix was created because of the altered chain conformation. A 5 CH (pH 5.5)/PAA (pH 3)/CH (pH 5.5)/GO QL assembly (48 nm) exhibits very low oxygen permeability (3.9 × 10(-20) cm(3) cm cm(-2) Pa(-1) s(-1)) that matches SiOx barrier coatings. In an effort to maintain barrier performance under high humidity, GO was thermally reduced to increase hydrophobicity of the film. This reduction step increased H2/CO2 selectivity of a 5 QL film from 5 to 215, exceeding Robeson's upper bound limit. This unique water-based multilayer nanocoating is very promising for a variety of gas purification and packaging applications. PMID:25970136

  12. Investigating the Self-Assembly and Nanopatterning Characteristics of Organic Molecular Adlayers on Silicon and Graphene via Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Karmel, Hunter Jason

    The controlled nanostructuring of matter on the atomic and molecular scale requires deep insight into the complex physical and chemical interactions that occur between adsorbates and surfaces. This dissertation examines the self assembly of molecularly thin organic adlayers on technologically significant nanoelectronic substrates using ultra high vacuum (UHV) scanning tunneling microscopy (STM). The three material systems considered in this work are cyclopentene monolayers on silicon, perylenetetracarboxylic diimide (PTCDI) adlayers on epitaxial graphene, and PTCDI melamine nanoporous molecular arrays on epitaxial graphene. The nanolithographic properties of each of these organic inorganic hybrid interfaces are extensively characterized at the molecular level. First, the molecularly precise desorption of individual cyclopentene molecules from a saturated organic passivation layer is demonstrated using feedback controlled lithography (FCL), thus achieving sub nanometer patterning resolution and the possibility of generating molecularly abrupt nanostructures on the silicon (100) surface. Second, the exceptional structural and thermal stability of PTCDI adlayers on epitaxial graphene is established using a combination of STM and X ray reflectivity (XRR) measurements. The enhanced stability of the PTCDI adlayer allows it to accommodate sub 5 nanometer voids with molecularly defined boundaries in addition to isolated molecular vacancies at room temperature. Third, a hydrogen bonded molecularly thin organic heteromolecular nanoporous network is generated on epitaxial graphene, formed by the intermixing of PTCDI and melamine. This molecular array exhibits a sub 5 nanometer two dimensional periodicity with hexagonal symmetry and is in atomic registry with the underlying graphene lattice. Overall this thesis explores the richly diverse physical and chemical interactions that promote molecularly precise lithography on nanoelectronic surfaces. In conclusion, the key insights

  13. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles.

    PubMed

    Lao, Zhaoxin; Hu, Yanlei; Zhang, Chenchu; Yang, Liang; Li, Jiawen; Chu, Jiaru; Wu, Dong

    2015-12-22

    The hierarchical structures are the derivation of various functionalities in the natural world and have inspired broad practical applications in chemical systhesis and biological manipulation. However, traditional top-down fabrication approaches suffered from low complexity. We propose a laser printing capillary-assisted self-assembly (LPCS) strategy for fabricating regular periodic structures. Microscale pillars are first produced by the localized femtosecond laser polymerization and are subsequently self-assembled into periodic hierarchical architectures with the assistance of controlled capillary force. Moreover, based on anisotropic assemblies of micropillars, the LPCS method is further developed for the preparation of more complicated and advanced functional microstructures. Pillars cross section, height, and spatial arrangement can be tuned to guide capillary force, and diverse assemblies with different configurations are thus achieved. Finally, we developed a strategy for growing micro/nanoparticles in designed spatial locations through solution-evaporation self-assembly induced by morphology. Due to the high flexibility of LPCS method, the special arrangements, sizes, and distribution density of the micro/nanoparticles can be controlled readily. Our method will be employed not only to fabricate anisotropic hierarchical structures but also to design and manufacture organic/inorganic microparticles. PMID:26506428

  14. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs. PMID:26676945

  15. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

    PubMed

    Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian

    2015-11-15

    3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. PMID:26001621

  16. Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Junming; Wu, Jinsong; Luo, Langli; Chen, Xinqi; Qin, Huibin; Dravid, Vinayak; Mi, Shaobo; Jia, Chunlin

    2015-01-01

    Graphene-based nanocomposites have been synthesized and tested as electrode materials for high power lithium-ion batteries. In the synthesis of such nanocomposites, graphene is generally introduced by either thermally or chemically reduced graphite oxide (GO), which has poorer electric conductivity and crystallinity than mechanically exfoliated graphene. Here, we prepare few-layer graphene sheet (FLGS) with high electric conductivity, by sonicating expanded graphite in DMF solvent, and develop a simple one-pot hydrothermal method to fabricate monodispersed and ultrasmall Co3O4 nanocubes (about 4 nm in size) on the FLGS. This composite, consisting of homogeneously assembled and high crystalline Co3O4 nanocubes on the FLGS, has shown higher capacity and much better cycling stability than counterparts synthesized using GO as a precursor. The products in different synthesis stages have been characterized by TEM, FTIR and XPS to investigate the nanocube growth mechanism. We find that Co(OH)2 initially grew homogeneously on the graphene surface, then gradually oxidized to form Co3O4 nanoparticle seeds, and finally converted to Co3O4 nanocubes with caboxylated anion as surfactant. This work explores the mechanism of nanocrystal growth and its impact on electrochemical properties to provide further insights into the development of nanostructured electrode materials for high power energy storage.

  17. Assembly and property research on seven 0D–3D complexes derived from imidazole dicarboxylate and 1,2-bi(pyridin-4-yl)ethene

    SciTech Connect

    Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan

    2015-03-15

    The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been

  18. Facile Assembly of Benzo[b]naphtho[2,3-d]azocin-6(5 H)-ones by a Palladium-Catalyzed Double Carbometalation.

    PubMed

    Gong, Xinxing; Chen, Mo; Yao, Liangqing; Wu, Jie

    2016-05-20

    The palladium-catalyzed reaction of 2-alkynylanilines with 2-(2-bromobenzylidene)cyclobutanone as an efficient route to 7,8-dihydrobenzo[b]naphtho[2,3-d]azocin-6(5 H)-ones was developed. The fused eight-membered ring was constructed conveniently. During the reaction process, double carbometalation was involved, which resulted in excellent selectivity with the formation of three new bonds. This transformation is highly efficient and leads to fused polycycles in good to excellent yields with good functional group tolerance. PMID:26991867

  19. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  20. Biomimetic superelastic graphene-based cellular monoliths.

    PubMed

    Qiu, Ling; Liu, Jeffery Z; Chang, Shery L Y; Wu, Yanzhe; Li, Dan

    2012-01-01

    Many applications proposed for graphene require multiple sheets be assembled into a monolithic structure. The ability to maintain structural integrity upon large deformation is essential to ensure a macroscopic material which functions reliably. However, it has remained a great challenge to achieve high elasticity in three-dimensional graphene networks. Here we report that the marriage of graphene chemistry with ice physics can lead to the formation of ultralight and superelastic graphene-based cellular monoliths. Mimicking the hierarchical structure of natural cork, the resulting materials can sustain their structural integrity under a load of >50,000 times their own weight and can rapidly recover from >80% compression. The unique biomimetic hierarchical structure also provides this new class of elastomers with exceptionally high energy absorption capability and good electrical conductivity. The successful synthesis of such fascinating materials paves the way to explore the application of graphene in a self-supporting, structurally adaptive and 3D macroscopic form. PMID:23212370

  1. Graphene for batteries, supercapacitors and beyond

    NASA Astrophysics Data System (ADS)

    El-Kady, Maher F.; Shao, Yuanlong; Kaner, Richard B.

    2016-07-01

    Graphene has recently enabled the dramatic improvement of portable electronics and electric vehicles by providing better means for storing electricity. In this Review, we discuss the current status of graphene in energy storage and highlight ongoing research activities, with specific emphasis placed on the processing of graphene into electrodes, which is an essential step in the production of devices. We calculate the maximum energy density of graphene supercapacitors and outline ways for future improvements. We also discuss the synthesis and assembly of graphene into macrostructures, ranging from 0D quantum dots, 1D wires, 2D sheets and 3D frameworks, to potentially 4D self-folding materials that allow the design of batteries and supercapacitors with many new features that do not exist in current technology.

  2. Tailored Parallel Graphene Stripes in Plastic Film with Conductive Anisotropy by Shear-Induced Self-Assembly.

    PubMed

    Mao, Cui; Huang, Jinrui; Zhu, Yutian; Jiang, Wei; Tang, Qingxin; Ma, Xiaojing

    2013-01-01

    We present a simple but efficient route to prepare a highly anisotropic conductive plastic thin film from the polypropylene/(styrene-ethylene/butadiene-styrene) triblock copolymer/graphene blend via shear-induced self-assembly. Under the shear-flow induction, GE nanosheets dispersed in the polymer matrix can spontaneously assemble into ordered parallel stripes, which endow the materials significantly conductive anisotropy. The electrical resistivity in the direction parallel to the graphene stripes is almost four orders of magnitude lower than that which is perpendicular to the stripes. This study provides a new method for the precise control of the organization of functional nano-objects in polymer matrix, which can be widely extended to the fabrication of other multifunctional anisotropic materials of interest in various fields. PMID:26291209

  3. Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Carrete, J.; Gallego, L. J.

    2011-06-01

    We performed extensive density-functional calculations of the structural, electronic, and magnetic properties of systems comprising one or two adatoms of Fe, Co, Ni, Ru, Rh, Pd, or Pt adsorbed on a hydrogen-passivated zigzag graphene nanoribbon (GNR). In all cases, the most stable structure featured the adatom(s) at positions near one of the edges of the GNR. However, whereas in the most stable structures of the single-adatom systems Ni/GNR, Ru/GNR, Rh/GNR, and Pd/GNR the adatom was located above a bay of the zigzag edge, Fe/GNR and Co/GNR were found to be most stable when the adatoms were at a first-row hole site, while the two configurations were nearly equienergetic for Pt/GNR. Similarly, whereas the most stable structures of the two-adatom systems Ni2/GNR, Ru2/GNR, Rh2/GNR, and Pd2/GNR had the adatoms above two neighboring edge bays, Co2/GNR and Pt2/GNR were most stable with the adatoms stacked in a double-decker configuration above a single edge bay, and Fe2/GNR with the adatoms stacked at a single first-row hole site. Adatom adsorption involved strong hybridization between the metal d states and the GNR states, and adsorption at sites near a GNR edge generally reduced the average magnetic moment of carbon atoms at that edge to near zero, though in some cases—notably two Co2/GNR configurations—it led to the GNR edges having non-negligible magnetic moments of the same sign even though at the start of the optimization the metal atoms were nonmagnetic and the GNR edges had opposite signs (the preferred configuration of the pristine GNR). The electronic character of GNRs with adsorbed transition metal atoms or dimers depended on the species and concentration of the adsorbate and on the adsorption site(s), different stable or near-stable systems exhibiting semiconducting, zero-gap semiconducting, metallic, or half-metallic behavior.

  4. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  5. Gold Nanorods: Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays (Adv. Mater. 13/2016).

    PubMed

    Li, Penghui; Li, Yong; Zhou, Zhang-Kai; Tang, Siying; Yu, Xue-Feng; Xiao, Shu; Wu, Zhongzhen; Xiao, Quanlan; Zhao, Yuetao; Wang, Huaiyu; Chu, Paul K

    2016-04-01

    On page 2511, X.-F. Yu, P. K. Chu, and co-workers demonstrate the successful fabrication of millimeter-scale three-dimensional superlattice arrays consisting of dense, regular, and vertically aligned gold nanorods by the evaporative self-assembly method. The excellent performance in surface-enhanced Raman scattering indicates applications in plasmonic substrates. PMID:27037942

  6. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    PubMed Central

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-01-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved. PMID:23835625

  7. Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Li; Baji, Avinash; Tien, Hsi-Wen; Yang, Ying-Kui; Yang, Shin-Yi; Ma, Chen-Chi M.; Liu, Hong-Yuan; Mai, Yiu-Wing; Wang, Nian-Hau

    2011-11-01

    A simple method was developed to assemble graphite oxide (GO) densely onto electrospun (ES) polyamide 66 (PA66) nanofibrous membranes, used as a guide for the deposition of graphene nanosheet (GNS) conductive networks for preparing transparent conductive thin film (TCF). The main advantage of this technique by comparison with previous methods is that graphene does not form a uniform coating, but a percolated conductive network, when guided by PA66 nanofiber templates. A low surface coverage of the transparent substrate by GNS resulted in high transmittance. Polyvinylpyrrolidone-stabilized GO (PVP-GO) was prepared as a modifier for improving the adsorption to the nanofibers. The resulting PVP-GO material could adsorb well on PA66 nanofibers due to stronger hydrogen bonds. Hence, a lower sufficient concentration of PVP-GO (0.050 wt%) solution was required than that for GO solution (0.100 wt%) to fabricate a complete conductive path through a possible enriched adsorption process. For TCF applications, a reduction step is essential because as-deposited GO is non-conductive. In this work, we reduced GO to GNS by a combination of chemical reduction and thermal annealing. The TCF optical transmittance also could be improved after thermal annealing at 350 °C above the PA66 melting point. Light scattering by PA66 nanofibers was found as the main cause of reduced transmittance. A fused film, obtained after electrospinning PA66 solution for 120 s, and immersing in 0.050 wt% PVP-GO solution, exhibits a surface resistance of 8.6 \\times 10^{3~}\\Omega /\\square , while maintaining 88% light transmittance.

  8. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    DOE PAGESBeta

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of suchmore » behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.« less

  9. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    SciTech Connect

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  10. Superelastic, Macroporous Polystyrene-Mediated Graphene Aerogels for Active Pressure Sensing.

    PubMed

    Zhang, Panpan; Lv, Lingxiao; Cheng, Zhihua; Liang, Yuan; Zhou, Qinhan; Zhao, Yang; Qu, Liangti

    2016-04-01

    Three-dimensional (3D) graphene-based polymer/graphene aerogels with excellent mechanical properties are crucial for broad applications. The creation of such polymer/graphene aerogels remains challenging because of the poor dispersion and compatibility of polymer within the graphene matrix. By using the freezing-directed assembly of graphene under the assistance of surfactant, 3D macroporous polystyrene/graphene aerogels (MPS-GAs) with lightweight, superelastivity (80 % strain), high strength (80 kPa), and good electrical properties have been achieved in this study. The as-prepared MPS-GAs shows excellent electromechanical performance with stable cyclic resilient properties and sensitive resistance responses, thus making the MPS-GAs promising candidates for applications in actuators, elastic conductors, strain/pressure sensors, and wearable devices. PMID:26852896

  11. Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep Babu; Dadrasnia, Ehsan; Sánchez, Miguel; Rodríguez, Sergio; González, Marta; Carpintero, Guillermo; Osiński, Marek; Lamela, Horacio

    2016-03-01

    During the last two decades, optoacoustic imaging has been developed as a novel biomedical imaging technique based on the generation of ultrasound waves by means of laser light. In this work, we investigate the optoacoustic response from graphene-based solutions by using a compact and cost-effective system based on an assembly of several 905-nm pulsed high-power diode lasers coupled to a bundle of 200-μm diameter- core optical fibers. The coupled light is conveyed into a lens system and focused on an absorber consisting of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and reduced graphene-oxide/gold-nanoparticle hybrid, respectively) diluted in ethanol and hosted in slightly scattering optical phantoms. The high absorption of these graphene-based solutions suggests their potential future use in optoacoustic applications as contrast agents.

  12. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes.

    PubMed

    Park, Woon Ik; Yoon, Jong Moon; Park, Moonkyu; Lee, Jinsup; Kim, Sung Kyu; Jeong, Jae Won; Kim, Kyungho; Jeong, Hu Young; Jeon, Seokwoo; No, Kwang Soo; Lee, Jeong Yong; Jung, Yeon Sik

    2012-03-14

    We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes. PMID:22324809

  14. A novel form of β-strand assembly observed in Aβ33-42 adsorbed onto graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Weber, Jeffrey K.; Liu, Lei; Dong, Mingdong; Zhou, Ruhong; Li, Jingyuan

    2015-09-01

    Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted.Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which

  15. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chen, Biao; Zhang, Liming; Huang, Jie; Chen, Fenghua; Yang, Zupei; Yao, Jianlin; Zhang, Zhijun

    2011-04-01

    We describe a facile approach to controllable assembly of monodisperse Fe3O4nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe3O4 NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe3O4 NPs and aminegroups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe3O4-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported.We describe a facile approach to controllable assembly of monodisperse Fe3O4nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe3O4 NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe3O4 NPs and aminegroups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe3O4-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported. Electronic supplementary information

  16. Self-folding graphene-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-01

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  17. Self-folding graphene-polymer bilayers

    SciTech Connect

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  18. Analytical finite element matrix elements and global matrix assembly for hierarchical 3-D vector basis functions within the hybrid finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, K.; Li, H.; Eibert, T. F.

    2014-11-01

    A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.

  19. Large-Scale Self-Assembly of 3D Flower-like Hierarchical Ni/Co-LDHs Microspheres for High-Performance Flexible Asymmetric Supercapacitors.

    PubMed

    Li, T; Li, G H; Li, L H; Liu, L; Xu, Y; Ding, H Y; Zhang, T

    2016-02-01

    In this study, a facile and inexpensive and self-assembled strategy to massively fabricate Ni/Co layered double hydroxides (LDHs) is developed under mild reaction conditions (55 °C). The resulting composite material displays a special three-dimensional hierarchical microsphere structure with well-defined flower-like configuration. The fabrication mechanism can be ascribed to stepwise and regular reaction process of nanoparticles and nanosheets gradually growing to nanopetals and then assembling into flower-like microspheres, based on the systematically investigation of various reaction factors including the Ni:Co feeding ratio, the reaction time and the initial pH-value. Because of its large surface, ultrathin feature and synergetic results of this Ni/Co LDHs nanosheets (20 nm), these Ni/Co-LDHs microspheres deliver an excellent capacitance value about 2228 F·g(-1) (1 A·g(-1)). An all-solid-state flexible asymmetric supercapacitor is designed and assembled by exploiting this Ni/Co-LDHs as the positive materials, which exhibits energy density of 165.51 Wh·kg(1-) at 1.53 KW·kg(1-). It may have vast potential significance in personal wearable equipment. Moreover, this monolithic design provides a promising approach for large scale fabrication of other LDHs materials. PMID:26751174

  20. Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries

    NASA Astrophysics Data System (ADS)

    Sharifi, Tiva; Valvo, Mario; Gracia-Espino, Eduardo; Sandström, Robin; Edström, Kristina; Wågberg, Thomas

    2015-04-01

    Hierarchical structures based on carbon paper and multi-walled nitrogen-doped carbon nanotubes were fabricated and subsequently decorated with hematite nanorods to obtain advanced 3D architectures for Li-ion battery negative electrodes. The carbon paper provides a versatile metal-free 3D current collector ensuring a good electrical contact of the active materials to its carbon fiber network. Firstly, the nitrogen-doped carbon nanotubes onto the carbon paper were studied and a high footprint area capacity of 2.1 mAh cm-2 at 0.1 mA cm-2 was obtained. The Li can be stored in the inter-wall regions of the nanotubes, mediated by the defects formed on their walls by the nitrogen atoms. Secondly, the incorporation of hematite nanorods raised the footprint area capacity to 2.25 mAh cm-2 at 0.1 mA cm-2. However, the repeated conversion/de-conversion of Fe2O3 limited both coulombic and energy efficiencies for these electrodes, which did not perform as well as those including only the N-doped carbon nanotubes at higher current densities. Thirdly, long-cycling tests showed the robust Li insertion mechanism in these N-doped carbonaceous structures, which yielded an unmatched footprint area capacity enhancement up to 1.95 mAh cm-2 after 60 cycles at 0.3 mA cm-2 and an overall capacity of 204 mAh g-1 referred to the mass of the entire electrode.

  1. Anionic 3D cage networks self-assembled by iodine and V-shaped pentaiodides using dimeric oxoammonium cations produced in situ as templates.

    PubMed

    Pang, Xue; Wang, Hui; Zhao, Xiao Ran; Jin, Wei Jun

    2013-06-28

    A novel co-crystal, [(BTEMPO)2(2+)·4I2·2I5(-)] (BTEMPO(+) = 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxoammonium cation), was successfully constructed using iodine and 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (BTEMPO) as starting materials and was well characterized by XRD, Raman and calculation. The co-crystal possesses a fascinating 3D anionic cage structure formed by V-shaped-pentaiodides and iodine via multiple halogen bonding and on a template of dimeric (BTEMPO)2(2+) cations. The cationic dimers are held together by a pair of reversed C-H···O=C hydrogen bonds and stabilized the 3D cage structure by C-H···I hydrogen bonds between methyl-protons of BTEMPO(+) and iodine in the framework. The reaction mechanism of producing BTEMPO(+) and I5(-) is proposed and verified by UV-Vis spectroscopy and ESI-MS, which initially goes through a halogen bonding complex between iodine and BTEMPO free radical and then Milliken inner charge transfer and charge separation reaction. UV-Vis absorption spectroscopy confirms the halogen bonding complex between I2 and BTEMPO with a formation constant of 6.94 M(-1) and a 1 : 1 stoichiometry in chloroform. The ESI-MS directly led to observation of the less stable intermediates in the mechanism. It is believed that the mechanism proposed here is helpful in understanding the interactions between I2 and organic electron donors, which are debated frequently, and fills the gaps in the reaction mechanism of I2 with free radicals or analogues. PMID:23640048

  2. Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications.

    PubMed

    Zhu, Xiaoli; Zhang, Peng; Xu, Shan; Yan, Xingbin; Xue, Qunji

    2014-07-23

    Novel three-dimensional (3D) hybrid materials, i.e., free-standing 3D graphene-supported MnO2 nanosheets, are prepared by a simple and controllable solution-phase assembly process. Characterization results show that MnO2 nanosheets are uniformly anchored on a 3D graphene framework with strong adhesion and the integral hybrids show desirable mechanical strength. Such unique structure of 3D graphene/MnO2 hybrids thus provides the right characteristics of binder-free electrode materials and could enable the design of different kinds of high-performance energy storage devices. Especially, an advanced asymmetric supercapacitor is built by using a 3D graphene/MnO2 hybrid and a 3D graphene as two electrodes, and it is able to work reversibly in a full operation voltage region of 0-3.5 V in an ionic liquid electrolyte and thus exhibits a high energy density of 68.4 Wh/kg. As the cathode materials for Li-O2 and Li-MnO2 batteries, the 3D graphene/MnO2 hybrids exhibit outstanding performances, including good catalytic capability, high reversible capacity and desirable cycling stability. The results presented here may pave a way for new promising applications of such 3D graphene/MnO2 hybrids in advanced electrochemical energy storage devices. PMID:24978598

  3. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer.

    PubMed

    Chen, Qiushui; Wei, Weili; Lin, Jin-Ming

    2011-07-15

    In this work, we proposed a novel biosensor to homogeneously detect concanavalin A (ConA) using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer (FRET). Maltose-grafted-aminopyrene (Mal-Apy) was synthesized and characterized by mass spectra, UV-vis and fluorescence spectra. The Mal-Apy was further employed for fluorescence switch and ConA recognition. When Mal-Apy was self-assembled on the surface of graphene by means of π-stacking interaction, its fluorescence was adequately quenched because the graphene acted as a "nanoquencher" of the pyrene rings due to FRET. As a result, in the presence of ConA, competitive binding of ConA with glucose destroyed the π-stacking interaction between the pyrene and graphene, thereby causing the fluorescence recovery. This method was demonstrated the selective sensing of ConA, and the linear range is 2.0 × 10⁻² to 1.0 μM with the linear equation y=1.029x + 0.284 (R = 0.996). The limit of detection for ConA was low to 0.8 nM, and the detection of ConA could be performed in 5 min, indicating that this method could be used for fast, sensitive, and selective sensing of ConA. Such data suggests that the graphene FRET platform is a great potential application for protein-carbohydrate studies, and would be widely applied in drug screening, bimolecular recognition and disease diagnosis. PMID:21621405

  4. Photocatalytic Nanostructuring of Graphene Guided by Block Copolymer Self-Assembly.

    PubMed

    Wang, Zhongli; Li, Tao; Schulte, Lars; Almdal, Kristoffer; Ndoni, Sokol

    2016-04-01

    Nanostructured graphene exhibits many intriguing properties. For example, precisely controlled graphene nanomeshes can be applied in electronic, photonic, or sensing devices. However, fabrication of nanopatterned graphene with periodic supperlattice remains a challenge. In this work, periodic graphene nanomesh was fabricated by photocatalysis of single-layer graphene suspended on top of TiO2-covered nanopillars, which were produced by combining block copolymer nanolithography with atomic layer deposition. Graphene nanoribbons were also prepared by the same method applied to a line-forming block copolymer template. This mask-free and nonchemical/nonplasma route offers an exciting platform for nanopatterning of graphene and other UV-transparent materials for device engineering. PMID:26999508

  5. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-28

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications. PMID:26419953

  6. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.

    PubMed

    Zhu, Cheng; Liu, Tianyu; Qian, Fang; Han, T Yong-Jin; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A; Li, Yat

    2016-06-01

    Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g(-1)) and power densities (>4 kW·kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications. PMID:26789202

  7. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation, and differentiation.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Xungai; Lin, Tong

    2014-11-01

    Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration. PMID:24288259

  9. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  10. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.

    PubMed

    Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin

    2015-02-15

    A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. PMID:25314620

  11. Conductive oxygen barrier films using supramolecular assembly of graphene embedded polyelectrolyte multilayers.

    PubMed

    Gokhale, Ankush A; Lu, Jue; Parker, Nathan J; Izbicki, Andrew P; Sanyal, Oishi; Lee, Ilsoon

    2013-11-01

    The supramolecular self-assembly of polyelectrolyte multilayers (PEMs) provides robust bottom-up strategies to assemble a broad spectrum of nanostructures on the host substrates. In this study, we discuss the formation of graphene nanoplatelet (GNP) embedded polyelectrolyte films to enhance the oxygen barrier properties of poly(ethylene terephthalate) (PET) films. Despite cheaper costs and high mechanical strength, the diffusion of small gas molecules such as oxygen through PET films remains a matter of great concern. The simple yet robust supramolecular deposition of GNP/polyelectrolyte on PET substrates significantly increases the tortuous path the oxygen molecule has to travel, making it harder to diffuse through the PET film. With permeability coefficients in the range of 10-18 cc cm/cm(2) s Pa, the coatings developed in this study show three orders of magnitude reduction as compared to the permeability coefficient of the bare PET film, significantly lower than that of ethylene vinyl alcohol (EVOH) and comparable to silicon oxide thin films used in commercial gas barrier foils. The use of GNPs in the multilayered films also helped reduce the electrical sheet resistance to about 1MΩ which is five orders of magnitude lower than the original PET substrate opening up promising opportunities for future use in semiconductor and electronics industry. Making suitable modifications in the deposition process, three configurations of GNP embedded PEM multilayers namely hydrogen bonded, electrostatic, and composite films were developed and their effect on oxygen barrier property and sheet resistance was monitored. Oxygen permeability of films was tested in accordance with ASTM D-3985 using a MOCON 2/21 ML instrument, whereas electrical sheet resistance was quantified using a Gamry Femtostat Electrochemical Impedance station. PMID:23957926

  12. Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li-S batteries.

    PubMed

    Jia, Xiangling; Zhang, Chen; Liu, Juanjuan; Lv, Wei; Wang, Da-Wei; Tao, Ying; Li, Zhengjie; Zheng, Xiaoyu; Yu, Jong-Sung; Yang, Quan-Hong

    2016-02-18

    A controllable drying strategy is proposed for the precise and non-destructive control over the structure of a 3D graphene assembly. Such an assembly is used as a model carbon material to investigate the pore structure-dependent shuttle effect and cycling performance of the cathode of a Li-S battery. PMID:26786508

  13. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection.

    PubMed

    Lim, Seng Koon; Chen, Peng; Lee, Fook Loy; Moochhala, Shabbir; Liedberg, Bo

    2015-09-15

    Lipopolysaccharide (LPS) is a toxic inflammatory stimulator released from the outer cell membrane of Gram-negative bacteria, known to be directly related to, for example, septic shock, that causes millions of casualties annually. This number could potentially be lowered significantly if specific, sensitive, and more simply applicable LPS biosensors existed. In this work, we present a facile, sensitive and selective LPS sensor, developed by assembling tetramethylrhodamine-labeled LPS-binding peptides on graphene oxide (GO). The fluorescence of the dye-labeled peptide is quenched upon interaction with GO. Specific binding to LPS triggers the release of the peptide-LPS complex from GO, resulting in fluorescence recovery. This fluorescent turn-on sensor offers an estimated limit of detection of 130 pM, which is the lowest ever reported among all synthetic LPS sensors to date. Importantly, this sensor is applicable for detection of LPS in commonly used clinical injectable fluids, and it enables selective detection of LPS from different bacterial strains as well as LPS on the membrane of living E. coli. PMID:26303386

  14. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide.

    PubMed

    Zhang, Yi; Chen, Biao; Zhang, Liming; Huang, Jie; Chen, Fenghua; Yang, Zupei; Yao, Jianlin; Zhang, Zhijun

    2011-04-01

    We describe a facile approach to controllable assembly of monodisperse Fe(3)O(4) nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe(3)O(4) NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe(3)O(4) NPs and amine groups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe(3)O(4)-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported. PMID:21301708

  15. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid

    PubMed Central

    Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-01-01

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388

  16. Five 3D supramolecular frameworks assembled from classical directional hydrogen-bonds and Csbnd H⋯O associations between carboxylic acids and bis-imidazoles

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Guo, Ming; Wang, Daqi; Wei, Shuaishuai; Zhou, Yong; Zhou, Yingping; Cao, Xinchao; Yu, Zeyun

    2012-08-01

    Five crystalline organic acid-base adducts derived from bis(N-imidazolyl) and carboxylic acid (p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dihydroxybenzoic acid, sebacic acid, and fumaric acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five compounds three are organic salts (1, 3, and 5) and the other two (2, and 4) are cocrystals. In salts 1, and 5, the L1 are diprotonated, while in 3 the L1 is only monoprotonated. All supramolecular architectures of the adducts 1-5 involve extensive intermolecular Nsbnd H⋯O, Osbnd H⋯O, and Csbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. All the complexes displayed 3D framework structure for the synergistic effect of the various noncovalent interactions. The results presented herein indicate that the strength and directionality of the N+sbnd H⋯O-, Osbnd H⋯O, and Osbnd H⋯N hydrogen bonds between carboxylic acids and ditopic imidazoles are sufficient to bring about the formation of binary cocrystals or organic salts.

  17. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid

    NASA Astrophysics Data System (ADS)

    Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J. S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-05-01

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm-2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors.

  18. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers.

    PubMed

    Giansanti, Daniele; Maccioni, Giovanni; Macellari, Velio

    2005-07-01

    In this paper, we propose a device for the Position and Orientation (P&O) reconstruction of human segmental locomotion tasks. It is based on three mono-axial accelerometers and three angular velocity sensors, geometrically arranged to form two orthogonal terns. The device was bench tested using step-by-step motor-based equipment. The characteristics of the six channels under bench test conditions were: crosstalk absent, non linearity < +/- 0.1% fs, hysteresis < 0.1% fs, accuracy 0.3% fs, overall resolution better than 0.04 deg/s, 2 x g x 10(-4). The device was validated with the stereophotogrammetric body motion analyzer during the execution of three different locomotion tasks: stand-to-sit, sit-to-stand, gait-initiation. Results obtained comparing the trajectories of the two methods showed that the errors were lower than 3 x 10(-2) m and 2 deg during a 4s of acquisition and lower than 6 x 10(-3) m and 0.2 deg during the effective duration of a locomotory task; showing that the wearable device hereby presented permits the 3-D reconstruction of the movement of the body segment to which it is affixed for time-limited clinical applications. PMID:16041990

  19. Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene.

    PubMed

    Liang, Bo; Fang, Lu; Yang, Guang; Hu, Yichuan; Guo, Xishan; Ye, Xuesong

    2013-05-15

    A glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of the electrochemically reduced carboxyl graphene (ERCGr) modified glassy carbon electrode has been reported. X-ray photoelectron spectroscopy (XPS) analyses of ERCGr indicate most of the oxygen-containing groups such as epoxy/ether groups and hydroxyl groups in the carboxyl graphene were eliminated, while carboxylic acid groups remained. GOD was immobilized on the ERCGr modified glassy carbon electrode via self-assembly. The cyclic voltammetric result of the electrode shows a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.467 V and a peak to peak separation of 49 mV, revealing that the direct electron transfer between GOD and the electrode has been achieved. The proposed biosensor exhibits a linear response to glucose concentrations ranging from 2 to 18 mM with a detection limit of 0.02 mM. Moreover, this facile, fast, environment-friendly and economical preparation strategy of ERCGr may be extended for the preparation of other graphene based enzyme electrode biosensors. PMID:23298623

  20. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  1. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature

    SciTech Connect

    Wu, ZK; Lin, ZY; Li, LY; Song, B; Moon, KS; Bai, SL; Wong, CP

    2014-11-01

    Graphene based micro-supercapacitors (MSCs) have been extensively studied in recent years; however, few of them report room temperature fabricating methods for flexible MSC. Here we developed a convenient procedure based on simultaneous self-assembly and reduction of graphene oxide (GO) on Cu/Au interdigit at room temperature. The as-produced MSC shows a specific areal capacitance of 0.95 mF cm(-2) and maintains 98.3% after 11,000 cycles of charge and discharge. Extremely small relaxation time constants of 1.9 ms in aqueous electrolyte and 4.8 ms in gelled electrolyte are achieved. Also the device shows great flexibility and retains 93.5% of the capacitance after 5000 times of bending and twisting tests. (C) 2014 Elsevier Ltd. All rights reserved.

  2. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP

    PubMed Central

    Conduit, Paul T; Wainman, Alan; Novak, Zsofia A; Weil, Timothy T; Raff, Jordan W

    2015-01-01

    Centrosomes have many important functions and comprise a ‘mother’ and ‘daughter’ centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic ‘S-CAP’ complexes that contain the centriole protein Sas-4. In a previous paper (Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes. DOI: http://dx.doi.org/10.7554/eLife.08483.001 PMID:26530814

  3. Superior adsorption performance for triphenylmethane dyes on 3D architectures assembled by ZnO nanosheets as thin as ∼1.5nm.

    PubMed

    Pei, Cuijin; Han, Guoping; Zhao, Yan; Zhao, Hua; Liu, Bin; Cheng, Lijuan; Yang, Heqing; Liu, Shengzhong

    2016-11-15

    The 3-dimensional hierarchical ZnO flower-like architectures have been synthesized in a Zn(Ac)2·2H2O-Na2SeO3-KBH4-pyridine solvothermal system at 100°C for 24h. The flower-like architecture is assembled from ZnO nanosheets with a thickness of ∼1.5nm, and the flower-like architecture specific surface area is 132m(2)/g. When the ZnO flower-like architecture is used as the adsorbent for acid fuschin (AF), malachite green (MG), basic fuchsin (BF), congo red (CR) and acid red (AR) in water, the adsorption capacities for AF, MG, BF, CR and AR are 7154.9, 2587.0, 1377.9, 85.0 and 38.0mg/g, respectively. Evidently, the as-obtained ZnO flower-like architectures show excellent adsorption performances for triphenylmethane dyes, and the adsorption capacity of 7154.9mg/g for AF is the highest of all adsorbents for dyes. The adsorption mechanism can be attributed to the electrostatic attraction and the formation of ion-association complex between triphenylmethane dyes and ZnO hierarchical flower-like architectures. PMID:27493012

  4. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP.

    PubMed

    Conduit, Paul T; Wainman, Alan; Novak, Zsofia A; Weil, Timothy T; Raff, Jordan W

    2015-01-01

    Centrosomes have many important functions and comprise a 'mother' and 'daughter' centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic 'S-CAP' complexes that contain the centriole protein Sas-4. In a previous paper (Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes. PMID:26530814

  5. Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on fluorescence sensing of proteases

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Kyoung; Kwak, Seon-Yeong; Jeon, Su-Ji; Lee, Eunjin; Ju, Jong-Min; Kim, Hye-In; Lee, Yoon-Sik; Kim, Jong-Ho

    2016-06-01

    Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical `turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL-1.Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical `turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL-1. Electronic

  6. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests.

    PubMed

    Carlucci, Lucia; Ciani, Gianfranco; Maggini, Simona; Proserpio, Davide M; Visconti, Marco

    2010-11-01

    The modular engineering of heterometallic nanoporous metal-organic frameworks (MOFs) based on novel tris-chelate metalloligands, prepared using the functionalised β-diketone 1,3-bis(4'-cyanophenyl)-1,3-propanedione (HL), is described. The complexes [M(III)L(3)] (M=Fe(3+), Co(3+)) and [M(II)L(3)](NEt(4)) (M=Mn(2+), Co(2+), Zn(2+), Cd(2+)) have been synthesised and characterised, all of which exhibit a distorted octahedral chiral structure. The presence of six exo-oriented cyano donor groups on each complex makes it a suitable building block for networking through interactions with external metal ions. We have prepared two families of MOFs by reacting the metalloligands [M(III)L(3)] and [M(II)L(3)](-) with many silver salts AgX (X=NO(3)(-), BF(4)(-), PF(6)(-), AsF(6)(-), SbF(6)(-), CF(3)SO(3)(-), tosylate), specifically the [M(III)L(3)Ag(3)]X(3)·Solv and [M(II)L(3)Ag(3)]X(2)·Solv network species. Very interestingly, all of these network species exhibit the same type of 3D structure and crystallise in the same trigonal space group with similar cell parameters, in spite of the different metal ions, ionic charges and X(-) counteranions of the silver salts. We have also succeeded in synthesising trimetallic species such as [Zn(x)Fe(y)L(3)Ag(3)](ClO(4))((2x+3y))·Solv and [Zn(x)Cd(y)L(3)Ag(3)](ClO(4))(2)·Solv (with x+y=1). All of the frameworks can be described as sixfold interpenetrated pcu nets, considering the Ag(+) ions as simple digonal spacers. Each individual net is homochiral, containing only Δ or Λ nodes; the whole array contains three nets of type Δ and three nets of type Λ. Otherwise, taking into account the presence of weak Ag-C σ bonds involving the central carbon atoms of the β-diketonate ligands of adjacent nets, the six interpenetrating pcu networks are joined into a unique non-interpenetrated six-connected frame with the rare acs topology. The networks contain large parallel channels of approximate hexagonal-shaped sections that represent 37

  7. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  8. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  9. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  10. Construction of monomers and chains assembled by 3d/4f metals and 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine

    SciTech Connect

    Yang, Juan; Hu, Rui-Xiang; Zhang, Man-Bo

    2012-12-15

    A series of transition metal and lanthanide complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine (HL, 1), namely [M(L){sub 2}]{center_dot}5H{sub 2}O (M=Ni, 2; Co, 3), [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O (4) and [Ln(L){sub 3}]{sub n} (Ln=Nd, 5; Gd, 6; Er, 7) were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Isomorphic compounds 2 and 3 are mononuclear molecules with two ligand chelating to the metal centers via tridentate terpyridyl, while compound 4 adopts 1D chain-like structure, in which five-coordinate zinc centers are surrounded by three ligands. Compounds 5-7 also display 1D chain-like structure, but the nine-coordinate lanthanide centers bonded by four ligands. Luminescent property indicates that compound 4 exhibits photoluminescence in the solid state at room temperature. - Graphical abstract: Six complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized via assembly with transition metal and lanthanide ions, respectively. Among them, [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers, while [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures. Highlights: Black-Right-Pointing-Pointer Compounds of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized. Black-Right-Pointing-Pointer [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers. Black-Right-Pointing-Pointer [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures.

  11. Effects of graphene imperfections on the structure of self-assembled pentacene films

    NASA Astrophysics Data System (ADS)

    Jung, W.; Ahn, S. J.; Lee, S. Y.; Kim, Y.; Shin, H.-C.; Moon, Y.; Woo, S. H.; Park, C.-Y.; Ahn, J. R.

    2015-10-01

    The quality of pentacene films in pentacene-based devices significantly affects their performance. In this report, the effects of various defects in graphene on a pentacene film were studied with scanning tunneling microscopy. The two most common defects found in the epitaxial graphene grown on SiC(0 0 0 1) substrates were subsurface carbon nanotube (CNT) defects and step edges. The most significant perturbation of the pentacene films was induced by step edges between single-layer and bilayer graphene domains, while the effect of step edges between single-layer domains was marginal. The subsurface CNT defects slightly distorted the structure of the single-layer pentacene, but the influence of such defects decreased as the thickness of the pentacene film increased. These results suggest that the uniformity of the graphene layer is the most important parameter in the growth of high-quality pentacene films on graphene.

  12. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  13. Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on fluorescence sensing of proteases.

    PubMed

    Yang, Jin-Kyoung; Kwak, Seon-Yeong; Jeon, Su-Ji; Lee, Eunjin; Ju, Jong-Min; Kim, Hye-In; Lee, Yoon-Sik; Kim, Jong-Ho

    2016-06-16

    Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical 'turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL(-1). PMID:27271225

  14. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    SciTech Connect

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K.

    2014-02-24

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  15. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    NASA Astrophysics Data System (ADS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L. S.; Tavolaro, A.

    2016-09-01

    In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al2O3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm2. The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  16. Synthesis of carbon nanotubes over 3D cubical Co-KIT-6 and nickel decorated graphene by Hummer's method, its application as counter electrode in dye sensitive solar cell

    NASA Astrophysics Data System (ADS)

    Subramanian, Sunu; Pandurangan, Arumugam

    2016-04-01

    The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.

  17. CdSe-graphene oxide light-harvesting assembly: size-dependent electron transfer and light energy conversion aspects.

    PubMed

    Krishnamurthy, Sachidananda; Kamat, Prashant V

    2014-07-21

    Excited-state interaction between CdSe quantum dots (QDs) of different sizes (2.3, 3.2, and 4.2 nm diameter) and graphene oxide (GO) was probed by depositing them as films on conducting glass electrodes. The emission of smaller CdSe QDs (2.3 nm) was quenched by GO three times faster than that of larger QDs (4.2 nm). Electrophoretic deposition allowed us to sequentially deposit single or multiple layers of different sized QDs and GO assemblies on conducting glass electrodes and to modulate the photoresponse in photoelectrochemical solar cells. Superior photoconversion efficiency through the incorporation of GO was attributed to improved charge separation in the composite assembly. PMID:24643963

  18. Wrinkled-graphene wrapped silicon nanoparticles synthesized through charged colloidal assembly for enhanced battery performance

    NASA Astrophysics Data System (ADS)

    Li, Hai; Lu, Chunxiang; Ma, Canliang; Zhang, Baoping

    2014-10-01

    Elastic composite of wrinkled graphene sheets and Si nanoparticles has been prepared through engineering charged Si nanoparticles capping with 3-aminopropyl triethoxysilane and graphene oxide in colloidal state. In the composite, the Si nanoparticles are uniformly wrapped by the graphene sheets. When used as an anode for lithium-ion batteries, the as-obtained material exhibits high Coulombic efficiency, good cycling stability of 1044 mAh g-1 at a current density of 200 mA g-1 after 100 cycles, and superior rate capability. Such excellent electrochemical performance should be attributed to the wrinkled graphene sheets, which not only buffer volume expansion of Si nanoparticles during the cycling but also act as electrical conducting pathway.

  19. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  20. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  1. Interfacial assembly of Graphene Oxide at oil/water and polymer/polymer interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Feng, Tao; Russell, Thomas

    2013-03-01

    Amphiphilic structure of graphene oxide makes it a candidate ``surfactant'' to preferentially segregate to the interface between different fluids. The affinity of graphene oxide towards different phases was tuned by grafting with polystyrene (PS-NH2) through hydrogen bonding, and its interfacial behavior, both in toluene/water and polystyrene/poly(methyl methacrylate), was studied. The surface tension of the toluene/water interface decreases in the presence of PS-NH2 grafted graphene oxide, indicating that graphene oxide flakes can be forced to the toluene/water interface when grafted with PS-NH2. Transmission electron microscopy shows that graphene oxide can even be forced into a ``jammed'' state at the water/toluene interface. In addition, polystyrene and poly(methyl methacrylate) were blended with graphene oxide, its morphology changes from island type to co-continuous structure, but the mechanism of this behavior is still not clear. These interfacial sheets may provide a model system to study buckling and crumpling behavior at interfaces.

  2. Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2016-08-01

    Graphene, a one-atom thick two-dimensional (2D) material, is at the core of an ever-growing research effort due to its combination of unique mechanical, thermal, optical and electrical properties. Two strategies are being pursued for the graphene production: the bottom-up and the top-down. The former relies on the use of covalent chemistry approaches on properly designed molecular building blocks undergoing chemical reaction to form 2D covalent networks. The latter occurs via exfoliation of bulk graphite into individual graphene sheets. Amongst the various types of exfoliations exploited so far, ultrasound-induced liquid-phase exfoliation (UILPE) is an attractive strategy, being extremely versatile, up-scalable and applicable to a variety of environments. In this review, we highlight the recent developments that have led to successful non-covalent functionalization of graphene and how the latter can be exploited to promote the process of molecule-assisted UILPE of graphite. The functionalization of graphene with non-covalently interacting molecules, both in dispersions as well as in dry films, represents a promising and modular approach to tune various physical and chemical properties of graphene, eventually conferring to such a 2D system a multifunctional nature. PMID:26928750

  3. Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure.

    PubMed

    Zeng, Mengqi; Wang, Lingxiang; Liu, Jinxin; Zhang, Tao; Xue, Haifeng; Xiao, Yao; Qin, Zhihui; Fu, Lei

    2016-06-29

    The challenges facing the rapid developments of highly integrated electronics, photonics, and microelectromechanical systems suggest that effective fabrication technologies are urgently needed to produce ordered structures using components with high performance potential. Inspired by the spontaneous organization of molecular units into ordered structures by noncovalent interactions, we succeed for the first time in synthesizing a two-dimensional superordered structure (2DSOS). As demonstrated by graphene, the 2DSOS was prepared via self-assembly of high-quality graphene single crystals under mutual electrostatic force between the adjacent crystals assisted by airflow-induced hydrodynamic forces at the liquid metal surface. The as-obtained 2DSOS exhibits tunable periodicity in the cryst